
1'O

LOGIC Of COOING £50 CONTROL LOCK
1,41504 LINIS

ssalinoL 'IOM £005415 RI GIST1 •

INI 5 55.,55
5 .0•It TT

INT(55101
/A VW/5n IIGT

051•540 4005151 5101511 0

11

500 5151 1D01•
oNST RUCTION

5(015115 5•TIRRI/51

;(-,e-r7
GETTING INTO MICROPROCESSORS

The Signetics 2650

The Signetics 2650 is an 8-bit micro-
processor which is made using well
proven N-channel MOS technology. It
runs from a single +5V supply, which
tends to simplify power supply require-
ments. All inputs and outputs are TTL
compatible, and the chip requires only
a single-phase clock signal input. As the
chip operates in static mode, there is no
minimum clock frequency.

With the original 2650 chip, the maxi-
mum clock frequency was 1.25MHz, giv-
ing instruction cycle times of from 4.8 to
9.6 microseconds. However, the cur-
rently available 2650-1 chip is rated to
operate up to 2MHz, reducing the
instruction cycle times to the range 3.6
— 7.2us.

The broad architecture of the 2650 chip
is shown in the block diagram below. It
uses an 8-bit bidirectional data bus, and
a separate 15-bit address bus. This gives
a direct addressing range of 32,768 bytes

(32k), arranged in four pages of 8,192
bytes.

There are seven 8-bit addressable
general purpose registers, one of which
is the accumulator RO. The remaining six
make up the register stack, and are
arranged in two groups of 3 selectable
by one of the bits in the Program Status
Word register (PSW).

Apart from the register stack there is
a subroutine return address stack, con-
sisting of eight 15-bit registers. This
allows storage of up to eight return
addresses, and hence provides for up to
eight levels of subroutine nesting. (A
nested subroutine is a subroutine itself
called by a subroutine.)

The arithmetic and logic unit (ALU)
performs arithmetic, logic and shifting
functions. It operates on 8-bits in parallel,
and uses carry-look-ahead logic. A
second adder is used to increment the
instruction address register (program

counter), and also to calculate operand
addresses for the indexed and relative
addressing modes. This separate address
adder, together with the separate instruc-
tion address and operand address regis-
ters allows complex addressing modes to
be implemented with no increase in
instruction execution time.

The PSW is a special purpose register
which contains status and control bits.
The PSW bits may be tested, loaded,
stored, preset or cleared using instruc-
tions which affect the PSW. Three of the
bits act as the pointer for the return
address stack; two others act as a "condi-
tion code" register, which is affected by
the results of compare, test and arithme-
tic instructions and may be used by con-
ditional branch instruction; other bits
store overflow, carry, the selection bit for
the two register groups, an interrupt
inhibit bit, a carry enable bit, a
logical/arithmetic compare select bit,
and flag and sense bits for external bit-
serial interfacing.

It has been said that the 2650 has the
most minicomputer-like instruction set
of any microprocessor currently avail-
able. There are 75 basic instructions, but
many of these are actually subdivided
into a number of variations. For example
the eight arithmetic instructions may be
performed either with, or without car-

We continue our survey of microprocessor chips and systems with this
article, which takes a more detailed look at the Signetics 2650 device
and its currently available evaluation kits. Although a relatively recent
entry into the market, the 2650 has a particularly powerful instruction
set and very flexible interfacing requirements. It seems likely to become
the preferred 8-bit device for general purpose microcomputers.

by JAMIESON ROWE

T ■ J•N
400•15.5 st ar .

41.

atilt511,
ST ar• 55045AM

ST •T US
.4050

MOLT
50011511

MA
COTIOITIOM COO!

550
SITIOK5 LOOK

DATA RUT

CLOCK

THONG LOGIC

The basic architecture of the 2650 microprocessor chip showing maior data, address and control paths.

	

: 	?4

	

41. .44 	 • •If 	0

SE L
X S

R AM

NON.
EXTENDED

INPUT

NON
EXTENDED

OUTPUT
2

NON 	 NON,

	

EXTENDED 	EXTENDED

	

OUTPUT 	 INPUT

2

T
O

 B
O

A
R

D
 E

D
G

E
 C

O
N

N
E

C
T

O
R

MEM
SELECT
DECODE SE L

II. XI
PROM

I 'S 4

IS

4-4 	

•OPREO. ntowirNIT. INTACK. was. Itws. witS. MA. FAME. WM. RESET,

The PC1001 evaluation board system, which is also pictured at top of this page.

n•

CONTROL
DECODE

PROM
432X$)

SERIAL
1/0

DRIVER/
RECEIVER

ADDRESS
BUFF ER

DATA
SUFFER

ABUSE ABUSI.

MUSE - DBUS7

4

I I ./

CONTROL
LINE

SUFFERS

GETTING INTO MICROPROCESSORS

ry/borrow; this also applies to the two
rotate instructions. Similarly the four
compare instructions may perform either
arithmetic or logical comparison, while
four of the 12 branch instructions and six
of the ten subroutine branch/return
instructions are conditional upon the two
PSW condition code bits—giving typically
about 3 possible variants.

Also although there are nominally only
six input-output transfer (IOT) instruc-
tions, as distinct from the memory
reference instructions (which may also
be used for 10T), two of these are
"extended" instructions which may
address any one of 256 distinct 8-bit
input-output ports.

One, two and three-byte instructions
are used, giving a high degree of
programming efficiency. Register-to-
register and simple IOT instructions are
one byte, extended IOT instructions are
two bytes, while memory-reference
instructions are either two or three bytes
long as required.

The memory reference addressing
modes provided by the 2650 are
generally agreed to be the most extens-
ive and versatile of any micro-processor
currently available. The modes are as
follows:
1. Immediate addressing, with the data
mask or value in the second byte of the
instruction itself.
2. Direct addressing, either absolute or
program relative with a displacement
range of from —64 to +63.
3. Direct indexed addressing, absolute.
4. Direct indexed addressing with auto
increment.
5. Direct indexed addressing with auto
decrement.
6. Indirect addressing, either absolute or

memory and peripheral device.
The 2650 has a single level vectored

interrupt capability. Whei, it enters the
interrupt mode, the chip is able to input
an 8-bit address vector via the data bus.
This may be used with either direct or
indirect addressing to access interrupt
servicing routines in any part of the
memory space.

As you should be able to see from this
brief rundown of its salient features, the
2650 is a particularly flexible micro-
processor, and one which is very well
suited for general-purpose micro-
computer applications. M such it would
seem a good choice for anyone seeking
to build up a minicomputer-type system
based on a microprocessor.

At the same time, the relatively low
cost of the basic chip (currently around
$20) and its ability to operate with little
more than a clock generator and a ROM
in dedicated mode would also make it
a good choice for low level applica-
tions.

Signetics make two evaluation kits
based on the 2650, and these are cur-
rently available in Australia from Philips.
The more elaborate of the two is the
PC1001, which comes as a ready-wired
PC board together with edge connector
socket and literature. The other kit is a
little less elaborate, and comes as either
a completely wired PC board or as an
assemble-it-yourself kit. In wired form it
is designated the PC1500, while the D-I-Y
version is the KT9500.

Both kits are basically small microcom-
puters, capable of being used directly
with a power supply and an ASCII

program relative with a displacement
range of from —64 to +63.

7. Indirect addressing with post index-
ing.
8. Indirect addressing with post indexing
and auto increment.
9. Indirect addressing with post indexing
and auto decrement.

Memory and IOT interfacing of the
2650 is asynchronous, using "handshak-
ing" control signals. This makes the 2650
compatible with almost any type of

GETTING INTO MICROPROCESSORS

teleprinter to develop small 2650
programs in machine language. They
could also be expanded into quite pre-
tentious minicomputer systems, by
adding further memory and IOT facili-
ties.

An add-on RAM memory board is in
fact available, and is directly compatible
with either kit. Designated the PC2000,
it provides an additional 4k bytes of
memory.

At the time of writing this article, we
have only had the opportunity to
examine and use one of the PC1001
evaluation kits. This is on a PC board
measuring 203 x 175mm, with a 100-way
double sided edge connector along one
of the longer sides. The PC board is
pictured, and as you can see there are
quite a few IC's apart from the micro-
processor.

In fact the PC board is a three-layer
assembly, with copper conductors sand-
wiched in between two layers of epoxy-
fibreglass as well as on the two external
surfaces. This has allowed Signetics to fit
a surprisingly large amount of circuitry on
the relatively modest PCB area.

On the PC1001 board is 1k bytes of
RAM, capable of storing quite a respect-
able user program. In addition there is
another 1k bytes of ROM, containing a
resident monitor-debug program which
Signetics have dubbed "PIPBUG". This
will be described shortly.

There is an on-board serial asyn-
chronous teleprinter interface, which
may be adjusted by means of wire links
for either 20mA current loop interfacing
or RS232-type voltage interface.

In addition to the teleprinter interface
there are four 8-bit parallel IOT ports—
two inputs and two outputs. These are
wired to be accessed via the two-byte
"non-extended" IOT instructions, so that
small systems with four or less
peripherals (apart from the teleprinter)
may be implemented with no further
hardware.

The PC1001 board has a 1MHz crystal
clock, and therefore is immediately com-
patible with a 110-baud teleprinter (serial
formatting is done by firmware routines,
so baud timing is derived from the sys-
tem clock).

Full data and address bus buffering is
provided on the PC1001 board, to sim-
plify addition of further memory or
peripherals. All of the control signals are
also available at the edge connector in
buffered form, which again simplifies any
required interfacing.

Although at the time of writing we
have not had the opportunity to examine
and use the PC1500/KT9500 evaluation
kit, we understand that this is based on
a PC board identical in size to that of the
PC1001, And although the second kit is
nominally a less pretentious one, it still
offers quite impressive facilities.

For example it still provides 1k bytes

1111•111111111116. 	 AIR

SIMPLE ANSWER-BACK PROGRAM FOR SIGNETICS PC1001 SYSTEM
DEVELOPED BY 4.1.ROWE,"ELECTRONICS AUSTRALIA" MAGAZINE 11/7/76
NOTE: PROGRAM STARTS AT LOCATION 500 (HEX)

LISTING:

500 7o CO PPSU 4d /SET UP TTY
5d2 3F d2 66 BSTA,UN CHIN /FETCh CHAR FnuN TTY VIA PIPBUG RTN
505 Cl STRL,RI isa4g.
506 3F 02 84 bSTA,UN COUT /ECHJ VIA PIPOUG ROUTINE
509 01 LUDL,R1 /RESTjAE IN no
50A A4 dJ SUI:11,Hd "CR" /ROm CRAP. -CR
50C 58 74 BRNR,R0 -12 /CR? IF NOT KEEP GOING
50E 04 OA LOD1.110 "LF" /SUPPLY LF
510 3F 02 84 BSTA,UN CUUT
513 05 00 LODI..111 /SET Rlm0
515 OD 25 26 LODA,RI 526+ /FETCH A(JSWER CHAR
518 C3 STAZ,R3 /SAVE
519 3F 02 B4 BSTA,UW COUT /PRINT
51C A7 OD SUBI,R3 "CR" /R3m CHAR -CR
51E 58 75 BRNR,R3 -11 /CR? IF NOT KEEP 601NG
520 04 OA LODI,R0 "LF" /YES; SUPPLY LF
522 3F 02 B4 BSTA,UN COUT

525 18 5A BCTR,UN -36 /BACK Tu LuUK FOR NEW INPUT
527 47 4F 20 /START OF ANSWER SUFFER
52A 41 57 	41
52D 59 2C 49
530 27 4D 20
533 42 55 53
536 59 21 	OD /AWSWZR LUST END WITH CH (HEX OD)

SAMPLE OF OPERATION:

*u500

HELLO THERE, WhAT AT PRESENT ARE YOU COMPUTING?
GO AWAY,I'M BUSY!

DON'T BE LIKE THAT,PLEASE
GO AWAY,I'M SUSYI

This simple novelty program was written largely to verify that the teletype servicing
routines in PIPBUG could be called by a user program. The listing shows instruction
mnemonics and comments as well as the actual instructions in hexadecimal code.

GETTING INTO MICROPROCESSORS

of ROM, with the same resident monitor-
debug program (PIPBUG) provided on
the PC1001. The only difference in terms
of on-board memory is the RAM, which
in this case is of only 512 bytes. This is
still adequate for a lot of modest
programming, of course—and you can
always add further memory, as the board
again provides fully buffered data,
address and control signal buses.

The serial asynchronous teleprinter
interface is still provided, but there are
now only two 8-bit parallel IOT ports.
However, these are programmable in
terms of direction, so that they may be
used for both input and output.

In place of the crystal clock, the
PC1500/KT9500 has an R-C clock oscilla-
tor using a 74123 dual monostable.

As not all of the PC board is used by
the basic circuitry of the PC1500/KT9500
system, the unused area is provided with
plated through holes on 0.3in centres, to
allow fitting of additional memory/
peripheral decoding ICs if desired.

In short, the PC1500/KT9500 evalua-
tion kit is only a little less flexible than
the PC1001. Both are in reality small
development systems, capable of being
used to develop and run 2650 programs.
And in their basic form, each could be
used to develop programs for running on
the other—apart from the memory size
difference. In that sense they are soft-
ware compatible.

Not only this, of course, but because
they use the same resident monitor-
debug program they are also virtually
identical in the operating sense.

As evaluation kit resident debug
programs go, PIPBUG seems quite a flex-
ible one. It recognises seven basic com-
mands, each of which consists of an
alphabetic character, any required
numerical parameters, and a terminating
carriage return. The parameters are given
as hexadecimal characters, with leading
zeroes unnecessary.

The seven commands and their func-
tions are as follows:

A — See and alter memory
B — Set breakpoint (2 permitted)
C — Clear breakpoint
D — Dump memory to paper tape
G — Go to address, run
L — Load memory from paper tape
S — See and alter registers

The D command may be used to
punch out any desired range of memory
locations, with leader, checksum and
trailer to facilitate reloading. Both the A
and S commands may be auto-incre-
mented, by terminating with a line feed
instead of a carriage return.

A full listing of PIPBUG is provided
with the evaluation kits, which is very
useful. Among other things, it allows the
user to make use of the teleprinter servic-
ing subroutines in PIPBUG, by arranging

for application programs to call them as
required.

To illustrate this, the author wrote a
simple novelty program for the PC1001
system. Its listing and a sample of the
operation are reproduced on these
pages, and as you can see it does nothing
more than monitor input from the
teleprinter, waiting for the person at the
keyboard to press the carriage return
key. When this occurs, it responds by
typing out a curt reply: "GO AWAY, I'M
BUSY!".

I wrote this little program mainly for
practice with the 2650 instruction set, and
also to check out the use of the PIPBUG
teleprinter servicing routines. The pro--
gram inputs characters via the "CHIN"
subroutine in PIPBUG, whose calling
address is 0286, and outputs characters
via the "COUT" subroutine whose call-
ing address is 0284. As you can see the
program itself starts at location 0500.

Note that the program uses one, two
and three-byte instructions, and requires
only 57 bytes of memory including the

answer message buffer. This illustrates
the programming efficiency possible
with the 2650's powerful instruction set
and wealth of memory addressing
modes.

If you're interested in the PC1001 or
the PC1500/KT9500 evalution kits or the
PC2000 add-on memory, they are avail-
able from the Electronic Components
and Materials Division of Philips Indus-
tries, with offices in each state, or from
their distributors. Prices for the kits are
as follows:

PC1001 — $345 plus tax
PC1500 — $245 plus tax
KT9500 — $165 plus tax
.PC2000 — $400 plus tax

Each of the basic kits comes with all
of the literature needed to use it. All you
need is a power supply and a tele-
printer. The teleprinter must com-
municate in ASCII code, as with most
other kits. Here at EA we are currently
working on a way to allow this to be
done at low cost using a surplus Baudot
teleprinter.

111111111111111111.111‘.

GETTING INTO MICROPROCESSORS

A "baby" system using
the Signetics 2650
Here is surely the simplest and lowest-cost way of getting to know the
Signetics 2650 microprocessor. A complete microcomputer system on
a single small PC board, you can build it for around $70, not counting
a power supply or terminal. Despite its low cost, it offers the same
debug and monitor program in ROM provided by more expensive sys-
tems, together with 256 words of RAM.

by JAMIESON ROWE

As we have noted in earlier articles, the
Signetics 2650 microprocessor is a par-
ticularly powerful device. Its architecture
and instruction set are very minicom-
puter-like, making it well suited for
general-purpose computing as well as
low-cost dedicated applications.

In their literature, Signetics note that
the device may be used to implement a
very low cost minimal "evaluation kit"
type system, one which would be very
suitable for those wishing to gain
experience with the 2650 with the
minimum outlay of both time and
money. However they themselves have
not made such a minimal evaluation sys-
tem available, only larger systems such
as the PC1001 and PC1500 systems.

This seemed rather a pity to us, as at
least one other microprocessor has been
available in a really minimal system, and
this has proved very popular. However
as the 2650 and its 2608 ROM chip have
been in rather short supply until recently,
there seemed little hope of being able to
remedy the situation as far as the 2650
was concerned.

Happily this situation has now changed

for the better. Just a few weeks ago we
learned from Philips Industries that the
2650 and 2608 chips were now readily
available, and at relatively low cost. (Sig-
netics is a US subsidiary of Philips.) We
accordingly suggested to them that this
would be an ideal opportunity to pro-
duce a low-cost "baby" 2650 system,
based on the minimal system suggested
by Signetics themselves. They agreed,
and offered to make available a set of
devices if we cared to try the idea.

This project is the result!
Basically, it is a complete general-

purpose microcomputer, just like the lar-
ger evaluation kits. In fact it has the same
debug and monitor program as the larger
kits—"PIPBUG"—resident in the 2608
ROM (1k x 8-bit words). It communi-
cates directly with a standard 20mA
asynchronous data terminal, such as an
ASR-33 Teletype or the video data ter-
minal described in our January and
February issues, and requires a single 5V
DC power supply.

The main difference between this sys-
tem and the larger systems is that there
is only 256 bytes of RAM memory for

user program storage, and there is no on-
board decoding or buffering for further
memory or peripheral expansion.

In short, it is a "bare minimum" 2650
system, designed to be the cheapest and
easiest way of getting a 2650 up and run-
ning. At the same time, it offers the full
program development facilities of
PIPBUG, including the ability to examine
and alter memory from the terminal
keyboard; the ability to dump programs
to paper tape or cassette, and then load
memory from tape; the ability to
examine and set the processor registers;
the ability to set and remove up to two
breakpoints, for debugging; and the
ability to run the user's program on com-
mand.

These are quite powerful program
development facilities, not usually found
on low cost systems. As a result, our
"baby" 2650 microcomputer should be
particularly suitable for edutational and
training purposes, whether by schools
and colleges or by individual enthusi-
asts.

As you can see from the diagrams and
photograph, it consists of only a handful
of parts on a small PC board. There are
only six ICs, one transistor and a few
resistors and capacitors, and the PCB is
single-sided to keep the cost down.

Heart of the circuit is the 2650 chip
itself, a powerful 8-bit microprocessor
with an instruction set of 75 instructions,
and eight different addressing modes.
Fabricated using low-threshold ion
implantation, it is an N-channel silicon

At left is our new "baby" 2650
microcomputer, complete on
its small PC board. It offers the
same PIPBUG program in
ROM as provided on the lar-
ger systems. The full circuit
diagram is shown on the fac-
ing page, together with an
optional power supply.

68 	ELECTRONICS Australia, March, 1977

0
CC
N

0
0

Co 	1 MI C41 7,11.1.21 141N- N et en 	*- 0 us co
O r N M tt to CO N CO Co 0 r- N
O 0000001:100".,.7 	W
< < < < < < < 	< << <

0
<

 CC IC -

0 Nuav

CO 	CO Co 0 r N
NNNNintne.101
N 	‘1. M N r 0
O 0000000

W

co
N

• N2 /
0
r r < to Q
• N 14

CD 0
0

cc

Cn
co

co

Co

4

Co

0

d
CC
a.
0

13
• 0

C■1
CO al
Oa <
CO
N 0

<
Q
cc In C.)

Cl)
N

C)

co
C.)

Cl)
O

C)

Co
N W
O
o. 	 cc

co

co

— — o
°
0

O m
CC Lt.

)1311d 0

N3S11130
CC 	 CD

-a

0

o

C.)
0
C)

• cvi

In
z

2x
1

N
9

1
4
,e

tc
 C+i

2x
0
A

6
2

6
, E

M
4

0
0

,e
tc

.

-a

O
N

 B
O

A
R

D

5
,0

0
4
7
 D

IS
T

R
IB

U
T

E
D

	•

M
IN

IM
A

L
 2
6
5
0

 S
Y

ST
E

M

C.
CD 	0

C')
N

•71.

0
Cy)

N

co

In
cc

ELECTRONICS Australia, March, 1977 	69

LIST OF PARTS
1 PC board, 175 x 135mm, code

77up2
8 PCB terminal pins (optional)
1 2650 microprocessor IC
1 2608 ROM (with PIPBUG: code

CN0035)
2 2112B RAMs
1 74123 dual monostable
1 74L538 low-power Schottky buffer
1 BC548 or similar NPN silicon
1 1N914, 1N1418 or similar diodes
1 40-pin IC socket, PC type
1 24-pin IC socket, PC type

RESISTORS

Quarter watt, 5%: 150ohms, 4 x 1k, 3
x 1.5k, 2 x 2.2k, 1 x 3.3k, 2x 10k,
1 x 22k.

1 47k PC type tab pot, vertical
mount

CAPACITORS

1 47pF NPO ceramic
1 330pF NPO ceramic
5 .047uF LV polyester
1 0.22uF LV polyester
1 1.5uF 35VW electro or tantalum
Wire for links, solder, etc.

Using this overlay diagram you should have no problems in fitting the components
to the PC board. Sockets are used for the 2650 and 2608 devices.

GETTING INTO MICROPROCESSORS

gate device which operates from a single
5V supply and offers TTL compatibility
on all inputs and outputs.

A 74123 dual monostable device is
used to generate the single-phase 1MHz
clock signals fol. the 2650. The clock
oscillator is of the R-C type, but is easily
adjusted to the correct operating
frequency without the need for elaborate
instruments. More about this later on .. .

As mentioned already, the PIPBUG
debug-monitor program is resident in a
2608 ROM. This includesroulln- es for ser-
vicing the data terminal input and output,
so that the system "knows" how to com-
municate with a terminal as soon as it is
initialised. The code suffix for the 2608
with PIPBUG resident is CN0035.

Two 2112 devices are used to provide
the. RAM memory of the system. These
are low-cost static MOS RAMs, each
organised as 256 words or 4 bits, so that
the two together provide a RAM of 256
8-bit words. Some 63 words are used by
PIPBUG as its scratchpad area, leaving
193 available for user programs.

The remaining IC in the circuit is a
74LS38 low-power Schottky quad NAND
buffer, two gates of which are used for
simple address decoding to allow the
2650 to differentiate between the ROM
and RAM sections of memory.

The ROM is allocated to the address
range 000-3FF hexadecimal, or the first
1k of memory space. The RAM memory
is allocated to the next 256 bytes of
memory space, with hexadecimal
addresses 400-4FF. Basically this means
that when binary address bit AD10 is 0,
the ROM is selected, while when it is 1
the RAM memory is selected.

Gate G3 is used to enable the two 2112
RAM devices when AD10 is at the 1 level.
The second input of G3 is fed with the
OPREQ signal from the 2650, which is a
strobing signal used to indicate when bus
information is valid.

When AD10 is at the 0 level, the RAMs
are therefore disabled. At the same time
the ROM is enabled, because the AD10
signal from the 2650 is also fed to the
active-low chip-select input CS1 of the
2608 ROM device. Correct strobing of
the ROM is achieved by using gate G4
as an inverter to feed an OPREQ-bar sig-
nal to the CSO input of the ROM.

Note that this simple address decoding
scheme is not completely unambiguous,
because the ROM is enabled whenever
AD10 is 0 and the RAMs whenever it is
1. Thus the ROM strictly occupies not
only the nominal range of 000-3FF, but
also higher ranges such as 800-BFF.
Similarly the RAMs occupy not only their
nominal range 400-4FF, but also higher
ranges such as 500-5FF, 600-6FF, 700-7FF,
C00-CFF, D00-DFF, E00-EFF, and
FOO-FFF.

This ambiguity need not cause any
complications, however, providing you

remember it and take it into account
when writing your programs. All it means
is that if you forget and your program
tries to address these non-existent higher
memory locations, it will in reality still be
talking to the same ROM and RAMs!

Many small systems use this type of
simple address decoding, to simplify the
circuitry and reduce costs.

The third gate, G2, is used to control
the read-write function selection of the
RAM devices. The inputs of the gate are
fed from the R-bar/W and WRP outputs
of the 2650, while its output goes to the
R/W-bar control inputs of the 2112 RAM
devices. The R-bar/W output of the 2650
provides its read-write control signal,
while the WRP output provides a write
strobe pulse designed to delay writing
until memory devices have stablised.

The remaining section of the circuit is
that used to provide the serial com-

munication ports, which are associated
with the flag (F) output and sense (S)
input of the 2650. The output port uses
the remaining gate G1 as a buffer, to con-
trol a 20mA output current in response
to the F output of the microprocessor.
The 150-ohm resistor in series with the
gate output sets the output current level,
which is sufficient to drive the normal
current-loop input of an ASCII teleprinter
or video data terminal.

The input port circuitry uses a BC548
or similar general-purpose NPN transis-
tor T1 to provide level translation be-
tween a standard 20mA current loop
input and the S input of the microproces-
sor. The input circuit provides its own
20mA source, and so is suitable for direct
connection to the keyboard contacts of
a teleprinter, or the corresponding out-
put terminals of a video data terminal
such as that described last month.

ELECTRONICS Australia, March, 1977 	71

GETTING INTO MICROPROCESSORS

The 1.5uF capacitor in the base circuit
of T1 is to provide contact bounce
suppression in the case of teleprinter
keyboards, and also to provide filtering
of any noise induced in the input line.
The two diodes are to protect the transis-
tor from high amplitude noise impulses.

As you can see, the complete baby sys-
tem is built up on a small PC board
measuring 175 x 135mm. The pattern is
coded 77up2, and PC boards etched to
the pattern should be available from
board manufacturers by the time you
read this article.

Assembly of the system on the PCB
should be fairly straightforward using the
overlay diagram as a guide. Note that
there are a number of wire links, neces-
sary because the board has been kept
single-sided.

In view of the fact that the 2650
microprocessor chip and the 2608 ROM
are both fairly expensive, and are both
MOS devices, I suggest that you use
sockets for them. A 40-pin socket is
required for the 2650, and a 24-pin socket
for the 2608, both being of the 0.6in row-

Below is the PCB pattern, actual size for
those wishing to etch their own.

spacing DIL type. Use high quality
sockets if you can, to avoid contact trou-
bles.

The remaining ICs are probably best
soldered directly into the PC board.

I suggest that you wire in all of the links
first, then add the IC sockets and the
resistors and capacitors. Watch the
polarity of the 1.5uF tantalum electrolytic,
as this could cause malfunction if it is
connected the wrong way around.

Now wire in the transistor, the two
diodes and the two TTL ICs (74123 and
74LS38), taking care that these are also
orientated correctly. Then finally add the
two RAMs, after having connected the
barrel and bit of your soldering iron to
the PCB supply lines to ensure that the
MOS ICs won't be damaged by static
charge. It is a good idea to solder the
supply pins of each IC first (pins 7 and
14), so that the internal protection diodes
become operational as soon as possible.

There are only eight external connec-
tions to the PC board. Two are for the
power supply, which may be almost any
reasonably well regulated and filtered 5V
DC supply. The total current drain is
around 250mA. If you don't have a suit-

able supply handy, the circuit shown in
the small diagram would be quite suita-
ble.

The four connection points adjacent to
one another are for the serial input and
output. These connect to the teleprinter
or video data terminal, with polarities as
shown. Whichever type of terminal is
used, it should be connected for 20mA,
full duplex operation.

The remaining two connections to the
PCB go to the reset switch, which is a
simple normally-closed pushbutton.
When pressed, this button forces the
microprocessor to reset its internal regis-
ters. Then when the button is released
the microprocessor begins running from
a known and predetermined state, fetch-
ing its first instruction from memory loca-
tion 000—the start of the PIPBUG
program residing in ROM.

The reset button therefore serves to
initialise the system, and is used for this
purpose both when power is first
applied, and at other occasions
whenever one wishes to return to
PIPBUG from an applications program
(apart from breakpoint returns, which
take place automatically).

72 	ELECTRONICS Australia, March, 1977

SIMPLE ANSWER-BAC 	PROGRAM FOR "BABY" 2650 MICROCOMPUTER
',MITTEN BY J.ROTjE,' "ELECTRONICS AUSTRALIA" MAGAZINE

ADD. 	CODE 	MNEMONICS 	 co MU aJ TS

440 76 CO PPSU 	40 / SET T TY TO M ARN
442 3F 02 06 3STA,UN CHIN /FETCH CHAP VIA PI ?BUG RTN
445 C 1 STRZ, R1 / SAVE
446 3F 02 34 ESTA, UN COUT /FCHO
449 01 LODZ, R1 /RESTO RE IN R0
44A A4 OD SUBI RO "CR" /TEST FOR CR
44C 58 74 BRNR, RO - 12 /KEEP GOING IF NOT
44E 04 0A LO DI , RO "LF" /IF YES,PROVIDE LF
450 3F 02 34 BSTA, UN COUT
453 05 00 LODI,R1 /SET R1=0
455 OD 24 66 LO DA, R1 466+ /FETCH ANSWER CHAR
458 C3 STRZ, R3 / SAVE
459 3F 02 54 BSTA, UN COUT /PRINT
45C A7 OD SIMI, R3 "CR" /TEST FOR CR
45E 5B 75 BRNR, R3 - 11 /IF NO T, KEEP GOING
460 04 0A LO DI, RO "LF" / I F YES, SUPPLY LF
462 3F 02 D4 BSTA, UN COUT
465 13 5A BCTR, UN - 38 /BACK TO START AGAIN

467 47 4F 20 /ANSWER TEXT
46A 41 57 41
46D 59 2C 49
470 27 4D 20
473 42 55 53
476 59 21 OD /ANSWER MUST END WITH A CR-

This simple novelty program should help you get your system going. Only the code
is actually fed into RAM, starting at location 440 hex.

GETTING INTO MICROPROCESSORS

When you have completed wiring the
PC board and connected it up to the ter-
minal, reset switch and power supply,
carefully remove the 2650 and 2608 chips
from their conductive foam and plug
them into their respective sockets (with
the power turned off).

There is only one adjustment to be
made, that in which the 74123 clock
oscillator is set up to operate at the cor-
rect frequency of 1MHz. This is done
with power applied.

If you have access to a frequency cou-
nter, it can be done by simply connecting
the counter between pin 5 of the 74123
and the grounded negative supply rail,
and adjusting the small tab pot until the
counter reads 1MHz. This is the prefer-
red way of setting the clock frequency.

However if you don't have access to
a counter, the frequency can still be set
up fairly accurately using the teleprinter
or data terminal itself. This can be done
because only when the clock frequency
is the correct 1MHz will the software-
timed serial output signals produced by
the 2650 be at the correct 110-baud data
rate required by the terminal.

To adjust the clock frequency using
this method, apply power to both the
system and the terminal. Then press the
reset button, and release. The printer of
the Teletype or the screen of the video
terminal should print a couple of
characters and then become static.

If by some lucky chance you have the
correct clock frequency already, the
printer or display screen should have
displayed a carriage return (CR), a line
feed (LF), and an asterisk. This is the
programmed output of the PIPBUG
program upon initialisation (the asterisk
is its prompt signal, signifying readyness
for an input command).

Most likely, you won't get this
sequence of CR-LF-asterisk straight
away. But the idea is to adjust the tab pot
slowly and carefully from its maximum
resistance extreme, pressing the reset
switch after each change until you find
the setting where the terminal shows that
the characters are being fed to it at the
correct rate.

There should be a small zone of the
pot's travel in which the characters are
printed correctly following the release of
the reset button. For most reliable opera-
tion, try to set the pot in the middle of
this zone.

With this adjustment made, your baby
2650 system is fully operational and ready
to begin work (or play!). With the set of
ICs, you should have received a Signetics
Applications Memo (coded 5550) which
explains how to use PIPBUG to feed
applications programs into the system,
run them, debug them, dump them on
paper tape (or cassette), and re-load
them. It also gives a listing of PIPBUG
itself, which among other things lets you
make use of some of its utility subrou-

tines such as the serial input and output
routines "CHIN" and "COUT".

To help you get your system up and
running, a listing is shown for a modified
version of the novelty answer-back
program which the author originally
wrote for the larger PC1001 system. Note
that all you actually enter into the system
are the two-digit hexadecimal machine
code words; the mnemonics and corn-
ments are purely to help follow how the
program works.

To feed the program into the system,
you use the PIPBUG "A" command,
typing first "A 440" and then a carriage
return. PIPBUG will then type out on the
next line "440 XX", where XX is the cur-
rent content of location 440 (probably
random). It then pauses. You then type
"76", followed by a line feed, whereupon
PIPBUG does a CR-LF, and then prints

For those with a bigger
system in mind:
If your ultimate aim is to build up a large
2650 system, it may be better for you to
start with the single-board system shown
at right, than with our "baby". Available
both as an assembled system (code
PC1500) and as a do-it-yourself kit
(KT9500), it provides all of the features
of the baby system together with full
memory decoding, fully buffered data
and address lines, and two bidirectional
8-bit input/output ports. Further details
are available from Philips distributors.

out the next memory address and its cur-
rent content. You then type "CO" and LF,
and so on until all of the program has
been fed in.

Then to run the program, type "G 440"
followed by a CR. PIPBUG will then
transfer you to the program in RAM.

Try typing in a comment, ending it with
a carriage return. The program should
answer with a terse "GO AWAY, I'M
BUSY!"

When you get tired of this reply, it can
be changed by feeding in a new string
of ASCII characters starting at address
467 hex. Note, however that the message
must end with a CRR (hex OD).

Of course this is just a demonstration
program, to get you going. The next step
is to write your own, using as a guide the
Signetics 2650 programming book sup-
plied with the kit. Happy computing!

ELECTRONICS Australia, March, 1977 73

START WITH THE INCREDIBLY SIMPLE
2650-KT95EA

"BABY MICROPROCESSOR KIT"
NOW AVAILABLE FROM THESE

PHILIPS SIGNETICS STOCKISTS

NEW SOUTH WALES:Applied
Technology,CEMA, Electronic
Enthusiasts, ICS, Tecnico (Sydney),
Digitronics (Newcastle),
Macelec (Wollongong)
ACT: Daicom

QUEENSLAND: Electronic
Components, Fred Hoe,
NS Electronics

VICTORIA: CEMA, ICS, Sontron,
Sycom, Tecnico

SOUTH AUSTRALIA: Gerard &
Goodman, ICS, K-tronics, Protronics,
World Imports
WESTERN AUSTRALIA:
Atkins Carlyle, Willis Trading
TASMANIA: W. G. Genders,
NS Electronics

ELECTRONICS Australia, April, 1977

ADAPTABLE
BOARD COMPUTER

PROTOTIPING

Plug in, Hook up
+ 5 volts, ground, and
a teletype,...and you're 	to
in business!
Here is a short w

• 1 K BYTES ROM m list of features. 	icro:
(PIPBUG EDITOR
AND LOADER) BOARD EXPANDABLE
TO 2 K BYTES ROM/PROM
• 512 BYTES RAM (2112B - 256 x 4
STATIC NMOS RAMS) BOARD
EXPANDABLE TO 1 K BYTES OF RAM
• ON BOARD TTL CLOCK
• TWO - 8 BIT PARALLEL B1 /D1
I/O PORTS
• RS232/TTY SERIAL 1/0 PORT

Two easy steps: 	Thei • CONNECTOR

=mars - 2650 KT9500
Ask your local
Philips stockist to

show you the 2650 PC1500 Adaptable
Board Computer Prototyping Card, and
get an easy start in Microprocessors.

PHILIPS ELECTRONIC
COMPONENTS & MATERIALS,
P.O. Box 50, Lane Cove, 2066.
Sydney 427 0888,
Melbourne 699 0300, Brisbane 277 3332
Adelaide 223 4022, Perth 65 4199.

eaway * AVAILABLE PRE
ASSEMBLED AND in TESTED 2650 PC1500

SUPPLIED

2 	ELECTRONICS Australia, July, 1977

MATHS DEMONSTRATION

MNEMONICS

ATV LODI RO 'LODE R3'
STRII RO MOD
BETA UN SUB I

Fl BETA UN CHIN
CONI RO
BCTR 	PLUS
CORI RO 1-,
BCTR 	SUET
CONI RO '41
DOTE 0 .. MOLT
BCTR UN Fl

SUET LODI Rt 'RUBE 031
STEP El MOD
BSTA UN SU132
LODE R2

MOD ADDS 83
COMI 110 11,001
BCFR 'LT" 22
LODZ 83
SURE R3
LODI R3 '-'
STRA R3 Al
DOTE UN 13

F2 COMI RO
BCTR 'LT' F3
LODI R2 11101 ,
STRA R2 Al
SUET HO 100A,
xOAI RO H'30'
STRA RO 42
BCTA UN END

13 IORI 80 11130,
STRA RO Al
LODI RO H/00'
STRA RO A2
BCTA UN END
BSTR UN SUB2
LODI RO 11,001

F5 COMI R2 11,00,
BCTR 1st 14
ADDZ R3
BDRR2 22 F5

F4 LODI.82 0'001
F6 CORI RO 11 10A'

ROTE 'LT' F7
ADDI R2 H101 1
• SOK MO H'041,

BCTR UN F6
17 IORI R2 H130'

SNP R2 Al
IORI RO H'30'
SERE 80 42
BCTR ON END

30E2 BETA UN COUP
LODZ 23
STRZ R2

SUB1 BSTA UN CHIN
CPSL 11104,
COMI RO H130,
BCTR 'LT' SUB1
COBS 20 H'39'
130TR '071 SUBI
STRZ R3
BETA UN COUP
ANDI R3 11,0F,
STRZ R3
RETC UN

END Lola RI 11'00'
Fe LODA 111+ BRAG

CORI RO 11 1001
BCTR '.1 FA
BSTA ON COOT
BCTR UN F8

FA BSTA UN CRLF
BCTA UN RUT

MAO P.'
Al
A2
13

LOCATION CODE

	

130 	04 83

	

044
04

2 	CS IC

	

0444 	31 04 84

	

0447 	02

	

044A 	E4J4 28 56

	

0440 	18 OE
18 0448 	
1 o6

2D
0450

	

0452 	iA
0454

	

0456 	1B gi

	

0458 	05 A3

	

0454 	C9 04

	

0450 	31 04 AF

	

045F. 	02

	

0460 	83

	

0461 	SO 00

	

046 	9A 09

	

0465
3
	03

	

0466 	A2

	

0467 	07 2D

	

0469 	CF 04 DE

	

046C 	IS OB

	

0462 	EA OA

	

0470 	14 OF

	

0472 	06 31

	

0474 	CE 04 DE

	

0477
	6430

 as

	

0479 	43

	

0473 	CC 04 DF

	

OWE 	IF 04 C9
8

	

41 	64 30

	

0483 	CC 04 DE

	

0486 	0400

	

0488 	cc 0 OF

	

04811 	11 04
4
 9

	

0488 	38 IF
0490 t i 00

	

0492 	00

	

0494 	18 03

	

0496 	83

	

04 	 7997 	FA

	

0499 	06 00

	

9 	OA

	

04
04
9D
2 	

1
E4
A 06

	

0491 	86 01

	

0441 	A4 OA

	

0443 	1/1 76

	

0445 	66 30

	

087 	
64,
OA 35

	

04
4
89 	30

	

04AB 	es 32

	

Oiblas 	1/1 IA
04AF

	

0482 	

3F 02 84
03

	

83 	Ca

	

04
04

114 	3F 02 86

	

0487 	75 OA

	

0489 	30

	

0488 	3A
£4

 77
048D

	

043F 	39

84 39
73

	

0401 	0
0402 3F

3
 02 84

	

04
0407
05 	OF

CO
7

	

1 	1

	

0
040
409 	0

7
5 00

	

040B

8 	ft
OD 24 DC

°40 04D0

	

0402 	3F 0222-114

	

0425 	111 74

	

04D7 	3F 00 8A

	

04DA 	1F 04 40
000 3D
0401 00
04D? 00
0480 00

This program provides the functions
of a simple 3-function calculator. It
will multiply, add or subtract two
single digit decimal numbers. Nor-
mal plus, minus and equals signs are
used, with an asterisk symbol for multi-
plication. Starts at 0440.

Four programs for our baby
by PERRY BROWN
Courtesy Applied Technology Pty Ltd

GUESSING GAME

LOCATION 22RE 	 MNEMONICS

0440 	07 07 	STET LODI R3 11107,
0442 	3F 04 B6 	FZ BSTA UN PRKT
0445 	05 00 	Fl LODI /11 11,001
0447 	£5 63 	F2 CORI Ill 11,63'
0449 	19 71 	 BOTH 'CT' Fl

044C
42 	 SPS 04 	12

E4 00 	 COMI HO 8100,
044¢ 	19 02 	 BCTR 'GT, F4
0450 	D9 75 	F3 BIER Ill F2
0452 	E5 00 	14 CORI 111 8100,

04
54 	18 7A 	 BCTE 'a' F3
56 	77 10 	 PPSL B1100

0458 	07 00 	 LODI R3 11,00,
045A 	75 10 	 CPSL H1 10,
0450 	07 36 	 LODI R3 11'36'
045E 	3P 04 B6 	F5 BETA UN PROT
0461 	07 1F 	 LODI 83 81 11
0463 	3F 04 B6 	BETA UN PANT'
0466 	311 38 	 MR UN INK
0468 	07 09 	 LODI R3 111091
0464 	C2 	 STRZ R2
04611 	82 	26 	R2
0460 	FB 7D 	

ADDZ
HIER R3 F6

0462 	C2 	 R2
046F 	gl 32 	 BSTR

STRZ
 UN INPT

0461 	 ADM R2
0462 	77 10 	 PPSL H1 10'
0464 	87 01 	 ADDI R3 11101 1
0466 	75 10 	 CPU 11110 0
0468 	07 10 	 LODI R3 111 100
0461 	El 	 COMZ 111
04613 	19 61 	 ROTE 'CT' F5
046D 	07 18 	 LODI R3 81 18,
046 	E 	 RI F 	l 	 COMZ
0470 	IA 5C 	 ROTA 'LT' F5
0472 	07 28 	 LODI R3 81286
0474 	32 30 	 BETE UN PENT
0476 	77 to 	 PPAL Hilo/
0478 	0 30 	 LODI RI 11,30,
0474 	47 OA 	F7 SUBI R3 1'0A,
0470 	E7 00 	 CORI 113 H1001
04Z! 	11 02 	 BOTH 'LT' F8
0400 	D9 78 	 BIRR 111 F7
0482 	87 34 	28 ADDI R3 1113A1
0484 	01 	 'LODZ RI
gtai 	3F 02 24 	BETA UN COOT

77 10 	 PPSU H1 101
042A 	0 	 LODZ R3
0488 	3F

3
 02 34 	WA UN COOT

048! 	07 02 	 LODI R3 111021
0494 	11 04 42 	SOFA UN F2
0493 	3F 02 86 INPT BSTA UN CHIN
0496 	84 30 	 COMI RO H'301
0498 	lA 79 	 BCTR 'LT' INF!
0494 	24 39 	 COHI RO 0.39'
0490 	19 75 	 BCTR 'OT, INP'
0498 	C3 	 STRZ 113
049F 	3F 02 By 	BSTA UN COUa'
0442 	03 	 LODE R3
0443
0445 	17

44 	
RE

OF 	 AN
T U
DI RO P.O.'

04A6 	OF 24 BF PUNT LODA+11
N
2 MSAO

0449 	24 00 	CONI RO 8100,
0418 	14 	 REV.; 1.0
0440 	3F 02 B4 	BSTA UN COOT
04AF 	1H 75 	 BCTR UN PRN'f
0481 	00 20 54 ESAU "NUL SP T
0484 	52 59 53 OD 	R r s CR
0488 	OA 52 45 41 	Lb' R E A
0413C 	44 59 3F 00 	0 Y ? NUL
0400 	OD OA 48 49 	CR LF H I
0404 	47 48 21 00 	CHINUL
0408 	OD OA 4C 4F 	CR LPL 0
0400 	57 21 00 OD 	W I NUL CR
04D0 	OA 47 55 45 	LFG UE
0404 	53 53 2D 00 	8 S ... NUL
0408 	OD OA 59 45 	cR LF Y R
04DC 	53 21 20 41 	S ! SP A
04E0 	46 54 45 52 	FTER
04E4 	20 DO OD OA 	SP NUL CR LF
0428 	41 4B 20 31 	0 X SP
04EC 	2D 39 39 00 	- 9 9 NUL

When called, the program will wait
until you enter any character. It will
then generate a random number bet-
ween 1 and 99, which you must guess.
Starting address is 0440.

NIM

;LOCATION cps 	MNEMONICS

0440 	05 17 	NAT LOD RI H'17'
0442 	07 29 	 LODI R3 1.1'29"
0444 	31 04 B3 	BSTA UN PENT
0447 	18 OE 	 BCTR UN Ft
0449 	0709 	 LODI R3 H109,
04413 	3F 04 B3 	BMAUNPENT
0448 	01 	 LODZ RI
044F 	A2 	 SUBZ R2
0450 	C1 	 STRZ 111
0451 	02 	 LODZ R2
0452 	64 30 	 IORI RO 11,301
0454 	3F 02 134 	BETA UN COOT
0457 	07 1E 	Fl LODI R3 11 ,121,
0459 	3F 94 B3 	BETAUNPUT
045C 	01 	 LODZ RI
0450 	C3 	 STRZ R
0458 	04 30 	 LODI BO 11,30,
0460 	A? OA 	F2 SUBI R3 H'OAI
0462 	lA 02 	 DOTE 'LT' F3
0464 	D8 7A 	 BIER RO 22
0466 	87 3* 	F3 ADD' R3 11134,
0468 	3F 02 84 	BETA UN COUR
041/ 	0 	 LODZ R
04
6
6C 	3F

3
 02 By 	BSTA UN COOT

046F 	E5 01 	 CORI RI 8101 ,
0471 	19 07 	 ECM 'OT' F4
0473 	07 00 	 LODI R3 H'00'
0475 	38 30 	 MIT UN PENT
0477 	1F 04 40 	BCTA UN STEM
0474 	07 16 	14 LODI R3 1116'
0470 	38 35 	 B3TR OK PENT
047E 	31 0286 	F5 BSTA 0/1 CHIN
0481 	84 31 	 CORI R0 E'31'
0483 	lA 79 	 DOTE 'LT' F5
0485 	84 33 	 CONI RO 11,33,
0487 	1

e3
9 75 	 BCTR ICIT 0 15

0489 	 STRZ R3
048* 	470F 	 ANDI 83 11,019
048C 	3F 02 By 	BSTA UN COOT
048F 	01 	 LODZ RI
0490 	83 	 SUEZ R3
0491 	CI 	 STRZ R1
0492 	E5 01 	 CORI RI 11'01,
0494 	19 07 	 ROTE 'CT' F6
0496 	07 33 	 LODI R3 H'3131
0498 	3B 19 	 BETE UN PRNT
0494 	IF 04 40 	P6 ROTA UN STRT
0490 	A4 05 	 SUBI RO H105,
0491 	1A OE 	 40TR 'LT' 17
0461 	14 03 	4,8 SUBI Ro 11103.
043 	19 7c 	 BCTR ea
04
A
A5 	84 03 	 ADDI RO H'03'

0447 	02 	 FA STRZ R2

0041* 	
y 02 	 BCFR 101 19

0444 	86 01 	 ADDS 112 H101 1
0410 	IF 04 49 	F9 ROTAUNFR
04/1 	84 04 	F8 ADDI RO H'04'
0481 	1B 74 	 BOER UN FA
003 	OF 24 BA PENT LODA+113 IISOE
04E6 	14 	 RETC 1.1
007 	3F 02 84 	BETA UN COOT

0420
 04BA 	18 77 	 BOERONPRP?

OD OA 49 MOE "CR LF I
043E
0403 	00 OD OA 49 	NUL CR LF I
0407 	27 40 40 20 	1 L L SP
040/3 	54 41 411 45 	TAKE
040F 	20 00 OD 04 	SP XVI CR LF
0403 	4D 41 56 45 	MOVE
0407 	0 00 OD OA 	- NUL CR LF
04183 	4.8 4F 20 40 	X 0 SP
0001 45 46 54 3D 	E F T .L
0483 	00 OD 04 OA 	NIL CR LF LF
OW 	40 45 41 56 	LEAF
04E2 	45 20 1 20 	E 	1
04EF 	54 4F 2

3
0 57 	T OP SP NP

0413 	49 48 00,0D 	I N ROL CR

0418 	OA 59
 20 57 49 48

5
	SPVIN

04FF 00 	 MIL

The game of Nim: starting with 23 you
and the program take turns at sub-
tracting a number from 1 to 3. The one
that leaves 1 after their move wins.
Starting address is 0440.

92 	ELECTRONICS Australia, October, 1977

2650

MESSAGE EDITOR

Ma=
0440 0443
0448 0440 044C 044? 0643542y
0458 0451 0450 045Z 0460 0462
ggi 0464 0460 046E 0470 0472 0474 0476 047 047913 0470
04 0457r 1

B
0480
0481
0491
0493
0495
049
049

7
9

0490
0492
0440
0443
0465
0447
0449
0441
OMB
04IC
04AD
MAE
0441
04110
0481
04M
0433
0434

MI
37 00 at 04 36 31 02 114 37 02 as
Cl
37 02 ee
3r 00 81

Ti 71
Ili 329

 43

IB 60 05 00 31, 02 86
CD 64 B4
ta g
24 77
98 06 45 02
070
32 1

0
7

37 02 114
25 4t
IA 00
07 04

a la
CD 64 B4
IF 0440
29 57
07 OA
06 00
CA 17
13 06
06 70
07 ft

OF or OF 24 A9
24 g
37 02 24
113 74
07 0A
IS 00
ig
20
08
II
OD
OA

46
SD
111
00

.002110
n Ben UN env LODI 20 I014 Bon ON COOP BM ON CHIN

SIM 21
BSTA ON COOS
MEI ON COLT
CONI RI III BCTR 6.''77
CORI RI 'PR

d WM "s' FR CONI RI ICI BCTR I.' PC ICOR Ow irl
PT LODI RI 1P001 PI BsTA ON MIN

STAA (REL)R1 TOOT
con po 'ES...'
BCTR '•' PI
CCM 	DEL DCFR '4 NO

0' PP
'

SOW RI NI028
LODI
SSTR ON

23 NI PFOR FP DMA ON COOT
COIN 21 LIMIT •
IICS2 'LT' 72
LODI23 M2 Ben ON MINT
MN DO Inc BIM (RZL)RI' TEXT
ECM VS 71 F2 BIRR RI 1Z

rc LODI R3 1,040
PRIM LODI 22 2'00'

MO 132 13
NM ON 14

n LOP! 22 11'70'
LODIR3 JP OA' BIRO R2 F3 F4 LODI 4413
COM 20 'MC ,
liGT2 0 41 n
32/24 ON COOT
RCM ON 24
LODI 23 VOA •
WM ON 74 311
MIC ON

M1 ME"
Imo
In s
'EEC'

112 'Cl'
'LT'
('

'P'
'3'
'ESC'

TEXT

eivis saes MAX TEXT LEMON
**II IS SECOND BYTE or INsTR.

Upon being called, this program will
give a prompt character, and await a
command character. Command T
allows a message to be entered, C
allows a stored message to be
checked, and R allows it to be repea-
ted until the CPU is reset In text input
mode, the Del character acts as a des-
tructive backspace for correcting
errors. To return to command mode,
type an ESC.

If the message being stored is too long
for the buffer, an F will be displayed.
Starts at 0440.

ELECTRONICS Australia, October, 1977 	93

0 ■1111.0,11.()4■04.0.041...1111111.41111111.041111111.01111111.04111111.04111111.0.11111.41111111.0411111111..

DO YOU

WANT TO BUILD

A POWERFUL,

LOW COST

HOME COMPUTER

START HERE

LOW COST TV TERMINAL

A MUST TO GET THE MOST OUT OF YOUR
SYSTEM — INCLUDES AUTOMATIC SCROLLING,

CURSOR, FULL EDIT FACILITIES

ETI 632 VDU PLUG IN VERSION 	 $180.00

632 ECONOMY VERSION 	 $135.00

CASSETTE
INTER FACE
For Low Cost
Bulk Storage

CT750 (Assembled)$37.50

Radio Electronics low cost
kit with test tape and
instructions 	 $22.50

MEMORY

4K STATIC RAM KIT 	 $100.00

1K RAM STICKS 	$ 25.50

Y
T

 YOU WIN ! !

YOU NOW HAVE A MOST

COST EFFECTIVE HOME

COMPUTER SYSTEM

2650 HOME STUDY
PROGRAMMING COURSE

CASSETTES AND WORKSHOP
NOTES

Available soon

SELECT A BASIC SYSTEM

EA BABY 2650 	$75.00

KT 9500 COMPLETE
$199.00

C. EA 2650/KT9500
CONVERSION $142.00

POWER SUPPLY
DECISION

+5, —12V
A. 1A LCPS KIT $15.00

B. AT 512 ASSEMBLED
UNIT —12

$27.50
C. AT 1250 HI-CURRENT

$47.50

SOFTWARE GAMES PACK

TAPE WITH LISTINGS $12.50

ASTRO TREK, HANGMAN, Nt-M,
POKER MACHINE, MASTERMIND ETC

2650 USERS GROUP
INITIAL MEMBERSHIP INCLUDES

PROFESSIONAL DOCUMENTATION
PACKAGE CONTAINING A MOST

COMPREHENSIVE SOFTWARE
LISTINGS INCLUDING

TEXT EDITOR
ASSEMBLER

BLOCK MOVE
ASTRO TREK

BAUDOT ROUTINES
VARIOUS GAMES

SORTING ROUTINES
MATHEMATICS PACK-

AGES ETC, ETC 	$40.00

ALSO INCLUDES UP DATE
SERVICE

NEED MORE INFO send
$1.00 and return address

for full details

LIMITED
QUANTITY

ONLY

A.

B.

IJ

265 HOME COMPUTOR SELECTION GAME

APPLIED TECHNOLOGY P/L
109-111 Hunter St., Hornsby 2077.
Phone: 476 4758, 476 3759
Hours: Mon — Fri. 9 — 5, Sat All Day.

APPLIED
TECHNOLOGY

PT. LTD.
72 	ELECTRONICS Australia, December, 1977

A low cost
video display unit
Here is a new design for a low cost video display unit, capable of
displaying data from a microcomputer on a standard TV receiver
or monitor. It displays 16 lines of 32 characters and offers both
flashing cursor and a destructive backspace facility. All timing is
derived from a crystal oscillator, and no setting up is required.

by MICHAEL O'NEILL
Physics Department.

Newcastle University

This Video Display Unit (VDU) was
designed primarily for the
microprocessor system user, who re-
quires a video terminal of minimum
complexity to enable him to com-
municate with his system. Therefore
many of the unnecessary features of
commercial style VDU's were aban-
doned in order to provide a cheap but
effective video terminal for such
applications.

Sixteen lines of 32 characters was
selected as the screen format which
allows for adequate display of program
steps. With continuous roll-up facility,
the user can see at least his last 16 lines
of information. The cursor, indicating
the position of the next character is fix-

ed permanently on the bottom line
(line 16). Carriage return and line feed
(non-print characters) are decoded and
these are normally all that would be
required for a basic unit. However, a
back space control function has been
included mainly for the benefit of those
who might use such a unit as a TV
typewriter. This control allows editing
of the bottom line before a line feed is
given. Back space actually types a space
in the location of the cursor after mov-
ing it back one character position.

The VDU uses all standard readily
available TTL IC chips, except for six
CMOS memory chips and the character
generator chip.

The method of actually displaying a

character on a TV screen will not be
described in detail here, as reference to
the issue of EA for January 1977 should
make this clear. The VDU described
here uses the same character generator
IC described in the earlier article (i.e.,
the 2513), and hence allows for the dis-
play of the full 64-character subset of
ASCII known as "6-bit ASCII". This is
the same character set displayed on
most teleprinters.

A 4.7MHz crystal oscillator provides
all of the clock pulses for the VDU. As
can be seen from the block and circuit
diagrams, this base frequency is divided
down to produce the horizontal and
vertical sync pulses required by the TV
set. The 4.7MHz signal is also used to
clock the output shift register used to
convert the parallel "row data" from
the character generator into the serial
data required as video information by
the TV display.

Incidentally it has been found that a
4.43MHz crystal of the type used in the
subcarrier oscillator of colour TV
receivers may be used instead of the
nominal 4.7MHz crystal. This can be
worthwhile, as the 4.43MHz crystal is
generally cheaper and easier to obtain.
Naturally when the lower frequency

SPECIFICATION
VDU displays the 6-bit ASCII character
set, in 16 lines of 32 characters. All timing
derived from a crystal-locked oscillator;
no setting up required. Continuous line
scrolling of display. Maximum input data
rate 50 characters/sec. Destructive back
space facility for editing. Flashing cursor
indicates next character position.
Uses standard TTL ICs for low cost.

At left is the assembled PC board. Note

sur that the version shown here uses a
700pF capacitor paralleled by a 30pf
trimmer in place of the crystal.

62 	ELECTRONICS Australia. February. 1978

11

CI]

/110 14

el

01

0-0

• V

917

2

C

CI

1C17

aw
Cl

C71

CV

1C17

CH

12

IC" CM

III

C.. IC.

saal

10

IC"
C07

CI

V

PI

1C/11

CI

1C14

211

CIfA

la

IC]]

ELECTRONICS Australia, February. 1978 	63

CHARACTER
GENERATOR

ADDRESS
•

CHARACTER
GENERATOR

DECODER

COMPARATOR }) 	- 	• 	I BS CR LF
ROLL

PULSE

Above shows the block diagram, while at right is the component overlay pattern.

Video display unit

crystal is used, both of the TV sync
pulse frequencies are lower also, but
most TV sets seem to be able to lock
onto them quite easily. As the vertical
frequency becomes 45.5Hz instead of
50Hz, some sets may produce a small
amount of horizontal wavering or
"snaking", particularly if there is some
50Hz ripple getting into the vertical os-
cillator from the receiver's power
supply.

If such an effect is experienced and
found annoying, then a 100pF capacitor
with a 30pF trimmer in parallel may be
substituted for the crystal if a 4.7MHz
crystal is not available. The trimmer
capacitor can be varied until the TV set
locks onto the VDU sync pulses.
Further trimming may be required to
obtain a steady display.

Note that if this capacitor is used, a
220 ohm resistor is required as an addi-
tion between pins 2 and 3 (joined
together) on IC1 and ground. This is in-
dicated on the circuit diagram as R*
and can be soldered onto the board,
vertically, from the appropriate side of
R2 and the outer ground line.

A further chain of frequency dividers
generates the line address information
for the character generator and the
load pulses for the shift register. One
load pulse occurs for every six clock

lulses given to the shift register, thus
oading it with the required five bits of
data for a character row and also giving
a single "dot" space between
characters. Since this load pulse occurs
for each character across the screen
(i.e. 32 times for each horizontal TV
scan) it becomes the ideal clock pulse
for the memory address.

Nine address lines are required to ad-
dress the memory, which holds each
character to be displayed on the screen
in its ASCII code. The memory is re-
addressed each frame and therefore a
character remains in its particular loca-
tion in memory until changed by an ex-
ternal control signal. The memory con-
sists of six 2102, 1k x 1 RAMS, six being
required to hold the six bit ASCII code.
This provides 1024 6 bit words, but only
512 are used.

The outputs of the memories are
connected directly to the character
generator. The memories are normally
held in the read mode and each time
the address changes, the outputs from
the memories change to provide a six
bit ASCII code for the character
generator.

As just mentioned, an external con-
trol signal is required to change data
held in memory. To do this we must
have a written command, together with
an indication as to where in memory its
contents are going to change. Memory
location indication is achieved by corn-

41.7MHT
OSCILLATOR

SYNC
GENERATOR

LINE
SYNC

parators and a set of counters that
duplicates the memory address. This
extra set of counters are advanced one
count by the input strobe pulse, which
indicates that a new character is being
entered either from a keyboard or a
computer. The comparator gives an
output when the memory address
equals the count on the duplicated set
of counters, and this output is used to
gate the ASCII input into the correct
location in memory.

Because of this gating technique, a
character can only be written into
memory every frame, which im-
mediately indicates a baud rate limita-
tion of 500 baud. Since this VDU was
designed for microprocessors, this
modest baud rate should not be a
problem as the VDU will operate at the
110, 150 or 300 baud rates used by most
debug ROMS in microcomputers.

If the output of the comparators is
fed to the CE-bar input on the
character generator chip, it disables the
chip for that particular location, and
therefore a single bar is generated on
the screen. This occurs instead of

COMPOSITE
111-1"- VIDEO

OUTPUT

1k

SERIAL
OUTPU1

CLOCK

LOAD

SHIFT
REGISTER

generating a character and therefore a
cursor appears. Since the cursor
appears permanently on the 16th line,
only five of the nine address lines need
to be compared, thus controlling the 32
positions along the line. The blinking
effect of the cursor is achieved by
gating the control signal with a low
frequency astable multivibrator; a 555
timer has been used for this purpose.

At this point it should be clear that
we now have a "page" of information
displayed on the screen with a cursor
indicating the next character position.
Let's now take a look at how the scroll-
ing of lines is achieved.

The memory address counters can be
divided into two parts. The first five ad-
dress lines control the 32 characters
across each of the 16 lines, while the 16
lines themselves are controlled by the
last four address lines. If at any time an
extra clock pulse is given to this last ad-
dress counter it would add an extra
count and thus change the character
line position as they appear on the
screen. If the pulse is applied to this
counter during the time that there is no

64 	ELECTRONICS Australia, February, 1978

rM elmMNMceolMNNNNNN ern•taM0000p0
 ...

	

NNNNNNNI...NNNeyNN 	 E
T-Nel,tirroochpv-Nmsge,

	

mit-le-1nm enrInn*ner 	 .; .;

	

UVUUU UUIJUULAJUU 	g 	E E 	.

Si

,,, m 0 0 ,
..„ ,

t co 	 ena.§ Rpn:ZI.:: CLZN3 	
12 Ism 	ReOIPPOle95."W"MT; mat.

	

WeWN.MW44 	
M .0, "MeMM

	

Cl) gitnZNNNNNNNNNN 	e...NMerLinONO3.3% • 	NM10.141kONMPR5
wockwwwwwww UQUULAJUUld

I.
O

mi g lectliFicIEJE'056.n653 	 N'y V z“
m E a 	

Z m in Nist., U) 2 	 to g is 	
cm ft 	'E

‘ 	 ft cc 	 o ,.. 	U. .4, K e,
I . 	Z PO S I, al, § Z -1 ;47 u 1 § 01 el TS er s1 el R 	0 0 	 /.. War It. Lk U. 3 3t8,.. 3 	w e

CC a ICIV\Pi\ZZI”Cr\AP.Sitrtitt if; RRteiti/r340,70 U RSA-SAligiRCI.g ;thk CI 0,1„0„.4.4 A vvei,s!...4,6,,,,s O. , ,"....4 ..,..A . tA" 	m
4 I,
a. ... upou uuuuocccioo 11 ,„wwwmm,..,,, 0 UUW.JUUUUULJU U LI 1--NM*IrikONCOC 2 ‘

.
r•INM•01■ 030•-••• W 	am r. Qv.).-.8 I... ,... 	NrulkONcom

O

.J

US
US
Oz
0.

ELECTRONICS Australia, February, 1978
	

88

0 O •
VIDEO •

0 	0 000

101011 	111111
11

144 e se 	oleo es
6 	0

1111111 a 	e 1011910 110

11• 1 11011iE 0 0 	11 11

00011111 	

es j1111—):: 	a k e 	ele 141 r-- 	• ; •	
10110110 001liai 0011111

hose L epel?
osseous louses
ke 4000 1 00101 00 11001

011111 I n 10 I 011

00

1011 11111011 10

eseepeeseiett eeeeioq
r

 e Oise
	•t,

O 0 	
0 N -4 en ua bi -

	40

1

e'en,
es 000 000000

f41F—le
Ice

es 	o
001 	1111110

O0eOaroO

11

oleo 	Otteseeke fie moo
Hioopeol
	,916 0 00

°Tii!TNeele esioecece

••I• e--• re;

0
• IOW Or! I il• • 111110 il

ll
 •00 e

le
0100

lmos o
Rleop
	 dee 0 • •

ifif— posese
0001 e ell

Low cost video display unit

Actual size reproduction of the PC pattern on the component side of the hoard.

display on the screen (i.e. the time
between frames) then the next time a
frame appears on the screen it will start
at one extra character line due to this
extra count. This extra clock pulse is
generated at the end of a line, or when
line feed is detected, and gives the
scrolling effect.

When roll-up does occur another
pulse is also generated which applies
the ASCII code toi a space to the
memories and a write command is
given at the same time. This immediate-
ly gives.a clear line on line 16, to type
onto after the previous line is rolled up.

A decoder is used to detect when
°furl Iwo Teed 	ba(I. .11.1.1.

mG;, , lalue)I 	I H

control hit in the ASCII code - bit 7, is
used for this purpose.

The video information from the shift
register is fed to the output of transistor
T1 via a 1k resistor, and is mixed with
the inverted sync pulses which are
applied to the base of the transistor.
The 10k and 3.3k resistors provide the
correct 1 3 rata) for sync and video in-
humation This composite video is then
output %Id an isolating capacitor and is
suitable fot applying to any video
amplifier employed in standard TV sets.

Experience has shown that the video
output from the VDU is suitable for
applying to the grid or the base (de-
t wi ling of, yi Nellie, .also 01 solid

It 	 . 	d.1.11 m. a 1‘ set

without any alteration or disconnection
of any components.

When checking for this input, one
should ensure that the take-off for the
sync separator is after this stage of
amplification in the TV receiver. •

There is absolutely no setting up re-
quired with the VDU. Random
characters should appear on the TV
screen as soon as power is switched on.
10 enable a clear screen when first
turned on, a clear, input has been
provided on the PC board. It requires a
switch to the +5V rail, or a logic "1"
applied to it. This can be obtained from
an unused key on the terminal's
k es board giving manual clearing, or
,dtc 	h■ means of a capacitor to

ELECTRONICS Australia. February, 1978 	87

Low cost video display unit

The PC pattern for the reverse side of the board, again shown actual ize.

the +5V supply rail, to give automatic
clearing on power-up. A 47uF tantalum
should work.

A link, LK, has been provided on the
PC board to provide an option re-
garding horizontal positioning of the
VDU display. With the link out, the
video information is generated in the
centre of the period between horizon-
tal sync pulses, giving a display which
should be centred on most TV sets. If,
however, it is found that the display is
not in the centre of your TV screen, this
link can be inserted and the whole pic-
ture will be shifted about three
character widths to the right of the
screen.

The printed circuit board for the

VDU measures 155 x 160 mm and has an
input socket facility where the required
input data lines can be entered via a 14
pin DIP connector, using flat ribbon
cable. This makes for a very neat con-
nection. However, for those wishing to
keep costs down, the same inputs are
available at the edge of the PC board
where wires can be soldered directly to
the copper. The strobe input is
triggered by a negative edge; if this is
not available, an inverter on this line
would be required.

Power supply requirements are ±5
Volts at 1.2 Amps and -12 Volts at
around 40mA. The higher +5V supply
current is required because of the TTL
chips used, Three terminal regulators

rated for 1.5 Amps are adequate for this
voltage supply.

A UART has not been included on
the PC board because the VDU was
considered to be a separate self-
contained control system which
accepts parallel data only, and if serial
data is required by a microcomputer
system then an external device such as
a UART should be added. Parallel data
is also acceptable to some
microprocessors and makes for easier
programming.

Editor's Note: For those who do wish
to add serial interfacing and a
keyboard, to produce a complete self-
contained terminal, we hope to supply
the necessary Information shortly.

68 	ELECTRONICS Australia, February, 1978

Easy expansion kit for
2650 microcomputers
Many microcomputer enthusiasts have shown interest in building
up medium-scale systems based on the Signetics 2650
microprocessor. This can be done quite easily and at surprisingly
moderate cost, by combining the Signetics KT9500 evaluation kit
with the "RAM-stick" and motherboard system which has been
developed by the local firm Applied Technology.

by JAMIESON ROWE

Computer hobbyists in Australia are
currently showing a lot of interest in
systems based on the Signetics 2650
microprocessor. I believe one reason
for this was EA's "baby" 2650 system,
which I described in the March 1977
issue. This provided a really simple and
low cost way of getting the 2650 "up
and running", and allowed many hob-
byists to become familiar with the
device and its powerful minicomputer-
like instruction set.

Of course the "baby" system was
very small. Although it offered the
same "PIPBUG" monitor program as
the larger 2650 evaluation kits, resident
in a 1k-byte ROM, it provided only a
modest 256 bytes of RAM for user
programs. And having been designed
for economy rather than ease of expan-
sion, it was not readily expanded into a
larger system.

For this reason I suggested in the
original article that those who were
already fairly sure they would be
progressing to a larger 2650 system
might be better advised to start with
one of the Signetics evaluation kits,

such as the PC1500 or the assemble-it-
yourself KT9500.

As it happens, however, those who
elected to start with the baby system
can still change over to the KT9500 fair-
ly easily — particularly if they followed
our advice and used sockets for the
microprocessor and monitor ROM
chips rather than solder them directly
into the PC board.

Applied Technology Pty Ltd has con-
version kits available, so that you can
upgrade from the baby system to the
KT9500 at minimum cost. The conver-
sion kit provides the 9500 PC hoard
together with all of the required parts,
apart from the 2650 microprocessor,
the 2608 ROM with PIPBUG, and the
two 2112 RAM chips.

With the KT9500, you have a much
better starting place for an expanded
system. Along with the PIPBUG ROM
and 512 bytes of user RAM, there is full
address decoding and fully buffered
data and address bus lines. Also provid-
ed are two bidirectional 8-bit in-
put/output ports, as well as serial in-
put/output ports for a teleprinter,

video terminal or similar device. The
complete system is mounted on a PC
board measuring 175 x 213 mm, which
plugs into an accompanying 100-way
edge connector.

Needless to say even though the
KT9500 already offers enlarged
capabilities, most enthusiasts find that
they want to begin expanding it not
long after they have it up and running.
Probably the most common urge is to
expand the memory, so that larger
programs can be developed and run;
the other urge is to replace the dual-
monostable RC-timed clock oscillator
with a more stable crystal clock.

To help you expand the KT9500 along
these lines, Applied Technology has
developed a "mother board" expan-
sion kit which utilises their "RAM-
stick" memory modules. As explained
in our December 1977 issue (page 96),
the AT RAM sticks are small PCB
modules designed to be stackable by
means of DIL sockets. Each stick
provides 1k-bytes of low power static
RAM, allowing an enthusiast to build
up his system's memory in convenient
and affordable increments.

I he motherboard expansion kit
assembles to form a PCB measuring 174
x 228 mm. The 100-way edge connector
socket which comes with the KT9500
mounts directly on this PCB, so that the
two hoards now become an L-shaped
assembly.

Adjacent to the main socket on the
motherboard are six ICs, two of which

ELECTRONICS Australia. February, 1978 	71

The picture on the lac-
ing page shows the
Signetics KT9500 at
right, with the Applied
Technology mother
board and "piggyback"
RAM sticks at lelt. The
picture at lelt shows
the two when assembl-
ed together. tip to
15 RAM sticks may he
used.

are used to implement a crystal clock
oscillator. This uses a 4MHz crystal, with
division to the 1MHz required by the
PIPBUG monitor and its serial com-
munications routines. The remaining
four ICs are used for additional address
decoding and data bus buffering.

The address decoding circuitry uses a
741_5154 device to decode address bits
10, 11, 12 and 13. The sixteen decoder
outputs thus become enable lines for
16 contiguous memory blocks of 1k-
bytes each — so that they can be used
to select up to 15 RAM sticks along with
the PIPBUG ROM on the KT9500. The
ROM must now be driven by the new
decoder, and to enable this to be done
a copper track must be cut on the
KT9500 PCB, and replaced with a wire
link to an unused edge connector pad.
The on-board RAM chips are not used.

The motherboard is provided with
four undedicated 16-pin DIL sockets
along the front. These may be used for
connection to the 8-bit input/output
ports on the KT9500, or for any other
desired purpose.

The motherboard PCB is double sid-
ed, although for economy it does not
have plated-through holes. The con-
structor is thus faced with the rather
daunting prospect of soldering in some
116 through-board wire links; however
while doing this you can be cheered by
the thought that you are saving money!

As it happens the through-board
links are the major part of the job in
assembling the kit, in any case. Apart
from the links there are only six ICs,
twelve bypass capacitors, two resistors
and the crystal. Plus the 100-way con-
nector and the four 16-pin DIL sockets
for the RAM sticks, of course. So overall
the assembly shouldn't be unduly
tedious or time-consuming.

Using the motherboard it is thus
quite easy to provide the KT9500 with a
crystal clock, and to expand its RAM by
1k-byte increments up to 15k. You can
then expand the system still further, if
you wish, by adding a second mother-
board with up to 16 further RAM sticks.

Incidentally Applied Technology is
producing a metal case suitable for
housing the KT9500/motherboard
assembly, together with power supplies
and even a floppy disc if you plan to go
that far. It should be available by the
time you read this.

Prices for the various items described
above are as follows, with all prices in-
clusive of tax. A complete kit for the
KT9500 is $199, with the conversion kit
for the baby system costing $142. The
motherboard kit costs 535, while the
4MHz crystal costs 57.95. Wired and
tested RAM sticks cost 525.50 each, but
you can buy the RAM stick PCBs
separately for $6 each.

One of the things that is making the
2650 microprocessor increasingly pop-
ular with hobbyists is the growing
library of support software. Much of
the software has been generated by
hobbyists themselves, many of whom
started with our baby 2650 system.

lust about all of the software that has
been generated to date is available to
members of the 2650 Users' Group, so
that it can be very worthwhile to join.
The group is associated with Applied
Technology, and further information is
available from them at 109-111 Hunter
Street, Hornsby, NSW 2077 (telephone
0 2-4 7 6 4 7 58, 476 3 7 5 9. Initial
membership costs $40, for which you
get a documentation package with
listings of many useful programs.

These include an assembler, a text
editor, block move and search routines,
hexadecimal input and listing routines,
a disassembler, a reassembler, a tape
verifier, maths routines, and many
games programs including "Astro-
Trek" and a Lunar Lander. Many of
these programs are also available on
cassette tapes, for a modest extra fee.

Next month we hope to present a
few sample programs from the growing
library of 2650 software, to whet your
appetite. Who knows — they may spur
you not only to join the Users' Group
and get the rest of the library, but to
write some programs of your own!

ELECTRONICS Australia, February, 1978 	73

.OW COST V.D.0
(E.A. FEB/MARCH 1978)

Based on a clever design by Michael O'Neill of Newcastle
Uni., this compact module is an ideal terminal for micro-
processor users. The heart of the terminal is the E.A. 100
V.D.U. as described in E.A. February, 1978. Exclusive
features of our kit include —
* Top quality P.C.B. with plated through holes.
• Step by step Assembly Manual complete with waveforms

and detailed circuit description.
4.43 MC. Xtal and trimmer cap supplied.

• Sockets for memories and character generator (to simplify
setting up).
Low power drain — uses low power Schottky devices, not
standard TTL.

▪ Full service backup — details with kit.
E.A.100 V.D.U. (Complete kit) 	$99.50
OPTIONS

KB04 PROFESSIONAL KEYBOARD 	 $59.50
ENCODER/UART (See E.A. March) 	 $32.00
MODULATOR/POWER SUPPLY 	 $22.50

NEW RELEASE

$59.50
$16.50
$7.50
$2.00

KB04 UNIVERSAL KEYBOARD
KB05 NUMBER PAD
KB06 CURSOR CONTROL
KB10 MATCHING BLANK SWITCHES

We have now available a superior
quality keyboard with UNIVERSAL
ENCODING. This exclusive feature
makes the keyboard ideal for software
scanning or use with any keyboard en-
coder. It is ideal for the E.A.100 V.D.U.
and eliminates the tedious switch to
switch wiring associated with other
unencoded keyboards. \

The KB04 is laid out in ASR33
format and includes two user defined
keys.

A matching number pad KB05 is
also available, as well as cursor control
set KB06 and spare key switches (KB10).

2650 micro Computer
Now that you have the low cost terminal, you should consider the 2650

for your own microprocessor system. The 2650 is easy to learn to program,
simple to use and features a powerful instruction set and a rapidly growing
wealth of software support.

Using the kits detailed below you can readily expand your 2650 as your
requirements and budget permit. The end result is probably the most cost
effective home computer available in Australia to-day.

All systems are supplied with the incredibly effective PIPBUG operating
system which handles all serial communication with the 2650, enables you to
examine and modify address locations, set the registers, set breakpoints and
also include a powerful routine that loads and dumps programs using a stan-
dard cassette tape.
BABY 2650 — STARTER KIT 	 $75.00
B2650/KT9500 CONVERSION KIT 	 $142.00
KT9500 FULLY BUFFERED KIT 	 $199.00
KT9500 MOTHER BOARD with COMPONENT KIT (2650 RSMB) $35.00
RAM STICKS 1K x 8 MEMORY MODULES 	 $25.50
2650 USERS GROUP 	 $40.00

POSTAGE $2.50 CERTIFIED PER ORDER

POSTAL ADDRESS P.O. Box 355, Hornsby, 2077

76

APPLIED
TECHNOLOGY

PTY. LTD.

ELECTRONICS Australia, March, 1978

welcome here
SHOWROOM 	109-111 Hunter St., Hornsby 2077

(9-5 Monday to Sat)
PHONE 476 4758 — 476 375'

The et vation kit includes 256 bytes of RAM and 512 words of PROM.

80 	E,RCTRONICS Australia, March, 1978

Fast 8-bit bipolar microprocessor

SIGNETICS 8X300
Signetics has recently released an evaluation kit for its new 8X300
bipolar microprocessor. In this article we give a brief summary of
the 8X300 chip itself, and of the evaluation kit.

by DAVID EDWARDS

The 8X300 has been designed to be a
fast microprocessor controller, and
because of this differs considerably
from conventional NMOS
microprocessors that we have con-
sidered in the past. Perhaps the major
difference is that it is implemented with
bipolar Schottky technology, and can
fetch, decode and execute an instruc-
tion in only 250 ns.

The device is supplied in a 50-pin DIL
ceramic package, and runs from a
single 5V supply rail. An external pass
transistor is required to complete an
on-chip voltage regulator, which
supplies 3V to selected areas of the
chip. This helps to maintain the total
current drain of the chip at less than
450mA.

Clock requirements are met by con-
necting a crystal directly to two pins.
Alternatively, out of phase signals from

an external clock generator can be us-
ed. The remaining pins are divided into
four functional groups, as detailed
below.

The first thirteen pins connect to the
instruction address lines, and allow up
to 8192 words of program to be directly
addressed. The next sixteen pins are the
instruction word lines, allowing sixteen
bit instructions to be passed to the
processor.

Another eight pins are used for data
memory and I/0 purposes. Designated
as the interface-vector (IV) bus, these
allow data to pass from and to the
processor. The remaining pins are used
for IV bus control, and halt and reset
functions.

The chip includes full instruction-
decoding logic that interprets the par-
ticular class of instruction, such as in-
put/output or arithmetic and logic, and

pertorms the indicated operation. The
decoding and control logic supplies all
internal signals for the processor, as
well as signals on the control lines for
directing the data input and output.

The processor also contains its own
program counter which is automatically
incremented upon execution of the in-
struction. The counter may also be left
unchanged or loaded with a new value.
Control of the current address is
provided by the address register and
may be derived completely or partially
from the program counter, from the in-
struction data lines (ARo through ARL),
or from the output of the
arithmetic/logic unit (lines AR5 through
AR12). Because of this flexible
instruction-address scheme, the order
of execution may be altered by instruc-
tions or under conditions determined
from selected data.

The processor manipulates 8-bit data
bytes. Internal data is stored in 8-bit
read/write registers—Ri through R6,

and an auxiliary register. The aux-
iliary register holds one of the operands
used in two-operand instructions, such
as ADD or AND, and a single-bit
overflow register stores the carry-over
bit from additional operations.

Interfacing with external circuitry is
through an 8-bit bus called the
interface-vector bus and consisting of
lines IVo through IV7. The bus carries
both address and data information, and
the accompanying data-I/O control
lines tell the external circuitry which of
the two types of information is on the
bus. These lines include write- and
select-control, right- and left-bank-
signal, and master clock lines.

Since the interface-vector bus carries
addresses as well as data, I/O ports on
the external circuits must be enabled
before data transfer can take place. This
is usually accomplished by placing an
address on the bus under program con-
trol and then activating the select-
control line, which indicates that a valid
address is on the bus. When presented
with an address, each of the possible

TYPICAL SYSTEM CONFIGURATION

+5v
0

2N5320

ra..

•
I USER
• CONNECTION
•

WININIMmoor

PROGRAM STORAGE

Vcc VR VCR IVB0-1VB7 AO—Al2 8T32

ROM/PROM/RAM
TTL COMPATIBLE
UP TO 8K x 16 BITS

(82S115)

10-115

Xi

8.0
MHz 1:=3

X2

HALT

RESET

8X300
MICRO-

CONTROLLER

GND

MCLK

SC
WC

RB
LB

	•

8T33

BIC

BOC

• BOC

Figure 1

512 I/O ports (two blanks, each of 256
addresses) either enables itself upon
identifying the address as its own or dis-
ables itself if the addresses do not
match.

Within the processor, the interface-
vector bytes are addressed in a unique
fashion. Each byte has an 8-bit field-
programmable address. When a given
address is selected, the byte is
automatically designated, and the
8X300 can then communicate with the
I/0 device. Moreover, once enabled,
the addresses remain so until the
processor changes them. This direct ad-
dressing feature is especially con-
venient if a few ports are to be accessed
frequently. However if the time re-
quired for this operation is an imposi-
tion on the user, instruction memory
can be extended so that the selection of
ports is automatic upon instruction
fetch.

The interface-vector bus is par-
titioned into two banks, allowing the
8X300 to select ports dynamically. The
processor uses the left-bank (LB) and
right-bank (RB) data-control lines as
master enables for the I/O ports, as
shown in the typical interconnect
scheme of Fig. 1. Any two I/O ports can
be active at the same time provided
they are on opposite banks, and the
ports recognize address, data, and con-
trols only when enabled by the bank
signal to which each is connected. Bank
partitioning can thus be considered a
ninth address bit that is alterable by the
processor within an instruction, and it is
this additional bit that permits direct
addressing of 512, or 29, I/O ports.

In a general data operation between
two I/O ports, first an address is
presented to one bank that enables an
I/O port and disables all others on the
bank. Next, another address is
presented to the opposite bank, effec-
ting a similar selection there. Then the
operation between the two takes place.

Each 8X300 operation is executed in
one instruction cycle (250ns), which is
divided into four quarter cycles. The in-
struction address for an operation is
presented at the processor output dur-
ing the third quarter of the previous in-
struction cycle, and the program
memory returns the instruction to the
processor during the first quarter cycle.

In terms of processing data, the in-
struction cycle may be viewed as having
two halves, an input and an output
phase. During the first half of the in-
struction cycle, data is brought into the
processor and stored in an interface-
vector latch. Storage is completed dur-
ing the first quarter cycle, and in the
next quarter cycle the data is processed
through the ALU. In the second half cy-
cle, the output data is presented to the
bus and finally clocked into the
designated I/O port.

Bank selection during the input and
output phases is independent. Thus
data may be received from the right
bank, processed, and then deposited in

the left bank or vice/versa, or may even
be sent to and from the same bank.
Bank selection during instruction cycles
is specified by the instruction.

Each sixteen bit instruction is divided
into one of eight possible classes. The
MOVE instruction allows the contents
of selected registers to be exchanged,
or placed on the IV bus, or vice-versa.
The ADD, AND and XOR instructions
are similar, except that with these in-
structions the contents of the auxilary
register are combined with the source
register before the MOVE part of the
instruction is executed.

The XEC instruction allows a selected
instruction at a different address to be
executed without incrementing the
program counter.

The NZT instruction allows a con-
ditional branch to be implemented,
while the JMP instruction implements
an unconditional branch.

The remaining instruction class,
XMIT, allows a binary pattern specified
in the instruction to be placed in a
specified register or on the IV bus. It is
similar to a load-immediate instruction.

As you can see from Fig. 1, the main
peripheral chip required to implement
a typical working configuration, apart
from ROM and RAM memory, is the
8T32 dual port register. This is an 8-bit
bidirectional data register, which is
accessable via either a microprocessor
port (normally connected to the IV
bus), or a user port.

A unique feature of the 8T32 is the
way in which it is addressed. Each
device had a field programmable 8-bit
address, which is used to enable the
microprocessor port when that address
is present on the IV bus. A control
signal (select control) is used to dis-
tinguish valid addresses from data.

Enabled ports remain open until
another valid address is presented on
the control line. Two 8T32 devices

which have been selected
simultaneously can be differentiated
from one another by means of the LB-
bar and RB-bar lines, which separate
the IV bus in two banks.

The evaluation kit for the 8X300 con-
sists of a single large printed circuit
board, measuring 280 x 210mm. It is
fitted with an edge connector and
matching socket on one edge. Included
with the 8X300 chip are four 8T32s for
external interface, 256 bytes of RAM for
working data storage, and 512 words of
PROM program storage.

Part of the PROM isprogrammed
with 	control, RAM control and
RAM integrity diagnostic programs,
with the remaining space being left free
for user programs. Access is available to
all address, instruction and IV buses as
well as all controls and signals of the
8X300 itself. An area of the board is
provided so that additional circuitry
can be mounted using wire wrap
techniques.

Controls are also provided for
diagnostic and instructional purposes
by allowing various operating modes,
such as single stepping, instruction jam-
ming and repeated instruction jam-
ming. In these latter cases, the jammed
instruction is selected by means of
board mounted DIL switches.

An 8X300 programming course is also
available. This consists of a large folder
of written material, and is accompanied
by 10 pre-recorded cassette tapes
which interact with and explain the
written material.

In conclusion, the 8X300 chip and its
association evaluation kit are both
rather specialised and will probably be
of most interest to professional control
equipment designers, rather than hob-
byists. Further information can be ob-
tained from Philips Electronic Com-
ponents and Materials, 67 Mars Road,
Lane Cove NSW 2066.

ELECTRONICS Australia, March, 1978 	81

Special offer for EA readers:

Low cost record of
useful 2650 software

Most small microcomputer systems
based on the Signetics 2650
microprocessor use the monitor/debug
program `PIPBUG", resident in a ROM
(read-only memory), to control
program entry, manipulation and ex-
ecution. And compared with many
similar monitor/debug programs
supplied with small microcomputer
systems, PIPBUG is very good. It allows
you to dump programs onto paper tape
or cassette and reload them into
memory, and to run them in controlled
fashion with up to two breakpoints.

However like most small
monitor/debug programs, PIPBUG has
its limitations. After you have used it for
a while, these become fairly apparent.
You soon find yourself hankering for a
faster and more convenient way of
feeding long programs in, examining
them when they have been fed in
moving parts of them around in
memory, checking the accuracy of
dumps, dumping and reloading, and so
on.

As it happens, many of the utility
programs required to do these things
have already been produced, by peo-
ple who have been working with small
2650 systems for a while. So there's no
need for newcomers to "reinvent the
wheel".

To help those who are just starting to
get under way with their 2650 system,
we have gathered together a group of
these utility programs which we think
are likely to be of most interest and
value. With the generous support of
Philips Electronic Components and
Materialt, and the co-operation of the
2650 Users Group, we have recorded
the resulting "software package" on a
low cost 175mm 33-1/3rpm disc. This
can be played on any standard record
player, and fed into your 2650 system

via a standard cassette interface such as
the one we described in the April 1977
issue (File number 2/CC/19).

The programs in the package include
routines for feeding in programs faster,
listing them more efficiently, moving
them around in memory, searching
them for certain instructions, verifying
dumps, measuring the length of
programs in dumped form, disassembl-
ing them for analysis, dumping them
and reloading at higher speed than
with PIPBUG, and producing dumps
which automatically begin execution
when they are loaded. There are also
two short game programs, for amuse-
ment and system demonstrations.

All of the programs recorded on the
disc have been dumped from a 2650
system using PIPBUG, so that they are
in the Signetics "Absolute Object For-
mat", and hence suitable for loading
into other systems under PIPBUG con-
trol. The system from which they were
dumped has a total of 4k (4096) bytes of
RAM in addition to the 1k PIPBUG
ROM, with the RAM occupying the
hexadecimal address range 0400-13FF.
Some of the programs currently occupy
memory locations near the top of that
range.

As many small 2650 systems are likely
to have at least this much RAM, most of
the programs should be usable as they
are. However if your system has a
smaller memory, you should still be
able to use many of the programs.
Quite a few of them are either
relocatable without any changes at all,
or require only a few minor changes.
Others are already located down at the
bottom of RAM memory space, and
should be directly usable.

The programs have been recorded
on the disc using the 2-tone "audio
FSK" technique, with binary 1 and

"mark" represented by a tone of
2400Hz, and binary 0 and "space"
represented by 1200Hz. These are the
same tones used in standard microcom-
puter cassette interfaces, based on the
so-called "Kansas City Standard"
originated by the American magazine
Byte. Hence you should be able to feed
the programs from the disc into your
system simply by connecting a standard
record player up to your system's
cassette interface, in place of the
cassette tape recorder.

If you experience any trouble
loading them into your system in this
way, it will probably be because your
cassette interface is not set for exactly
the standard frequencies. A judicious
adjustment of the interface may
therefore be required, by trial and
error, until loading takes place correct-
ly. This will be a simple procedure if
you are using the cassette interface
described in the April 1977 issue, as you
will only need to adjust the 4.7k "clock
adjust" preset pot a little one way or
the other.

As a special offer to EA readers, we
are making the 2650. Software Package
Recording available at the nominal
price of $2.50, or $3.00 posted
anywhere within Australia. However
your remittance should be accom-
panied by the order coupon given in
this article, unless you live in a State
where this requirement is illegal — in
which case a letter giving the same in-
formation may be sent instead.

But note that this offer is strictly
limited. Only 1000 discs have been
produced, and when these have gone
the offer must close. So be early if you
don't want to miss out!

As you can see from the photograph,
the 2650 Software Package Recording
comes inside a matching protective
sleeve. On the sleeve is printed brief in-
formation on each of the various
programs on the disc, and their use.
However in order to let you evaluate
their potential value to you in advance,
the remainder of this article gives a
somewhat expanded description. Also
given are program sizes and
relocatability.

Here is some good news for those using small microcomputer
systems based on the Signetics 2650 microprocessor. Electronics
Australia and Philips Electronic Components and Materials, in con-
junction with the 2650 Users' Group, have produced a low cost
175mm 33 1/3rpm record of useful 2650 system software. You can
load the software into your system via any standard cassette inter-
face.

by JAMIESON ROWE

80 	ELECTRONICS Australia, April, 1978

Supplied in an informative sleeve, the record plays on a standard player. It
provides nine handy items of 2650 software, plus two games.

1. HEX INPUT ROUTINE
This simple program allows either

programs or data to be fed into your
system in hexadecimal code from a ter-
minal keyboard, more speedily and
more conveniently than with the
PIPBUG input routine. The data or in-
struction bytes are fed in as lines of any
length, each line beginning with the
address in which its first data byte is to
be stored. The address and each data
byte must be terminated by any con-
venient non-hex character, such as a
space or comma.
Thus by typing:
440s3Fs82s69sCDs84s7F r
where "s" is a space, and "r" is a
carriage return, the input routine will
load 3F into location 440, 82 into 441, 69
into 442 and so on. Note that the last
data byte on the line may be ter-
minated by the carriage return
character; a space is not necessary. The
program automatically provides a line
feed, also.

When typing in both the address and
the data bytes, no leading zeroes are
necessary. Thus an address typed as
"440" is automatically interpreted as
0440, while a data byte with a value of
02 may be entered simply by typing

"2s". Zero bytes may be entered by
simply typing a terminator character,
such as a space.

As the program automatically enters
only the last four digits before the ter-
minator, in the case of an address, or
the last two digits in the case of a data
byte, errors discovered before typing
the terminator may easily be corrected.
Simply continue typing, to make the
last four or two digits correct. Thus
typing:
44F0440s6BCos
will enter C8 into location 0440. But
note that when correcting errors in this
way, you must type in any leading
zeroes as well.

Any number of lines may be entered,
as long as each line begins with its ap-
propriate initial address. The addresses
of each line need not follow those of
the line before, nor preceed those of
the next line; all lines are treated in-
dependently. This allows convenient
correction of lines,and entering of mul
tiple programs.

To escape from the program and
return to PIPBUG, either type a
Control-G (BELL character) or press the
system reset button. It may be
necessary to type control-G twice.

As recorded on the disc, the hex en-
try routine occupies memory locations
1250 — 162D. However it is relocatable
and may be moved anywhere in page 0,
that is anywhere from 0440 to 1FFF
(PIPBUG itself occupies 0000 -- 03FF). It
also contains no scratchpad locations,
making it suitable for storage in a ROM
if desired. It uses PIPBUG subroutines
STRT, CHIN and COUT. Call by typing
G1250r. This program was written by
the author.

2. HEX LISTING ROUTINE
This program enables you to list a

program or data stored in your system's
memory on a terminal, in hexadecimal
code, more conveniently than with
PIPBUG. The listing is done in lines,
with each line beginning with a 4-digit
address and followed by up to either 16
or 8 two-digit groups representing the
data bytes, separated by spaces. The
memory range to be listed is given to
the program as part of its calling
protocol; when called the program lists
the memory contents in the specified
range, then returns control
automatically to PIPBUG. It must
therefore be called separately for each
listing.

As recorded on the disc, the listing
program occupies memory locations
1200 -- 1248 inclusive. However it is
relocatable, and may be moved
anywhere in page 0. It may also be
stored in a ROM if desired. Call by typ-
ing G1200sAAAAsBBBBr, where AAAA
is the start and BBBB is the finish ad-
dresses of the range to be listed.

At present the program is arranged to
list in lines of up to 16 data byte groups,
so that lines will have up to 53
characters. If the terminal or printer
you are using can only handle lines of
32 characters or less, you can alter the
program to list in 8-byte groups by
changing the instruction byte in loca-
tion 1244 from "OF" to "07".

The hex listing routine uses PIPBUG
subroutines GNUM, STRT, CRLF, BOUT
and COUT. It was written by the
author.

3. BLOCK MOVE & SEARCH
The block move routine allows you

to move the contents of the locations in
any designated memory range either
up or down in memory. It may thus be
used to move complete programs or
data, or to move part of a program for
insertion or deletion of instructions.
The destination and source ranges may
overlap, so that moves of as little as one
byte are permitted in either direction.
Note, however that the program uses
indexing and will not move data cor-
rectly where either the source or
destination ranges flow over 2650 page
boundaries. However the source and
destination range may lie in separate
pages.

As supplied the block move routine
occupies memory locations 1100 -
1183. However it is relocatable and may
be moved anywhere in page 0. It uses
PIPBUG subroutines STRT and GNUM.

ELECTRONICS Australia, April, 1978 	81

0111■10111, 	 emeMemisallw 	

2650 SOFTWARE PACKAGE RECORDING

|t 	is 	called 	by 	typing
G1100sAAAAsBBBBsCCCCr, where
AAAA and BBBB are the start and finish
respectively of the present memory
range occupied by the block to be
moved (i.e., the source range), and
CCCC is the start of the memory range
to which it is to be moved (i.e., the
destination range).

After moving the data, the block
move routine automatically returns
control to PIPBUG. The routine was
written by Ian Binnie.

The accompanying block search
routine is designed to search through a
designated memory range for a
specified pattern in two adjacent
locations. Wherever the pattern is
found, the routine prints out the ad-
dress of the second byte of the pattern.
It may therefore be used to find specific
instructions in a program, or data in a
table. It can search any desired memory
range, even a range which flows over a
2650 page boundary.

The block search routine is designed
to be used in conjunction with the
block move routine, and this is why the
two are combined on the record.
However the two are quite indepen-
dent, and may be separated if desired.
As supplied the block search routine
occupies 1190 — 11D7, but it is
relocatable and may be moved
anywhere in page 0.

To call the block search routine, type
G1190sAAAAsBBBBsXXXX, where
AAAA and BBBB are the start and finish
respectively of the memory range to be
searched, and XXXX is the two-byte
pattern to be found. The routine will
print out the locations at which it is
found, and then return control to
PIPBUG. The block search routine uses
PIPBUG subroutines STRT, GNUM,
CRLF and BOUT. It was written by Craig
Barratt.

4. TAPE VERIFIER
After you have dumped a program

from your system's memory onto paper
tape or cassette using PIPBUG, this
verifier program lets you check that the
tape or cassette has a faithful copy. It
does this by reading the tape or
cassette, and comparing it with the
original still residing in the system
memory. If there are any errors, the
verifier program will type out an ap-
propriate message. Otherwise it will
type out "TAPE OK".

The verifier checks for both address
and data BCC (block control character)
errors on the tape or cassette, as well as
for data byte errors. Currently the
%erifier occupies memory locations
1360 — 13F3 inclusive. However it may
be moved to any desired part of page 0
by modifying the contents of the in-
struction bytes currently in addresses
13B6 and 13B7. The five least significant

bits of the byte in the first location and
the full byte in the second must corres-
pond to the address of the byte SIX
BYTES after the second of the two
bytes, for correct printout of the
verifier messages.

Thus currently these bytes are 37 and
BD, corresponding to address 13BD. If
the verifier were moved to occupy 760-
7F3, you would thus need to change the
contents of 7B6 and 7B7 to 27 and BD
respectively. If it were moved to oc-
cupy 500-593, the contents of 556 and
557 would need to be changed to 25
and 5D respectively. Note that the sixth
least significant bit of the first of the
two bytes is always set; this is for cor-
rect indexing.

To use the verifier, simply call it by
typing G1360r. Then feed in the tape or
cassette, as if you were loading it. Note,
however, that for correct operation the
original program on the tape or
cassette must still be resident in the . .
system memory. The verifier will either
type out a message as soon as it finds an
error, or will give the "TAPE OK" signal
at the end of the tape. After giving a
message the verifier returns control
back to PIPBUG.

The verifier uses PIPBUG subroutines
CRLF, CHIN, BIN and COUT. It was
written by the author.

5. DISASSEMBLER
This program may be used to ex-

amine a program or part of a program
in your system's memory, and produce
both a hexadecimal listing and a
reconstruction of the program in
mnemonic or assembly language. This
allows convenient analysis of programs,
and is also of value in tracking down
subtle logic errors, errors in program
entry and errors in calculating relative
addresses and PC-relative branches.

Not all of the codes in the 2650 in-
struction set are translated into
mnemonic form by the disassembler;
some infrequently used codes are ig-
nored. However all commonly used
codes are translated, and absolute ad-

dresses are calculated for relative ad-
dressing instructions. This allows very
convenient program analysis. However
please note that the program does not
calculate the absolute address correctly
for relative indirect addressing instruc-
tions which are "forward referencing"
— i.e., those which reference higher
addresses.lt does calculate the correct
address for those which are backward
referencing.

The disassembler listing is 31
characters wide, making it suitable for
use with almost every kind of terminal
and printer. It occupies the memory
range OF00 — 1082, and is not easily
moved.

To use the disassembler, call it by typ-
ing GFOOsAAAAsBBBBr, where AAAA
and BBBB are the start and finish of the
range in memory occupied by the
program or section of program to be
disassembled. For long programs, the
disassembler will pause after listing
about 64 lines to allow manual form
feeding. To ,continue the listing, type
any character on the terminal
keyboard. Control is returned to
PIPBUG at the end of the listing.

The disassembler uses PIPBUG sub-
routines STRT, GNUM, BOUT, AGAP,
CRLF, CHIN, COUT and FORM. It was
written by Ian Binnie, with
modifications by the author.

6. TAPE MEASURE
If you acquire a program on paper

tape or cassette in Signetics Absolute
Object Format, it is usually easy enough
to feed it into your system and try it out.
However in order to list it or disassem-
ble it for analysis, one needs to know its
length or the range it occupies in
memory. This program is designed to
read programs stored on paper tapes or
cassettes, and print out the memory
range of each block. It prints out this
information at the end of the tape or
cassette, as a small table having one line
per block.

The program occupies the range 440
4FE, and is not easily relocated. It

also requires RAM buffer area above
4FE, for storage of block start and finish
addresses during reading. Four bytes of
storage are required for each block on
the tape to be measured. To use the
program, simply call it by typing G440r,

ELECTRONICS Australia, April, 1978 	83

11.1.1.1.11.1■ 	

2650 SOFTWARE PACKAGE RECORDING

then feed in the tape or cassette to be
measured.

Please note that the program lists the
ends of blocks as one location in
memory higher than their true posi-
tion, so that the block ends listed
should be decremented to find the true
ends.

The tape measure program uses
PIPBUG subroutines CHIN, BIN, STRT,
COUT and BOUT. After printing out
the block information at the end of the
tape or cassette, it returns control
automatically'to PIPBUG. It was written
by the author.

7. DUMP FOR AUTO-START
This routine duplicates the function

of the dump routine in PIPBUG, except
that it allows you to produce program
tapes or cassettes which begin ex-
ecuting automatically as soon as they
have been loaded into your system us-
ing the PIPBUG load routine.

The routine currently occupies the
range 0E60 — OEF7, but may be moved
anywhere in page 0 by changing the
contents of the last two bytes. These
currently contain the branch address
OE7C, and if the routine is moved they
must be changed to contain the cor-
responding address.

To use the routine, type
GE60sAAAAsBBBBsCCCC, where
AAAA and BBBB are the start and finish
of the memory range to be dumped,
and CCCC is the address at which
automatic starting of execution is to oc-
cur upon loading. Then turn on the
tape punch or set the cassette recorder
for recording, and finally type a
carriage return. The routine will return
control to PIPBUG after performing the
dump.

The routine uses PIPBUG subroutines
STRT, CRLF, COUT, GAP, and BOUT. It
was written by the author.

8. 300 BAUD BINARY DUMP
This program is designed to dump

programs onto cassette tape, in binary
format and at 300 baud, so that they
may be reloaded into your system con-
siderably faster than with the 110-baud
Absolute Object Format used by
PIPBUG. This gives roughly a six times
reduction in loading time, for the
programs themselves.

The program provides two main op-
tions. Programs may be dumped alone,
or preceeded by a bootstrap loader. If
preceeded by the bootstrap loader,
binary cassettes may effectively be
loaded using the normal PIPBUG load
routine. If dumped without the
bootstrap, binary cassettes must be
loaded tusing the following binary
loader.

For dumping programs with the
bootstrap preceeding, the follow!ng
binary loader must be resident in
memory, because it is used as the

84 	ELECTRONICS Australia, April, 1978

bootstrap source.
Dumping programs with the

boostrap loader preceeding them does
increase the loading time, tending to
reduce the advantage over normal
PIPBUG dumping and loading.
However it saves having to load in the
binary loader in advance. And the in-
crease in loading time is really only
significant for very short programs;
even programs as short as 256 bytes still
load in little more than half the normal
time (39 seconds compared with 68
seconds). For large programs the
loading time either with or without the
boostrap is drastically reduced: an 8k
memory dump can be reloaded in 51/2
minutes, compared with over 30
minutes with PIPBUG.

A further option provided is for the
dumped program itself to be set for
automatic execution after being load-
ed.

The binary dump routine occupies
1200 — 12FF and cannot easily be
relocated. Its starting address for
dumps preceeded by the bootstrap is
1204; for dumps without the bootstrap
start 	at 	1 2 2 3. 	Call 	by
G1 2 0 4sAAAAsBBBBr 	(or
G1223sAAAAsBBBBr) for non auto-start
of the dumped program, or
G1 204sAAAAsBBBBsCCCCr (or
G1223sAAAAsBBBBsCCCCr) for auto-
starting, where AAAA and BBBB are the
start and finish of the program being
dumped, and CCCC is the address for
auto starting.

The routine uses PIPBUG subroutines
STRT, GNUM and CBCC. It was written
by Ian Binnie.

9. 300 BAUD BINARY LOADER
This routine is designed to load

programs into memory from 300-baud
cassette recordings made using the
preceeding dump routine, when the
cassettes do not have the loader already
present as a bootstrap. It is also used by
the dump routine as a source for the

bootstrap. It occupies 440 — 497, and
cannot easily be relocated. Call by
G440r. Written by Ian Binnie.

10. NIM GAME
A simple version of the traditional

computer game of strategy. When call-
ed by typing G440r, it announces itself
and explains how to play the game. It
occupies 440 — 588. The version
presented has been adapted by the
author from a program written by Perry
Brown.

11. NUMBER GUESSING GAME
Another simple game of strategy, for

amusement and diversion. Like the Nim
game, it announces itself and explains
how to play. It occupies 440-59F, and is
called by typing G440r. The version
presented here has been adapted by
the author from a program written by
Perry Brown.

Programs 3, 5, 8 and 9 are presented
by permission of the 2650 Users' Group
and Applied Technology Pty Ltd, and
we thank them for their courtesy in
allowing us to do so. Further informa-
tion on these programs is available to
members of the Users' Group. If you
are interested in joining the group, its
address is 109-111 Hunter Street,
Hornsby, NSW 2077. Initial membership
costs $40, for which you get a
documentation package with hex-
adecimal listings of many other useful
programs.

Incidentally, we aren't able to supply
hexadecimal or source listings of the
programs on the record. However this
should be no problem, because you
can produce hex listings and
mnemonic listings of them for yourself,
using the hex listing routine and the
disassembler program on the disc itself!
Both of these programs will happily
process themselves along with all of the
others, too — so that you can make the
hex listing routine list itself, and the dis-
assembler disassemble itself ...

In short, we think you'll find the 2650
Software Package Recording very han-
dy, and good value at the price. If you
agree, why not fill in the order coupon
below and send it in with your remit-
tance?

I I enclose $

r 	 MN WE EMI Mil =II I

I ORDER FORM FOR EA-PHILIPS
I 175mm DISC OF 2650 SOFTWARE
1

To obtain your special offer record of useful 2650 system software, complete this
II form and send it with a cheque or money order to Electronics Australia, PO Box 163,
1 Beaconsfield, NSW 2014. Note that only 1000 records are available, and when these 1
• . are exhausted the offer will close. Records are $3.00 each posted anywhere in 111

I Australia.

I NAME 	

I ADDRESS 	

	 POSTCODE 	

being payment for 	 discs

MI all IMP MB MB MI NM MS MI NMI NM MI OM MN MI MN ON MI MI SIN

INFORMATION CENTRE

NOTES & ERRATA

2650 SOFTWARE RECORD (April 1978):
In the section on page 81 describing the
Hex Input Routine, the memory ad-
dress range currently occupied by the
routine should read trorn 1250 to 12f3D
hexadecimal. Also in the set lion on
page 83 describing the Tape Verifier,
the current content of location 1386
should read 33, not 37 as shown.

ELECTRONICS Australia, May. 1978 	117

Uses latest 4K-bit RAM chips:

New, expandable
2650 mini system
The Signetics 2650 microprocessor has become quite popular
among computer hobby enthusiasts, spurred on by our "baby"
2650 system described in the March 1977 issue. This and the re-
cent release of 1024 x 4 bit RAMs has prompted us to redesign the
circuit, with this article and the unit described herein as the result.

Our previous approach was to pre-
sent a design for a printed circuit board
unit only, which reduced costs to a
minimum. With this project however,
we are also describing a case and power
supply, so that the unit becomes a corn-
plete stand-alone mini computer. Of
course, if desired the PCB can be used
by itself, as before.

We estimate that the complete unit
will retail for around $115.00, which is
very reasonable considering the
features of the unit.

What are the features of the unit?
Well, it has a debug and monitor
program resident in a 1k ROM, a stan-
dard 20mA asynchronous communica-
tion link, a minimum of 1k of RAM, full
memory decoding, provision for
memory and I/O expansion, and an on-
board power supply.

All this is contained on a single-sided
PCB, measuring only 218 x 81mm. The
only other components required are a
reset switch and a power transformer
and associated hardware.

At the heart of the circuit is the 2650
MPU chip itself. This is an 8-bit device,
with an instruction set of 75 instruc-
tions, and having eight different ad-
dressing modes. It is fabricated using
low threshold ion implantation, and is
an N-channel silicon gate device
operating from a single 5V supply, with
all inputs and outputs TTL compatible.

A 74123 dual monostable is used to
generate the single phase 1MHz clock
required. A trimpot is used to set the
correct operating frequency, which can
be adjusted without the use of special
test equipment.

The debug/monitor program, code

by DAVID EDWARDS

named "Pipbug", is resident in a 2608
ROM. Pipbug recognises seven basic
commands, each of which consists of
an alphabetic character, any required
numerical parameters, and a ter-
minating return. The parameters are
given as hexadecimal characters, with
leading zeros unnecessary.

The seven commands and their func
tions are as follows:
A — See and alter memory;
B — Set breakpoint (2 permitted);
C — Clear breakpoint;
D — Dump memory to tape;
G — Go to address, run;
L —Load memory from tape;
S — See and alter registers.

Only two of a maximum of eight RAM
chips are shown in the circuit diagram
at right. The rest are wired similarly.

54- 	ELECTRONICS Australia, May, 1978

 LL

Ol'i I " 	rEo9 O 	11.7 ;
 LL

LL

O o 0

0 	g '9 	LI CC.;
.3.

80 0040. 00

0 0 0 0 y 0

to 	M
" 	O a>

z
0

F- z ;it

0000000 9

a'4 6101.004111010411101111

e:E 21041401111110411114

	

a 	 co 12011001101.140111

r. 4 11000101111111

, 8

	

V N 	 01

'
lai - 11

g .12.000,01

4" ritiokilla

4 gel

4 ell11111140101

1111111111111 I 	 1

' 0101011140111101101111

	

o

cn 	 4°' 3/11011011410110

	

0 	
4' 111011040410111

+ ;7' 	 111111

N 	
4 11111011111104011

11: 	*lin elig4110110111
M
T

,- 0 to

	

tq p>

g 	

1

co ° W
. r■> ...11111111 0

,
Ch Ch

ca to

	

a 	 4e) EIMIVIOVIAIIIN

	

3. 0
	

Fial10411111/111010

° 6 silaii0410414040111
in

._act] cfili 4 Failloikoil
0 E 	Bliklikillii .,-,,-,__.4 21

	

.."___ 	 MANI LI 	 N

	

E 	4 EON •--= 8 	:i . 01 PI 0
0 CO (0) .t
0 0 0 11 I.

to

U)2

 CO 0

(1)
CC 	;

< X

CC
0 cc 13.

W lc

0 	000.00
to

O 	N in et 	10 ti
03

>
..10■1 	 an

0 0 5 PI Vc3
el GO

tD

O w 0 -Oa cc
-1 0

cc u
< et
z

z 	00
0 gz

>cn 	
a. -
0

NZ
cc

O

ol

cc

0 a

2
6

5
0

 M
IN

I
 C

O
M

P
U

T
E
R

 S
Y

S
T

E
M

C
L

O
C

K
 A

D
J

U
S

T

>

A
D

1
4
-E

/N
E

0

cr4
10 le

0

01 N o3 01 el .c71 cC4 re! U3 1, 03
	MN el

P. 0 111 et 01 N r 0
a a 0 a 0 0

6
0

.3g O

J
N
N 	m m <

0

11. 12
a 1.

CO

	

et 	 •
01 ...,-- ag 	 ‘r + ' O 	..- 	1, ,

0 .Ne
(It 	an • 	T m

. 0

a 0
01

trf SI,

ti

1 0

+ <
z ua

co 	 0
< CC CC 	 E
0 1-
OA

0-4 40--0

01
01 to 03 ti tO iv)

O

W
w

w 	 0 	 an
an 	 4 	 z
an 	 , 	 an
cc 	 U. 	 an

0
4 4 4 Q
	0 0

4 4 .ec 4 4

0 r N

;Est
•:(4 *3E

0

1
uiZ4

CC
0

3L

O

us

z

O 0

0

O C
C
C

C

et

c""Th
c 2
C 3
C 3
C 3
C 2
C .

_ •

3 1.
3

3

3

ELECTRONICS Australia, May, 1978 	55

List of component parts

SEMICONDUCTORS
1 2650 MPU chip
1 2608 CN0035 ROM (Pipbug)
2 2114 1024 x 4 static RAMs
1 74LS38 quad open collector gate
1 74123 dual Schmitt trigger
1 74LS138 decoder
1 7805, LM340T-5.0 5V regulator
1 BC548 or similar NPN transistor
2 1N914 or similar silicon diodes
2 EM401 or similar silicon diodes
CAPACITORS
1 2500uF 16VW PCB mounting elec-

trolytic
2 1.5uF tantalum electrolytics
5 0.1uF polyester
1 270pF polystyrene
1 47pF polystyrene
RESISTORS (all 1/4W)
1 10k trimpot (5mm lead spacing)
1 22k, 5 10k, 1 6.8k, 1 3.3k, 2 2.2k, 4

1k, 1 150 ohm, 1 10 ohm
MISCELLANEOUS
1 40 pin DIL socket

1 24 pin D1L socket
2 18 pin DIL sockets
3 PCB standoffs (9.5mm)
1 SPDT miniature toggle switch
1 SP miniature momentary contact

switch
1 transformer, 240V to 15VCT @ 1A.

DSE 2155, A&R 2155 or similar
1 PCB, coded 78up5, 218 x 81mm
1 case, 284 x 93mm (see text)
1 output connector (see text)
4 rubber feet
1 mains cord, mains plug, grommet,

cord clamp and terminal block
2 aluminium brackets (see text)
Machine screws and nuts, PCB pins,

solder, tinned copper wire,
hookup wire, rainbow cable

NOTE: Resistor wattage ratings and
capacitor voltage ratings are those
used for our prototype. Com-
ponents with higher ratings may
generally be used provided they are
physically compatible.

New 2650 system

The D command may be used to
dump out onto paper or magnetic tape
any desired range of memory locations,
with leader, checksum and trailer to
facilitate reloading. Both the A and S
commands may be auto-incremented,
by terminating with a line feed instead
of a carriage, return.

Pipbug is explained further in
Signetics Application Memo SS50,
which you should receive with the 2608
ROM. It also includes a listing of Pip-
bug, which among other things lets you
make use of some of its utility sub-
routines such as the serial input and
output routines "CHIN" and "COUT".

Only two ICs are required to imple-
ment the basic 1k of RAM provided,
thanks to the new 2114 memory
devices. These are 4096-bit static
memories, organised as 1024 4-bit
words. Access time is 650ns or better,
and all inputs and outputs are TTL com-
patible. At the time of writing, only
devices made by Synertek are available,
and these are coded SY2114.

We understand that in the near
future similar devices will be available
from National Semiconductor (coded
MM2114) and Signetics (coded 2614).
At present, the Synertek devices are
available from Radio Despatch Service
Pty Ltd, of 869 Gearge Street, NSW 2000,
and also from Dick Smith Electronics
stores and dealers.

Memory address block decoding is
performed by the 74LS138 device. The
A, B and C inputs, operating on address
lines AD10, AD11 and AD12 produce
output signals which effectively divide

This close-up photograph of the board
should aid in placing the components
on the PCB.

the memory space into eight 1k blocks,
each of which is uniquely decoded
within the 2650's memory address
"pages" of 8k.

The first 1k block, from 0000 to 03FF,
is assigned to the ROM, with the next
block, 0400 to 07FF, assigned to the first
1k of RAM. The first 63 locations of this
block are used by Pipbug as temporary
storage locations, so that user memory
commences at 0440.

A 74LS 38 quad open collector gate is
used to perform the remaining
housekeeping functions. One element
is used to combine the R-bar/W and
WRP signals, to form the W-bar (P)
signal, which is then used to drive the
R/W-bar lines of the RAMs.

A second element is used to buffer
and invert the signal from the reset
switch, allowing a cheap and readily
available normally-open type switch to
be used.

The third element is used as a 20mA
current sink for the teleprinter (TTY)
output signal. It was for this reason that
an open collector type gate was used,
necessitating the three pullup resistors
on the other element outputs. The
current level is set by the 150 ohm
resistor, and is sufficient to operate the
current loop input of an ASCII TTY or
video data terminal.

The remaining gate element is not
strictly required, but since it was
available, we have used it to provide

56 	ELECTRONICS Australia, May, 1978

•

780,

RE:

IN FROM
TERMINAL

.:„
.te

! 7.1N 17 O UT TO
TERMINAL

TRANSFORMER
15V 7.5V OV

two buffered interrupt request inputs.
The TTY input circuitry uses a single

NPN transistor, along with a few passive
components to provide a level transla-
tion from the 20mA circuit to the TTL-
compatible sense input. The passive
components form a filter to mitigate
the effects of induced hum and switch
bounce, if present.

The power supply circuit is very sim-
ple, requiring only two diodes, one
electrolytic capacitor and a three ter-
minal regulator, apart from the mains
transformer. Five 0.1uF capacitors are
distributed about the circuit, to
minimise noise and spikes on the supp-
ly lines.

All of the previously mentioned cir-
cuitry is built up on a single printed cir-
cuit board, coded 77up5. In order to
contain costs, we did not use a double
sided board, so that a number of links
are required. Most of these are normal
uninsulated links, although there are

-eight insulated links which wander
across the board.

Provision has been made on the
board for up to four pairs of 2114 RAM
chips, giving a total on-board capacity
of 4k bytes of RAM in addition to the 1k
byte Pipbug ROM. Note, however that
only one pair of 2114's is required for
operation; the other three pairs are op-
tional, to allow you to expand the
system as required.

Four pairs of 2114s represent the
maximum number which can be con-
nected to the 2650 without overloading
the address and data outputs. For
further memory expansion, buffering
will be required.

As you can see from the
photographs, the board dimensions are
such that in the case we have used it
can be stood on edge from front to
back. This is an aluminium case of
similar dimensions to that used for the
Mini Scamp microprocessor design,
and also the Minibrute power supply.
The prototype was obtained from Dick
Smith Electronics Pty Ltd.

Use the
overlay
diagram at
the top of
the page to
guide you in
placing
components
onto the
PCB. Eight
insulated
links are
required,
joining the
corresponding
letters.

You can see
in the

photograph
at right how
much room
is left in the
case for ex-

pansion pur-
poses.

The method of mounting used allows
room for at least two similar sized
boards in the case as well, so that
mechanically, future expansion is quite
easy. It also means that both sides of the
board are accessible at once, so that
servicing and addition of extra parts is
quite simple.

The board is supported on two
brackets, which we fashioned from
scrap aluninium. The large bracket at
the rear holds the board near the rear
panel, so that the regulator can use the
panel as a heatsink. The front of the
board is supported by a single bracket
fastened to the floor of the case. We
used PCB standoffs as well, so that the
PCB could be removed easily; but these
may not be necessary in all cases.

We used a DIN socket as the terminal
interface connector, as these are cheap
and readily obtainable. It was fitted to
the rear left hand corner, to minimise
the length of wire needed from the
PCB.

The reset switch is mounted in the
front left-hand corner, with the board ,.a
little to the right of it, to allow
clearance for the supply electrolytic
capacitor. The transformer and
associated components are mounted in
the right hand side of the case, leaving
the centre section clear for expansion
purposes.

Commence construction by fitting all
the hardware and support brackets to
the case. The front panel of the
prototype was made using "Scotchcar

ELECTRONICS Australia, May, 1978 	57

This is an actual size reproduction of the PCB pattern.

required. These are arranged in a DI L pattern, so that a socket
and programming plug can be used if desired.

The address and data lines, as well as the W-bar (P) signal,
have been made available, so that memory expansion and in-
put/output capabilities can be provided. It is our intention to
present a second article in the near future, showing how to ex-
pand the memory up to at least 7k of RAM, and provide two
non-extended I/O ports.

New 2650 system

photosensitive aluminium, and we hope that commer-
cial versions will be made available in due course.

We assembled the LED indicator and its support
components on a small piece of tagstrip, mounted im-
mediately below the LED BEZEL. Only one wire is re-
quired from the tagstrip to the transformer, the earth
connection being made via the chassis and the tab of the
power supply regulator.

Commence construction of the PCB by fitting the
uninsulated links. All soldering should be done with a
small pencil shaped bit, and with a minimum of solder.
Be careful to avoid solder bridges.

We recommend that sockets be used for the CPU
chip, the ROM chip, and the RAMs if you are at all un-
sure of your soldering ability with these MOS devices. Or
if you wish to add extra RAM at a later date. Fit the
sockets to the board at this stage, before any other com-
ponents are fitted.

Now fit all the passive components, followed by the
TTL ICs. Circuit board pins for the external connections
should also be fitted at this point, if they are required.
Mount the regulator IC, and then locate and drill the
mounting hole for it in the rear panel.

The next step is to fit the eight insulated links to the
board. Use rainbow cable, and join the lettered points
together, routing the wires between the components, so
that a neat finish is obtained. Once this has been done,
mount the board in the chassis, and complete the con-
nections to the outer connector, the reset switch and the
power transformer.

Now visually check the completed board for mis-
placed or misoriented components, and for dry joints
and solder bridges. Bolt the regulator IC to the chassis,
using a little heatsink compound for improved heat
transfer. Do not insulate the mounting tab from the
chassis.

Now monitor the 5V rail, and switch on. If the supply
does not rise immediately to 5V, switch off, and trace and
rectify the fault. If all is well, adjust the clock preset so
that the signal at pin 5 of the 74123 is 1MHz. If you have
no means of measuring this frequency, leave this adjust-
ment till later.

Now switch off, and insert the MPU chip, the ROM
chip and one pair of RAMs. Note that the lower RAM is
inverted with respect to all the other ICs. Then connect a
suitable TTY or video terminal, and switch it on.

Switch the computer on, and, then press the reset
switch. You should be rewarded by a carriage return, a
line feed and an asterisk (*). If you get something garbl-
ed, adjust the clock frequency while repeatedly pressing
the reset switch till an asterisk appears. Once this
happens, set the preset to the middle of the region
wherein an asterisk can be obtained.

Now check out the Pipbug commands, and verify
that you can load data into memory. If you have purchas-
ed the 2650 Software Package Recording offered in the
April 1978 issue, then you will be able to load and run
some of the smaller programs, such as "Nim" and
"Number Guessing".

Note that if you can afford the full 4k of memory,
you will be able to run all of the programs, with room left
over for your own programs as well. And if you haven't
ordered your record yet, do it now, as stocks are strictly
limited.

Finally some comments concerning the expanion
capabilities of the board. Most of the MPU pins required
for expansion have been made available on the board.
Some of them are grounded via links for normal opera-
tion, so that these links will have to be removed for ex
pansion purposes.

Eight links have been provided at the 74L5138 out
puts so that the memory configuration can be altered if

58 	ELECTRONICS Australia, May 1978

2650 MINI-COMPUTER
Fantastic new 2650 Mini Computer (see May '78 EA). Comp-
lete kit includes all electronic parts, PC board and power sup-
ply plus case, Marvi-plate lid and deluxe brushed aluminium
front panel.
Complete kit for above: Cat K-3447 	 $115.00*
PCB (78up5), fibreglass, only: Cat H-8341 	. $5.00

2650 microprocessor chip only: Cat Z-9201 .. 	.$28.50
2608/CN0035 pip bug 8k ROM only: Cat 1-9309 	.. $19.75

VIDEO DISPLAY UNIT
Incredibly low cost Video Display Unit uses your own TV set
as the monitor. See EA, February & May '78 for details.
Basic Video Display Kit: Cat K-3460 	 . $97.50 *
Video Modulator Kit for above: Cat K-3462 	$4.50 *
ASCII Keyboard Encoder Kit for above: Cat K-3464 ..$39.50*
DART IC (S1883/MM5303N/TMS6011: Ca.t Z-9204 .. $5.90 *
Keyboard Console Metalwork: Cat H-3130 	.$24.50 4C
Keyboard (fully assembled): Cat X-1180 	 $55.00 it

CASSETTE TAPES
AC/DC cassette recorder ideal for this system.

Cassette recorder Cat A-4092
Cassette tapes: C60 LN — Cat C-3350 ..

-C90 LN — Cat C-3352 ..

CASSETTE INTERFACE
Enables your cassette recorder or record player to interface
with mini-computers such as the 2650. Kit includes PC board
and all components except power transformer. The complete
PC board assembly will fit inside your 2650 mini-computer
case, the 2650's transformer providing the AC power. We
believe this kit to be the best available on the market to suit
the 2650 system. Other kits require long setting-up time and
the final result is not nearly as good as with this one.
Complete kit (as above) Cat. K-3465 	 .. $24.50 +IC
PCB only (Cat H-8331) 	 $3.75

PAPER TAPE READER KIT
See page 33 or our new catalogue for full details. Ideal for use
with the 2650 mini-computer. Kit includes all electronic com-
ponents, handsome black anodised aluminium case, ribbon
interface cable and complete assembly and interface instruct-
ions, schematics and software.
Tape Reader Cat K-3466 	 $95.00

SOFTWARE RECORDING
This is a 33-1/3 RPM recording of useful 2650 system soft-
ware. By using it on your record player or dubbing it onto
cassette and using it in your cassette interface system you can
program the 2650 directly for exciting new programs and com-
petitive games. It contains 11 programs you can run.
Record Cat B-6300 	 .$2.80 lc

.. $39.95
.. $1.50
.. $2.00

YOUR OWN
TV SET

	 UNIT- KIT PRICE
$22

VIDEO DISPLAY

2650
MINI-COMPUTER
KIT PRICE $115.00

CASSETTE
INTERFACE
KIT PRICE $24.50

YOUR OWN
RECORD PLAYER
OR CASSETTE
RECORDER

	NEM

TYPICAL SYSTEM
EA/SI GNETICS
RECORDING -
PRICE $2.80

MINICOMPUTER BREAKTHROUGH!
COMPLETE $figq2o
SYSTEM uuu

Here it is at last --- the first mini-computer kit system for the electronics enthusiast who
knows nothing (or a lot) about computers.
If you're one of the people who think that computer technology is beyond you, this is
the system for you
Just imagine it — after building it, you use your standard record player to 'input the pro-
gram with the EA/Signetics record, and you're using your computer right away. You don't
need to know any complicated machine 'languages'. You communicate with it in English!

Incredible bargain -- you'd pay over $800 for a similar built-up system!

COMPONENTS MARKED 40 ARE REQUIRED TO BUILD THE SYSTEM SHOWN
IN THE BLOCK DIAGRAM ABOVE. THEY ADD UP TO ONLY $369.20!

INFORMATION CENTRE

found without exception a mass of un-
intelligible jargon. Is there any book
which has a list of codes together with
their binary equivalents and an ex-
planation in readable English of what
they are supposed to do? If so I would
be very grateful if you could let me
know. (R. H., Alphington, Vic.)
• We agree that there do not seem to
be any easily read up-to-date books on
machine language programming,
which make no assumptions regarding
the background knowledge of the
reader. Most people have had to
plough their way through many
different books and articles, to gain
even a modest understanding. And
whether it would be a proposition for
anyone to write such a book now is
perhaps in doubt, as machine language
may not be in wide use for much
longer. Incidentally, there is no stan-
dardised machine instruction code
used by all of the various
microprocessors; virtually all of them
use different codes.

MICROCOMPUTERS: I would like to
learn something about computers and I
was thinking about getting the 2650
system described in your May 1978
issue. However I don't think I will
because wherever I look I come up
against an impenetrable wall of un-
intelligible jargon. I have looked in half
a dozen books, pamphlets and in-
troductions to various systems, "struc-
tured so that the user not familiar with
computers can learn to generate code
with a minimum of effort ..." but have

Notes & Errata

LOW COST VIDEO DISPLAY UNIT
(February 1978, File No 2/CC/23): In
the circuit diagram on page 63, R9 and
R6 should be interchanged, along with
C11 and C8. The parts list and overlay
diagram on page 65 are correct. Note
also that the polarity of C19 is incorrect-
ly marked on the overlay diagram.

ELECTRONICS Australia, July, 1978 	125

FEATURES:

* Signetics 2650 microprocessor based —

* All processor signals buffered for TTL fan out of 10

* Supervisor programme in 1k of PROM

* 730 bytes of RAM available to the user

* Provision for 3k of additional PROM on the board

* Cassette Interface on the board using 1200/2400 Hz
Kansas City standard

* Composite Video output with 16 lines of 80 characters
display format

* Two parallel input ports, and one bit selectable output
port

Central Data dynamic RAM boards are available
with 16k, 24k, or 32k bytes of memory.

Central Data software includes an Assembler/Editor
and an 8k BASIC tape. A Debugger, 12k BASIC and
Assembly Language Package is coming soon.

Central Data
Get into computing the

economical, expandable way.

The Central Data System Board CDYSBDA facilitates the writing
of programmes in Hexademical with only the addition of a TV
monitor, ASCII Keyboard and power supply.

Other hardware now available and on the way
includes Central Data Computer Mainframe with
Power Supply, ASCII keyboard with solid-state
low-profile keyswitches and +5 volt operation
and Floppy Disc controller with one, two or
three drives.

For general and specific information:

TECNICO ELECTRONICS

The System Board can be expanded by connecting the S-100 Board
CDS100BDA. This allows you to plug in any S-100 static memory
board with an access time of less than 500ns or the Central Data
dynamic RAM boards CDXXKBDA.

M0808/778

Premier Street, Marrickville,
N.S.W. 2204. Tel. 55 0411.
2 High Street, Northcote,
Vic. 3070. Tel. 489 9322.

76 	ELECTRONICS Australia, September, 1978

Add full buffering and parallel 10 ports:

How to expand
your 2650 system
Since the publication of our 2650 mini computer design in the May
1978 issue, we have had many requests for information on expan-
ding this system. Here is the first of two articles in response to
these requests. It tells how to add full address and data bus buffer-
ing, memory page decoding and four parallel input-output ports.

Before discussing how the 2650 Mini
Computer can be expanded, let us first
spend some time discussing the reasons
for expansion. The basic design, as
presented in the May 1978 issue, is
limited in memory size to 5K total (1K
ROM and 4K RAM), due to the bus
driving capacity of the processor.

Of course, this is quite a respectable
amount of RAM, and allows quite large
machine language programs to be run.
However, when one considers handl-
ing large amounts of data or text, or
running a BASIC interpreter, one finds
that it is not quite enough. TCT BASIC,
for instance, which was reviewed in the
September 1978 issue, requires 4K of
RAM for the interpreter, another 1K for
use as scratchpad memory, plus
whatever RAM is required for user

program storage.
Thus, a definite need for extra RAM

exists. The 2650 CPU can address a max-
imum of 32K of RAM, and now that
2114 RAM chips are more readily
available, a memory of this size is quite
feasible. In fact, to implement an 8k
RAM board requires only 16 2114 chips,
and these can easily be accommodated
on a single board.

The second main limitation of the
original design is that the only external
communication with the CPU is via the
20mA teleprinter interface. This limits
not only the data transfer rate, but the
number of devices which can be con-
nected to the computer.

Of course, peripheral devices can be
configured as memory, but this is not
the approach which was taken by the

by DAVID EDWARDS

designers of the 2650 CPU chip.
Instead, they chose to implement
peripheral communications via
dedicated input/output ports.

Of particular interest to a small
system, such as we are interested in, are
the "non-extended" I/Oports. These
are accessed via four special instruc-
tions, REDD, REDC, WRTD and WRTC,
which are all singlebyte instructions.

The non-extended I/O ports can be
implemented as either two bi-
directional ports, or as two separate in-
put ports and two separate output
ports. We have chosen the latter ap-
proach, as we felt it to be more flexible
for a small system.

Provision of these output ports will
enable the computer to communicate
with high speed devices in parallel

70 	ELECTRONICS Australia, November, 1978

I. DO
D1
D2
	 D3 DATA

D4 EXPANSION
D5
D6
D7

74LS374,
74C374

74LS374,
74C374

CK CK
Dout

1- —S OSTROBE

Cout
STROBE

81LS95

G2 	G1

81LS95

G2

Din
STROBE

Cin
STROBE

FROM
CPU

BOARD

G1 	G2
I1 19

FROM
CPU

BOARD

ADO
AD1
AD2
AD3
AD4
AD5
AD6
AD7
AD8
AD9
AD10
AD11
AD12

	

W(P)O 	

	

OPREQO 	

	

NANO 	

1 	

.{

1g
AD4

/13 	AD5 ADDRESS
AD6
AD7

EXPANSION

AD8
AD9
AD10
AD11
AD12

13/

ADO
AD1

81 LS95

G1 	G2
711."11Tr

I

81LS95

/8

6
74LS02

1

81LS95

G2

19

19

G2

81LS95

G1

FROM
CPU-

BOARD

D2

D4
D5
D6
D7

G1 Al GND Y2 A3 Y3 A4 Y4

81 LS95

Y1 A2

VCC G2 A8 Y8 A7 Y7 A6 Y6 A5 Y5

16 15 14 13 12 11

DINPUT C OUTPUT D OUTPUT

74LSO2

2

13

74LSO2

11 	12

B

C

14

13

2

1

2

34
74LS138 11

10
9

7

5

6

7

G1

G2

G3

	

AD14-D/E0 	

	

AD13-E/NEO 	

	

M/16 0 	

WRP FROMO 	
CPU BOARD

JE7-

OPAGE 0

0 PAGE 2

OPAGE 1

	OPAGE 3

MEMORY
PAGE

SELECT

r-- DATA OUTPUTS
VCC YO Y1 Y2 Y3 Y4 Y5 Y6

6

4

3 	 6 17

Y1 Al B1 Y2 A2 B2 GND
74LS02

PIPBUG CE SIGNAL
FROM CPU BOARD E.,

(DATA BUFFER CONTROIX'

10

74LSO2 9

VCC 08 D8 D7 07 06 D6 D5 05 CLOCK

20 19 18 17 16 15 14

VCC Y4 B4 A4 Y3 B3 A3

114 13

A B C G2 us G1 Y7 GND

`SELECT)`SELECT)ENABLE JOUTPUT

74LS138

OUTPUT 01 D1 D2 02 03 D3 D4
CONTROL

A 	 74LS374, 74C374

04

2650 EXPANSION BOARD
	

2/CC/-

No power supply components are in-
cluded on either board, and connec-
tions between the boards are made us-
ing rainbow cable.

The expansion-board, coded 78up9,
contains the address and data bus
buffering, the I/O ports, and memory
"page" decoding. The RAM board,
coded 78up10, contains 16 2114 RAM
chips, as well as optional address and
data buffers.

The expansion board may be
powered from the existing power supp-
ly, while the RAM board requires an
additional power supply. Details of the
RAM board, and the required power
supply will be given in the following ar-
ticle. In this article we will give full con-
structional details of the expansion
board.

Turning now to the circuit diagram,
we can discuss the expansion board in
more detail. National Semiconductor
81LS95 octal Tri-state buffers have been
used to implement the data and ad-
dress buffers, as well as the two input
ports. The output ports are im-
plemented with 74LS374 or 74C374 Tri-
state octal latches. Page selection and
I/O port selection is achieved using a
74LS138 one of eight decoder.

The 81LS95 device is most probably
unfamiliar to most readers, so a brief
digression concerning it will no doubt
clear up a few doubts. This device is
packaged in a 20 pin DIL package, and
has eight non-inverting buffers. Two
control inputs are provided, G1-bar
and G2-bar. If either or both of these
inputs is at a logic 1 (high) level, the

ELECTRONICS Australia, November, 1978 	71

C INPUT

NOTE: A MAX. OF 3K RAM AND 1K
ROM (PIPBUG) CAN BE USED

BETWEEN 2650 AND ADDRESS AND
DATA BUFFERS.

DATA BUFFER MUST BE DISABLED
WHEN THIS RAM AND ROM

IS SELECTED.

0 0 0
BW(P) BOPREO BR/W

BUFFERED CONTROL
SIGNALS

rather than serial format. Other uses in-
clude digital-to-analog and analog-to-
digital conversion, as well as control of
devices such as motors and lights, and
the input of the system data.

Expansion of the 2650 Mini Corn-
puter thus involves the provision of I/O
ports, and additional RAM. In order to
provide these, it is necessary to buffer
the address and data lines, so that
overloading does not occur. We have
designed two new circuit boards, one
concerned with buffering the address
and data lines, and providing the I/O
ports, and the other concerned only
with the provision of extra RAM.

Each board has the same dimensions
and mounting holes as the main CPU
board and is intended to mount in the
case in the same way as the CPU board.

CPU

FIG. 1 R/W

How to expand your 2650 Minicomputer

outputs of the buffers are placed in a
high impedance or Tri-state mode.

This facility is used to enable several
devices to be wired in parallel on the
one bus. Only one device drives the
bus at any time, with all other devices
switched into the Tri-state mode. This
should become clearer if we now turn
to Fig. 1, a simplified representation of
the bi-directional data bus.

When the CPU is transmitting data to
the RAM or the I/O device, the R-
bar/W line is high. This disables the
output of buffer B, and places it in the
high impedance state. Buffer A,
however, is enabled, because it's out-
put enable signal is low. So the data
placed on the bus by the CPU is
transmitted to the RAM. The output of
buffer B does not load the bus, because
it is in the high impedance state.

Similarly, when the RAM or I/O
device is sending data to the CPU,
buffer A is disabled, and buffer B
transmits the information.

Returning to the main circuit
diagram, we can now discuss the ad-
dress and I/O decoding. The control
signals for the non-extended I/O ports
are multiplexed together with the two
high v ter 2650 address lines, AD13 and
AD14. A control signal, MAO-bar, is
provided to enable them to be
separated. These three signals are
applied to the A, B and C inputs of the
7413138.

Control input G1 is driven by the
buffered OPREQ signal, while input
G2-bar is driven by the inverted WRP
signal. This latter signal is obtained
from the CPU board after the
modifications detailed in the box ac-
companying this article have been
carried out.

The "0" output from the 7415138
then becomes the C port select line,
while the "2" output becomes the D
port select line. These signals are used
to enable the output buffers of the
811S95s used for the input ports, so that
information at the port inputs can be
transmitted to the CPU.

The same signals are also gated with
the buffered W (P) line, and are used to
clock the two output port latches. This
clocks the valid output data on the data
bus into thr appropriate output latch.
The data is then available for peripheral
devices until fresh data is clocked in.
The output enable lines of the latches

have been earthed via links, so that
they can be strobed externally if
necessary.

We have specified two pin-
compatible ICs for the output port
latches. The low power Schottky
devices (7415374) were our first choice,
but there may be supply problems with
these. However, the CMOS devices can

This diagram shows the
way in which the bidirec-
tional data buffer
operates. Only one of the
eight separate buffers is
shown.

be used, and are available.
The four high-order outputs of the

7415138 decoder form the page-select
lines. These go 'low whenever an ad-
dress within the relevant page is
selected, and are used to select the ap-
propriate 8k block of memory.

A spare gate from the 74LS02 used for
decoding the output port control

BI-DIRECTIONAL BUFFER

1/8-81LS95
RAM
I/0

Modifications to CPU board
A possible timing conflict exists in the data bus of the 2650 Mini Computer

System, described in the May 1978 issue. We have had no reports of this con-
flict causing operating faults, but recommend that the following
modifications be carried out to eliminate this possibility.

The modifications require the use of an extra logic inversion, so this is
provided by utilising the gate previously used as the interrupt request
buffer. This avoids the need for an extragate package, although it does
mean that buffered interrupts are not available.

The alterations involve re-routing the WRP signal from the 2650 so that it is
not gated with the R-bar/W signal, but instead is used to gate the 74LS138
address decoder. An inverter is required to do this, as only active low inputs
are available as unused inputs on the 741S138.

The modifications required, and the order in which they are best carried
out, are listed below:

1. remove the links earthing pins 12 and 13 of the 74LS38 quad buffer.
2. remove the 10k resistor connected to pin 12 of the 74L538.
3. remove the link earthing pin 4 of the 7415138 address decoder.
4. cut the track leading to pin. 9 of the 741538, and join pins 9 and 10 of

the 74LS38 together with a small piece of tinned copper wire (used compo-
nent lead).

5. cut the track leading to pin 11 of the 74LS38 at pin 11.
6. add a 1k resistor on the copper side of the board between pin 11 and

pin 14 of the 74LS38.
7. connect pin 11 of the 74LS38 to pin 4 of the 74LS138.
8. connect pin 12 of the 74LS38 and pin 22 of the 2650. Pin 22 is available

near pin 9 of the 74LS38.
9. check that steps 1 to 8 have been carried out correctly, and that there

are no short circuits or solder bridges between IC pins.
We have also had a small number of reports of ringing on the clock in-

put to, the 2650, causing faulty operation. This ringing, if present, can be
eliminated by connecting a 22pF ceramic capacitor between pins 5 and 8 of
the 74123 device.

Finally, we would like to note that in theory both of the problems men-
tioned above may occur with the "baby" 2650 system described in the
March 1977 issue, although there have been no reports of trouble.

Note also that the 1.5uF capacitor in the sense line should be reduced to
0.47uF for operation at 300 baud.

72 	ELECTRONICS Australia, November, 1978

-wo>,e4****(0,1 ::"'"''''' •

'•'

D14- N

PARTS LIST
6 81LS95 octal Tri-state buffers
2 74L5374 or 74C374 octal Tri-state

latches
1 74LS138 decoder
1 74LS02 quad NOR gate
1 PCB, coded 78up9, 218 x 81mm
8 0.1uF polyester capacitors
4 15-way chassis mounting sockets

and plugs to suit
Solder, tinned copper wire, rainbow
cable, machine screws and nuts,
tapped spacers, PCB pins

NOTE Resistor wattage ratings and
capacitor voltage ratings are those
used for our prototype. Com
ponents with higher ratings may
generally be used provided they are
physically compatible.

These two photographs show how the two boards are assembled in the case, and
how they appear when removed. Arrange the boards as shown in the lower
photograph while completing the interconnections.

RIGHT: Use this
overlay diagram of the
CPU board to find the
appropriate connec
tion points. You may
also need to refer to
the overlay diagram on
page 57 of the May
1978 issue.

signals is used as an inverter so that the
data buffer can be disabled whenever
page 0 is selected. This is required to
prevent a conflict, as the Pipbug ROM
and existing RAMs are on the CPU side
of the buffer. Without this disabling,
the data buffer and RAM or ROM
would both try to drive the data bus

whenever a read operation in page 0
was performed.

The page 0 signal is coupled via a
link, so that a different configuration
can be achieved if desired. The reasons
for this will become clearer in the next
article.

Note that strictly only 3K of RAM can

be inserted on the CPU board when the
expansion board is connected, due to
bus loading limitations. This presumes
that all devices present their maximum
specified load. However in practice we
found it possible to insert the fourth
pair of RAMs, and still have correct
operation.

ELECTRONICS Australia, November, 1978 	73

How to expand your 2650 Minicomputer

Before commencing construction, we recom-
mend that you carry out the modifications detailed
in the box. The following constructional hints
assume that this has been done.

The circuitry is all contained on a single-sided
board, coded 78up9, measuring 218 x 81mm. Note
that the board has provision for a 40-pin IC (a possi-
ble future addition), but this is not used at present.

As you can see in the photographs, the new board
mounts parallel to the CPU board. To do this, we
removed the nylon standoffs used initially, and
replaced them with tapped spacers screwed either
side of the existing mounting bracket using a short
length of threaded rod.

By arranging the cabling between the two
boards in a suitable way, it is possible to remove both
boards as a unit from the case, with a minimum of
unsoldering. This is made easier if the TTY socket and
the I/O sockets are mounted from the inside of the
case, so they can be removed by simply unscrewing
them, without unsoldering.

While this mounting method is a little awkward,
and not conducive to extended servicing, it does
leave enough space for at least two additional
boards, and it is economical (motherboard systems
have a high initial cost).

The existing transformer and power supply on
the CPU board have enough reserve capacity to run
the additional board as well, so no mods are re-
quired in this area. The power supply rails from the
new board are simply connected in parallel with
those on the CPU board.

Commence construction by fitting the I/O
sockets, and by arranging the mechanical supports
for the board. Make sure that the support pillars do
not short to any of the tracks on the board (use in-
sulated pillars if necessary). Then remove the board
from the case, and commence to fit the components.

A low wattage, chisel pointed iron will be re-
quired, as well as some fine resin filled solder. A
good light will also be necessary.

Fit all the passive components and links first. Leave
the bypass capacitor between the 81LS95 address
buffers out at this stage, and fit it only after the ICs
have been inserted. Sockets are not required for the
TTL ICs (ie, all but the 74C374's, if used) provided you
are careful with your soldering iron.

Once all components have been fitted to the
board, inspect it very carefully to check for solder
bridges, wrongly oriented ICs or other similar faults.
We do not recommend PCB pins for most of the in-
puts and outputs to the board, as there is not suf-
ficient room for them.

Now remove the CPU board from the case, and
place it in position on your work bench next to the
expansion board, with the two "front ends" adjacent
to each other. Using suitable lengths of rainbow
cable, and using the two overlay diagrams as a guide,
make the required interconnections. Remember to
leave enough length so that the two boards can be
folded copper side to copper side, and then
assembled in the case.

Take your time when making the interconnec-
tions, as any mistakes will be difficult to correct later,
as well as being difficult to trace. It will be easier if
you make use of the colour code of the rainbow
cable, and make say the DO line back, the D1 line
brown and so on.

Insert the link to disable the data buffer
whenever page 0 is selected, and connect the page 0
line to the G2-bar input of the 74L5138 on the CPU
board.

Here is a full sized reproduction of the PCB artwork. Commercial
boards should be also available.

ELECTRONICS Australia, November, 1978 	75

cc
z

0
La
0
cc

0
Q
z
0
0 +5V

O
cc
z
0
0

z
z

0
OV

1 •

7 1
6 	I I I I 1

5 4 3 2 1 0

DATA LINE

FEMALE 15-WAY CANNON CONNECTOR
ON CPU CHASSIS VIEWED ON WIRING SIDE •

C INPUT D INPUT • C OUTPUT D OUTPUT

BUFFERED
DATA
OUT

Cout
STROBE

-I-
5V

PAGE 0
.------,40441.-PAGE 2 -
---:

Issionto

DATA
IN

PAGE 1
PAGE 3

How to expand your 2650 Minicomputer

ABOVE: The position of the 10 sockets
can be scaled from this photograph.
Mount them from the inside of the
chassis.

BELOW: The overlay diagram is used
both to place the components on the
PCB, and to make the connections
between the PCBs.

ABOVE: This is the suggested wiring
diagram for the 15way Cannon connec-
tors we used for the 10 sockets.

The wire leading from pin 11 of the
74LS38 (the WRP-bar signal), must be
extended to the G2-bar input of the
74LS138 on the expansion board.

The two power supply rails are
available near the three terminal
regulator. Make sure that you do not
get the polarity wrong.

Once you have finished and checked
all the interconnections between the
two boards, you can wire up the I/O
sockets. We used 15-way Cannon D
Subminiature plugs and sockets. The
connection scheme we used is shown
in the accompanying diagram.

The eight pins in a row are used for
the data connection, with the remain-
ing seven pins used for t ontrol and
power supply signals. The +5V and OV
signals are the main supply rails, while
the +10V and ---10V signals can be
derived from the power transformer
using a bridge rectifier and two elec-
trolytic capacitors.

The strobe signal is obtained from
the expansion board, while the control
signals can be selected from the other

ports as desired. For example, to run
the OP-80A paper tape reader, a ninth
data input is required, so this can
become one of the control signals.

Once all the wiring is completed, and
has been checked thoroughly, testing
can commence. This can be done
before the board assembly is replaced
in the case. Fit a heatsink to the
regulator tab, and reconnect the three
wires from the transformer

Monitor the +5V rail, and switch on.
If it does not rise immediately to the
correct value, switch off and trace and
rectify the fault. Assuming all this is
well, connect up your terminal, and
check, that Pipbug and whatever RAM
is fitted is working correctly.

The output ports can be tested by us-
ing a small routine of instructions to
write data to them and checking that it
appears on the appropriate output pin
with a multimeter. You can use the Pip-
bug BIN routine to get data bytes from
your terminal, the BOUT routine to
echo them, and the WRTC or WRTD in-
structions to transfer them to the out-

put ports.
Similarly the input ports can be

tested by reading them via REDC and
REDD instructions, and using the BOUT
routine to print the byte obtained on
the terminal. With nothing connected
to the inputs, you should get hex-
adecimal FF from both ports.

Now use a clip lead to ground one in-
put pin at a time, and check that the ap-
propriate byte is displayed. For in-
stance, shorting the bit 0 data input
should change the display from FF to
FE.

Once you are satisfied that all facets
of the unit are operating correctly, the
board assembly can be fitted to the
case. Use of a magnetised long blade
screwdriver will be found helpful in this
operation, if you are using steel screws.

In the next article, we will give details
of the 8K RAM board and the ad-
ditional power supply components re-
quired with it. This additional supply
will also provide the +10V and —10y
unregulated voltages mentioned
previously.

76
	

ELECTRONICS Australia, November, 1978

Extra RAM for the 2650
In this second article giving expansion details for the 2650 Mini
Computer System, we give details of an 8K RAM board based on
2114 static RAM chips. Optional address and data buffering is
provided, as well as full address decoding.

The 2114 static RAM chip, which forms
the heart of the memory system, is only
a relatively new device. These are 4096-
bit devices, organised as 1024 4-bit
words. Access time is 65Ons or better,
and all inputs and outputs are TTL com-
patible. They are packaged in 18-pin
DIL form, and require only a single 5V
supply.

Specified maximum power supply
current is 100mA, with typical devices
drawing about 80mA. This implies an 8K
array would require a supply current in
the vicinity of 1.5A, and that the dissipa-
tion in the RAMs would be about 7.5
watts.

The new board described in this arti-
cle holds a maximum of 16 2114 chips,
as well as five buffer and housekeeping
chips. It is intended primarily for use
with 2650-based systems, • but can be

adapted for use with other
microprocessors. Optional address and
data buffers have been provided, as
well as on-board address decoding.

Turning now to the circuit diagram,
we can discuss the circuit in more
detail. The optional data buffer is
provided by two 81LS95 octal Tri-state
buffers, wired as a bi-directional buffer.
The direction of the buffer is controlled
by the read/write line.

Low cost 74LSO4 hex inverters are
used as the address buffers, with two
spare inverters used to buffer the
read/write line. These inverters also
provide the required control signals for
the data buffer.

The RAMs are connected in pairs to
form 1K blocks, with half of the data
lines going to each chip. The two chip
enable lines for each pair are con-

by DAVID EDWARDS

nected together, giving a total of eight
active-low chip enables.

These are controlled by the 7415138
decoder, which decodes address lines
10, 11 and 12. The 7415138 is gated on
and off by the page select signal and
the buffered operation request
(BOPREQ) signal. The page select line is
generated on the expansion board, and
is derived from address lines AD13 and
AD14. It is also used to disable the data
buffer when the page concerned is not
selected.

The buffers on the expansion board
described in the October 1978 issue are
capable of driving at least one of these
RAM boards without the use of the ad-
ditional buffers. In this case, all that is
required to support the RAM chips is
the 74LS138 decoder.

Since the address lines are loaded

ELECTRONICS Australia, December, 1978 	83

DATA FROM
EXPANSION

BOARD
DO-D7

81LS95

DATA

ADDRESS

81(RAM ARRAY
1672114

BW(P)

SELECT
PAGE

BOPREO

AD10

AD11

AD12

2/6-74 LSO4

2650 RAM BOARD
VCC/-

more than the data lines (each data line
connects to 8 2114s only, while the ad-
dress lines connect to all 16), and since
the cost of two 74LSO4s is negligible
compared to the RAM cost, it is
probably worthwhile buffering the ad-
dress lines.

On economic grounds, the extra cost
of the data buffers can probably be
justified also. Use of the buffers has the
advantage that the system access time is
not degraded by the extra bus
capacitance that otherwise occurs.

Note that we have not specified in
either the circuit diagram or the PCB
overlay diagram the order in which the
data lines and the ten lowest address
lines should be connected. This is
because it is immaterial which way they
are connected.

All that is important is that each ad-
dress should define a unique memory
location, so that data is not lost or
destroyed when reads and writes are
performed. It is for this reason also that
the logic inversion occuring in the ad-
dress buffer is allowed. All the inver-
sion does is shuffle the actual RAM
storage locations about, without actual-
ly losing any of them.

It is important, however, that AD10,
AD11 and AD12 be connected in the
correct order, so that the memory chips

ABOVE: This is the
complete circuit
diagram of the
new RAM board.
The address and
data buffers are
optional.
RIGHT: The
suggested power
supply shown here
is adequate to
supply a single,
fully populated
RAM board.

can be fitted in pairs. This allows the
memory to be filled in increments of
1K, so that the cost of the RAM chips
can be spread over time.

Before discussing the constructional
details, let us first return to the power
supply requirements. The maximum
theoretical current requirement for a
fully populated board is 16 x 100mA + 2
x 26mA (81L595) + 2 x 4 5mA (74L$04)
+ 11mA (74LS138) = 1673mA. Ob-
viously, if it is intended to run several
RAM boards, the best approach is to
use an external 5V supply, such as' the
Minibrute described in the November
1977 issue.

If only one RAM board is to be

driven, things become a little more dif-
ficult, however. The maximum current
required is in excess of that which can
be obtained from a single three ter-
minal regulator. However, in practical
cases, the actual current will be
somewhat less than this.

If fact, the measured current con-
sumption of the prototype board, fitted
with full buffering and 14 2114 chips
was only 720mA. So use of a standard
three-terminal regulator should be
possible in most practical cases.

The suggested power supply we have
shown is based on the use of aTO-3 en-
capsulated three terminal regulator, on
the basis that heatsinking of these

ELECTRONICS Australia, December, 1978 	85

devices is easier. In our particular case, construction was
also simplified.

We used an additional 15V 2A transformer and an encap-
sulated bridge rectifier, along with two 2500uF 16VW elec-
trolytic capacitors. The bridge rectifier is not strictly re-
quired, as the centre tap of the transformer is earhted.
However, it allows a negative supply rail to be developed,
and this can be used to power devices attached to the non-
extended I/O ports, as detailed in the October 1978 issue.

A second advantage of the encapsulated bridge is that it
simplifies the mounting arrangements, as it can be bolted
directly to the chassis. As you can see in the photographs,
we mounted the additional transformer between the front
panel and the original transformer.

The capacitors are clamped to the bottom right hand cor-
ner of the back panel (use PC mounting tupes), with the
bridge and regulator mounted above them. The wiring can
be completed by suitably bending the component leads.
Use solder lugs for the chassis connections to the regulator.

Construction of the RAM board should be quite easy. The
PCB is coded 78up10, and measures 218 x 81mm.

Fit all the links first, and then. the RAM stockets. We
recommend sockets for the 2114s as this allows them to be
removed easily, or added in stages. Then fit the bypass
capacitors, and finally the TTL ICs. Sockets are not required
for these.

At the right is a full size reproduction of the PCB pattern,
which may be copied or traced. Commercial PCBs should be
available in due course. Use the photograph below as a
guide while wiring the power supply.

When the board is complete, check it
carefully for solder bridges and dry
joints. The next step is to complete the
connections between the RAM board
and the expansion board. There are
two different configurations which can
be achieved, however.

If you wish to maximise the amount
of RAM, this can best be achieved by
making the new RAM board page 1 of

the memory. This will then allow at
least 3K of RAM to be retained on the
main CPU board. It does mean,
however, that the memory will not be
continuous, as page 0 cannot then be
completely filled with memory.

If continuous memory is desired,
then the best approach is to remove all
RAM from the CPU board, and make
the new RAM board exist at page 0. In

order to retain Pipbug, it will then be
necessary to leave 1K of RAM vacant at
locations 0000 to 03FF.

In order to prevent bus conflicts, it
will then be necessary to disable the
data buffer on the expansion board
only when Pipbug is selected, rather
than when page 0 is selected. This can
be achieved by connecting the chip
enable signal for Pipbug to the buffer,

ELECTRONICS Australia, December, 1978 	87

BELOW: The way in which the three PCBs can be removed from the case for ser-
vicing and the way in which the cables between them are arranged can be seen in
this view.

ABOVE: Use this overlay diagram both
to assemble the components onto the
PCB, and to find particular 1K memory
blocks.

BELOW: As you can see in this
photograph, we actually labelled the
RAM blocks with their addresses. Parts List

16 2714 static RAM chips
7 7415138 one-of-eight decoder
9 0.7uF polyester capacitors
1 PCB, coded 78up10, 218 x 81mm

OPTIONAL PARTS REQUIRED FOR
BUFFERING
2 811595 octal Tri-state buffers
2 74LSO4 hex inverters
Solder, tinned copper wire, rainbow
cable, mounting hardware, PCB pins
NOTE: Resistor wattage ratings and
capacitor voltage ratings are those
used for our prototype. Com-
ponent, with higher ratings may
generally be used provided they are
physically compatible.

rather than the page 0 select signal. This
can be done by opening the link on the
expansion board, and running a wire
from the 0 output of the 74L5138 on the
CPU board to the opened link.

In all other respects, wiring of the
RAM board is identical for both cases,
and is quite straight forward. Simply
connect the appropriate control, data
and address leads between the expan-
sion board and the RAM board. If you
do not use the address and data buffers,
use the second set of address and data
inputs.

Once construction is complete, test

the board before inserting the 2114s.
Do this by applying power, while
monitoring the supply rails. If they do
not rise immediately to 5V, switch off
and trace and rectify the fault. Once all
is correct, plug in one pair of 2114s, and
switch on, again monitoring the supply
rail.

Test the RAM, and the address and
data bus buffers, if fitted, by loading
and running a small program from this
area of RAM. Assuming all is OK, you
can insert the remaining 2114s. These
can be likewise tested by running
programs known to be OK.

2114 RAM chips are available from
Radio Despatch Service, of 869 George
Street, Sydney, Dick Smith stores,
Applied Technology of 109 Hunter
Street Hornsby NSW, and from Pen-
nywise Peripherals, of 19 Suemar Street,
Mulgrave Victoria.

Please note that under normal con-
ditions, the 2114 chips do dissipate
significant amounts of heat, and
become warm to the touch. For this
reason, it is advisable to operate the
unit in a well ventilated environment,
to reduce the overall temperature rise
of the case. 	 '71

88 	ELECTRONICS Australia, December, 1978

New game programs for your 2650 computer:

Music player, Rotate
and Conway's "Life"

The "Music" program occupies
locations X'4A0 to X'5D3, and uses Pip-
bug routines. It contains absolute ad-
dresses, and is not easily relocated. The
music is generated at the flag output of
the 2650, and some form of audio
transducer is required. This can simply
be an audio amplifier and speaker, con-
nected via a suitable attenuator, to the
buffered flag output of the 'CPU.

Monotonic musical notes are
generated by pulsing the flag output at
suitable rates, with the program
"reading" the music from a section of
memory. The timing of the music is
determined by a time value called
"UNIT", which is an even number of up
to 15. bits, such that X'5160 is about 1/32
of a second.

Each note is specified by two bytes.
The first byte represents the number of
UNITs that the note will last: X'01 gives
a duration of 1 UNIT, while X'00 gives
256 UNITs, or 8 seconds with a UNIT
value of X'5160.

The second byte is split into three
fields. The most significant bit, bit 7, in-
dicates either a note (0) or a rest (1). The
next three bits, bits 4, 5 and 6, specify
the octave. 111 represents the top oc-
tave, while 000 represents the lowest. In
practice, the three lowest octaves are
not usable, giving a range of only five
octaves.

The remaining four bits in the second
byte represent the note within the oc-
tave. The first note in any octave is E,
represented by X'0, while the last note

is D sharp, represented by X'B.
For rests, bits 6 to 0 are not used, so

all rests become X'80.
It is best to start and end all programs

(tunes!) with X'80 80, a long rest, to
separate the music from the noises Pip-
bug makes while communicating with
the terminal. To signify the end of a
tune, insert X'02FF after the long rest.

Fig. 1 is a hexadecimal listing of the
program, as well as two tunes. "Yankee
Doodle" occupies locations X'5D4 to
X'6B7, and requires a unit value of
X'2800, while "Bach" occupies
locations X'6B8 to X'7A3, and requires a
unit value of X'7000.

To run the program, type: G68C (ad-
dress of first note) (value of unit) cr. The
last two parameters are optional. If they
are not given, the program will use the
previous values. Thus to play "Yankee
Doodle" type: G58C 5D4 2800cr; and
for "Bach" type: G58C 6B8 7000cr.

The second program presented here
is called "Rotate". The computer
generates a 4 x 4 array of the first 16
letters . of the alphabet, arranged in a
random order. The object of the game
is to rearrange the array into the follow-
ing form:

ABCD

EFGH

IJKL

MNOP

The array can only be rearranged by
rotating blocks of four letters

clockwise. The block to be rotated is
specified by the letter in its top left
hand corner. It is invalid to try to rotate
by calling letters on either the bottom
row or the right hand column of the
array.

If a mistake is made, it can be cor-
rected once between valid rotations.
Any two adjacent letters can be ex-
changed, with the proviso that only one
exchange is permitted. When the re-
quired pattern has been achieved, or
when the game is aborted, the program
will print out the number of moves us-
ed.

The program occupies locations
X'440 to X'5C7, and uses routines from
Pipbug. To run the program, type
G440cr, and the computer will respond
with "PRESS ANY KEY". Once this has
been done, a random pattern will be
generated and printed, and the prompt
message "ROTATE:" given.

A sample game is shown in Fig. 2. If
you wish to rotate a particular block,
type the letter in the top left hand cor-
ner of that block. If you wish to cancel a
move, type carriage return, and the
program will respond with "CANCEL",
and then reprint the last but one block.

If you wish to exchange two adjacent
letters, type X. The program will res-
pond with "EXCHANGE: and expect
you to type in the two desired letters. It
will supply the comma separating the
letters. If you cannot solve a particular
pattern, type Z, and this will abort the
game.

An average pattern, with only one
exchange permitted, should take
between 25 and 30 moves. Early
attempts may take more. A hex-
adecimal listing of the complete
program is given in. Fig. 3.

The third and final program is the
game of "Life", which is now well-
known in computer circles: Life was
originated by American computer
programmer John Conway, and details
of it were first published in the October
1970 issue of "Scientific American", in
Martin Gardner's column

Here are three very interesting programs for microcomputer
systems based on the Signetics 2650, developed by a father and
son team from Hobart. With them, you will be able to program and
play your own computer music, play John Conway's game "Life",
and test your mental endurance with the letter rearrangement
game "Rotate".

by PETER and HUGH CAMPBELL
19 Brushy Creek Road, Lenah Valley Tasmania 7008.

ELECTRONICS Australia, December, 1978 	91

LIFE: HEX LI Si I Nu

CCCO 76 40 75 Fr
CL 1 0 30 11 3b 1C
OGPO 05 F9 C9 OH
CG30 30 00 0k 70
0G4C eF 74 to 30
OG 50 72 76 40 30
0060 12 'P
	

14
0070
	

7k 01 75
0080 3k CU 5P It
0090 6k 3k OC 39
C(:PO 26 06 08 07
0CPU 22 E4 c't 18
0000 PS 01
	

51)
00L0 21 10 02 67
00i 0
	

CL Al k5
OCF 0 15 07 08 OL
OLOG 03 98 bk, As
CD10 PH 01, 21 14
01 20 02 04 4k 31
CI. 30 OL 3b FI 01.
01,40 30 32 00 39
OL 50 09 99 02 06
01+0 39 01 24 30
01.70 Fk, 7L 02 30
01,80 19 75 03 31
01)90 OE EL 05 OC
0@2'0
	

14 37 IP
ODHC 04 06 04 OL
CLCC 02 06 04 59
OLDO se 08 2P 30
°Lk C 21 F4 77 1C'
014 0 LO CK ob 44
Ok CC PC 08 7f CS

0E10 OL 61 00 SC
01 20 17 (0 QO 00
Ok 30 08 41) cg 49
CE40 62 24 04 18
Ck 50 04 66 61 25
Ck60 FC CL 62 FO
0E70 Lk Eh 3k 90
c0 KO 77 10 02 10
Ok 9C 64 98 Op 05
OL PO 00 OE LL P4
Ok ti(3k
	

06 IF
0 k CO 75 01, OA 22
Ok 10 35 36 47 22
Ck.k.0 00 20 3C 32

hOlA 1E : HEX LI:A

Cl; F9 08 27 12
12 9P 04 05 59
I H 3P 04 01: 3b
14 14 FP 71' 17
68 50 1P 04 74
50 75 10 17 11
30 40 3F 48 12
18 17 05 01 3r
SO 1C OC 28 24
OS 46 26 U1 42
00 L3 3r 00 5P
10 24 OL 98 6D
1)3 FP 7L 03 UD
01 31 OC 39 FA
3F HC OC 92 05
2k F4 143 00 9A
04 06 00 98 01
71 10 02 52 77
00 39 k P 65 65
Ok 22 25 09 99

OE EE 06 00
00 PS OA 5 09
31 00 39 1r' 00
02 82 17 32 00
OC 39 03 44 OF
24 00 1C 02 00
F 05 21 24 40
112 4 02 42 34
61 05 F 07 03

L Ps 03 30 27
Cl 07 08 11$ 31{
03 (3' 62 20 Fb
79 0 t C3 OD 2k
44 55 88 65 08
FP bk 75 10 F5
75 ,10 3k 01) 29
10 24 U3 18 05
HO Li 50 40 75
77 10 01 75 10
OL 09 05 04 OL
OE A8 06 00
01 111- (2 k CL

01 CC b2 2.1) 24
OE AF OL 22 11
4C 49 46 45 22
00 '40 30 30 35'
30 53 CC 20 30

NU

0440
0450
0460
0470
0480
0490
04A0
0480
0400
041)0
04E0
042'0
0500
0510
0 520
0 530
0540
0550
0560
0570
0580
0590
0 SAO
0 500
0 5C0

06

18
1)9
64
58
31.
02
56
65
138
24
02
C3
02
65
OF
75
03
45
54
41
20
56

FF
79
02
62
31
6 F
22
03
IF
1-C
04
50
B4
04
03
B7
IF
3F
1k

53
41
41
00
45
41

3F
10
66
DP
02
31:3
38
85
04
CO.
42
19
.17
2C
P2
C8
04
00
04
53
54
43

53
41

05 64
71 06
80 26
60 07
88 24
30 98
20 07
67 95
79 F6
65 bb
0I 65
02 06
06 28
-32 02
E4 01
07 01'
N2 06
8A 10
40 02
20 41
45 3A
45 4C
59 4F
OA 00
42 43

OS
05
22
02
58
IP
OF
06
03
OE
07
10
3k
b4
18
65
01
70
25
41.
20
00
55
OL
4E

08 07
66 80
52 0/5
IK 04
IC OS
06 19
06 21
40 OE
14 r6
65 08
17 24
2E 45
05 64
3F 02
08 24
07 CE
OE 25
38 60
6L 14

59 20
00 OP
('P 45
20 54
OP 41
47 00

FS

60

03
10
3r
25
00
CO

07
3F
86
04
65
b3
06
32
413
57
58
42'
4L

10
03
46
32
24
64
05
76
14
65
1C
18
02
30
18
07
14
34
02
45-
48
43
4r
44

00
18
Of
05
OD
03
64
22
OE
00
05
04
86
4C
04
04
30
36
84
59
41
48
4e
49

12
OA
32
44
18
02
PS
18
65
OE
58
5A
30
58
06
41
02
08
113
00
54
41
20
45

9P
26
04
06
OL
31i
01
lA
00
65
24
79
5P
79
19
CF
B4
32
77
00
3k
42
00
4A

06
FF
C4

32
26
95
60
C8
15'
41
92
58
02
lb
65
F6
02
OA
CP
20
47
20
40

D9
F.
18
3r
04
18
lb
10
13
GE
A
22
79
A3
56
07
03
69
SO
52
00
45
4L
50

1A
lb
02
17
40
IC
14
02
47
2,2
24
32
22
40
22
02
85
10
03
04
25
19
70
5P
17
05
lA
OE
85
08
OF
Op
FO
63-
03
77
01
10
CO
4k
10
02
CO

OL
53
32

71;
07
04
10
10
77
LO
06

t.;
59
20
OC
14
03
31
CP
04
L2
2.5

09
72
30
24
31.
15

62'
03
22

07
44
85
18
10
1P
01
82
FC
OS

1C
00
CA
OU
35

30
31
OA
05
03
18
51
04
01,
715
18
39
65
CL
00
0A
10
1P
31
OA
99
02
01,
30
CC
1.4
OS
30
3B
C8
08
03
55
03
04
08
OS
44

1' 0
CD
01
05
OC
14
00
20
53

25
13
30
08
76
05
2A
3P
8P
OS
22
85
03
22
26

II;
04
90
114
OE
24
07
1 A
39
OF
27
CL
33
22
10
17
88
kP
30
64
11_:
03
k 5
br
8L
00
28
32
20
3G
00

12
12
Ob
3b
40
00
78
31
1.1
Fr

01
lb
14
06
kb
kb
04
00
78.
86
30
09
79
30
1P
1b
62
08
3b
CP
00
70
69
52
88
07
02
03
30
02,
Cl)
11
00
31)
31

1P
1P
17

71
14
06
30
00
42
3F

45
OF
F5
00
77
09
20
EP
01
01
32
C2
24
50
F8
1.8
FO
22
CP
00
00
08
A5
lb
63
01
02
90
59
EE
02
OL
39
PO
35

Mik1C: HEX LI 51 'NG

78 04A0 04 00 OC A5 56
04 0480 51 81 51 77 10
59 0400 150 03 OE 25 BC
3b 0410 75 01 84 80 87
19 0420 86 01 9A 06 87
08 p4F 0 09 PA 06 76 40
40 0500 78 93 0.7 8C 80
39 0510 53 13 53 135 01
98 05208 CO CO 93 12 24
OC 0530 93 07 80 lb 42
18 0540 04 FC 82 04 F13
PC C 550 06 CP 03 1F 04
04 0560 F5 87 8P 86 00
03 0570 01 86 02 77 01
CP 0 580 OE 86 00 la 7P

0590 Db OC 04 2A 98
07 0 5A0 CE 05 57 01) 05
lb 0580 PO CE 04 FA CL
04 0500 12 97 213 32 37
24 05130 72 00 79 28
26
OC

YANK0k, DOODLE: kW(

12. C15 58 C2 44 70 24

83 C3 86 00 75 11 '46
06 FF ES 00 18 05 1)0
00 86 00 CB 22 CA 10
02 86 00 1A. 7P OD 85
04 08 1B 31 28 00 9
76 8A 73 9A 06 87 00
98 03 lEs ()I CO 47 03
40 92 13 77 11
	

50
F9 46 44 01 4C 04 FG
75 11 Ob OE OP 01:3 87
AO' 061:36 77 10 24 FF
9A 06 87 OE 86 00 1A
AF 04 FP Pk 04 F9 87
F9 62 P6 02 IF 05 45
06 OA 23 09 20
	

04
56 3F 02
	

77 08 00
04 F9 12 04 AO OS D4
2F 42 74 413 17 57 '22

LIIIN6

82 051)4 80 80 08 43 08
39 0 5E0 08 80 08 47 08

CC 051,0 08 80 08 3A 08
05 0600 08 80 08 47 08
OS 0610 08 80 08 43 08
SP 0620 08 80 08 48 08
SO 0630 08 80 08 42 OS
01) 0640 088' 80 10 43 OC
110 0650 02 80 08 40 05
00 0660 08 80 10 43 10
62 0670 08 80 08 38 06
00 0680 10 80 OP 42 02
04 0690 08 80 08 ,42 08
88 06A0 08 80 08 43 08
1P 0 650 OC 80 10 43 80

90
80
80
80
80
PO

80
80
80
80
80
80
80
80
80

08
08
08
14
08
08
08
10
08
08
10
08
OR
08
02

43
43
43
43
43
47
3A
43
3P
3A
37
40
43
42
FF

08
08
08
08
06
08
08
10
08
10
10
08
08
'08

80
80
80
80
80
80
80
80
80
80
80
80
80
80

08
08
08
08
OK
08
08
08
08
08
10
08
08
08

45
47
43
42

45
45
40
40
40
40
3P
3A

40
45

BACH: HEX LI I N6

06B8
0600
06D0
061:0
06 FC

0700
0710
0720
0730
0740
0750
0760
0770
0780
0790
07A0

80
04
04
04
OC
06
03
04
04
04
04
04
04
04
04
80

80
4A
53
48
80
80
48
47
52
4P
43
49
4A
53
48
80

06
04
04
04
18
06
OC
04
04
04
04
18
04
04
04
02

43
48
4A
47
47
80
47
4A
53
48
47
4A
48
4A
47
FF

.

06
04
04
04
00
18
00
04
04
04
04
06
04
04
04

45
48
47
45
48
47
45
48
4P
47
4A
80
48
47
45

04
04
04
04
18
OC
18
04
04
04
04
02
04
04
04

47
50
43
43.
414
48
43
48.

47
45

53
80
50
43
43

06
04
04
00
18
OC
04
C4
04
04
03
04
04
04

4A
45
3P
4A
4P
80
50
43
43
4A
80
4A
45
3A

04
04
04
18
OC
02
04
'04
04
04
06
04
04
04

4A
47
43
48
47
80
4A

45
3A
47
43
4P
47
43

"Mathematical Games". Further infor-
mation was published in the November
1970, January 1971 and. April 1971 issues
of the same magazine.

Since it was first produced, Life
programs have been. developed by
many different people (it is said to have
been responsible for more "foreign
order" computer time than anything

Fig. 4 (top left):
This is a hex-
adecimal listing
of the Life
program.

Fig. 1 (top right):
The listing shown
here is for the
music program,
and two tunes.

Fig. 3 (left), This is
the_listing for the
game of Rotate.
It uses routines
from Pipbug.

else). People all over the world have
played Life, and come up with many in-
teresting patterns.

Life is a matrix game concerned with
the life, death and birth of cells.
Imagine each cell to be in a two-
dimensional linear matrix, such that
each cell location has eight possible
neighbours, as shown:

70 C1 51 51
OF 1,12 01:. 65
D3 L2 F9 70
77 10 137 44

56 77 01 Ab
5A AB 78 AA
86 00 1A 7A
92' OS 12 CO
PP 4D 9P OS
64 18 93 8F
02 86 00 CO
IC 00 22 09
7A 74 40 75
lh 86 00 87
75 01. 32 02
CP IL C9 IA
04 2P IC 04
02 FC 11 21'
60 9C 69 80

08
08
08
08
08
08
10
08
02
10
08
08
08

80
80
80
80
80
80
80
80
80
80
80
80
80

08
08.
C8
08
08
08
08
08
08
08
08
08
10

45
45

3A
47
43
42
42
42
3A
40
40
3A
43

04 53 04 52
04 40 04 4A
04 42 18 43
OC
	

18 45
06 45 03 47
06 43 06 45
04 4A 04 53
04 47 04 40
04 43 04 42
04 43 04 47
06 45 04 47
04 53 04 52
04 40 04 4A
04 42 18 43

The rules of cell life, death and birth
are as follows:
1. A live cell will survive if it has two or

three live neighbours.
2. A live cell will die if it has less than

two or more than three live
neighbours.

3. A birth in an empty cell will occur if
it has exactly three live neighbours.

4. Births and deaths take place
simultaneously.
To work with practical terminals the

program operates with a limited size
matrix, but makes it effectively "in-
finite" by having "wrap around" from
side to side and from top to bottom.

In our version of Life, live cells are
represented by O's, and dead or empty
cells by blanks. The program starts with
an initial pattern (fed in by the player),
and calculates the new patterns
"generation by generation".

61,
Oh
78
ES

PP
11
32
53

79
03
64
05
07
76
49
05
(3'.
65
12
3F
02
9A
02
07
98
3h
52
40
43
3A
41
48

ELECTRONICS Australia, December, 1978 	93

CT-64

• 64 OR 32 CHARACTERS PER LINE
• UPPER AND lower case LETTERS
• FULL 8 BIT MEMORY
• 128 CHARACTER ASCII SET
• 110/220 Volt 50 —60 Hz POWER SUPPLY
• SCROLLING OR PAGE MODE OPERATION
• CONTROL CHARACTER DECODING — 32 COMBINATION
• PRINTS CONTROL CHARACTERS
• USABLE WITH ANY 8 BIT ASCII COMPUTER
• REVERSED BACKGROUND -

IN KIT FORM.

FOR FURTHER INFORMATION PLEASE PHONE 31 3273
OR WRITE TO:

= P.O. Box 380, Darlinghurst NSW 2010

Music playa

*G440

FiriES ANY KEY

O JMD
EFLI
k3FHK
CNPG

F

0 JMD
PLI

BNFK
CAHG

RO1P1E N

OJMD
EFLI

NK
CHFG

fi01 k N

OJt1D
EPLI
BAFN
CHGI

ROTATE: F

OJ1ID
EPLI

GF
CHKN

f201
EXCHPNUE: LOO,

OJLD
EFM I
BAGF
CHKN

Mil E P

OJLD _
EAF I
liGMF
CHKN

ROTATE.: M

OJLD
EAF I
b UKM
CHNF

HO'l E CANCEL

UJLD
EAPI
BGMF
CHKN

NO1PTE: G

OJLD
EAFI
PH GF
CKMN

YOU 100.K 07 MOVES

Fig. 2 (above). Here is a sample printout
from the Rotate game. The "Z" com-
mand was used to terminate the game.

Fig. 5 (at right on facing page): This
sample listing is an example of the
"Life" program in operation. This cell
pattern stabilises at generation four.

94 	ELECTRONICS Australia, December, 1978

e and Rotate programs for the 2650

The program listing provided (Fig. 4)
is intended for use with the Low Cost
VDU of February and April 1978, and
uses a matrix of 16 rows of 32 cells. To
use the program, type GC00 cr, and
then switch to the appropriate baud
rate (110 or 300 baud). The type a U for
110 baud operation, or a Y for 300 baud
operation.

The program will respond with the
word "LIFE", followed by the prompt
character ":".

If you respond with "N", the
program will expect a new matrix to be
supplied. The program will echo the N,
followed by a carriage return and line
feed. A pattern may then be written in
(or "seeded") by using the space bar
for blanks (these are printed as dots),
O's (for Oboe) for live cells, and line
feeds (LF) for new lines.

Blanks are not required on the right
hand side of the pattern. Carriage
return (CR) will permit overwriting of a
line, allowing error correction. Once
your pattern is complete, use LFs if
necessary to advance to the bottom of
the matrix.

Once the pattern is completed, the
program will reprint it, and give the
prompt sign again. If you now respond
with a Gxx, X'xx generations will be
evolved, with a printout after the last
generation. GOO will produce printout
after 256 generations, while GO1 will
produce a printout after only one
generation. And so on . . .

Immediately after you have typed in
this command, the program will res-
pond with a message such as 15S, to
indicate that in less than 15 seconds it
will print out the result of the Gxx in-
struction. After printing the result the
new generation count and prompt will
appear at the bottom left hand corner

0
GENERATION 1
	

0 0 0

GENERATION 2
0

00
0

00
GENERATION 3 00

00

00
GENERATION 4 0 0

00

00
GENERATION 5 0 0

00

of the screen. This may overwrite live
' cells, so try and keep your patterns in

the centre of the screen (patterns to the
right will wrap around to the left).

The remaining instruction is P, which
causes the program to printout the ex-
isting matrix. The instruction is not used
a great deal.

Fig. 5 shows the result of a simple
pattern. This stabilises after four
generations, and then continues
forever unchanged.

One of the most interesting and sim-
ple patterns has been named the
"Glider". The seed for this is shown
below:

0
0

000
Can you work out what will happen
with this pattern? (the name is a good
clue!).

If your VDU can cope with 24 lines,
the program can be adapted to
produce a 24 x 32 matrix. The EME-1
VDU, described in the January and
February 1977 issues, is such a terminal.

To do this change the following
locations:

location C95 from 46 to 66
CE4 	3F 	5F
D28 	3F 	5F
DB8 	34 	54
DBB 	30 	50
E72 	3F 	5F
E7D 	30 	50

The complete Life program occupies
locations X'COO to X'EEC inclusive, and
requires additional RAM extending to
X'F54. However, the first part of the
program is a self-contained I/O
module containing a baud rate in-
itialisation routine and some sub-
routines which duplicate the functions
of Pipbug's CHIN, COUT and CRLF
subroutines. The I/O module may be
used by other programs, either where it
is or moved elsewhere.

The memory locations occupied by
the module are from X'COO to X'C75 in-
clusive. The baud rate initialisation
routine begins at X'COO and ends at
X'C58-59 with a BCTR, UN instruction
which currently produces a branch to
the start of the main section of the Life
program at X'C76. To make the routine
branch to the start of another program
instead, the displacement of this in-
struction would need to be changed, or
possibly the instruction changed into a
BCTA,UN type.

Incidentally although the I/O.
module at present offers a choice of
either 110 or 300 baud operation, the
higher rate may be changed quite easily
to 1200 baud if you desire (and if your
terminal will work at this speed). Simply
replace the contents of location X'C18
(currently X'59) with X'14.

To use the baud rate initialisation

routine, type G COOcr. Then type U for
110 baud operation, Y for 300 baud
operation (assuming the routine is set
to give this alternative speed), or E for
1200 baud operation. Of course it is
necessary to switch the terminal for the
appropriate baud rate as well.

Note also that you may need to
reduce the value of hash filter capacitor
on the asynchronous input of your
computer, in order to operate reliably
at 1200 baud (or even 300 baud in some
cases). In the case of the EA 2650 Mini
Computer, the value of the capacitor
should be reduced from 1.5uF to about
0.1uF.

Once it has selected the desired baud
rate, the initialisation routine will
branch ,to the desired main program,
with the I/O subroutines set up for the
correct baud rate.

The actual subroutines are used in
exactly the same manner as those in
Pipbug. The calling addresses are:

CRLF X'C26
CHIN X'C5A
COUT X'C39
Needless to say, you can also run the

Life program at 1200 baud, simply by
making the above change to. the I/O
module with the output branch still
pointing to X'C76.

However, if you are running Life at
1200 baud, it is better to change the
program so that it prints out after every
generation, and stops automatically
when the pattern stabilises. To do this,
change the following locations:

location D68 from OC to 0D
D69 . 	78 	A9
DA9 	lA 	77
DAA 	EC 	10
DAB 	05 	06
DAC 	27 	00
DAD 	18 	75
DAE 	E8 	10
E84 	0E 	OC
E85 	A8 	78
EAO 	OC 	04
EA1 	0E 	00
EA2 	ED 	05
EA3 	A4 	02
EA4 	01 	06
EA5 	CC 	02
EA6 	OE 	F8
EA7 	ED 	7E
EA8 	E4 	F9
EA9 	00 	7C
EAA 	1C 	FA
EA8 	06 	7A
EAC 	E8 	CO
EAD 	1F 	1F
EAE 	OD 	OC
EAF 	AF 	E8

Once you have made these
modifications, simply feed in a starting
pattern (using the N command), and sit
back and watch. Theprogram will con-
tinue until a stable pattern is achieved,
at which time it will stop. Note,
however, that it cannot detect recurr-
ing cyclical patterns, so watch out for
these. To stop them, you will have to
use the reset facility of the 2650.

ELECTRONICS Australia, December, 1978 	95

These two photographs show the printer module and inter-
face board assembled in a small aluminium case, along with
the power supply components. Note the paper roll holder
mounted on the lid of the case.

How to use the Matsushita modules:

Add a low cost

printer to your 2650
Here are the details of how to interface the Matsushita model EUY-
10E023LE printer and Its companion driver board, model EUY-
PUD024C to your microprocessor. Details of a suitable power
supply are also provided, as well as driver routines to suit the 2650
microprocessor.

by DAVID EDWARDS

Obtaining hard copy has always been
one of the major bugbears of the home
computerist. Secondhand ASCII
teleprinters are available, but can cost
several times the price of the rest of the
system put together. (If you can afford a
new teleprinter, you needn't read any
further!)

Baudot teleprinters are available at
quite reasonable cost, but require a
code conversion from ASCII to Baudot,
which as well as being messy, tends to
raise the overall package price quite
markedly. So when Philips (the local

agents for Matsushita printers) supplied
us with details of the new printer, we at
once decided that this would be a boon
for the home hobbyist.

Approximate price of the printer unit
and the interface board is $200.00 plus
tax if applicable. Power supply re-
quirements are quite modest, and
could possibly be met from existing
supplies, or from junk box (or redun-
dant, if you want to be nice!) com-
ponents.

The units are supplied with com-
prehensive instruction manuals, giving

full details on both mechanical and
electrical interfaces, as well as
flowcharts and programs suitable for
use with the Motorola 6800 "D2"
evaluation kit.

Overall size of the printing unit is 110
x 90.5 x 39.5mm. Printing is on elec-
trosensitive paper 60mm wide, utilising
a travelling head containing seven elec-
trodes. The head scans from left to
right, and can print 32 characters on
each line. Approximately two lines can
be printed each second.

Characters are formed from a 7 x 5

74 	ELECTRONICS Australia, January, 1979

SV

AO 	 07

Al 	 05

REED
SWITCH

CIIM7

ASO

"CONNECTOR
10F ELECTRO-

SENSITIVE
PRINTER

14 HEAD 7

2.7k

-24V

V

10

SV

10k

-24V

45V

2.7k A564 A
104

45V01 4-5V

LOGIC 6=—Hy. LOGIC
ONO I 	 ONO

-24V On

ZENER

POWER"
GND L

10

PRINT
COMMAND

0

D

a
MOTOR

FP

104

.10
D20-.

11
D3 C64.

02
04 0.4.

.13
Os CHm

SV

A2 	 05
CHARACTER
GENERATOR

43 632574“ 04
MK2302P

03

AS 	 02

01

NUMBER OF
CHARACTERS

DIP SWITCH

04

COUNTER

06

PRINT
FF a

DIP

PRINT
PULSE

SYNC.

32

DELAY 71)PHOC

RE TOR

PEAS DATA
SENO TO PRINTER

DELAY We

CET CHAR PROM
BUFFER

C BUFFER POINTE

Adding a printer to your 2650 system

systems, this would normally be the D
port. The connections we used, based
on the I/O port diagram published in
the November 1978 article on expan-
ding the 2650 Minicomputer, are
shown in Fig. 3.

Connections to other processor
systems will be broadly similar in con-
cept. The BUSY signal, if required, is
available at pin 4 of the edge connec-
tor.

Needless to say, one needs suitable
driver routines in the computer so that
it can communicate properly with the
printer via the interface. For the benefit
of those with 2650 systems I have
written some utility routines to do this.
One is a basic printer driver subroutine,
while the other two are a hex memory
dump routine and a message printing
routine. Both of these call the basic
subroutine for the actual printing.

45F 51
460 51
461 51
462 51
463 45 OF ANDIshl

465 OD 62 59. LULAphl
468 Cl 34 3E SIFP.F3
46B 17
46C 77 02
46E 38 02 08 BS1P.UN
471 38- 00 P4 bSTA.UN
474 38 89 8.5111.1N 1468
476 CD 04 OF 518P.111
479 CE 04 10 5188.82
47C 07 00 LODI:D.13
47E 09 94 LULhohl 1514
480 38 5D BSIlioUN I458
482 09 90 1.0141.h1 1514
484 38 50 HS1hJUN 1463
486 OD 04 DE LOVAP111
489 38 54 8551NPUN 1458
488 09 FA LUDHpRI 1487
48D 38 54 bblhAPUN 1463
488 04 20 LOD1p80
491 38 55 851PPUN 1468
493 Cl) 84 OL LODAohl
496 38 47 P.S1M.UN 145F
498 OD 84 OD LUDA.811
498 38 46 BSIRJUN 1463
49D 08 kg LO1)Rah0 14147
49F EA D9 COMkpRO 1478
4AI 98 OE bUFBJE6 14131
483 08 F4 LOLBoh0 1499
405 Eg DO CUghph0 1477
4P7 98 081 BeFhpEC 1481

489 20 80117.810
4PA 38 96 HSIAJUN 1542
4AG 3F 14 00 BS7P.UN
4AF 9B 22 BCFRJUN 141)3
481 09 E6 LOLFIDRI 1499
4B3 OP 02 0008P82 1487
4135 DA 02 BIR8P82 1469
487 D9 00 81101.H1 1489
489 3F 00 P4 HS1A.UN
4HC 46 07 ANDI.118
4BE 98 4F BCFRJED 148F
4C0 20 8.0117.80
4C1 3F 14 68 ES1P.UN
4C4 38 8.7 BSIRPUN 14AD
4C6 IF 14 7C BC1P, UN

Fa II

Fig. 4 shows a flow chart of the main
subroutine, PRINT. This treats a portion
of memory as a 32 byte buffer, and
transfers the ASCII characters stored in
it to the printer with the appropriate
timing. It will detect a null character in
the buffer, and then fill the remainder
of the line with spaces. This gives the
effect of a carriage return.

To print a number of lines, it is
necessary to call the routine the ap-
propriate number of times, changing
the buffer contents between calls. To
achieve the effect of a blank line, place
a null character (X'00) in the first buffer
location.

Fig. 5 is a disassembler listing of the
PRINT subroutine in 2650 machine
code. It occupies locations X'1400 to
X'143E inclusive, and requires a 32 byte
area of RAM to be set aside as the
buffer. 	At 	present 	this 	occupies

1488 77 10 07 00 F3 04 28 FS
1408 7E 07 40 F3 07 00 06 00
1410 02 98 18 OF 34 38 18 19
1418 64 40 FO 04 67 C0 F8 7D
1420 87 20 	18 	11 70 F4 80 98
1428 70 16.65 DS 00 04 20 18
1430 67 06 FF 10 78 20 85 20
1438 F8 7E F9 76 75 10 17 31
1448 34 34 30 20 33 34 20 33
1448 34 20 33 33 20 33 33 20
1458 32 38 20 33 33 20 33 33
1458 20 33 33 00 47 4F 4F 51
1460 51 51 51 45 OF OD 62 59
1468 CF 34 3E 17 77 02 3F 02
1470 DB 3F 88 R4 38 F9 CD 84
1478 OF CE 04 10 07 00 09 94
148830 5D 89 90 36 5D OD 04
1488 OE 30 54 09 FR 36 54 84
1490 20 38 55 OD 84 OD 36 47
1498 OD 84 OD 38 46'88 ES 68
1488 D9 98 OE 88 F4 68 DO 98
1488 88 20 38 96 3F 14 80 98
1408 22 09 66 OR D2 DR 82 D9
1488 00 3F 00 84 46 07 98 4F
14C0 20 3F 14 68 7,6 E7 IF 14
1468 7C 77 02 3F 08 R4 07 00
1408 OC 84 OD CS 34 36 18 14
1408 09 F7 OE 84 OE DR 02 D9
14E0 00 38 E9 El 28 98 69 3F
14E8 14 00 i6 62 36 FR 17

FIG. 8

To the left is a listing of the hex listing
routine. This was used to produce the
listing above of all the programs
presented in this article, on the new
printer. It is reproduced actual size.

14C9 77 02
14CB 3F 00 P4 14:1 	, UN
14CE 07 00 LODI 	h3
14D0 OL HA OD LU DP , HO
1403 CF 34 31 SI NA h3
1406 18 14 PC IF 148.0
14DP 09 F7 LUI+1, H 1 1401
1418 OF 04 OF 00011, 82

1400 UP 02)3188.82 14E1
14DF 139 00 El hFlp h 1 14E1
14E1 38 E9 ElS11, p UN 14CC
14E3 E7 20 CUM! 	h3
14E5 98 69 814 N. 14130
14k7 3F 14 00 BHP, UN
148.11 lb 62 8C IR, UN 14LE
14EC 38 FP bS 1 kg LEN 14E8
14E8 17 MO. 7

Shown above is a dissassembler listing
of the message printing routine, while
below is a flow chart of the print
routine, which is used to control the
printer.

(PRINT :)

TURN ON
PRINTER

CLEAR !Uri ER
POINTER

CLEAR NULL
POINTER

PIG I FLOW CHART FOR PRINT ROUTINE

ELECTRONICS Australia. January. 1979 	77

M34 LM320

CND OUT IN UT

IN 	 GND FIG. 2 PRINTER POWER SUPPLY

E

DSEM6072
Aa ASS 72

2xEM401

PIN No.

+5V A.1 	

+59

LOGIC GROUND 0,2

POWER GROUND 5,15 	 OV

24V

Adding a printer to your 2650 system

locations X'143F to X'145E inclusive.
The PRINT subroutine is relocatable.

To change the starting address of the
buffer, which must be in the same page
as the subroutine, put the address of
the byte before the desired starting ad-
dress into locations X'1414 and X'1415.
Note that bits 6 and 7 of location X'1414
must remain as zeroes, while bit 5 must
remain a 1.

Fig. 6 is a disassembler listing of the
listing program, which will print out a
listing of a specified area of memory. As
the print format is only 32 characters
wide, it prints only the line starting ad-
dress and eight bytes per line. To call
the program, type G 146C XXXX YYYY
cr, where XXXX and YYYY are the start
and end respectively of the required
memory block.

The program occupies locations
X'145E to X'14C8 inclusive. It uses Pip-
bug routines GNUM, STRT, ANSI and
PIPBUG. It contains absolute addresses,
but can be moved fairly easily.

Locations X'1469 and X'146A must
point to the byte before the start of the
PRINT subroutine's buffer memory.

Bytes X'14AD and X'14AE must point
to the starting address of the PRINT
subroutine. Bytes X'14C2 and X'14C3
must point to the new location of

1400 77 10
1402 07 00 LODI JO
1404 F3
1405 04 2P LODI. HO
1407 F8 7E 81311Fis HO 1407
1409 07 40 LODI •1-13
1408 F3
140C 07 00 LOV1 •83
140E 06 00 LODI sH2
1410 02 LUDZ.82
1411 98 18 BCH(); EC 1428

1413 OF 34 3E LODA.Ft3
1416 18 19 FIC1R• ED 1431

1418 64 40 1081.130
141A FO
1418 04 C7 LODI •Ft0
141D CO SiFIZa HO
141E FE1 70 FIEHR•h0 141D

1420 E7 20 COMI .F13

1422 18 11 be 	Flo El/ 1435
1424 70
1425 F4 80
1427 98 78 ISCF h• EC 1424

1429 lb 65 MC IX, UN 1410

1428 DB 00 HIShoh3 1421/

1421) 04 20 LODI. HO

142F lb 67 MC111 • ON 1418

1431 06 FF LUDI • 82

1433 IH 78 bClh.UN 142L

1435 20 EOFIZ.D0

1436 05 20 LODI 	Fil

1438 F8 7E bl:thhft)10 1435

143P F9 7C bath 61 1438

143C 75 10
143F 17 FIG. 5

The hex listing reproduced above is for
the routine used to control the printer.
It is written as a subroutine.

The connection diagram for the 2650
Mini Computer is shown below. We
used the "ID" output port.

S

Dl S

02 10

D3 11

D4 12

1:15 13

PRINT 5

DATA RED H

EDGE CONNECTOR ON
PRINTER INTERFACE

(NUMBERS AND LETTERS
REFER TO EDGE

CONNECTOR PINS)

Current location X'1468, and bytes
X'14C7 and X'14C8 must point to the
new location of current location
X'147C.

Fig. 7 is a disassembler listing of a
message printing subroutine. This ex-
pects R1 and R2 to contain the starting
address of an ASCII message. This
message is printed when the sub-
routine is called. The end of the
message is signified by a null character.
Messages can be stored anywhere in
available memory, provided they are in
the same page as the message program.

The message subroutine is
relocatable, and uses the Pipbug
routine STRT. Locations X'14D4 and
X'14D5 must point to the byte before
the first byte of the PRINT buffer, and
locations X'14E8 and X'14E9 must point
to the PRINT routine itself.

Fig. 8 is a hex listing of all three
routines, produced by the hex listing

Shown above is the circuit diagram of
the suggested power supply. It uses a
readily available transformer.

11 	• 	0
O

0

	•
D • 0

0 OUTPUT PORT
MALE 15 WAY CANNON CONNECTOR

(CABLE SIDE SHOWN)

program on the new printer itself. It is
reproduced actual size, so you can see
directly the size and quality of the prin-
ting.

Further details on the model EUY-
10E023LE printer and companion inter-
face board (model EUY-PUD024C) can
be obtained from the local agents,
ELCOMA, of 67 Mars Road, Lane Cove,
NSW 2066.

DO

0

0

CONTROL 1
(CONNECTS TO
DATA LINE OF

C IN PORT)

FIG. 3 CONNECTION DIAGRAM

78 	ELECTRONICS Australia, January, 1979

Notes & Errata
NEW GAME PROGRAMS FOR YOUR 2650 (December 1978,
File No. 8/M/32): The hexadeOmal listings of the programs
given in this article did not reproduce with full clarity. To
assist readers who found difficulty in feeding the programs
into their system, we reproduce a new and (hopefully)
clearer set of listings below.

LIFE: HEX LI STING

(nee 76 40 75 FF 04 F9 C8 27 12 1A 7D 3B 25 12 IA 78
ecie 3B 1E 3B 1 C 12 9A 04 05 59 1B 07 3B 13 12 IA 04
0 C20 05 F9 C9 00 lB 32 04 OD 35 OF 04 0A 313 OB 17 59
0 C30 3B 00 OS 7B 14 14 FB 7D 17 77 10 05 08 3B 71 3B
0 C40 6F 74 40 3B 6B 50 IA 04 74 40 lB 03 76 40 14 F9
0 C50 72 76 40 3B 59 75 10 17 15 1C 77 18 05 00 06 08
0 C60 12 IA 7D 14 3B 4C 3B 48 12 14 DO 51 FA 78 3B 40
0 C70 45 7F 01 75 18 17 05 01 3F OE B6 04 3A 3F OC 39
0 C80 3F OC 5A E4 50 1C OC ES E4 47 1 C OD 8A E4 4E 98
0 C90 6F 3F OC 39 05 46 20 CD 4E EE 59 78 05 FF 3F OC
0 CAO 26 06 08 07 00 D3 3F OC 5A E4 20 18 22 E4 4F 18
0 CEO 22 E4 OA 18 10 E4 OD 98 6D 3F 0C 39 85 01 45 FC
0 CCO A5 01 lB 5D 53 FA 7D 03 CD 2E F4 65 03 18 OF 04
0 CDO 2E 1B 02 67 01 3F 0C 39 FA 413 03 CD 2E F4 F5 03
0 CEO BC 0C Al E5 3F BC OC 9E 05 FF 3F 0C 26 06 00 CA
0 CFO 15 07 08 OD, 2E F4 DA 00 9A 02 CA OA DO FB 77 F5
0.0 03 98 6E AS 04 06 IC 98 06 85 04 1B 1D FB 09 07
OD1O 08 OD 2E F4 77 10 C2 52 77 10 D2 IA 04 04 20 18
0 D20 02 04 4F 3F 0C 39 FA 65 65 03 E5 3F 9C OC EA 04
0 D30 0D 3B Fl OD OE EF E5 09 99 04 A5 0A 1B 78 01 24
0 D40 30 3F OC 39 OD OE EE 06 00 E5 09 99 0E 86 01 E6
0D50 09 99 '02 06 00 A5 OA E5 09 19 72 02 24 30 OF 0C
01)60 39 01 24 30 3F OC 39 IF OC 7B 38 013 07 09 C2 82
0 D7 0 FB 7D C2 313 02 82 17 3F 0C 5A E4 30 IA 79 E4 39
01,80 19 75 C3 3F 0C 39 03 44 OF 17 3F 0C 39 3B 5B CC
0 D90 OE ED 05 OC E4 00 I C, OE BO 05 15 E4 OF 1A F8 05
0 DA0 1B E4 37 IA F2 05 21 E4 4C IA EC 05 27 	1 B E8 05
0 DBO 04 06 04 OD 4E F4 CE 4F 34 0E 6F 30 CD 6E F0 5A
0 DC0 02 06 04 59 6E 05 FF 07 03 85 03 3B 33 08 2F 50
0 DIM 50 C8 2A 3B 14 A5 03 3B 27 08 22 C8 22 3B OA OD
0 DEO 2E F4 77 10 C1 07 08 1B 3B OA 13 08 10 CA 0E DO
0 DF0 DO C8 013 4.4 03 CF 6E 20 FB 02 07 03 17 1 21 48
0E00 20 C8 7A C8 79 06 03 OD 2E F0 44 55 88 70 C8 6E
0E10 OD 6E FO 50 44 55 88 65 CS 63 85 03 FA 69 AS OC
0E20 17 01 00 01 FB OE 75 10 F5 03 18 04 3B 52 113 04
0E30 08 4D CS 49 75 10 3F OD E9 77 10 08 64 88 63 88
0 E40 62 E4 04 18 10 E4 03 18 05 01 IA 05 1B 07 01 IA
0E50 04 66 01 25 80 D1 5B 4C 75 10 01 44 03 C2 OE 6E
0E60 FO CD 6E FO 77 10 01 75 10 CE 6E FO 03 9C OD
0 E70 DF E5 3F 9C OD C9 05 04 OD 4E FO CD 6F 30 59 78
0 E8 0 77 10 02 1C OE AS 06 00 75 10 05 01 8D OE EE E5
0 E9 0 64 98 OA 05 01 8D OE EF CD OE EF 05 00 CD OE EE
0 EA0 OC 0E ED A4 01 CC OE ED E4 00 1C OC ES 1F OD AF
0 EBO 3F OE B6 1 .F OD AF OD 2E BF 00 14 3F 0C 39 113
0 ECO 75 OD OA 22 4C 49 46 45 22 OD 0A 00 20 3D 20 32
0 EDO 35 36 47 2E 00 20 3C 30 35 53 00 20 3C 31 35 53
0 EEO 00 20 3C 32 30 53 00 20 3C 32 35 53 00

ROTATE: HEX LI STING

0440 06 FF 3F 05 64 05' 07 F5 1B 00 12 9A 06 D9 79
0450 DB 79 18 71 06 31 66 SO F6 03 18 OA 26 FF F6 03
0 460 18 02 66 80 26 FF 52 CA 6C 46 OF 3F 04 C4 18 64
0470 D9 62 DB 60 07 OF 10 04 135 3F 05 44 06 OF 3F 05
0 480 64 3F 02 86 E4 58 1C 05 03 E4 0D 18 OD 3F 04 E7
0 490 58 6F 3B 30 98 IA 06 19 18 64 03 C2 38 26 18 76
0 4A0 3B 22 3B 20 07 OF 06 21 3F 05 64 A5 01 95 lB 49
04B0 02 C3 85 67 95 06 40 OE 25 76 E2 18 7A 60 1C 05
04C0 56 iF 04 79 F6 03 14 F6 OC 14 OE 65 BB C8 13 OE
0 4D0 65 BC CE .65 BB 0E 65 138 CE 65 BC OE 65 137 CE 65
04E0 138 04 4E CE 65 B7 17 ELL 5A IC 05 58 41 1A 12
04F0 E4 50 19 OE 06 10 EE 45 B7 18 04 5A 79 9B 22 3F
0500 02 134 17 06 28 3F 05 64 3F 02 86 3B 5A 58 79 02
0510 C3 04 2C 3F 02 84 3F 02 86 3B 4C 58 79. 02 A3 9A
0 520 02 03 A2 E4 `01 18 08 E4 04 18 04 06 19 1B 56 OE
0530 65 B7 C8 07 OF 65 87 CE 65 137 04 44 CF 65 137 07
0 540 OF 1F 04 B2 06 01 OE 25 B3 14 3F 02 B4 F6 03 98
0 550 75 3F 00 8A 1B 70 3B 6C 06 34 3B 08 3F 02 69 3B
0 560 03 IF 04 40 0E 25 6D 14 3F 02 B4 1B 77 OA 50 52
0 570 45 53 53 20 41 4E 59 20 4B 45 59 00 00 OA 52 4F
0580 54 41 54 45 3A 20 00 0A 57 48 41 54 3F 20 00 43
0 590 41 4E 43 45 4C 00 OA 45 58 43 48 41 4E 47 45 3A
0 5A0 20 00 OA 59 4F 55 20 54 4F 4F 4B 20 00 20 4D 4F
0500 56 45 53 OA 00 OD OA 4D 4E 48 41 4B 50 49 44 43
05C0 45 4A 4F 46 4C 42 47 00

MUSIC: HEX LI STING

04A0 04 00 OC A5 56 1E 05 58 C2 44 70 24 70 CI 51 51
04B0 51 81 51 	77 10 83 C3 86 00 75 11 46 OF D2 OE 65
0 4C0 BC C3 OE 25 BC 06 FF E5 00 18 05 DO D3 D2 F9 73
0 4D0 75 01 84 80 87 00 86 00 CB 22 CA 1F 77 10 87 44
0 4E0 86 01 9A 06 87 OE 86 00 IA 7A OD 85 56 77 01 AB
0 4F0 09 AA 06 76 40 04 08 lB 31 28 00 F9 5A AB 7B AA
0 500 78 93 07 8C 8B 76 8A 73 9A 06 87 OE 86 00 IA 7A
0 510 53 13 53 135 01 98 03 1B 01 CO 47 03 9F 05 IF CO
0 520 CO CO 93 	12 24 40 92 1 .3 77 11 AB 50 AA 4D 9A 05
0 530 93 07 80 	1B 4F F9 46 44 01 4C 04 FC 6.4 18 93 8F
0 540 04 FC 8E 04 FB 75 11 OB OE 0A OB 87 02 86 00 CB
0 550 06 CA 03 	IF 04 AO 06 B6 77 10 E4 FF IC 00 22 09
0 560 F5 87 SA 86 00 9A 06 87 OE 86 00 IA 7A 74 40 75
0 570 01 86 02 77 01 AF 04 FA AE 04 F9 87 1E 86 00 87
0 580 OE 86 00 	1A 7A F9 6E A6 02 1F 05 45 75 FF 3F 02
0 590 DB OC 04 2A 98 06 0A 23 09 20 1B 04 CA ID C9 IA
0 SAO CE 05 57 CD 05 56 3F 02 DB 77 08 0C 04 2A IC 04
0 550 A0 CE 04 FA CD 04 F9 IF 04 Al 05 D4 02 FC 11 2F
0 5C0 1E 97 2B 3E 37 2F 42 74 4D 17 57 22 60 9C 69 SE
05D0 72 00 79 F8

YANKEE DOODLE: HEX LI STING

05D4 80 80 08 43 08 80 08 43 08 80 08 45
05E0 08 80 08 47 08 80 08 43 08 80 08 47 08 80 08 45
0 5F0 08 80 08 3A 08 80 08 43 08 80 08 43 08 80 08 45
0600 08 80 08 47 08 80 14 43 08 80 08 42 08 SO 08 3A
0610 08 80 08 43 08 80 08 43 08 80 08 45 08 80 08 47
0 620 08 80 08 48 08 80 08 47 08 80 08 45 08 80 08 43
0630 08 80 OS 42 08 80 08 3A 08 80 08 40 08 80 08 42
0 640 08 80 10 43 OC 80 10 43 10 80 08 40 10 80 2,8 42
0 650 02 80 08 40 08 80 08 3A 08 80 08 40 08 80 08 42
0 660 08 80 10 43 10 80 08 3A 10 80 08 40 02 80 08 3A
0 670 08 80 08\ 38 08 80 10 37 10 80 10 3A 10 80 08 40
0 680 10 80 08 42 02 80 08 40 08 80 08 3A 08 80 08 40
0690 08 80 08 42 08 80 08 43 08 SO 08 40 08 80 08 3A
0 6A0 08 80 08 43 08 80 08 42 08 80 08 45 08 80 10 43
0. 680 OC 80 10 43 80 80 02 FF

BACH: HEX LISTING

06138 80 80 06 43 06 45 04 47
06C0 04 4A 04 48 04 48 04 50 04 4A 04. 4A 04 53 04 52
06D0 04 53 04 4A 04 47 04 43 04 45 04 47 04 40 04 4A
06E0 04 48 04 47 04 45 04 43 04 3A 04 43 04 42 15 43
06F0 OC 80 18 47 OC 48 IS 4A OC 4A IS 48 ec 47 IS 45
0,700 06 80. 06 80 IS 47 OC 48 IS 4A OC 47 06 45 03 47
0710 03 48 OC 47 IC 45 18 43 OC 80 02 80 06 43 06 45
0720 04 47 04 4A 04 48 04 48 04 50 04 4A 04 4A 04 53
0730 04 52 04 53 04 4A 04 47 04 43 04 45 04 47 04 40
0740 04 4A 04 48 04 47 04 45 04 43 04 3A 04 43 04 42
0750 04 43 04 47 04 4A 04 53 04 4A 04 47 04 43 04 47
0760 04 49 18 4A 06 80 02 80 03 80 06 43 06 45 04 47
0770 04 4A 04 48 04 43 04 50 04 liA 04 4A 04 53 04 52
0780 04 53 04 4A 04 47 04 43 04 45 04 47 04 40 04 4A
0790 04 48 04 47 04 45 04 43 04 3A 04 43 04 42 18 43
e 7A0 80 80 02 FF

116 	ELECTRONICS Australia, January, 1979

•••-4.? •""r" 	-.4r! 	•:"7.! •

Program a 2708 in under five minutes!

Simple EPROM burner
suits SC/MP and 2650
Using only four low cost ICs, this single board design will allow any
static microprocessor, such as the SC/MP or 2650, to program
2704 and 2708 type EPROMS. Programming time for 1K bytes is
just under five minutes, and no special interface circuits are
required.

The basic circuit configuration and
idea used in this project came originally
horn one of our readers, Mr M-J.

Ogden of Hope valley , South Australia.
As soon as we saw it, we decided that it
was too good an idea to publish purely
in basic circuit form. So with Mr
Ogden's appros al we have expanded
the onginal concept into a full con-
struction project.

Like all good ideas, Mr Ogden's is
delightfully simple. PROM program-
ming interfaces normally have to
proside address and data latches, as this

information must be held static during
the relatively long periods taken to
program PROM locations. But some
microprocessors, like the 2650 and
SUMP, are static devices, and are
capable of being forced into a "hold"
or "wait" state without loss of data. This
is to allow them to he used with slow
memory or peripheral devices. Why
not take advantage of this facility, and
use the processor itself as the address
and data latches for the PROM
programmer?

With static processors like the 2650

by DAVID EDWARDS

and the SC /MP the idea turns out to be
very easy and straightforward. All that is
tie(essars is to arrange simple logic so
that to program each PROM location
the processor is made to begin a nor-
mal instruction cycle storing the re-
quired data to the appropriate address,
then "held" or frozen with the data
and address information present on the
bus lines until the programming cir-
uitry has done its job.
Before disc ussing the operation of

the circuit in detail, an explanation of
the operation and programming re-
quirements of an EPROM is in order.

The popular 2708 EPROM uses
floating-gate as alanche mode MOS
transistors as the storage cells. Stored
charges on the floating gates are used
to control the conduction of the MOS
transistors, to determine whether they
effectively store a "I" or a "0".

The floating gate's charge is produc-
ed by inducing a non-damaging
asalanc he breakdown in the drain-
channel junction of the cell. High
energy electrons from the avalanche
breakdown are then injected into the
floating gate, charging it negatively.
Since the floating gate is surrounded by
an extremely effective insulator, this
charge will remain practically in-
definitely, and hence the stored pattern
will also remain.

To erase a programmed EPROM, the
chip is irradiated with ultra-violet light.
The resulting photons impart enough
energy to the trapped electrons to
allow them to escape from the floating

In this photograph, you an see how
the new board /IN into the 2650
Minicomputer case.

84 	ELECTRONICS Australia. February. 1979

0
*MONO 4

0 Mlle%
B 10

2

2

2

-5V 	-15V 	41 V

121 	124 19

	

AO 0 	

	

Al 0 	

	

A2 0 	

	

A30 	

	

A40 	

	

A50 	

	

A0 0 	

	

A70 	

	

AS 	

VO8

9
10

4

	

000 	

	

010 	

	

020 	

	

030 	

	

040 	

	

050 	

	

060 	

	

070 	

CS/WE

PROGRA

741530

FIG. 1

14

16 	9 	14 Cm= =
8 	1 	7

VIEWED FROM
ABOVE

E
	

C

VIEWED FROM
BELOW

2708 PROM PROGRAMMER

MONO 1 	
(HOLD)

L
0.1meet

MONO 3
(SETUP DELAY)

0 Sinew
MONO 4

(FROG PULSE) 	L
CPU "FROZEN"
FOR THIS TIME

FIG. 4

33011

A K 	.001
0 	1-11

16 	7
9 741.5123/2

AMONO 3
0 Inisec

.___111 9

C

330k
.0

VI 7
741_4123/2

+12V

PROGRAM

READ

HOLD

O

20

I9 	

q
1

3k
100n 	 BC54

4.7

47n

4 r5

21P1

9C557 10k

BC54

10kb 105

• 120 011----0-

A130
 111).10 0 '

A140-1>16

A150 9(>08 0 0.1110

	

OPREOO 	

	

WRPO 	

74LS04

MOO IN 2

A110 130.012
0

0 	

OF

2

4

2/CC/

gate, leaving it uncharged.
An erased EPROM has all memory

cells effectively containing l's, so
programming consists of inducing
avalanche mode breakdowns in the ap-
propriate cells to produce the required
zeros. In principle one programming
pulse is required for each memory
location. The appropriate address and
data information must be applied to the
address and data pins of the EPROM.

In practice, due to power dissipation
limits, it is necessary to apply relatively
short programming pulses, and to cycle
repetitively through all memory
locations until a sufficient number of
programming pulses have been applied
to each location.

Turning now to Fig. 1, we can see
how the basic idea can be used to im-
plement a simple EPROM programmer.
The microcomputer's address and data
lines are connected directly to the
EPROM. In the read mode, a chip select
signal is derived from the high order
address lines by a decoder im-
plemented with a hex inverter and an
eight input NAND gate.

This decoder allows the EPROM to
be patched into any available area of
memory. To use the top 1K section of
memory, it is not necessary to use the

inverter; the address lines can simply
he connected directly to the NAND
gate.

In the progr=nti mode, the chip select
input is connected to the +12V line.
The output of the address decoder is
now used to enable a monostable
(mono 1) with a period of 1ms. This
monostable is triggered from the out-
put of a second monostable (mono 2),
which itself is triggered from the write
select signal.

Thus the first monostable is only
triggered when a write instruction oc-
curs to a valid EPROM address. The
output of this monstable is used to
drive the hold line of the processor,
halting the write operation in
midstream, and leaving the appropriate
address and data information on the
processor buslines. Fig. 4 shows the
timing relationships schematically.

At the same time, a third and delay-
ing monostable (mono 3) is triggered,
with a pulse width of 0.1ms. The trailing
edge of this pulse is used to trigger a
fourth monostable (mono 4) which has
a pulse width of 0.5ms. The outputs of
this monostable are used to drive the
programming pulse generation cir-
cuitry.

The programming pulse has an

Above is the complete circuit diagram
of the programmer, while below is a
diagram illustrating the timing
relationships between the monostable
/710 ivibrators.

TRIGGERING EDGE
GENERATED

BY WRITE SIGNAL

0.5msec.

MONO 2

amplitude of 26V, and lasts for 0.5ms.
Approximately 0.4ms after the end of
the programming pulse, the output
from the first monostable returns to the
quiescent state, and the hold is remov-
ed from the processor.

Thus to program the EPROM, all that

ELECTRONICS Australia, February, 1979 	85

SE UP
ADOR SEES

PROGRAM
LOC TION

MGR MENT
AODR SSES

DECREMENT
LOOP COUNTER

NO

NCR MENT
ADDRESSES

aan 	 VA
26V

+12V

(N) = PCB CONNECTION PIN

• IN 2150 MINICOMPUTER

1000
25VW

2708 EPROM programmer

0440 OS OF 08 l3 03 00 08 10 08 013 08 OD 08 08 08 0A
0 45 0 17 3C 00 3D BC 7C 00 3D BC 7D BC 08 7C 09 7111 D9
0 460 02 D8 00 08 74 C9 73 08 6E 09 6D D9 02 DB 00 CS
0 47 0 66 C9 65 ES 5E 16 E9 50 17 3F 00 BA C9 83 CA 8A
0 480 00 84 25 14 3F 02 134 09 FS OE 04 26 DA 6E D9 6C
0 490 18 6A 76 40 77 02 75 18 3F 02 DB CD 04 51 CE 04
04140 52 33 F6 DA 02 D9 00 CD 04 53 CE 04 54 32 EA CD
0 4130 04 55 CE 04 56 07 00 05 05 06 2A 32 96 3F 02 86
0 400 05 05 06 74 38 95 FF 05 1B 05 05 06 50 3B SC 06
0 4D0 3A 3F 04 BC 39 ES 05 05 06 SF 3F 04 79 3F 04 40
04E0 07 06 3F 00 BA 2 0 06 32 00 84 59 EC 84 57 18 19
04F0 09 F7 3F 02 69 0D 04 5A 3B F9 04 20 3F 02 24 FB
0500 04 07 06 32 DE 04 80 C8 II 3F 04 52 1 A 5A 013 OA
0510 IA 06 05 05 06 70 32 C3 92 22 8 0 32 C 1 00 84 57
0 520 CC 84 59 32 ES 1 A 76 IF 04 C6 53 57 49 54 43 48
0 530 20 54 4F 2 0 50 52 4F 47 52 41 4D OD OA 54 46 45
0 540 46 20 50 52 45 53 53 20 41 46 59 20 4B 45 59 00
0 550 53 57 49 54 43 48 20 54 4F 20 52 45 41 44 00 45
0 560 52 52 4F 52 20 40 4F 43 41 54 49 4F 46 53 3A 00
057 0 4E 49 4C 00 50 52 4F 47 52 41 4D 4D 49 46 47 OD
0 53 0 OA 00 FIG. 5

This hex listing is a 2650 version of the
program required to control the
EPROM programming operation.

is required is to switch to the program
mode, and then to program the
processor to write the appropriate data
to each location in turn, repeating this
writing sequence until the required
number of programming pulses have
been applied to each location.

All of the timing requirements are
provided by the four monostables, all
that the program has to do is provide a
repeated "block move" function. A
block diagram of a simplified routine to
do this is shown in Fig. 2.

Power supply requirements for the
2708 are quite complicated. —5V, +5V
and +12V supplies are required for
normal operation, while +26V is re-
quired during programming. Fig. 3
shows how these voltages can be deriv-
ed from a standard transformer, using
zener diode regulators. The +5V supp-
ly can be obtained from the existing cir-
cuitry.

Shown below is the power supply
circuit. The components marked with
an asterisk (') are already present in the
2650 Minicomputer.

We have designed a suitable printed
circuit board for mounting the EPROM,
address decoder, monostables and
power supply components. It is coded
79upl, and measures 218 x 81mm.

Provision has been made so that this
board can be used with any suitable
processor. Positive and negative going
hold signals are available, and the write
monostable can be triggered from
either positive or negative going
signals. Any starting address for the
EPROM can be decoded, up to H7C00.

Construction of the board should be
well within the capabilities of most
enthusiasts. We recommend that a
good quality socket, preferably a zero-
insertion force type, be used for the
2708. The remaining ICs can be
soldered directly in place.

The programming switch can be
mounted directly on the board, using
tinned copper wire, or it can be ex-

PROM PROG

INITIALISE
LOOP COUNTER

SET UP
ADDRESSES

TOP

FIG. 2

This is the flowchart for the controlling
program. Use it to write the routines
required by your processor.

tended with a cable if desired. It should
be placed in a position where acciden-
tal operation is unlikely, to ensure that
no accidental programming occurs.

As the board has to be wired directly
to the address and data busses, we
recommend that it be mounted in the
main computer case. Make sure,
however, that access can be gained
relatively easily to the EPROM socket
and the read/program switch.

PRINT
ADDRESS

86 	ELECTRONICS Australia, February, 1979

2708 EPROM programmer

In order to illustrate the use of the Prom Programmer
board, we have used it with the 2650 Mini Computer. In
this case, the M/I0-bar signal is connected to the address
decoder instead of AD15. The OPREQ and WRP signals are
also connected to the decoder, using the spare inputs to the
NAND gate.

The A input of monostable 2 is grounded, and the R-
bar/W signal applied to the B input. The Q output of
monostable 1 is used to drive the OPACK-bar line. We
elected to make the EPROM occupy locations from H'3C00
to H'3F00, the last 1k of page 1. To do this, it is necessary,to
apply AD10, AD11, AD12, AD13, and AD14-bar to the NAND
gate.

We chose this area so that it would be relatively easy to
provide a small amount of RAM in the same page. This is
required because of the limitations of the 2650 absolute ad-
dressed memory reference instructions. We used the spare
RAM sockets on the main CPU board, wired up as the first
4K of page 0.

The 2650 program we developed to control the Prom
Programmer is given as a hex listing in Fig. 5. It occupies
locations H'0440 to H'0581 inclusive, and is not easily
relocatable. To call the program, which uses Pipbug routines
CRLF, COUT, GNUM, CHIN and BOUT, type G492 XXXX
YYYY ZZZZ cr, where XXXX and YYYY are four digit hex
numbers represneing the start and end addresses of the area
of RAM to be copies into the EPROM, and ZZZZ is a similar
number representing the address of the first EPROM loca-
tion.

The program will respond with the message "SWITCH TO
PROGRAM THEN PRESS ANY KEY". The read/program
switch (it should normally be in the read mode) is now mov-
ed to the program position, and any keyboard key of the
terminal pressed.

The program will then respond with the message
"PROGRAMMING", and then appear to do nothing while it
actually programs the EPROM. A 1K "burn" will take nearly
five minutes, shorter burns proportionately less.

When the programming is complete, the program will
print out "SWITCH TO READ THEN PRESS ANY KEY". When
this command has been carried out, the program begins to
verify that the data has been stored correctly in the EPROM.
First it responds with "ERROR LOCATIONS:" and then gives
a list of any locations not correctly programmed. If there are
no errors, the message "NIL" will be displayed.

If you obtain a small number of errors, this indicates that
there was insufficient programming at these locations. To
remedy this, simply repeat the programming process for all
of the block you are attempting to program.

To use the programmer board with a SC/MP system, con-
nect the address and data lines to the appropriate points on
the board. Insert the two 10k pullup resistors on the OPREQ
and WRP lines, but leave these lines unconnected. The Q-
bar output of mono 1 is used to drive the SC/MP HOLD line,
while the SC/MP's NWDS signal is used to drive the A input
of mono 2. The B input of this monostable is pulled per-
manently high by the 10k pullup resistor provided.

That is all the hardware alterations required, apart from
providing the appropriate power supplies. Of course, you
will need to write an appropriate controlling program, to
output the required data to the EPROM. Use the flow chart
provided as a guide.

Do not attempt to program a block of memory smaller
than about 256 bytes, as otherwise the power dissipation
limits of the 2708 may be exceeded. If you have to program a
small block, reduce the number of program loops (specified
in location H'0486), by a proportionate amount, and then
program the PROM repeatedly until a correct burn-in is
achieved.

Once an EPROM has been programmed, it is
recommended that the transparent quartz window above

88 	ELECTRONICS Australia, February, 1979

You can either copy this actual sized reproduction of the
PCB artwork,or trace it directly. Alternatively, commercial
boards should be available in due course.

the chip be covered with an opaque layer, to prevent possi-
ble leakage currents generated by ambient light from caus-
ing malfunctions.

If you wish to erase a programmed 2708 EPROM, you will
need a source of ultra-violet light with a wavelength of 2537
Angstroms. A suitable source is the TUV 15W lamp (cat. no.
57415P/40), available from Philips. It fits in a standard 20W
fluorescent holder, and should be ordered from an elec-

NW011
(MOVE LUIR) Inv MOO., 1111111111TOIry 	 Lift UNCOMMC11O VON flit Use the overlay

diagram at the
right when you are
assembling the
PCB. Note that
address decoding
is achieved by the
address wire
connections, using
the hex inverter
as required.

The photograph
below is of the
completed
prototype. Note in
particular the way
in which the
address wiring has
been completed
for addresses
3C00-3FFF.

trical or lighting store.
With the window of the 2708 about

25mm from the tube, an exposure time
of approximately 30 minutes will be
required. This will erase all sections of
the device. Note that lamps of this type
must be used with caution, as eyes and
skin may be affected by long exposures.

In the next issue, we plan to publish
details of suitable 2650 utility routines
for programming into a 2708. These will
include a hex input routine, a hex
listing routine, a block move routine, a
search routine and a tape verify
routine, and possibly other useful sub-
routines.

ELECTRONICS Australia, February, 1979 	99

Can be stored in a 2708 EPROM:

2650 utility programs
Here are five utility programs for the 2650 microcomputer, suitable
for loading into a 2708 EPROM using the programmer recently
described. The routines allow you to perform hex listings, enter
programs rapidly in hex from the keyboard, search memory blocks
for an instruction, move program or data blocks in memory, and
verify program tapes. A number of useful subroutines are also
available for use by other programs.

The routines presented in this article 	My first idea was to have the EPROM
are modifications of those originally occupy the uppermost memory
presented on the Philips/Electronics locations, i.e. from X'7C00 to X'7FFF, so
Australia software record, described in as to leave all of the space below this
the April 1978 issue. The original for memory expansion. However, when
routines are quite useful, but have one I examined the programs in greater
disadvantage: they have to be loaded detail, I realised that it was necessary to
into memory every time that the com- have a small amount of RAM available
puter is switched on. 	 in the same page as the EPROM,

By having them stored permanently because of the limitations in 2650
in a ROM, however, you can avoid this memory reference instructions.
trouble, and make them available for 	The additional hardware required to
use at a moment's notice. So after corn- shift 1k of the existing RAM up into
pleting the EPROM Programmer, my page 3 proved to be too complicated,
thoughts immediately turned towards so I compromised, and decided to put
these routines, and whether they could the EPROM at locations X'3C00 to
be stored in a ROM. 	 X'3FFF inclusive — i.e., at the top of

0600 CD OF FA CE FE 17 76 40 77 02 75 18 3F 02 DB
0610 32 6E 32 FA 32 OF CD OF FC CE OF FD 32 FO CD OF
0620 FE CE OF FF 17 DA 02 D9 00 17 OD OF FA OE OF F2
0630 32 73 32 4C ED OF FC 16 EE OF FD 17 3F 00 SA OD
0640 OF FA 3F 02 69 OD OF•FB 32 F9 04 20 3F 02 24 17
0650 3F 3C 07 38 67 OD 8F FA 32 E9 32 6E 32 4C 9E 00
0660 22 OC OF FB 44 OF 98 6D 13 69 3B E5 32 CF OC SF
0670 FA EC OF FE 98 OD 07 01 OF EF FA EC OF FF 98 03
0680 3F 3C 3C 3F 3C 2A 9A D7 12 64 3B C5 3B F3 3F 02
0690 86 C3 3F 02 24 3.7 07 18 C6 E7 20 18 02 00 OF FF
06A0 CC OF FE CF OF FF 12 66 OC OF FE 3F 02 46 D3 D3
0650 D3 D3 CF OF FE OC OF FF 32 F2 OF OF FE CF SF FA
0600 3B C2 OC OF F2 44 OF 18 43 12 43 3F 00 SA 3F 3C
06D0 00 00 SF FA 14 3F 02 24 3F 3C 2A 12 71 76 40 3F
06E0 02 86 24 3P. 98 79 20 C3 97 3F 02 24 CD OF FA 3B
06F0 F9 CD OF FB 32 F4 59 OE 05 3D 06 31 32 95 92 22
0700 04 2C 04 28 04 29 C9 FA 32 20 08 F4 18 09 05 3D
0710 06 34 3F 3C CE 93 22 C3 CB EA 32 CE 02 E6 EB E2
0720 18 08 01 EF EF FA 98 66 DB 6E OS 04 98 60 IF 3C
0730 DF 4F 42 00 46 41 55 4C 54 59 00 3F 3C 07 ED OF
0740 FA 19 84 EE OF FB ID 3D 84 OC SF FA CC SF FE• 3F
0750 3C 2A 9E 00 22 32 07 3F 3C 25 32 09 12 62 OD OF
0760 FE OE OF FF 17 CD OF FE CE OF FF 17 OD OF FC OE
0770 OF FD 3B 07 CD OF FC CE OF FD 17 FA 00 E6 FF 98
0780 02 F9 00 17 32 66 77 09 32 54 AE OF F2 AD OF FA
0790 75 01 SE OF FD SD OF FC 3E 42 75 08 OC 8F FC CC
07A0 SF FE 3F 3D 5E 32 54 3F 3D 65 3B 40 OC SF FC CC
0720 SF FE ED OF FA 19 62 EE OF FP 19 66 98 22 FIG. 2

84 ELECTRONICS Australia, March, 1979

by DAVID EDWARDS

page 1. The modifications to achieve
RAM in this page then became quite
simple, involving only one extra gate.

My system at the moment has page 0
completely filled, with the 1K PIPBUG
ROM at the bottom of the page, and 7K
of RAM filling up the remainder. This
RAM is mounted on the prototype 8K
RAM board (see December 1978), with
pairs of 2114s occupying all locations
except those corresponding to the ad-
dresses occupied by PIPBUG.

Note that this involves a rearrange-
ment of the high-order address
decoding. The 74LS138 decoder on the
expansion board is used as the page
decoder, and controls the 74LS138s on
both the RAM board and the CPU
board. The 7415138 on the RAM board
becomes the page 0 decoder, while
that on the CPU board becomes the
page 1 decoder. Refer to Fig. 1 for a
diagram of the wiring.

The chip select signal for PIPBUG is
now obtained from the 7415138 on the
RAM board, while the four "spare"
RAM pairs on the CPU board are con-
trolled by the 74LS138 on that board.
Strictly speaking, only three of these
pairs should be used, to avoid
overloading the address bus, but in
practice we have found that all four
pairs can be used without problems.

It is now necessary to disable the
main data buffers whenever either
PIPBUG or the four RAM pairs are
selected. This is the function of the ad-
ditional gate, the 741530 shown in Fig.
1. This is an eight input gate, and is used
to replace the inverter provided on the
expansion board. It can be mounted on
a small piece of Veroboard.

These modifications allow a max-
imum of 13K of memory to be used, in-
cluding 11K of RAM. PIPBUG occupies
locations X'0000 to X'03FF, RAM from
X'0400 to X'2FFF, and the EPROM from

When in ROM, the programs must
reside at location X'3C00 to X'3DBD.

X'3C00 to X'3FFF. This should allow
quite large programs to be run.

The uppermost RAM locations can
be reserved for scratchpad use by
programs in the ROM. Only six
locations are required by the programs
presented in this article, so this leaves
nearly 11K of RAM available for your
programs.

Now that the hardware has been
sorted out, we can discuss the programs
themselves. These use PIPBUG routines
GNUM, CRLF, BOUT, COUT, LKUP,
CHIN and BIN, as well as RAM
locations CNT, BCC and MCNT.

The first program provided is titled
HEX LIST. This produces a hexadecimal
listing of any desired memory block,
with each line consisting of an address
followed by 16 data bytes. To call this
routine, type G3C50 AAAA BBBB cr,
where A is the start address of the
memory area to be dumped, and B is
the end address. The listing will include
the specified start and end addresses.

If you wish to have fewer data bytes
per line, change the contents of loca-
tion X'3C65 to the appropriate hex-
adecimal number before you burn the
EPROM.

The second routine is called
SEARCH. It will list all locations within a
given memory block that match a given
test pair of data bytes. The matching ad-
dresses are printed out in a. single
column. To call this program, type
G3C6A AAAA BBBB XXYY cr, where A
and B are the start and end addresses of
the range to be searched, and XXYY is
the test pattern.

The addresses printed out are those
of the first byte of the matched pairs.
The search is inclusive, and includes the
start and end addresses.

The third program is called HEXIN,
and will enable data or programs to be
entered into RAM much faster than us-
ing the PIPBUG "A" routine. To call the
program, type G3C8A AAAA cr, where
A is the address of the first RAM loca-
tion at which bytes are to be entered.

The program will respond by printing
out the start address on a new line, and
then wait for you to enter hexadecimal
characters. Bytes are separated by
spaces, and only the last two characters
entered before a space are accepted by
the program. This means that if you
make a mistake, you can simply type in
the correct characters before typing the
space.

After 16 bytes have been accepted,
the program will give a CRLF, and then
print the current address at the start of
the new line. In this way, if you are
careful, you will produce a hex listing as
you input the bytes. To terminate the
entry mode, type a control-G "BELL"
after the space entering the last byte.

The fourth program is titled VERIFY,
and is used to check that a PIPBUG ab-
solute object format dump tape is cor-
rect and contains no errors, before the
master in RAM is destroyed. To use the
program, simply type G3CDD cr, and

ELECTRONICS Australia. March, 1979 	85

ADDRESS AND
DATA LINES SUFFERS

BUFFER
DISABLE

	

DR RAM
	

PIM.]
	

74LS30

	

2000-2FFF
	

0000-03FF

S

2650 utility programs

	

ADDRESS AND
	

2701 EPROM

	

DATA LINES
	

3C011-1FFF

(AU. ADDRESS
DECODING
ON BOARD)

71 RAM
0400-1FFF

0 1 2 3 4 0 0 7

F10.1 	 CPU BOARD

74LS13S
PAGE SELECTS

1 ?

EXPANSION BOARD RAM BOARD 	 PROM BOARD

The schematic diagram shows how the author's system is configured.

then play back the tape to be checked.
The program will then read from the
tape, and compare its contents with
those of the appropriate section of
RAM.

If all is correct, the program will res-
pond with the message "OK". If a fault
is found, the message "FAULTY" will be
printed. This program can only be used
to check 110 baud tapes produced by
the PIPBUG Dump command. The
RAM dumped must still be in memory
when the verification is performed, of
course.

The fifth and final program is called
MOVE. It will shift a specified block of
memory to any other location in
memory. A memory block can be any
size, and can be moved either upwards
or downwards in memory by any
amount. To use the program, type
G3D3B AAAA BBBB CCCC cr.

A and B represent the start and finish
locations of the block of memory to be
moved, and C represents the new start
location. The program will move the
memory starting at A and ending at B so
that it starts at C and ends at C -I- A — B.
The original memory block will only be
changed if the new locations overlap
the old locations.

The MOVE program can be used to
copy memory from one page to
another page, and can also move
blocks straddling page Junctions.
Memory locations will not be

destroyed if the new start location is the
same as the old start location.

A 'number of useful subroutines are
also included as part of the programs. If
you branch to location X'3CF8, the
message "OK" will be printed, and if
you branch to location X'3D0E, the
message "FAULTY" will be printed. In
both cases control will return to
PIPBUG after the message is printed.

A message printing subroutine is in-
cluded at locations X'3CCB to X'3CDC.
This expects R1 and R2 to point to the
start of a an ASCII message string. The
string must be terminated by the null
(X'00) character. If you enter this
routine at location X'3CCB, the
message will be printed on a new line,
while if you enter at location X'3CCE,
the message will be printed on the
current line.

A subroutine called GPAR is located
at address X'3C07. This uses the PIPBUG
subroutine GNUM to get three
parameters from the PIPBUG line
buffer, and store them as bytes in
locations X'2FFA to X'2FFF inclusive.
The first parameter is stored in
locations X'2FFA and X'2FFB, and is call-
ed START.

The second parameter is in-
cremented, and then stored in
locations X'2FFC and X'2FFD. It is called
END. The third parameter, called NEW,
is stored in locations X'2FFE and X'2FFF.
' The subroutine INCRT is called at

location X'3C2A, and increments the
value START. It then compares START
with END, and sets the condition code
bits accordingly before returning. The
condition code is set to "less than" (10)
if START is less than END.

Another useful subroutine is called
PADR, and is called at location X'3C3C.
It will print the value of START, as a four
digit hexadecimal number, at the start
of a new line. The address is followed
by a single space.

A number of smaller subroutines are
also contained among the programs,
but these are rather specialised, and
will not be used very often. Interested
readers can use the disassembler to
disassemble the listing, and hence
locate them.

To burn the program into a 2708,
simply load it into a convenient area of
RAM, and use the program supplied
with the Prom Programmer article (Jan
1979) to copy it into the PROM. The
program contains absolute addresses,
and will only run at the correct
locations, starting at X'3C00. RAM must
exist at locations X'2FFA to X'2FFF in-
clusive.

Note that the listing of the programs
given in this article shows them stored
temporarily in the RAM at locations
X'0600-07BD. This should be a con-
venient place to store them initially in
most systems, before burning them into
your PROM.

ELECTRONICS Australia, March, 1979 	87

Track down faults in your memory boards:

Memory test routine
Here is a memory diagnostic routine for your 2650 Mini Computer.
It will exercise each and every bit in a specified memory range with
four distinct tests, and produce a printout of any faulty locations. It
can also be used to track down intermittent faults.

by DAVID EDWARDS

tion of the three earlier tests. The
whole of the test area of memory is first
cleared, and then tested for correct
clearing (this is the first test). Next, the
walking bit test and the delete test are
performed on the first test location.
Then before these two tests are carried
out on the second location, it is tested
to see if it is still zero. If it is not, then
there is obviously a memory fault of
some type or other.

This process is repeated in turn
throughout the test memory area, and
forms the fourth test.

In order for the operator to be able
to use these test results, it is necessary
to know not only the type of faults en-
countered, but also their locations. To
simplify matters, we have called the first
test the Z test, the second the L test, the
third the W test, and the fourth the S
test. Then all the program has to do is
print out the code letter of the test,
followed by the appropriate address.

A flowchart for the basic test routine
is shown in Fig. 1. Test S is carried out at
the start of the main loop. The failure
sections incorporate the error message
printing routines, and produce a listing
five entries wide, which can be accom-
modated on a 32 character-per-line
VDU.

If the test routine is run once, it will
catch and record all permanent faults,
but is unlikely to give any indications of
intermittent faults. To catch this type of
fault, we must repeat the basic test
routine a large number of times.

It would be wise, of course, to
arrange that once a fault has been
detected, that the program stops at the
end of the current basic test. If this is
not done, then there is a fair chance
that you will be rewarded with a great
screed of endlessly repeated error
•message sets, whereas only one set is
required.

The complete program, incor-

ELECTRONICS Australia, March, 1979 	89

Memory testing can be a very tedious
and time consuming process, so most
operators of small systems• simply
assume that all is OK, and get on with
writing programs.-But when a program
you have triple checked and are sure is
OK fails to operate correctly, you start
to wonder about your memory.

Ninetynine times out of a hundred,
of course, the memory is working cor-
rectly, and the bug is in your program
(moral: check, check and check again,
and if you can get a second opinion, do
sol). But what do you do if the program
still refuses to operate correctly?

Well, you can always employ the old
standby, the walking finger test. This in-
volves placing your index finger in turn
on all of the memory chips. The chip
(or chips) that sends you running to the
first aid cabinet is then faulty. Don't
laugh, this does work, and I have used
it in the past.

But this test will not show up faults
like open circuit address or data lines,
or short circuits between adjacent PCB
tracks. This type of fault is quite com-
mon on large memory boards, as they

have more and more memory cramm-
ed onto them.

In these situations, what is required is
some sort of software test routine
which will exercise all memory
locations of interest, and provide clues
as to where the fault is. This is the func-
tion of the program described in this
article.

The tests described here are based
on those presented by Charles E. Cook,
in the October 1977 issue of the US
magazine, "Kilobaud". Two of the tests
are quite simple, and check that each
location can store and read back both a
null (X'00 and a delete (X'FF).

The third test is known as the "walk-
ing bit test", and is perhaps the most
important test. It verifies the
"changeability" of each bit of the test
location, by storing first the pattern
00000001, then 00000010, and so on up
to 10000000, each time checking that
only the correct pattern can be read
back from the memory. The test bit (the
1) has been "walked" through the test
byte.

The fourth test is really a combina-

CA 15 17 3B 71 E9
6D 17 00 00 00 00
06 40 04 57 113 02
09 65 313 FA 04 20
01 C8 01 17 00 76
CA 41 3B F8 DA 02
CA 62 3B D7 07 05
IA 77 3B F3 0C 54
0C 84 60 BC 04 66
6A D2 9A 74 04 FF
CD IA 5D OE 04 BE

0440 09 IE 0A ID DA 02 D9 00 C9 16
0450 0D 16 EA OB 17 09 05 OA 04 313
0460 00 00 04 5A IB OC 04 53 113 08
0470 04 4C 3F 02 B4 09 69 3F 02 69
0480 3B F1 FE 05 3F 00 BA 07 05 04
0490 40 77 02 75 18 3F 02 DB C9 42
04A0 D9 00 CD 04 5E CE 04 5F 3B EC
0480 3F 04 55 20 CC 84 60 3F 04 4D
04C0 60 BC 04 62 3B F2 IA 76 33 E7
04D0 06 BO CE 84 60 EE 84 60 BC 04
04E0 CC 84 60 EC 84 60 BC 04 70 38
04F0 1E 04 130 FA 00 CA F7 5A FS 9B 22 	 FIG. 2

This is a hexadecimal listing of the 2650 memory test program. YOU can use the
dissassembler program to produce a mnemonic fisting of it.

START

STORE FF TO
TEST LOCATION

NO

FAILURE 2

INCREMENT
TEST ADDRESS

 Al.
LOCATIONS

TESTED? NO

NO

NO

MAIN LOOP

INITIALISE
TEST ADDRESS

YES

NO

FAILURE S

INITIALISE
TEST ADDRESS

YES

FAILURE W
NO

NO

FAILURE L
YES

I INCREMENT
TEST ADDRESS

Fit 1 •ASIC TEST ROUTINE

Readers with systems based on CPUs other than the 2650 can use this flowchart to
write their own diagnostic routines.

2650 memory test routines

h
orating all of these points, is given as a
exadecimal listing in Fig. 2. It occupies

locations X'440 to X'4FA inclusive, and
is not easily relocated. It uses PIPBUG
routines COUT, BOUT, CRLF and
GNUM.

To be able to use this program, the
memory area it occupies must be work-
in g correctly, and so must the
processor. If you are not sure about
this, try it anyway; if it works, then all is
OK. Otherwise, you will have to do
some fault-finding and corrections first.

To call the program, type G48F XXXX
YYYY ZZ cr, where X is the start address
of the memory range to be tested, and
Y is the end address. Remember that
the existing contents of the test area
will be destroyed, and that you cannot
test the area of memory occupied by
the test program.

The parameter Z determined how
many basic tests are to be carried out.
X'01 gives one test, X'02 gives two, and
so on up to X7F, which produces 127
tests. All negative numbers such as X'80
and X'FF, produce an unlimited
number of tests, terminated only when
an error is detected.

The first time you use the program,
specify only one test. Any errors you
get will almost certainly be permanent
faults, and should be found and cor-
rected first. Only when this has been
done should you attempt to trace inter-
mittents using multiple tests.

In these initial tests, it may be advan-
tageous to test only small amounts of
memory at a time, say 1K blocks. This
will allow you to isolate any faults more
rapidly.

At this stage, you are probably
wondering what all the rather strange
lists of error locations mean, and how
they can be used to locate faults in your
memory. Well, simple faults should
show up as easy to understand patterns.

For instance, if a data line to a par-
ticular chip is open, then all locations in
this chip should fail the W and L tests.
Similarly, if an address line to a
particular chip is open, then we would
expect test S to fail at all locations
where this address line would normally
go high. This is because the open line
will normally float high, so that when
we address lower bytes, we will actually
write into higher locations, and will get
an S message when we do address these
bytes.

Further information on the types of
faults which can occur in memory, and
the results they produce with our test
program, can be obtained from Cook's
article. In any case, you will have to play
at being a detective, and apply a little
deductive reasoning.

Finally, a few detailed comments on
the program for those who may wish to
modify it. The start, end and current ad-

dresses are stored in locations X'45C to
X'461, while the number of tests is
stored in location X'48E. The number of
error messages on each line is specified
in locations X'488 and X'4AF.

To remove the auto-stop facility
when errors occur, change locations
X'48B and X'48C to the NOP code, X'CO.
If you wish to obtain an error message
every time the walking bit test fails,

. rather than just once for each walking
bit test, change locations X'46A and
X'468 to NOPs.

By changing locations X'4ED to X'4F2
inclusive to NOPs, you can delete the
repeat forever facility, and obtain a
maximum of 256 basic tests (specify X'00
in the calling line).

In conclusion, I wish you happy fault
hunting, and successful debugging of
your own programs. Because once you
have assured yourself that your
memory is OK, then you realise that the
reason your program won't run cor-
rectly is because you have written a bug
into itl

90 	ELECTRONICS Australia, March, 1979

INFORMATION CENTRE

Notes & Errata

2708 PROM PROGRAMMER (February
1979, File No. 2/CC/35): In the overlay
diagram on page 89, the 0.01uF and
0.0047uF capacitors connected to pins
14 and 15 of the 7415138s should be ex-
changed. The circuit diagram is correct.

To prevent spurious triggering of the
monostable chain, we have found it ad-
viseable to ground the clear line (pins 3
and 11) of "the 7415138s during reads
from the PROM. This is best achieved
by using a three pole instead of a two
pole switch for the read/program
switch.

ELECTRONICS Australia, March, 1979 	125

E58 Bus
Hard Gold
Connector Quality

Plated thru
Hole PCB

4.00 MCIS
Crystal Clock

1K Monitor in
EPROM 2650A Microprocessor

On Board 1K Ram 	Fully Buffered
	

Fully Buffered
(2114) 	 Data Lines

	
Address Lines

APPLIED TECHNOLOGY, 1A PATTISON AVE„ WAITARA. (02) 487 2711 (3 lines)
SHOWROOM 9-5 MON TO SATURDAY
MAIL ORDERS P.O. BOX 355, HORNSBY 2077. welcome here

*prices include sales tax. Please allow
$42.00 post and package.

FOR MORE INFORMATION
SEND $1.00 FOR OUR
1979 CATALOGUE:

Educational, Hobbyist, Business, Industrial, Microcomputer users . . .

.ELIROCARD 2650: a professional quality, expandible
single card computer engineered to meet todays needs.

COMPLETE COMPUTER

The DB1001 is the heart of an incre-
dibly flexible computer system based on
the 2650 microprocessor. Designed by
BOB ARMSTRONG the DB1001 fea-
tures; on board 1K RAM, 1K EPROM
monitor, serial I/O, 4.00 crystal clock,
fully buffered address and data lines.

Memory expansion and extra I/O
devices can be readily connected using
the E58 BUS which is also Z80 and
S-100 compatible. The 1K EPROM
can be readily reprogrammed to various
operating systems such as 1200 BAUD
PIPBUG or BINBUG V3.6.

The DB1001 is available in kit form
or assembled and tested. Conversion
kit is available to convert the EA2650
starters kit (DB1001 Kit $135.00*)

DATA/BYTE 100:
ENORMOUS EXPANDABILITY

DATA/BYTE100 is the system confi-
guration using the DB1001 CPU card.
Additional memory and I/O cards

readily plug into a mother board to
produce an enormously versatile main-
frame which can also incorporate floppy
disc drives and high speed printer. By
selecting from the individual modules
you can design a DATA/BYTE 100
system to meet your exact specifi-
cations.

NOW AVAILABLE

DB1006; a 6K RAM card which
with the 1K RAM and 1K ROM on the
DB1001 becomes a full 8K system.
(Kit $140.00*)

DB1008; a 8K static RAM card con-
figured as 2 separate 4K byte blocks
selected with DIP SWITCHES for each
address boundary. (Kit $175.00*)

DB1048; a dual 418K ROM and high
speed cassette interface card. Accepts
2708 or 2716 EPROMS with your resi-
dent software. Also contains 2708
containing the full software to generate
the cassette interface and digitally con-
trolled dual cassette system together

with full file handling. (Kit $130.001

DB1500; a plug in power unit sup-
plying 5V @ 5A regulated, —5V, ±12V
750mA from an external DB1505
transformer and bridge rectifier. (Kit
$45.00, transformer $27.00*)

DB 202; a wire wrap card for cus-
tom applications. (Kit $25.00)

DB1203; an extender card for trouble
shooting the E58 BUS. (Kit $25.00)

EASY TO USE:

No matter what your application,
DATA/BYTE 100 system is easy to use
and understand. You can select from
the extensive software base for the
2650 or use the newly released MICRO-
WORLD BASIC which is a powerful
MICROSOFT -rm compatible 8K BASIC
which will run in ROM or RAM on your
system. The soon to be realeased 16K
dynamic memory card and floppy disc
controller will enable you to build your
system to over 100K capacity!

Faster dumping &
loading for the 2650
Here are some utility routines which will enable your 2650 system
to dump programs, verify and reload them — all at 300 baud and
using a binary format. This gives dumping, loading and verifying
times roughly one sixth of those using PIPBUG's 110 baud hex for-
mat. The routines are intended for storage in a 2708 EPROM along
with the utility routines described in March 1979.

by DAVID EDWARDS

Once your 2650 system is up and run-
ning, one of the first things you dis-
cover is that a lot of your time can be
spent waiting while programs are
dumped to or read from cassette tape.
So naturally, any means of speeding up
this process is most welcome.

We have presented 300 baud
routines in the past, but these have
mainly been -intended for use with a
PIPBUG format bootstrap leader, rather
than to be stored in ROM. They also
provided an "autostart" facility, where
a program could be arranged to begin
executing automatically as soon as it
was loaded.

The present author feels that in a
small cassette-based system, such as the
majority of 2650-based systems current-

ly in use, an autostart facility is not a
great deal of use. This is because many
small systems have no easy means of
automatically stopping the tape
transport once a load has been com-
pleted. The tape transport must really
be stopped by hand, before the loaded
program is started.

For this reason I have chosen to write
new routines from scratch, specifically
to be stored in an EPROM. This made it
possible to use some of the routines

already existing in the ROM (see March
1979), and thus minimise the amount of
code to be stored; it also ensured that
the routines would be ROM compati-
ble.

In fact, the finished routines require
only 251 bytes storage, which still leaves
a total of 327 bytes unused in the 1k 2708
EPROM. 6 bytes of RAM are required as
a scratch pad, at locations X'2FFA to
X'2FFF, but this is the same RAM as
used by the earlier routines.

The recording format used by the
new routines is shown in the diagram.
As the routines were intended only for
use with cassette tapes, the leader and
trailer consist of 10 second periods of
continuous mark. Only a single block is
used for each dump, and it is nearly im-

possible to separate blocks in a cassette
recording (unlike paper tape). In addi-
tion, gaps between blocks take up ad-
ditional time during both dumping and
loading.

No provision for autostarting is
made. At the end of a load, control is
passed back to PIPBUG. A colon (:) is
used as the prompt to signify the start
of the block.

Two block checking code (BCC)
bytes are included. The first one is used

to ensure that the start and end ad-
dresses are read in correctly from the
tape. The second BCC checks for a faul-
ty data byte.

The format used differs from that
used by PIPBUG, in that both start and
end addresses are specified initially on
the recording for the memory area to
be dumped. This change was made
solely because it suited the existing
ROM routines.

The routines are intended to occupy
locations X'3DBE to 3EB8, as shown in
the listing. However I suggest that you
use the hex input routine to load them
initially into another area in your RAM
(say X1DBE-1E B8). The PROM
programming program given in the
February 1979 issue can then be used to
store them into the EPROM at the cor-
rect addresses.

The first section of the listing, from
locations X'3DBE to X'3E01 inclusive are
the actual 300 baud input and output
routines, called 31N and 3OUT. These
are completely self contained, and are
fully relocatable without modifications,
as all relative addressing is used. They
are written as subroutines, and are
equivalent to CIN and COUT of
PIPBUG. The calling address for 3OUT
is X'3DBE, while that for 31N is X'3DE4.

3OUT and 3IN can be used to com-
municate with your terminal at 300
baud. The bit rate is set by the LODI in-
structions at locations X'3DDB and
X'3DDF, and assumes a 1MHz clock
rate.

The remainder of the space is oc-
cupied by the DUMP, LOAD and
VERIFY routines. To dump a program,
type G3E02 AAAA BBBB cr, where A is
the start address of the memory area to
be dumped and B is the end address.
The dump will include locations A and
B. A ten second blank leader is provid-
ed at the start of the dump, with a
similar sized trailer. A 4k dump will take
just under three minutes.

To verify a tape, rewind it, type
G3EA2 cr, and then start the tape. The
contents of the tape must still be stored
in memory of course, as the verification
consists of comparing the data from the
tape with the corresponding data still in
memory. The program will respond
with "OK" if the tape is correct, or
"FAULTY" if a BCC or data error is
detected.

To load a tape, type G3E53 cr, and

3par 77 ir
3DC7 C2 75 03 74 47 32 14 57 IP 74 74 47 12 02 76 40
3DDO F9 73 39 77 75 47 33 P3 75 17 17 04 35 F3 7F 74
3027 75 F4 7E 17 77 IP 75 PP 76 SI 12 IA 77.37 7C 12
3677 IA 72 32 67 12 44 30 51 61 CI FA 76 39 SP 01 75
3E70 IF 17 3F 3C 77 3F 3E 43 27 CC 9C FF 04 37 311 93
3E17 7D CF FA. 37 PC 7D 7F FF 37 27 7D 7F FC 37 22 PD
3F27 CF FC 3: tr 7C 9C Fr 3F 3D 3E 2? CC 9C FE. PD 3F
323?
3247

FA
22

32
3F

PF
"2

3F
36

3C
VI

2A
32

IA
El

75
17

?C
2r

9C
VI

FF
76

3F
II

F3
F4

39
7F

79
F9

97
7C Here is a full hex

3257 FA 7A 17 33 26 9C 3D CF IC 36 13 CD SF FA 3F listing of the two
3267
3E77

3C
3F

2A
CI

IA
3F

76
C2

33
39

9A
17

IC
'7

9C
CC

FE
9C

IC
FE

3C
17

FS
76

IF
47

3D
77

PF
72

32
3F 300 baud routines.

3FS2 3C £4 £4 311 37 79 33 SE 3S 65 CD PF FA 39 67 CD
3297 -F FS 33 5B CD 7F FC 37; 56 CD PF FD 33 22 EC 9C
SEA? rp-, 17 3? 57 IC 30 37 32 4D 38 44 FP 9F FA 9C 3D
3EE" 'F. 3F 3C PA IA 73 IF 3F 64

70 	ELECTRONICS Australia. April. 1979

1 LEADER
10 SECS

MARK

: PROMPT

c}ADD
RE•S

CI 	

CI

9 EN
ADDRE

O
SS

El ADDRESS IICC

El

O

DATA

O

O DATA BCC

}TRAILER
ID SECS

MARK

COROEITSED 300 BAUD
BINARY FORMAT

This is the recording format used. All
numbers are in binary.

then start the tape. If a BBC error is
detected in the addresses read from the
tape, the message "FAULTY" will be
produced, and the load will stop.
Assuming the correct addresses are
read from the tape, the load will
proceed.

Once the data file has been read in,
the data BCC is checked. If the BCC
from the tape agrees with the
calculated BCC, the message "OK" is
printed. A mismatch will produce the
message "FAULTY".

I have found the routines to be quite
reliable, and have made quite a few 4k
memory dumps with complete success.
The reduced loading time is very
convenient, allowing quite large
programs to be reloaded very quickly.

The routines use the PIPBUG routine
CBCC, and the existing ROM routines
GPAR, FAULTY, OK and INCRT. Only 4
instructions require changes to relocate
the program; these are located at ad-
dresses X'3E05, 3E27, 3E7F and 3EB6.
Other absolute instructions in the
programs point to locations in PIPBUG,
the RAM buffer area, and the existing
ROM.

To burn the programs into your 2708
EPROM, load them into a convenient
area of RAM, as well as the PROM
program. It is not necessary to
reprogram the complete PROM: simply
program in the new routines at the
correct locations.

Note that in order to allow the
routines to operate correctly, it is
necessary to disable the monostables
on the PROM board when in the read
mode, as detailed in the Notes and
Errata section of the March 1979 issue.

ELECTRONICS Australia, April. 1979 	71

2650 mini assembler
simplifies programming
Here is a handy "real time" assembler program for small 2650
microcomputer systems. You can use it to load programs directly
into memory in mnemonic assembly language — much faster,
easier and more reliable than having to do all the detailed coding
and displacement calculations yourself!

by JAMIESON ROWE

Programming a computer in machine
language tends to be a very slow and
tedious business. If you're doing it this
way at the moment, you'll know what I
mean. It can be challenging enough to
work out the basic flow of a program -
then you have to sit down and
painstakingly slog through the coding,
instruction by instruction.

But time and tedium aren't the only
problems. When you try running such a
program coded by hand, the odds are
that you'll find quite a few "bugs" caus-
ed by coding errors and mistakes in
working out relative addressing dis-
placements.

People using larger computers
generally don't need to worry about
such problems, because they don't
have to program in machine language.
In fact many couldn't do so even if they
wanted to (which is unlikely), either
because they've never learned how or
because the operating system on their
computer has no provision for loading

or running programs in this form!
The closest such folk ever need to

come to machine language is assembly
language programming, using easy-to-
remember mnemonic symbols for the
various instructions. An assembler
program running in the computer itself
is then used to translate this symbolic
version of the program into machine
language. The assembler takes over all
the detailed coding, and works out all
of those tedious displacements. Not
only that, but it does them much faster
and far more reliably than mere
humans!

Assemblers for some microcomputer
systems have been available for quite a
while now, giving users of these
systems most if not all of the advantages
possessed by larger systems. For
industrial and commercial users of the
2650 microprocessor, Signetics
themselves provide a "cross assembler"
— an assembler for 2650 code which
itself runs on another machine.

For smaller 2650 systems, more con-
ventional "resident" assemblers have
recently become available. A limited-
facility "line" assembler called
Prometheus was developed by the
British Mullard company, and made
available in a special ROM/RAM
application card. However it was rather
too expensive for hobby applications.
Similarly an assembler was developed
within the 2650 Users' Group in Sydney,
but was memory-orientated and re-
quired quite a deal of RAM,memory.
Neither assembler was really well suited
for small hobby systems.

Now for the good news. In this arti-
cle, you will find details of a new 2650
assembler which I believe is almost
ideal for small hobby systems. It oc-
cupies only 1300-odd bytes, so that it
should fit into almost any 2650 system.
Yet it will let you perform convenient
and fast assembly of programs, from
your terminal keyboard and in real
time. You type in the mnemonics; it
works out the code and plugs it into
memory.

As you might expect, it is not a full-
scale assembler like those you would
find on large systems. It is basically a
line assembler, which treats each in-
struction as a separate entity. But it
does offer a very useful feature not
found on many small line assemblers:
limited forward referencing, which lets
a branch instruction reference a
memory location not yet known. This
means that once you get used to its
limitations, you can do almost as many
things with this assembler as you can
with its bigger brothers.

Incidentally I can't take much of the
credit for this assembler. I haven't
written it from scratch, but have
developed it from a small assembler
called PIPLA written by the software
people at Signetics. I came across PIPLA
last year when I toured the Signetics
plant during my trip to California.

The people at Signetics told me they
had written PIPLA to go into a special
ROM device along with a modified and
enhanced version of PIPBUG. When I
showed interest in it, they let me have a
copy along with a source listing.

I didn't have much of a chance to
look closely at PIPLA during the trip
but was able to do so when I came
home. It didn't take long then to make
a rather important discovery. Not unex-

*G1600
2650 LINE ASSEMBLER

0440.*THIS IS A DEMONSTRATION
0440.*
0440.*

	

0440. 	ORG 500

	

0500. 	DATA 5 14

	

0502. 	LODI.R3 FF 	SET UP R3 AS INDEX

	

0504. 	LODA.R3 *+500 	FETCH CHAR

	

0507. 	COMI.R0 00 	CHECK IF EOF (NUL)

	

0509. 	BCTAJEGI el 	LEAVE IF FOUND

	

050C. 	ZBSR *20 	OTHERNISE GO PRINT

	

050E. 	BCTR.UN 504 	a CONTINUE

	

0510.01 ZBSR *25 	END: GIVE CRLF

	

0512. 	ZBRR 22 	 A LEAVE—RETURN TO PIPBUG

	

0514. 	ASCI "HELLO THERE!"

	

0520. 	DATA 0

	

0521. 	END

*G500
HELLO THERE!

Fig. 1: A demonstration of the mini assembler in action. As you can see, a
program may be run immediately following assembly.

76 	ELECTRONICS Australia, April, 1979

15CC F4 OC 	IS 02
1500 45 IF 6D 04 2A IF 17 5B F4 OA 98 OF 3F IA 95 CE
15E0 84 OD 313 OF EF 04 29 9A 25 IB 71 38 FO IB ID 02
15F0 69 IA CD OD 04 0D 0E 04 OE DA 02 D9 00 IF 00 44
1600 20 07 	14 CF 5A 40 58 7B 3F IA 55 CO 38 FO OD 04
1610 OD 38 DC OD 04 0E 38 D7 04 22 BB AO 315 D3 BC IA
1620 02 E4 2A 18 69 24 40 98 3C OF 3A 02 44 30 IE 02
1630 50 C3 E7 09 19 F9 D3 06 01 OF 7A 40 CC 04 OF CI
1640 OF 7A 41 CC 04 10 61 18 IA OC 84 OF CF 7A 40 OE
1650 24 OF CF 7A 41 OC 04 OD CC 84 OF OC 04 OE CE E4
1660 OF 18 56 07 02 20 CC 04 2A 38 BE 3F 17 7A CC 04
1670 II 60 9A 28 44 OF IC 00 22 F4 02 98 9C 38 AA OF
1680 7A 02 C2 OF 3A 02 EF 04 29 92 16 BE E2 18 FB CC
1690 84 OD 02 3F 15 F3 C2 IB 6A 15 D8 CO CO IA 95 CE
1640 84 OD E4 10 9A 21 87 01 , 3F 17 68 OF 7A 02 E4 40
1680 99 OA 3F 17 7A 84 10 18 05 IF 02 50 3B DF 46 03
16C0 0C 84 OD 62 CC 84 OD 3B CB OC 04 II 	F4 01 IC 16
1600 0E F4 02 IC 17 22 3B DI OF 7A 02 E4 30 9A IB 87
16E0 01 05 FF ED 37 CF 18 06 25 04 IA 77 	18 CC DI DI
16F0 DI DI 	DI 6D 04 2A C9 FC 18 SC E4 40 98 24 OF 3A
1700 02 A4 30 12 02 50 C3 E7 09 19 F9 D3 OF 7A 40 CI
1710 OF 7A 41 C2 BC 04 OD CF 7A 40 0C 04 OE CF 7A 41
1720 18 21713F IA 95 OC 04 II F4 08 18 AD F4 04 98 24
1730 77 09 A6 01 AS 00 77 01 AE 04 BE AD 04 OD 75 08
1740 18 OD 85 01 9C 02 50 F6 CO 98 FA 46 IF IB 05 04
1750. C0 42 98 F1 6E 04 2A IB OA 15 CC CD 84 0D 02 3F
1760 15 F3 C2 CE 84 OD 38 78 IF 16 OE 04 20 FB 00 EF
1770 3A 02 	18 78 EF 04 29 9A CC 17 06 FC Al 01 OF 34
1780 02 EB F2 9A OD 24 30 IA 09 CE 79 40 DA 70 87 01
1790 18 07 04 20 CE 79 40 DA 78 CF 04 28 75 01 77 08
1740 05 17 06 D4 CD 04 OF CE 04 10 07 FF OF A4 OF IC
17110 02 50 EF 7A 3C 18 06 86 06 85 00 18 67 E7 03 IA
17C0 68 OF A4 OF C2 OF 44 OF OF 04 28 75 08 17 00 2C
1700 28 2D 23 2A 52 30 20 20 00 F0 52 31 	20 20 01 FO
17E0 52 32 20 20 02 FO 52 33 20 20 03 FO 50 20 20 20
1770 01 F0 54 20 20 20 00 F0 42 20 20 20 02 F0 4C 54
1800 20 20 02 FO 45 51 20 20 00 FO 47 54 20 20 01 FO
1810 55 4E 20 20 03 F0 45 4E 44 20 00 80 4F 52 47 20
1820 00 81 	41 53 43 49 00 82 4C 4F 44 SA 00 01 4C 4F
1830 44 49 04 02 4C 4F 44 52 08 04 4C IF 44 41 PS 08
1840 53 54 52 SA CO 01 53 54 52 52 C8 04 53 54 42 41
1850 CC 08 49 4F 52 SA 60 01 49 4F 52 49 64 02 49 4F
1860 52 52 68 04 49 4F 52 41 6C 08 41 4E 44 54 40 01
1870 41 4E 44 49 44 02 41 4E 44 52 48 04 41 4E 44 41
1880 4C 08 45 IF 52 54 20 01 45 4F 52 49 24 02 45 IF
1890 52 52 28 04 45 4F 52 41 2C 08 42 43 54 52 18 04
1840 42 43 54 41 IC 0C 42 43 46 52 98 04 42 43 46 41
1880 9C OC 43 4F 40 5A 20 01 43 IF 40 49 E4 02 43 4F
18C0 4D 52 28 04 43 IF 40 41 EC 08 41 44 44 54 80 01
1800 41 44 44 49 84 02 41 44 44 52 88 04 41 44 44 4!
18E0 8C 08 53 55 42 SA AO 01 53 55 42 49 A4 02 53 55
1870 42 52 48 04 53 55 42 41 AC 08 52 45 54 43 14 01
1900 52 45 54 45 34 01 42 53 54 52 38 04 42 53 54 41
1910 3C 0C 42 53 46 52 91 04 42 53 46 41 BC BC 52 52
1920 52 20 50 01 52 52 4!2 20 DO 01 43 50 53 55 74 12
1930 43 50 53 4C 75 12 50 50 53 55 76 12 50 50 53 4C
1940 77 12 42 52 4E 52 58 04 42 52 4E 41 SC BC 42 49
1950 52 52 08 04 42 49 52 41 DC BC 42 44 52 52 F8 04
1960 42 44 52 41 FC OC 42 53 42 52 78 04 42 53 4E 41
1970 7C 0C 42 IF 50 20 CO II 48 41 4C 54 40 II 54 4D
1980 49 20 F4 02 57 52 54 44 F0 01 52 45 44 44 70 01
1990 57 52 54 43 BO 01 52 45 44 43 30 01 57 52 54 45
1940 D4 02 52 45 44 45 54 02 54 42 53 52 BB 10 54 42
1980 52 52 9B 10 54 50 53 55 84 12 54 50 53 4C 85 12
19C0 4C 50 53 55 92 II 4C 50 53 4C 93 II 	53 50 53 55
1900 12 II 	53 50 53 4C 13 II 42 53 58 41 BF IC 42 58
19E0 41 20 9F IC 44 41 52 20 94 01 4C 44 50 4C 10 IC
19F0 53 54 50 4C 11 IC 44 41 54 41 00 84 00 00 00 00
1400 00 00

11455 05 IA 06 6C 3F 00 A4 07 FF OF A4
1460 OD 18 04 BB AO 1B 77 05 04 06 40 17 	32 36 35 30-
1470 20 4C 49 4E 45 20 41 53 53 45 4D 42 4C 45 52 OD
1480 04 214 00 00 A4 30 IA OA El OA 16 44 07 IA 03 E4
IA90 10 16 	IF 02 50 20 CI C2 CC 04 12 08 FC 15 EF 04
MAO 29 14 OF 7A 02 E4 20 98 02 DB 70 38 57 D2 D2 D2
IABO D2 CE 04 28 46 FO 62 C2 DI DI DI DI 45 FO 08 F2
IACO 44 OF 61 CI 04 01. C8 DI DB 54 OA OD SE 07 00 E7
IADO 3C IC 00 ID 3F 02 86 24 IF 98 OA 03 	18 71 OF SA
1420 02 BB AO 121 6A 05 03 ED 7A C9 18 09 F9 79 CF 7A
WO 02 BB AO DB 5A CF 04 29 CD 04 2A 07 BO 98 AS

Fig. 2: A complete hex listing of the assembler. The gap from 1A02 to 1A54
is occupied by the input and labels buffers.

pectedly, PIPLA used quite a few utility
routines from the modified PIPBUG -
but the modified PIPBUG was so
different from the familiar old PIPBUG
that the two were virtually incompati-
ble.

Obviously PIPLA in its original form
was not going to be all that much use to
all those 2650 users who were already
committed to the old PIPBUG. If it was
to be of value to such people, someone
was going to have to sit down and con-
vert it to use the routines in "old
PIPBUG"

Well, the rest is fairly obvious. The

b
ob took a while, as it had to be fitted in
etween more urgent things. There

were a few complications, because
some of the required routines in the
modified PIPBUG were so different
from those in the old PIPBUG that the
routines in "old PIPBUG" could not
easily be used at all. I had to add these
to PIPLA itself, at the same time reduc-
ing the size of PIPLA wherever possible
to minimise the increase in memory
space.

Eventually I finished the basic con-
version job, and after the inevitable
debugging the modified PIPLA began
running on my system with "old
PIPBUG". But this wasn't quite the end
of the story.

Once you got used to its limitations,
it was a very handy piece of software.
But there were a few mildly irritating
little shortcomings. When you called it,
it simply printed out a suggested initial
"origin" or starting address for
assembly. Wouldn't it be nicer if it an-
nounced itself with a suitable message?

Similarly, it lacked a facility for accep-
ting numbers and other data constants,
in hexadecimal. Wouldn't it be nice if it
had a "DATA" directive like bigger
assemblers?

To cut a long story short, these
facilities were added and the result is
presented here. Based on PIPLA but
with quite a bit of modification and a
couple of additional features, it is quite
a capable little assembler. Certainly you
should find it a big step forward in
speed and convenience if you're still
programming in machine language.

What will it do? Well, it will accept all
of the standard 2650 instruction
mnemonics — LODA, STRR, BCTA,
BSTR and so on. It can also recognise all
of the commonly used register/condi-
tion code mnemonics RO, R1, R2, R3,
P, Z, N, LT, EQ, GT and UN. It will
accept symbols for indirect and index-
ed addressing, up to 10 label symbols
for forward referencing, four different
pseudo-operation or assembler direc-
tives, and comments.

The input format required by the
assembler for the symbolic source lines
is:

LBL OPC R/C SYM OPND

where the symbols have the following
meaning:

ELECTRONICS Australia, April, 1979
	

77

LBL is an optional label; if present it
must be one of the labels used in
the operand field of a previous in-
struction, for forward referencing.

OPC is the instruction or pseudo-
operation mnemonic; the standard
2650 mnemonics are used, as given
in the Signetics manual.

R/C is the register or condition code, if
one is required; either the symbols
given earlier may be used, or a
single-digit hexadecimal number.

SYM is a special symbol or symbols to
indicate indirect addressing and/or
indexing, if required.

OPND is the operand for the
instruction; it may be a
hexadecimal data number or an
address, and if an adress it may be
given either as a hex number or
one of the labels for forward
referencing. In the case of relative
addressing, the assembler expects
an absolute hex address, and will
calculate 	the 	required
displacement. The only exception
is for ZBRR and ZBSR instructions,
where the -actual displacement
must be typed in.

Each of the above symbol fields
should normally be separated from
those adjacent by one or more spaces.
If the label field is not used, a leading
space is not required although one or

more spaces may be used if desired for
appearance. The separator between the
OPC and R/C fields may be a comma
instead of a space, and the space
between the SYM and OPND fields may
be omitted if desired.

If the first character of a line is an
asterisk (*), the assembler assumes the
line is a comment only and ignores it. A
comment line may have up to 56
characters apart from the asterisk.

The symbols used to indicate in-
direct addressing and indexing in the
SYM field are as follows:

Means indirect addressing.
'#' Means normal indexing. Note,

however, that when indexing is
specified the index register must
be given in the R/C field, unlike
the normal assembler format. This
is no real problem since RO is
always 	the 	implied
source/destination register for
indexed instructions.

'+' Means indexing with auto-
increment. Again the index
register must be given in the R/C
field.

—' Means indexing with auto-
decement. The index register must
be given in the R/C field.

Where, indirect addressing and in-
dexing are to be specified in the one in-
struction, the two appropriate symbols

are used together with the indirect ad-
dressing symbol given first. For ex-
ample:

LODA,R3 • -1-8A0

which is a load indirect through address
X'8A0, using R3 as the index register
and with auto-increment. Thus R3 will
be incremented and added to the ad-
dress found in location 8A0 to generate
the final effective address for the in-
struction.

The function of the label operators is
to help you in writing forward memory
references. That is, references in the
operand field of instructions to
locations in the program which have
yet to be fed in, and are therefore not
known in terms of their exact absolute
address.

There are restrictions on the use of
the label operators, as follows. They can
only be used in the OPND field of
branch instructions, and they cannot be
used in relative addressing instructions.
Nor can they be used with indirect ad-
dressing or indexing. This limits the use
of the labels fairly severely, but they
can still be quite handy.

Ten different label operators are
allowed, represented by the symbols
*0—©9. Each one can be used in the
operand field of instructions any
number of times before it is finally
defined by specifying it in the label
field of an instruction or pseudo-op.
Note that all references to a label must
precede its definition, due to the way in
which the assembler handles the labels.

2650 MINI ASSEMBLER

ELECTRONICS Australia. April, 1979 	79

to distinguish comments following
source instructions or directives.

The assembler resides in memory
from location 15CC to 1AFE, inclusive.
Part of this range is not used by the
program itself, but is used as a line in-
put buffer, scratchpad and label buffer
area (1A02-1A54). The initial starting
address is 1600, so after loading into
memory the assembler is called by giv-
ing PIPBUG the command G1600r
(where "r" is carriage return).

When called, the assembler first
types out an identifying message: "2650
LINE ASSEMBLER". It then types out a
suggested initial origin, which is X'0440
— the start of the available RAM above
PIPBUG's scratchpad area. If you don't
wish the assembled program to start at
this address, you can immediately
change the program counter to
another value by using the ORG direc-
tive.

You can now type in your program to
be assembled, line by line. When you
conclude each line with the usual
carriage return, the assembler will
attempt to assemble it. If you have
made no format (syntax) errors and it
can do so, it will indicate this and its
ability to accept a further line by typing
the new value for its program counter
at the start of the next line. You thus get
a continuous indication that all is well,
along with an indication of the memory
space being used by your program.

If you make a format error and the
assembler cannot assemble the line, it
will abort and return to PIPBUG via the
'?' error message routine. After work-
ing out what went wrong, you can
return to continue the assembly by

2650 MINI ASSEMBLER

However after being defined a label
operator may be re-used again.

As mentioned earlier, the assembler
recognises four different directives, or
pseudo-operators. These are basically
instructions to the assembler itself,
rather than symbolic instructions to be
assembled into machine code. The four
directives recognised are as follows:
ORG is a directive to the assembler to

reset its program counter; i.e., the
pointer which the assembler uses
to store the assembled program
instructions into memory.The
format of this directive is
ORG nnnn
where 'nnnn' is a hexadecimal
number specifying the new
program counter value. Leading ,
zeroes are not required.

ASCI is a directive to the assembler to
store in memory a string of
alphanumeric characters, in ASCII
code. Following the directive
mnemonic the assembler skips any
leading spaces, then takes the next
character it finds as a string
delimiter. All of the following
characters up to the next
occurrence of the delimiter
character are then stored as an
ASCII string. The actual string may
be up to 52 characters long. The
format- for this directive is thus

ASCI < delim >< string >< delim>

DATA is a directive to the assembler to
store one or more data bytes in
memory, beginning at the location
given by the current value of the
assembler's program counter. The
directive format is
DATA nn nn nn nn nn nn nn
where each 'nn' is a two-digit hex-
adecimal number, and the
numbers are separated by spaces.
If an error is made while typing a
number, it may be corrected mere-
ly by typing in the two correct
digits before the terminating
space. Leading zeroes are not re-
quired. Up to 18 data bytes may be
entered on a line if no corrections
are made.

END is the directive which is used to
indicate to the assembler that no
further source material is to be
assembled. When this directive is
encountered the assembler returns
to PIPBUG.

If desired, comments may be added
after the operand field on most source
lines, providing the comments are
separated from the operand by at least
one space. The only type of source line
where this cannot be done is one con-
sisting of a DATA directive, as the
assembler searches to the end of the
source line for data numbers for this
directive. No special symbol is required

80 	ELECTRONICS Australia, April, 1979

either re-starting at address 1600, or by
starting at address 160E. The latter
preserves any forward reference labels
you may have been using, although the
assembler's program counter is disturb-
ed. You thus have to reset it with an
ORG directive.

I have prepared a small demonstra-
tion of the assembler's use, which is
shown in Fig. 1. As you can see the
program assembled is a very short
message printing routine which starts at
X'0500, but its assembly illustrates most
of the things you need to know about
the assembler and the way it is used.

Note that the first three input lines
are comments, which are effectively ig-
nored by the assembler. Note also the
way the assembler prints out the
current value of its program counter at
the start of each line, so that you can
see how much memory the program is
taking up. Needless to say you also
make use of these addresses when typ-
ing in backward-referencing operands
— an example of this is shown in the
line commencing at address 050E.

Finally, note that after assembly, the
program which had just been assembl-
ed was called from PIPBUG by typing
G500. It then ran, typing out the simple
message "HELLO THERE".

Needless to say, once you have
assembled a program and checked that
it runs, you can dump it in the normal
way to cassette tape or paper tape using
the normal PIPBUG dump routine.

Well, there it is — a small but very
practical assembler which should make
programming your 2650 very much
easier. Incidentally for those who
would like to analyse the assembler's
operation in detail, full source listings
will be available from our Information
Service for a fee of $4.00, to cover
photocopying and postage.

Lunar Lander game

This moon landing game program is written in TCT BASIC, and can
be run on the 2650 Mini Computer. It is quite realistic, taking into
account the moon's gravity, and the decreasing mass of the lunar
lander as the fuel is used up. It also has limits on both the rate of
fuel usage and the acceleration to which the lander is subjected.

by DAVID EDWARDS

Moon landing is a simple
mathematical game which has been

llayed on computers from the very ear-
y days. In its simplest form, as describ-

ed here, all that is required is a terminal
capable of displaying about 16 lines of
text.

The scenario is that the operator
(LEM pilot) is in the lunar lander a
specified distance above the lunar sur-
face. The LEM has a certain initial
velocity, and a quantity of fuel. The

pilot has to specify when and how
much fuel to use, so that the LEM can
be made to land on the moon with
zero, or at least minimal, speed.

It sounds quite simple, doesn't it! But
you will probably change your mind
once you have actually tried to do it, as
there are a number of traps for unwary
pilots.

First of all, you can simply run out of
fuel before the LEM reaches the sur-
face. Once this happens, the LEM simp-

ly drops, and digs a big crater (this is
quite soundless however, as there is no
atmosphere on the moon to support
soundwavesl).

If you specify too high a fuel rate,
one of two things can happen. Firstly,
you may overload the motor, causing a
burnout, followed by a long drop to the
moon, and another big crater. Or you
could exceed the allowable G forces on
the LEM. In this case, it will simply fall
apart, and the pilot will proceed to the
lunar surface unaided!

Assuming that you can avoid all these
pitfalls, you still have to ensure that
your landing speed is sufficiently low,
because even though moon gravity is
approximately one fifth of earth gravity,
your inertia is still the same. In fact, to
achieve a good landing, you need td
have a terminal velocity of less than 1
metre per second, or about 2.2mph.

In fact, the only good point about
this simulation is that it is not in real
time, and you have lots of time to think
between moves. A typical landing will
take about 50 seconds of simulator
time, and about 10 minutes real time.

Fig. 1 is a listing of the program. You
will need about 2K of RAM to run it,
apart from the 5K required by the TCT
BASIC. Putting it another way, you will
need to have page 0 full of RAM, apart
from the 1K occupied by PIPBUG.

Load it in exactly as per the listing,
remembering that the punctuation
forms part of the program, and should
not be changed. To start the program,
simply type RUN. After the program
name and trumpet blowing section, it
will give you a small list showing initial
height, velocity, time and fuel stocks.
Velocity is measured positive
downwards, i.e., towards the lunar sur-
face.

The program will then expect you to
tjupreatiina fuel oelsreacte in kg/s, 	by s followed b a
duration seconds. This is how you
specify to the program what propulsive

This listing of the Lunar Lander was
written in TCT BASIC, but is adaptable
to other types of BASIC.

0005 PR"":pR"LUNAR LAN DER": PR"BY D. T. EDWARDS 3/9/78"
0 010 FIN 2:T=0:17=-25: E=200: G=2:H= 1000:M= 10000
0015 GO SUB 100:1F R< 5t'0 GOTO 25
0020 PR's": PR"FUEL RATE TOO HIGH !": PR"MOTOR BURNS OUT": GOTO 50
0 025 GO SUB 220: IF A<13 GOTO 35
0030 PR"":PR"G FORCES TOO HIGH I ": PWILANDER BREAKS UP": GO TO 75
0035 IF 114=5000 GOTO 45
0036 N=N-1: IF H<=2 GO TO 57
0040 IF N4=0 GOTO 15
0041 GOTO 25
0045 PR"":PR"NO FUEL LEFT!"
0050 PR"PREPARE FOR LANDING": R=0
0055 GO SUB 200
0056 IF H>0 GOTO 55
0057 IF V>=0 V=—V
0060 PR"":PR"TOUCHDOWN AT". T.. "5": PR"TERMINAL SPEED =". —V. "II/ S"
0065 IF 11,— 1 GOTO 85
0066 IF V>-5 GO TO 90
0067 IF V> — 10 GOTO 95
0070 PR"":PR"A NEW LUNAR CRATER",M*V*V/50000."M"
0071 PR"DEEP WILL BE DISCOVERED SOON!"
0075 PR"":PR"DO YOU WANT TO PLAY AGAIN";
0076 INPUT ?SI: s2."No": 53="YES"
0080 IF SI= $2 STOP
0081 IF S1=53 GOTO 10
0082 GOTO 75
0085 PR"GOOD LANDING" :GOTO 75
0090 PR"ROUGH LAN DING":GOTO 75
0095 PR"LANDER DESTROYED":GOTO 75
0100 PR"":PR"HEIGHT = ". H2 "M": PR"SPEED =±".• — "M/ S"
0 105 PR"FUEL LEFT .2"..11— 5000. "KG": PR"TIME 	T. "5"
0 110 PR"FUEL RATE (KG/ 	";
0111 INPUT=R: IF R>=0 GO TO 115
0112 GOSUB 120t COTO 110
0115 PR"DURATION CS) ";
0116 INPUT =N:N=INT(N): IF N>0 GOTO 118
0117 GO SUB 120:GO TO 115
0118 RETURN
0120 PR"IIIPOS31BLE — TRY AGAIN": RETURN
0200 /1=M— R: A=E*R/M—G T=T+ 1: H=H+V+A/ 2: V=V+A: RETURN 	 FIG. 1

82 	ELECTRONICS Australia, April, 1979

LUNAR LANDER
BY D.W. EDWARDS 3/9/78

HEIGHT = 1000.00 M
SPEED = 25.00 M/S
FUEL LEFT = 5000.00 KG
TIME = 0.00 5
FUEL RATE (1(0/5) =600
DURATION (5) =3

FUEL RATE TOO HIGH!
MOTOR BURNS OUT
PREPARE FOR LANDING

TOUCHDOWN AT 22.00 $
TERMINAL SPEED = 69.00 M/S

A NEW LUNAR CRATER 952.20 M
DEEP WILL BE DISCOVERED SOON!

DO YOU WANT TO PLAY AGAIN?YES

HEIGHT = 1000.00 M
SPEED = 25.00 M/S
FUEL LEFT = 5000.00 KG
TIME = 0.00 S
FUEL RATE (KG/S) =480
DURATION (5) =10

G FORCES TOO HIGH!
LANDER BREAKS UP

DO YOU WANT TO PLAY AGAIM?YES

HEIGHT = 1000.00 M
SPEED = 25.00 M/S
FUEL LEFT = 5000.00 KG
TIME = 0.00 S
FUEL RATE (KG/5) =200
DURATION (S) =20

HEIGHT = 1046.44 M
SPEED =-38.51 M/S
FUEL LEFT = 1000.00 KG
TIME = 20.00 S
FUEL RATE (KG/5) =0
DURATION (5) =100

TOUCHDOWN AT 77.0e S
TERMINAL SPEED = 75.48 M/S

A NEW LUNAR CRATER 683.84 M
DEEP WILL BE DISCOVERED SOON!

FIG. 2

Illustrated above is a printout showing
how the program reacts to a variety of
"wrong" inputs.

force you require, and for how long.
The program will then calculate your
new height and velocity, and present
these, along with the elapsed time and
amount of fuel remaining.

All you have to do then is supply the
appropriate numbers, till the program
terminates. Note that only positive fuel
rates and times are accepted, and that
the program turns all times into integer
numbers.

Fig. 2 shows some sample printouts of
typical games. Note that all outputs
have less than 32. characters per line,
although the program listing does not.
If you are using the Low Cost VDU
(February and April 1977), the
automatic carriage-return line-feed
facility will let you see all of the listing
as you feed it in.

If you let your family and friends play
this game, be warned. It is very engross-
ing, and you may have trouble getting
them away from it!

ELECTRONICS Australia, April, 1979 	83

84 	ELECTRONICS Australia, April, 1979

A "Micro BASIC"
for small 2650 systems
If you have a 2650 microcomputer with only PIPBUG and 4K bytes
of RAM, you probably think it's too small to run even a cut-down
version of BASIC. Well, not any more — you can now get an inter-
preter called "Micro BASIC" which will run in systems this small.
Editor Jim Rowe reviews Micro BASIC in this article.

Not long ago, I received a 'phone call
from a reader, Mr Alan Peek of
Woolwich NSW, who told me that he
had successfully written a "micro
BASIC" interpreter for very small 2650
systems. As he was proposing to offer it
for sale to readers, would I be in-
terested in trying it out and perhaps
publishing a short review?

It sounded interesting, so I asked for
a few more details. He explained that
he had written the interpreter to run in
systems with as little as 4K of RAM, to
allow those with such systems to be
able to program them rapidly and easily
for useful tasks. He had managed to
squeeze the interpreter itself into a
mere 1.6K bytes of memory, by using
single-character commands, reverse
Polish notation, and an efficient way of
packing the source program into
memory.

At my invitation Mr Peek sent a
cassette of his interpreter to me a few
days later, along with a copy of the
literature he is supplying with it. Since
then I have been able to spend some
time using it and discovering its
capabilities.

For convenience the program is best
visualised as divided into two sections:

the interpreter proper, which translates
and executes the source program in
"run" mode, and a text editor which is
used for feeding in, modifying and
listing the source program.

The text editor has similar functions
to those found in other interpreters,
although they are used a little different-
ly because of the different way that this
editor packs the source statements into
the RAM buffer. Unlike other inter-
preters, this one does not accept line
numbers from the programmer — it
supplies its own, which are attached to
lines in simple incrementing order.

Doesn't this make it hard to insert ex-
tra lines, when you need to? No, you
can use the editor functions to insert or
delete lines as required. All that
happens is that when you do this Micro
BASIC simply re-numbers all of the
lines.

It takes a little while to get used to
this if you have been using a more con-
ventional BASIC interpreter, but once
you do it is just as convenient as the
conventional approach.

As far as the interpreter itself and its
operation are concerned, probably the
most obvious differences from conven-
tional BASIC and Tiny BASIC inter-

preters are the use of single-character
statements and reverse Polish notation.
But again these don't really take long to
get used to, and many people prefer
reverse Polish notation — as witnessed
by the popularity of calculators which
use it. Many people also like the ability
to shorten BASIC statements to single
characters, because it lets them pack in
larger programs!

There are a few differences from nor-
mal BASIC in the actual statements, but
not of a major nature. Instead of the
familiar IF ... THEN statement, Micro
BASIC has a "TEST" statement, but this
functions in a similar fashion. Similarly
string input and output statements ("A"
and "0") and a "Memory (M)" state-
ment which performs similar functions
to the conventional PEEK and POKE.

Micro BASIC has a random number
function, although this works in a fairly
unorthodox fashion. When this func-
tion is reached during program execu-
tion, a "I" is printed out on the ter-
minal and the operator is expected to
press any key. The time delay before a
key is pressed is used to generate a ran-
dom number. Rather unusual, but then
so are some other random number
functions!

Two statements offered by Micro
BASIC which are not found on many
small BASIC interpreters are a variable
increment and decrement. It also has a
CALL statement, and the ability to have
multiple statements on a line. Unlike
most other BASICs you can also have
comments anywhere on a line, even
between statements.

A sample of a small program written
in Micro BASIC is shown here so that

LI
I P"HICRO BASIC NUMBER GUESSING GAME"
2 P VIVRA?' WILL BE OUR UPPER LIMIT IA P
3 P"NOV PRESS A KEY" LAI / •411. 041 ST= COUNT OF TRIESS
4 P"RIGHT•HERE WE GO I"
5 P"GUESS4 " IG LT 1•41. %INCREMENT COUNTS
6 TG.R P"TOO BIG" G5
7 TG<R P"TOO SMALL" 65
8 P"YOU GOT IT IN".1%."TRIES"
9 P"WANT TO PLAY AGAIN? IisYES.B"NO" IS
10 TEfr• I G3
Ii P"BYE" SMUST HAVE BEEN NOS
12 E
13

LEFT: Micro BASIC comes as a cassette with accompanying
literature. The early notes shown were handwritten, but
those now supplied are typed. ABOVE: A sample program,
written in Alan Peek's Micro BASIC.

GI
MICRO BASIC NUMBER GUESSING GAME

WHAT WILL BE OUR UPPER LIMIT 7100

NOV PRESS A /CETI*
RIGHT•HERE WE GO I
GUESS., ?SO
TOO SMALL
GUESS 775
TOO BIG
GUESS 767
TOO SMALL
GUESS= 771
TOO BIG
GUESS*, 169
TOO SMALL
GUESS 770
YOU GOT IT IN 6 TRIES
WANT TO PLAY AGAIN? 1rYES.OsN070
BYE

How the sample Micro BASIC program
looks when running on a small 2650
system.

you can see how it looks. Note the
comments, identified by dollar signs at
each end. Also the input statements,
represented by "I" characters, and the
test statements ("T"). A listing is also
given showing the same program when
running.

The literature which comes with
Micro BASIC includes a full source
listing. This is all hand written, but in-
cludes plentiful comments. Alan Peek
explains that he is happy for users to
understand how the interpreter works,
and to make mods and improvements if
they wish. A generous attitude, to be
sure.

The explanatory material supplied is
quite helpful and easy to follow,
although those with hawk eyes will be
able to spot quite a few spelling errors.
I did, but then that's part of my jobl
Despite this I think most people will
find it tells them all they need to know
about Micro BASIC.

In short, Alan Peek's BASIC seems a
very practical piece of software, well
suited for small 2650 systems despite a
few unorthodox features. It seems
good value for money at $8.50 for a
cassette with instructions and source
listing, including postage.

You can get it from Alan Peek by
writing to him at 10 Gale Street,
Woolwich NSW 2110.

ELECTRONICS Australia, April, 1979 	85

Neatly housed in a small desk-top case, the Instructor 50 system comes complete
with three comprehensive training manuals.

A training system from
Signetics: Instructor 50

Since 1976 when microprocessors
really began to " take off", many small
microcomputer systems using them
have appeared on the market. Some of
these have been intended for the hob-
byist, while others have been
"evaluation" kits or systems intended
to help engineers become familiar with
the particular microprocessor con-
cerned.

But very few systems have been
designed._ specifically for training and
educationalpurposes. This is a pity,
because the concepts involved in
microcomputer operation are relatively
unfamiliar to many of the people who
are going to have to operate them,
program them, design them into equip-
ment or service equipment which will
use them.

Until now, those wanting to become
familiar with microcomputer concepts
have generally had to get hold of a
small hobby or evaluation system, and
largely use it to teach themselves by ex-
perience. Most such systems have been
rather poorly supported by user
literature, particularly when it comes to
the introduction to basic concepts.

The Signetics "Instructor 50" system
is an attempt to fill this very gap. It is a
small desktop unit designed specifically
for training, and comes complete with a
comprehensive set of training manuals.
Also supplied as part of the training
package is a cassette tape with eight
demonstration programs, ready to feed
into the system via a standard cassette
recorder.

Superficially the har aware side of the
Instructor 50 looks rather like many of
the small evaluation systems, except
that it comes as a small cabinet rather
than a naked PC board. It has a hex-
adecimal data input keyboard and an
eight digit 7-segment LED display, with
a separate 12-key pad for feeding in
commands to the monitor program.

Like some of the evaluation systems it
has an inbuilt cassette tape interface,
which will operate with any normal

audio cassette recorder. However un-
like the majority of evaluation systems
it also has full buffering and decoding
for system expansion using the S-100
bus convention — a feature which will
no doubt make it of interest to hob-

byists and small business users.
As you might expect, the Instructor

50 is based on the Signetics 2650
microprocessor. Along with the 2650 it
has 512 bytes of RAM for user programs
and a 2656 SMI (system memory inter-
face) device which contains a 2K byte
monitor program in ROM, together
with 128 bytes of RAM for the monitor
scratchpad.

The monitor program built into the
SMI is rather more powerful than is
usually found in evaluation systems.
Besides the usual facilities for entering
program instructions and data, examin-
ing memory and processor registers,
and running programs, it offers a
number of features which make the

Instructor 50 easier and more straight-
forward to use.

For example there is a "fast patch"
data entry mode, which allows instruc-
tion and data bytes to be loaded into
memory rather faster and more con-
veniently than the normal "display and
alter" mode. There is also a single-step
run mode, in which you can step
through programs instruction by in-
struction, and a breakpoint facility
which enables you to exit from a
program at any desired point with the
processor's status preserved so that you
can analyse what had happened to that
point.

The monitor commands concerned'
with the cassette interface are also
more powerful than is usual. The "write
cassette" command used to dump a
program or data block to tape allows
the block to be given a file identifica-
tion number (from 00 to FF hex), while
the "read cassette" command may be
used to seek and load either a specified
file, or the first file encountered. There
is also an "adjust cassette" command,
in which the Instructor 50 can be used
to indicate the optimum playback level
for the cassette tape machine.

In short, then, the Instructor 50
hardware seems to have been designed
with particular emphasis on flexibility
and convenience of use -- making it

Described by Signetics as a "desktop computer", the Instructor 50
has been designed primarily as a training tool. It offers a number of
features not found on small evaluation systems, and comes com-
plete with both a comprehensive set of training manuals and a tape
cassette loaded with eight demonstration programs.

by JAMIESON ROWE

92 	ELECTRONICS Australia, May, 1979

especially suitable for use as a training
tool.

Of course what tends to make it of
even more interest as a training system
is the accompanying literature. This
comprises three separate manuals, all
about 215 x 275mm, and with a total of
about 600 pages between them.

By far the thickest of the three
manuals is the Users' Guide, which is a
comprehensive guide to the system's
hardware, software and operation. This
manual gives an introduction to
microcomputer basics, a description of
system operation, an explanation of
the control functions and monitor
commands, full details of the 2650 in-
struction set, and a useful glossary of
microcomputer terms. It also gives full
circuit details, a full listing of the
monitor program, and calling details
for useful monitor sub-routines.

The second of the manuals is an in-
troductory guide for those who need
additional background in logic, binary
numbers and basic computer opera-
tion. It goes into these subjects in con-
siderable detail, yet in a straightforward
and easily understood fashion.

The third book is a software
applications manual. Along with a brief
revision of Instructor 50 operation it
gives eight demonstration programs
designed to illustrate various aspects of
microcomputer programming. Each
program is described in depth, with an
explanation of its operation and use
together with a full listing.

The eight programs described in the
applications manual are in fact those
provided on the demonstration
cassette which comes with the Instruc-
tor 50, so none of the programs has to
be fed into the system by hand. The
programs are titled "Electronic
Billboard", "Desk Clock", "Stop
Watch", "Crap Game", "Beat the
Odds", "Slot Machine", "Train" and
"Instructor 50 Music Theme".

After looking through the manuals
and using the Instructor 50 for a while
my impression is that both have been
very carefully planned. They integrate
together to form an attractive teaching
package, which seems particularly well
suited for providing people with a
sound but easy to follow introduction
to microcomputers.

At the quoted price of $390 plus 15%
sales tax the Instructor 50 costs a little
more than typical evaluation systems,
but still seems, quite good value for
money considering its potential as a
training tool. I imagine schools,
colleges and industrial organisations
will find it of considerable interest.

The Instructor 50 is available from
Philips/Signetics stockists Cema
Distributors, Soanar Electronics,
Technico Electronics, Radio Parts, Fred
Hoe & Sons (Brisbane), Applied
Technology and Silicon Valley stores. It
is also available from the Electronic
Components and Materials division of
Philips Industries, with offices in each
state. 	 evi

LECTRONICS Australia, May, 1979 	93

•

Learning by doing is still the best,
niethod of education. And when it comes to
learning about the world of microcomputers,
o won't find a better method than the

Instructor 50.
Its the fast, ready-to-use learning device

that immediately provides "fiands on"
experience for gaining inicroprocessor
knowledge - in your home, offic,e, or
in the classroom.

The Instructor 50 is a CONIE'LETE
package - including a power supply, a
LED prompting display, and both
functional and hexadecimal keyboards.
You also get S-100 compatibility for adding
men-lox-3T and other peripherals. This lets you
e x p an d the machine's capability - and your
rnicroprocessing applications knowledge,
Moreover you can easily build a program
library, by recording your own audio
assettes.

The Instructor'50 comes complete
with a LTsers' Guide, alcyng with step-by-step

on, assette supplied tvith each lizstructor 50

instructions for those with no previous
microproc,essor experience.

Signetics offers one of the broadest
choices of nii.crprocessors i tlie industry,
This knowledge stands behind the
Instructor 50. When you need to learn about
rnicroprocessors, start with Signetics. Start
with histnictor 50.

We can help you
understand microprocessors.

minutes
a subsidia.ry of U.S. Philips Corporation

Fc,r of information write to:-
Philips Electronics Components and. Materials
P.O. Box 50, L4N1E COVE N.S.W. 2066.

PHILIPS
VVe want You to have the best

McCANN 153.0257

no4_

3 1

NS5711111

12

'A SS

WA I

11 411

12 W is a

15 Inc

Un

4

„•C337

II 3 4

D OUTPUT
PORT

LT 1

4

33k

	

VAS 	

3.3k

	

WE. 	

3.3k

	

*MS 	

3.3k

	

WA 	

FOUR DIGIT LED DISPLAY

10

1
VIEWED FROM

ABOVE

a

(1)
C

VIEWED FROM
DILOW

Psst! Want the most complex clock in town?

LED display for your 2650

There are many applications where a
processor is required to drive a simple
numerical display, and this can be
achieved in a variety of ways. It is possi-
ble to have either a multiplexed or
non-multiplexed display, for instance,
and one can decode from binary or
BCD to seven-segment display format
with either hardware or software. The
circuit presented here uses hardware
for the BCD to seven-segment
decoding function, but has the mul-
tiplexing of the digits under software
control.

A single 4511 CMOS IC is used to
convert incoming BCD numbers to
seven-segment format, and is con-
nected to bits 0 to 3 inclusive of the "D"

non-extended output port on the 2650
system. Refer to the November 1978
issue for details of how to implement
the I/O ports available with the 2650
CPU. Four 470k resistors are used to
pull the inputs low, so that the decoder
is present to the "07' state if no input
signals are connected.

The lamp test (LT) and blanking input
(BI) pins are tied permanently high,
while the latch enable (LE) pin is tied
low. +5V is supplied to the 4511 from
the 2650 Mini Computer, and bypassing
is provided by a 100uF electrolytic
capacitor, in conjunction with a 0.1uF
ceramic or polyester capacitor.

A four digit common-cathode LED
display is required, and several options

are available here. For the author's
prototype, a National Semiconductor
multidigit display type number
NSB7881 was used. This has four 0.7in
digits mounted on a common PCB.
Similar units with 0.3in and 0.5in high
digits are also available, coded NSB3881
and N5135881.

A similar unit by Fairchild is available
from Dick Smith Electronics, and was
advertised in the March 1979 issue, at
the very reasonable price of $4.95. The
third alternative is to construct the dis-
play from individual seven-segment
displays, such as the LT303 or TIL313
devices.

The 7 segment outputs of the 4511
are connected to the commoned seg-
ment lines via 82 ohm current limiting
resistors. The four common cathode
digit lines from the display are driven
by BC337 switching transistors. BC548s
could be substituted if required. Base
signals for the transistors are developed
from the remaining four "0" output
port bits, bits 4 to 7 inclusive.

As you can see from the
photographs, the prototype was con-
structed on a small piece of Veroboard,
and connected to the computer by a
short length of rainbow cable. It is not
necessary to use a socket for the 4511,
just exercise the normal precautions
during soldering. Refer to the
November 1978 issue for details of wir-
ing the connector to the computer.

The completed display unit can be

*GIE00 440 459
0440 76 40 	 PPSU 40
0442 75 18 	CPSL 18
0444 04 82 	 LODI,R0 82
0446 FO 	 WRTD,R0
0447 F9 7E 	 BDRR,R1 0447
0449 04 46 	 LODI,R0 46
0449 FO 	 WRTD,R0
044C F9 7E 	 BDRR,R1 044C
044E 04 25 	 LODI,R0 25
0450 FO 	 WRTD,R0
0451 F9 7E 	 BDRR,RI 0451
0453 04 10 	LODI,R0 10
0455 FO 	 WRTD,R0
0456 F9 7E 	 BDRR,R1 0456
0458 19 6A 	 BCTR.UN 0444

Interfacing your 2650 Mini Computer to a set of common-cathode
LED displays requires only a single IC and a handful of other parts.
With such an Interface you can have your 2650 perform many
number display tasks — including display of the time!

by DAVID EDWARDS* 69 Anglo Road, Campsie, NSW 2194

Fig. 2: A listing of the small routine
written by the author to demonstrate
the LED display.

Fig. 1: The circuit for the author's software-driven
four digit LED display. It interfaces to the 2650
Mini Computer via the non-extended "D" output
port.

94 	ELECTRONICS Australia, June. 1979

0440
0450
0460
0470
0480
0490
04A0

76
E6
19
75
44
38
02

40
60
05
10
OF
71
44

75
IA
00
18
17
01
OF

18
20
CO
53
FO
44
64

3F
06
77
04
04
OF
10

02
00
10
05
DC
64
38

DB
75
05
F8
F8
40
5C

77
20
51
7E
7E
38
77

08
04
06
CO
17
6A
10

75
67
ID
CO
75
02
CO

21
81
38
18
18
38
17

08
94
ID
68
01
60

0C
CI
F9
50
38
64

82
E5
7C
50
6E
20

94
24
FA
50
64
38

C2
IA
7A
50
80
63

The photographs above show two views of the
prototype display built by the author on a small
piece of Veroboard. The wiring is not critical.

Fig. 3 (left): A HEX LISTING OF THE TIME program,
which turns the 2650 and display into a 24-hour
clock.

tested before connecting it to the com-
puter. Connect +5V to the board, and
observe the display. No numerals
should be visible. If any are, switch off,
and check the wiring associated with
the four transistors.. Assuming all is well,
use a clip lead to connect the number 4
input bit to +5V. The right-most digit
should now read "0", with all other
digits off.

By applying +5V to inputs 5, 6 and 7
in turn, you should be able to make the
digits read zero in turn. If you want to,
you can apply BCD codes to the inputs
of the 4511 by pulling the appropriate
pins high, and check that the ap-
propriate digits are displayed.
However, if you were like the author,
you will want to see the computer
operate the display, and will not bother
to carry out this test.

Fig. 2 is a listing of a small program
which will exercise the display. It is
completely relocatable, and can be
stored anywhere in memory. The first
address is the starting address. The
orogram assumes Mai the display unit is
connected to the D output port.

The program repeatedly writes four
data bytes to the display, with a small
delay between each successive write.
The first data byte is X'82, and this dis-
plays the numeral 2 in the left most
digit of the display. The nybble "8"
(binary 1000) turns on this digit, while
the nybble "2" is decoded by the 4511
to produce the seven-segment code for
the numeral 2.

Similarly, the second data byte (X'46)
displays a 6 in the 2nd digit from the
left, and so on. The delay between each
WRTD instruction, produced by the
BDRR, R1 instruction, is necessary in
order to provide a glitch free display.
Without this delay, all segments of the
display tend to glow, due to inherent

circuit delays caused by stray
capacitance:

You can change the number dis-
played by altering the lower four bits of
locations X'445, 448, 44F and 454. To
turn a selected digit completely off, use
a non-BCD number such as X' A to F.

The second program presented here
is shown as a hex listing in Fig. 3. It oc-
cupies locations X'440 to 4AA inclusive,
and is again completely relocatable. It is
called TIME, and will make the com-
puter and display unit appear to be a 24
hour clock. It uses the Pipbug routine
GNUM to get an initial starting time
from the line buffer.

To call the program, type G440 AABB,

where AA is the current time in hours
(e.g. 20 if it is 8PM), and BB is the
current number of minutes past the
hour. Do not press the carriage return
key until the current minute has end-
ed; the lime displayed will then be cor-
rect to the nearest second (provided
you press the cr key precisely at the 60
second time).

The program assumes that the CPU
oscillator is running at exactly 1MHz.
Changing the contents of location
X'467 by one will vary the timing by ap-
proximately one part in 10,000. If loca-
tion X'467 is incremented, the clock will
slow down. To return to Pipbug, ores)
the reset switch.

ELECTRONICS Australia. June. 1979 	95

An improved
2650 disassembler
Here is an improved disassembler program for small 2650
microcomputer systems, designed to complement the mini line
assembler. It will translate all 2650 machine code back into
mnemonic form, calculating operand addresses as it goes — mak-
ing it ideal for program troubleshooting. With a minor change and
the addition of a small routine it can also be used to prepare fully
commented "source" listings.

by JAMIESON ROWE

An assembler program can be a very
handy piece of software when you've
written a program and want to feed it
into your computer. But when your
program is in the machine and won't
run properly or doesn't do what you
expected (one of these is usually the
case!), the assembler won't help you
much. Far more useful when you've
reached this stage is a disassembler
program, which as the name suggests
does just the opposite of an assembler:
translate from mathine code back into
human-readable mnemonic language.

On the surface, a disassembler
mightn't sound as if it would be of
much help when you're trying to track
down those elusive program bugs.
After all, in translating back to
mnemonic language it merely gets you
back to where you started! This might
be so in theory, perhaps, but in practice
things generally aren't that simple.

What tends to happen is that after
feeding your program into the system,
either via an assembler or directly in
code you have assembled yourself, you
try running it and then discover the first
batch of bugs. Generally these are silly
mistakes, which you correct as you find
them by patching in small corrections
— changing the condition criterion for
a branch, adding in missing instruc-
tions, and so on.

Unless you have a major change to
make, the tendency is to code the

latches yourself, as this is faster than
oading in and firing up an assembler.
But in doing so, you tend to make
coding errors which themselves
produce new bugs. In any case it is all
too easy to forget to change dis-
placements in nearby instructions
which, while not directly involved in a
patch, may be affected by it.

The end result is that after you have
made a certain number of patches, the
program has become rather different
from the way it was when you started.

This can make it quite difficult when it
comes to tracking down the more sub-
tle logical bugs, which are generally still
in the program waiting to be dis-
covered. At this stage of the
proceedings it can be a big help if you
can use a disassembler to provide an
accurate mnemonic listing of the
program as it now stands.

Another important area of use for a
disassembler is when you acquire a
program in "naked" machine language
form, without any accompanying
source listing or other descriptive
literature. It may run on your system,
but you want to see how it works in
order to make sure that you use it
properly. Or it won't run on your
system, perhaps because it was written
for a slightly different system and you
want to work out how to modify it so
that it will work on yours. Or you may
want to see how to provide it with ad-
ditional features, or how to adapt it to
perform a similar but different job ...

The listing produced by a dis-

*2 1222 	189E 1BBD 30

2652 DI SASSEMBL ER VERSION 2

129E IFI BED EICTA. IBEC
I BA I 3F1D4E &STA, UN I D4E
16A4 0604 LODI 	R2 04
1 BA6 07FF L001.133 FF
13A8 0F2A142 LOCA,Ft3 *1A42+
113AB CF7A1 I STRA.R3 IA I I t
1 BAC FA78 BDRR,M 19A8
1220 0705 LODI, Ft3 25
12132 OFFA42 LODA,R3 *IA42.
11325 02 STRZ, R2
11326 C3 STRZ, R3
1287 4607 ANDI, R2 OF
1889 4770 AWDI.R3 FO
I BBB 562C COMI 	112 PC
1BBD IC I CC9 ECTA. Z 1009

Fig. 1: A sample of the disassembler's
output. Its calling format is also shown.

assembler won't give you all of the in-
formation in a good source listing, but
if you can't get hold of a source listing
it's certainly the next best thing.

As those with 2650 microcomputer
systems are probably aware, a small dis-
assembler for 2650 code has been
available for quite a while now. One of
the pioneering software programs
produced by the 2650 Users' Group, it
was written by Ian Binnie. A modified
version of this program prepared by the
present author was made available to
EA readers on our 1978 Software
Record.

Helpful though this early dis-
assembler has been, it did have a
number of disadvantages. One
problem was that it didn't disassemble
quite a few of the single-byte and
double-byte instructions; another was
that it made errors in calculating the
absolute address referenced by forward
referencing relative indirect addressing
instructions.

A further problem was that it didn't
fully disassemble absolute addressing
instructions, and gave no indication of
indirect or indexed addressing modes.

Taken individually, none of these
shortcomings was all that serious. But
collectively they have tended to limit
the disassembler's value.

While I was working on the 2650 mini
line assembler, it occurred to me that it
should be possible to write a more
comprehensive disassembler which
could make use of the assembler's
mnemonic lookup table. So as soon as
the assembler was completed, I set
about writing a new disassembler along
these lines. It took a while to write and
debug, but finally here it is!

As the foregoing suggests, the new
disassembler is meant to be used in
conjunction with the mini assembler.
This is because it shares the same
mnemonic lookup table, located from
X'17CF-1A01. It also uses the same
RAM buffer area (X'1A02-1A54) for its
own line buffer and scratchpad area, to
save memory space. Needless to say this
doesn't mean that you can't use the dis-
assembler by itself — all you need to do
in order to do this is load it in together
with the lookup table.

The disassembler itself is 726 bytes
long, occupying memory from X1B00
to 10135 — so that it fits into memory
immediately above the assembler.

78 	ELECTRONICS Australia, August, 1979

MOO 76 60 77 02 3F 02 DB 3F IC IC 3B F9 CD IA 48 CE
1810 IA 49 E9 AB 19 07 IE 02 50 EA AA 99 FA 38 E6 CE
1820 IA 40 08 FC CC IA 41 18 08 05 ID 06 9E 3F ID BA
1830 CO 07 FF 04 20 CF 3A 02 E7 22 98 79 07 FF 0C IA
1840 46 3F ID 30 OC IA 47 3B F9 87 01 0C 9A 46 38 F2
1850 75 09 77 02 07 00 06 12 EF 78 6D 18 06 87 02 FA
1860 77 IB 2C 05 19 OF 313 6B C2 IB 36 74 2A 75 30 76
1870 36 77 3C CO 72 40 78 BB AS 9B AE 84 B4 135 BA 92
1880 CO 93 C6 12 CC 13 D2 BF D8 9F DE 10 EA II FO 05
11390 18 06 28 44 FC 3F ID 55 E7 00 98 08 07 07 IF 18
IBA0 ED 3F ID 4E 06 04 07 FF OF BA 42 CF 7A 11 FA 78
1880 07 05 OF FA 42 C2 C3 46 OF 47 FO E6 OC IC IC C9
IBCO E6 08 IC IC 9B E6 04 IC IC 65 E6 02 IC IC 48 E6
1BD0 01 IC IC 25 3F ID OD 3F IC EF 3F ID 70 C2 20 F6
IBEO 80 98 02 04 IF 07 18 3F ,1D 30 02 38 F15 20 CF 3A
IBFO 02 05 IA 06 02 3F ID 8A 3F IC F111 ED IA 48 ID 00
ICOO 22 IA 05 EE IA 49 19 F7 75 09 04 FF 8C IA 41 C8
1C10 FC E4 00 9C IB 31 3F 02 86 IF 1B 22 CD IA 46 CE
1C20 4A 47 17 CO CO F7 10 18 IA 0C 9A 46 CI 44 03 45
IC30 DC 25 14 98 04 06 EC 18 02 06 D4 05 17 3F ID 55
1C40 3F ID 78 07 16 IF 1B ED F7110 18 OD OC 9A 46 44
IC50 03 05 17 06 D4 38 E7 3B ES 3F ID OD 07 18 3F ID
IC60 30 07 IA 113 El OC 9A 46 CI 44 03 F5 10 18 04 06
1C70 D4 IB 02 06 EC 05 17 3F ID 55 3F ID 78 38 D8 3F
1C80 IC EF 3F ID 70 CI 77 09 8C IA 47 C2 3F ID BD CI
IC90 3F ID 23 02 3B C9 07 IC IF IB ED OC 9A 46 44 03
ICAO 05 17 06 D4 3B D2 38 D3 3F ID 0D 3F IC EF 50 50
ICB0 50 50 50 44 03 18 07 C3 OF 77 CF CC IA IF 3F ID
ICCO 23 3F ID 17 07 ID IF 113 ED OC 9A 46 F4 40 18 04
ICDO 06 EC IB 02 06 D4 05 17 44 03 3F ID 55 3F ID 78
ICED 38 28 3B OB 44 7F 3F ID 2B 38 2C 07 IC 113 D8 FS
ICF0 80 16 04 2A 07 17 CF 3A 02 01 17 77 0A 75 01 OD
1D00 IA 46 OE IA 47 86 01 85 00 3F IC IC 17 3B 6C 0C
IDIO 9A 46 07 06 3B IA 17 38 62 0C 9A 46 3B 12 07 08
ID20 38 OE 17 45 IF 0C IA 46 44 60 61 07 18 3B 01 17
1030 CI 75 OA 50 50 50 50 38 05 01 38 02 01 17 44 OF
ID40 E4 0A IA 04 84 37 18 02 84 30 CF 3A 02 17 CD IA
ID50 42 CE IA 43 17 38 77 07 04 EF FA 42 14 75 01 77
1D60 08 86 06 85 00 ES 19 98 6C E6 F6 IA 68 07 00 17
ID70 44 7F F4 40 16 64 80 17 04 2C CC IA 15 06 02 07
ID80 FF OF BA 42 CF 7A 16 FA 78 17 CD IA 44 CE IA 45
1090 75 08 07 FF OF BA 44 IC 00 8A BB AO IB 76 OD 0A
1DA0 32 36 35 30 20 44 49 53 41 53 53 45 4D 42 4C 45
IDBO 52 20 56 45 52 53 49 4F 4E 20 32 0A 00 85 01 98
IDCO 07 01 IA 08 04 01 IB 08 01 9A 04 04 FF IB 01 20
IDDO 75 09 8C IA 46 17

Fig. 2: A full hex listing of the new disassembler, less its lookup table.

The starting address is 1800, and
you call it by typing an extended
PIPBUG "GO" command. In other
words you type an input GO command
which includes information for the dis-
assembler, telling it the memory range
you want it to work on, and whether or
not you want it to split the output
listing into pages of a certain size, with
headings.

The precise calling format required is
similar to that for the earlier dis-
assembler:

G1BOOsAAAAsBBBBsCCr

where "s" stands for a space and "r"
stands for a carriage return. AAAA is
the start address (in hex) of the section
of program you want disassembled,
while BBBB is the end address. These
are the only two essential parameters
required, and of course the end ad-

. dress should be greater (higher) than
the start address — otherwise the dis-
assembler will throw you out with a
peremptory "?".

The third parameter "CC" is an op-
tional one used to specify the number
of lines per page, where a long listing is
to be produced. CC is a two-digit hex
number, so you can specify pages of up
to 255 lines each. Each page will be
given the title "2650 DISASSEMBLER
VERSION 2", and at the end of each
page the disassembler will pause to
allow you to advance the paper in a
printer, etc. You can then prompt it to
continue with the next page by hitting
any key on the terminal keyboard.

If you omit the third parameter, or
give it a value of zero (00), the dis-
assembler assumes that you don't want
pagination. Accordingly it will omit the
titles, and simply provide an unadorned
continuous listing. This mode of opera-
tion is very suitable for quick dis-
assembly of numerous short instruction
sequences, when you are
troubleshooting — you don't have to
worry about typing in the third
parameter, and operation is faster and
more efficient because the dis-
assembler doesn't have to provide a ti-
tle each time.

A hex listing of the disassembler is
given in Fig. 2. This is complete part
from the mnemonic lookup table given
as part of the assembler.

In operation, the disassembler will
provide mnemonic translations of all
bytes it finds in the designated memory
address range, providing they repre-
sent valid 2650 instruction codes. Bytes
which are not valid 2650 codes will be
printed at the start of the appropriate
line, but will not be translated. Natural-
ly enough the disassembler has no way
of knowing whether the memory range
you specify contains a program, or data
— it is up to you to look after that.

If you do make a mistake and set it
loose on some data, don't worry.
Nothing will be damaged. All that will
happen is that the disassembler will try
valiantly to make some sense out of the
data, translating it into whatever

pseudo-program it may represent. The
odds are that some of the data numbers
won't even' correspond to valid 2650
opcodes, so the listing will probably
have a fair number of blanks in the
mnemonic columns.

The main thing to note is that if you
do force the disassembler to struggle
through some data and then into some
valid program coding in the one run, it
may well be thrown out of kilter for the
first few valid instructions after the
data. This is becuase at the end of the
data section it may be part-way through
the disassembly of a "fake" multi-byte
instruction, causing it to regard the first
byte or two of the real instruction as the
rest of the fake instruction.

If this happens the first few instruc-
tions after the data will be wrongly dis-
assembled, until the coding forces the
disassembler back into correct "phase"
with respect to the start and finish of
each instruction.

Incidentally the same sort of
malfunction can occur if you have
made a mistake in the coding being dis-
assembled, so that the opcode of an in-
struction has accidentally been chang-
ed into that for an instruction of

different length. This will again throw
the disassembler out of kilter, because
it will be misled into regarding opcode
bytes as operand bytes and vice-versa.

There is also a third way the dis-
assembler can be led astray: by giving it
the wrong memory range starting ad-
dress, when you call it. Needless to say
if you tell it to start in the middle of the
first instruction rather than the start, it
has no way of knowing. it will simply
press on, translating away as best it can.

Incidentally, the fact that the dis-
assembler can be led astray in these
ways does not mean that it is faulty.
There is no way in which any dis-
assembler can tell if the numbers it is
processing are instructions, or data -
after all, the only difference between
an instruction byte and a data byte is
the way the computer is told to inter-
pret them. Similarly where a dis-
assembler has to deal with variable
length instructions, there is no way it
can infallibly identify opcode bytes and
distinguish them from operand bytes —
they're all just numbers.

In other words, make sure that you
start the disassembler off on the right
foot when you call it. And if it should

ELECTRONICS Australia, August, 1979 	79

AN IMPROVED 2650 DISASSEMBLER

become misled by some data you've
forgotten to tell it to bypass, or by an
opcode you have accidentally changed
into one for an instruction of a different
length, put the blame where it really
lies. After all, it's only a dumb program
— you're supposed to be the intelligent
one!

After it has finished disassembly of
the designated memory range, the dis-
assembler will return to PIPBUG as
usual. Or, to be mure accurate, it will
return to PIPBUG when it finishes dis-
assembly of the last instruction which
starts in the designated range. This
means that when you specify the end of
the range to be disassembled, you
don't have to work out the very last
byte of the last instruction in the range.
Just specify the address of any byte in
the last instruction to be disassembled

*DISASSEMBLER.

IDD6 3F0286 BSTA. UN 0286
IDD9 E40D COML. R0 OD
IDDB I C008 A BCTA. Z 008A
I DDE E409 COML. R0 09
I DE0 1804 BCTR. Z IDE6
I DE2 BBAO ZBSR *0020
1 DE4 1870 BCTR, UN IDD6
IDE6 BBA5 ZBSR *0025
1 DE8 070F LODI. R3 OF
IDEA 3F0361 BSTA. UN 0361
1 DED 1867 13CTR. UN IDD6

Fig. 3 (above): An optional add-on
routine which lets you add comments
to the listing.

Fig. 4 (right): A further routine, tail-
ed separately, which will print out
ASCII message strings stored in
memory.

— the disassembler will automatically
finish the instruction before it bows
out.

This can save valuable time, because
often you're working from an earlier
listing for reference, and it's con-
venient to give the end of the range as
the address of the first byte in the last
instruction.

Like the assembler, the new dis-
assembler uses a number of utility sub-
routines from PIPBUG. In this case it
uses GNUM to fetch its input
parameters, CHIN and COUT to com-
municate via the terminal, and CRLF to
provide carriage return/line feeds.

As you can see from the sample
listing in Fig. 1 (which is actually part of
the disassembler itself), the basic listing
produced by the disassembler is 30
characters wide. This makes it suitable
for all normal terminals and printers.

Note two things about the dis-
assembler's listing, as illustrated in Fig.
1. One is that for indexed instructions

the disassembler uses the same format
as the line assembler, showing the in-
dex register in the R/C field im-
mediately after the opcode mnemonic.
The other point is that for convenience
the disassembler places its indexing
symbols AFTER the operand address,
not before it.

A third point to note is that the R/C
mnemonic produced for the BDRR in-
struction is a condition code mnemonic
(N) rather than the more usual register
code mnemonic. This is a minor short-
coming of the disassembler, due to a
programming compromise. It also oc-
curs when BIRR instructions are dis-
assembled.

Apart from these three minor
differences, the listing produced by the
disassembler follows the standard 2650
instruction format.

ACCEPT CHAR VIA CHIN SR
TEST FOR CR
EXIT VIA CRLF IF FOUND
TEST FOR TAB (1T)
GO SET UP IF. FOUND
NOT CR OR TAB: ECHO VIA COUT
a LOOP BACK
TAB: GIVE CALF
SET R3 AS COUNTER
a USE AGAP SUBR FOR 15 SPACES
THEN LOOP BACK FOR COMMENT

2650 DISASSEMBLER VERSION 2

IDF0 7660
I DF2 3F02DB
I DF5 3F 11)8 A
IDF8 9B22

You may also have noticed from Fig.
1 that the basic listing produced by the
disassembler is not all that much
different from a full "source" listing -
the only thing lacking is the comments.
This suggests that the disassembler
could be used to produce source
listings of any prdgram stored in your
system's memory, merely by modifying
it so that you can add comments.

In fact I have produced a supplemen-
tary routine which can be added to the
basic disassembler to let you do just
that. The supplementary routine is
shown in Fig. 3 — as a full listing
produced when it was working with the
disassembler, so you can see the type of
listing it lets you produce.

As you can see it is quite a short
routine, which fits into memory im-
mediately after the disassembler itself.
To patch it into the disassembler, all
you need to do is change the instruc-
tion beginning at address 1D97 from
1C008A into 1C1DD6.

What the routine does is cause the
disassembler to pause after it has listed
each disassembled instruction. You can
then type in any comment you wish
from the terminal keyboard.

If you end the comment by typing a
carriage return, the routine will return
to the disassembler via the CRLF sub-
routine and the next instruction will be
disassembled after the usual carriage
return and line feed. However if you
end by typing ''TAB" instead of carriage
return, the routine will remain in com-
ment mode and will provide a carriage
return, line feed and 15 spaces. This lets
you feed in a full line comment, of the
type used to label routines, etc. The
three comment lines at the top of Fig. 3
itself were added in this way.

You can provide line spaces between
parts of your listing by using the TAB
key, or using the LF key.

Together the disassembler and
supplementary routine provide a very
convenient means of making fully com-
mented source listing. As well as using
them to produce the listing shown in
Fig 3, I have already used them to
produce a full source listing of the dis-

assembler itself.
For those who would like to analyse

the disassembler's operation in detail,
copies of the full listing are available
from our Information Service for a fee
of $4.00, to cover photocopying and
postage.

Finally, there's one thing the dis-
assembler won't do: print out ASCII
message strings in memory, so you can
see what they say. But there's an easy
way to get around this — use a separate
little routine which makes use of the
disassembler's message printing sub-
routine. The routine you need is shown
in Fig. 4 above. It occupies only 10
bytes, fitting in above the comment ad-
dition routine; you call it as shown. a

*ROUTINE TO PROVIDE COMMENT ADDITION
*FACILITY FOR THE IMPROVED 2650

J • ROWE 1/ 4/ 1979

*ROUTINE TO PRINT OUT ASCII MESSAGES
*STORED IN MEMORY. J • RO WE APRIL 1979
*USES MESSAGE PRINTING SUBR IN MY
*IMPROVED DI SASSEMBL ER. AL SO GNUM IN
*PIPBUG. GALL BY G I DF0 AAAA. WHERE
*AAAA IS START OF MESSAGE. NOTE THAT
*MESSAGE MUST END WITH A NULL

PPSU
	

60 	SET FLAG FOR MARK. INHIBIT INT.
BSTA. UN
	

02DB FETCH MESSAGE START
BSTA. UN
	

I D8A it GO PRINT
Z BRA
	

0022 THEN RETURN TO PIPBUG

BO 	ELECTRONICS Australia, August, 1979

08 02 4 03

TO SWITCH
IN VDU

+6V

SWITCH
3000 IN VDU

Here are full details of the adapter board: the circuit,
the full-size PCB pattern and the board wiring
diagram.

ELECTRONICS Australia, August, 1979 	89

1 : 741020
2 : 741502
3 : 7415011
4 7410361

A4

AS

Al

A7

Al

Al

Adapter PCB for
300-baud PIPBUG mod
Here is an item which should be of special interest to those with
2650-based microcomputer systems using the PIPBUG monitor. It
is a small adapter board which lets PIPBUG operate at either 110 or
300 baud, without the need to cut or patch the main CPU board.

by ANTHONY HAGEN
11 Stewart Street, Hawthorne Old 4171.

Like many other readers I built the
2650 Mini Computer of May 1978. After
using it for a while, I felt the need to
have PIPBUG run at 300 baud rather
than 110 baud, in order to dump and
load more rapidly. However I hadn't
worked out how to do this before Mr R.
W. Brown's solution was published in
the February 1979 issue, in the "Circuit
and Design Ideas" column. Mr Brown's
idea was such a good one that I resolv-

ed to put it into practice, but I didn't
like the idea of cutting the tracks on the
main CPU board.

To avoid having to do this, I designed
a small adapter PCB which uses the
same basic circuit as Mr Brown's, but
with a few pin connections changed.
The idea is that the adapter PCB con-
nects via a cable and 24-pin DIL plug to
the main PCB, plugging into the
original socket used for the PIPBUG
ROM; the/ ROM then plugs into a
similar socket on the adapter PCB.

Details of the adapter PCB are shown

below, along with the slightly modified
circuit. I mounted the PCB between the
main PCB and the end of the case, on
two small brackets. Apart from the 24-
way cable back to the original PIPBUG
ROM socket, the new PCB has only one
other connection: a wire to a 110/300
baud control switch.

For convenience I extended this con-
trol wire to a spare set of contacts on
the baud selector switch of my-Low
Cost VDU, by using a spare pin of the
DIN connectors.

The earthy side of the 20mA serial
output circuit serves as the return. This
makes the VDU switch control both the
VDU and the CPU baud rates together.
. My adapter worked immediately,
and surpassed all expectations. I hope
other readers will be able to use my
adapter layout with equal benefit. Qr

Cassette Interface
runs Kansas City, 1200 baud
Microcomputer users looking for a flexible, high performance
cassette interface should find the E & M Electronics CI-1 of special
interest. It will operate at the "Kansas City Standard" frequencies
for compatibility with other systems, but also allows storage and
retrieval of data at up to 1200 baud.

by JAMIESON ROWE

The easiest way of storing and
retrieving both data and programs with
small microcomputer systems is to use
magnetic tape, usually in compact
cassette form. Ordinary audio cassette
recorders can be used for the job,
providing a suitable interface is used to
convert between the computer's logic
levels and the audio frequencies handl-
ed by the recorder.

To date most cassette tape interfaces
used with hobby computers have used
the frequency-shift keying (FSK)
technique, and in particular the "Kan-
sas City Standard" method whereby a
digital 1 is recorded as a tone of 2400Hz
or 4800Hz and a digital 0 as a tone of
1200Hz or 2400Hz. The higher frequen-
cy in each case is for data at 300 baud,
while the lower frequencies are for
data at 110 baud.

While capable of quite reliable
operation at these lower data transfer
rates, the Kansas City Standard is not
really suitable for higher rates. The
problem is that as soon as your com-
puter grows beyond a modest size, and
you develop some useful programs, a
data rate of 300 baud becomes
irritatingly slow. Programs and data
seem to take ages to get into and out of
memory, and you long to be able to
dump and load at a higher rate — say
1200 baud, which is available on some
of the new packaged personal com-
puters.

Unfortunately until now, if you have
used an interface designed to work at
1200 baud or some other high data rate,
you have tended to lose the com-
patibility of the Kansas City Standard.
This can create problems, because hob-
byists often want to exchange data and
programs with each other.

The CI-1 cassette interface from E &
M Electronics has been designed to get
around these problems. It is a dual-
mode interface, able to work in either
the Kansas City format or in a high-
speed Mode capable of handling data
at up to 1200 baud. At his rate the
highest audio frequency recorded on
the tape is 8kHz, which should be
within the bandwidth of most cassette

recorders.
So using the CI-1 allows you to dump

and load most of the time at up to 1200
baud for faster system operation, while
still allowing you to generate and han-
dle material conforming to the Kansas
City Standard, when required.

The CI-1 is based on a phase-locked
loop (PLL) encoding and decoding
system, to provide tolerance to tape
recorder speed fluctuations. The I'LL
and filter circuitry time constants are
switched to change between the Kansas
City and high speed modes of opera-
tion.

To make the interface compatible
with just about any system, its com-
puter and terminal ports can be wired

The 0-1 interlace as
assembled from a kit. As
supplied it doesn't in-
clude a case or power
supply, just the basic
PCB assembly.

for either 20mA current loop or TTL
logic level interfacing.

Other features of the interface in-
clude a "data present" LED, to make it
easier to find the start of data records,
and CMOS switching to simplify the
mode wiring. The interface runs from a
single 5V supply, drawing only 90ma
maximum with current-loop inter-
facing (50ma with TTL interfacing).

The CI-1 interface is available as both
an assembled and tested unit, ready for
operation, and as a do-it-yourself kit.
This is a little unusual, because PLL in-
terfaces are usually a little critical when
it comes to some of the key com-
ponents. To get around any possible
problems, E & M Electronics select and
match the critical components for each
kit, and supply them as a carefully iden-
tified set. They also offer a back-up ser-

vice, in case the kit builder should get
into trouble.

Ed Monsour, the engineer behind E
& M Electronics, sent me a sample CI-1
kit with the idea that I could find out at
first hand how it goes together and per-
forms.

Although the instructions supplied
with the kit are a little brief, they are
quite clear and I found no real difficulty
in putting it together. The only trouble
was a very minor one: connections to
the PCB are via pins and push-on con-
nectors, and PCB drilling tolerances
made the connectors a little hard to
push on properly. But they responded
with a little care and perseverance.

My only other minor gripe is that the
switches supplied with the kit have very
short toggle levers. Presumably this is to
prevent inadvertent operation, but
some users like myself may prefer to
have a longer toggle at least on the
record/play switch. Still, this is easily
fixed.

After following the setting-up
procedure given in the instructions, the

completed CI-1 worked very well. In
Kansas City mode it made recordings
which were fully compatible with my
existing interface, and vice-versa. And
in the high-speed mode it performed as
series of dumps and reloads at 1200
baud without an error.

In short, then, I found the CI-1 inter-
face an excellent performer, and can
recommend it to anyone seeking an in-
terface which offers high-speed opera-
tion with a compatibility option.

The quoted prices of $69.00 for the
assembled unit and $39.00 for the kit
(both plus 15% sales tax if applicable)
also seem very reasonable.

Further information on the CI-1
cassette interface is available from E &
M Electronics Pty Ltd, 136 Marrickville
Road, Marrickville, NSW 2204.
Telephone (02) 51 5880.

ELECTRONICS Australia. August. 1979 	91

Using the PIPLA/PIPBUG2
ROM in your 2650 system

If you built up our popular 2650 Mini
Computer system, you'll probably be
aware that there was provision for a
mysterious 40-pin IC, on the expansion
board described in the November 1978
issue. This was explained at the time as
simply "a possible future addition",
and until now we haven't been able to
clarify the situation any further.

Actually I did give a clue to the iden-
tity of the mysterious device in the
April 1979 issue, in the article describ-
ing a simple line assembler program for
2650 systems. As you may recall, I men-
tioned that the assembler was based on
PIPLA, a program developed by
Signetics in the USA to go into a
"special ROM device" along with a
modified and enhanced version of
PIPBUG.

But now the full story can be told.
The mysterious device in question is
the CP1002, a custom-programmed ver-
sion of Signetics' 2656 "system memory
interface' (SMI) device, and it is finally
available.

I first learned of the CP1002 back in
April 1978, during a visit to the Signetics
facility in California. In fact during the
visit, the Signetics people very kindly
gave me a pre-production sample of
the device, in the expectation that it
would be going into production short-
ly.

Shortly after my return, David
Edwards and I were planning the ex-
pansion board for the 2650 Mini Com-
puter, and in view of the likely release
of the CP1002 we decided to allow
space for it on the board. However
after this was done we were advised by
Philips that _Signetics had struck unex-
pected trouble with the device, and its
release would be delayed. By this stage
it was too late to modify the PCB
pattern, so we were forced to gloss over
the matter.

Apparently Signetics struck more
trouble than they expected, because as
the months wore on the CP1002 still
failed to appear. This was one of the

74 	ELECTRONICS Australia October,

reasons that I finally decided to
describe a modified version of the
PIPLA line assembler, in the April 1979
issue.

Well, the problems must finally have
been solved, as the CP1002 is here at
last. So without further ado let's see
what it contains, and how you can hook
it into your 2650 Mini Computer.

As mentioned above, the CP1002 is
actually a custom-programmed ver-
sion of the Signetics 2656 SMI device.
This is a mask programmed N-channel
MOS LSI device, in a 40-pin package,
and containing 2K bytes of ROM, a 128-
byte static RAM, a clock oscillator, an 8-
bit latch and 8 multi-purpose pins
which may be programmed to serve as
either I/O lines or memory block chip
enable outputs.

In the case of the CP1002 version, the
2K ROM contains two useful programs.
One is PIPBUG2, a modified and
enhanced version of the familiar
monitor program used in most small
2650 systems; the other is PIPLA, a small
line assembler.

PIPBUG2 is similar to the original
PIPBUG, but it offers some additional
features. One is that it will operate at
either 110 or 300 baud, as far as com-
munication with the terminal is con-
cerned. It is automatically synchronised
to whichever of these rates is required,
simply by sending in a "U" from the
terminal keyboard after the CPU has
been reset.

Another feature offered by PIPBUG2
is that it is capable of dumping a
program in the binary format needed
to program PROMs on a Data I/O
PROM programmer. And there is a
third feature: the ability to perform
hexadecimal addition.

The only drawback of PIPBUG2 is that
Signetics have made it quite different
from the original PIPBUG in terms of
subroutine calling addresses, etc. So if
you have a swag of programs which
make use of the subroutines in original
PIPBUG, you'll have to modify them for

1979

use with PIPBUG2. It isn't just a matter
of changing the subroutine calls, either
— some of the subroutines use
different registers, and different
parameters.

As for PIPLA, the line assembler, this
is very similar to the line assembler I
described in the April 1979 issue. The
only differences are as follows:

1. PIPLA gives no initial identifying
message.

2. PIPLA assumes an initial origin at
OCOO, rather than 0440.

3. PIPLA has no facility to accept the
DATA directive.

4. PIPLA does not strip the address of
non-branching absolute address in-
struction to 13 bits, so that can make
errors when assembling programs
for pages other than page 0.
Of course a final difference is that

PIPLA is meant to go with PIPBUG2. It
uses subroutines from the latter, and
thus is dependant upon it.

What it boils down to is this. The
CP1002 provides you with PIPBUG2 and
PIPLA, resident in ROM so that they're
always ready to go. And together the
two programs are a big improvement
over the original PIPBUG, which you
can consider them as replacing. But
whether you'll want to replace your ex-
isting PIPBUG ROM with the CP1002
will \probably depend upon how many
programs you have that use the original
PIPBUG subroutines. If you've got quite
a lot, you may not find the idea too at-
tractive.

For those who do want to use the
CP1002, it can be connected into the
2650 Mini Computer quite simply. The
details are shown in the diagrams. As
you can see, the main thing is to add a
40-pin DIL socket to the previously un-
used space on the expansion board
(78UP9). Most of the necessary connec-
tions are made by the PCB pattern,
already. All you have to do to get the
ROM section of the device in operation
is to run a wire from pin 22 of the 2650,
to supply the WRP signal to the
CP1002's pin 17.

The CP1002 has its own internal
memory block decoding, so that it
automatically assumes the address
range 000-87F. The ROM occupies the
addresses 000-7FF, while the 128-byte
RAM occupies 800-87F.

After some delay, Signetics has released the 2656/CP1002 ROM
device containing its "PIPLA" line assembler program, together
with an improved version of the PIPBUG monitor. Here are details
on how the device can be used with our 2650 Mini Computer
system.

by JAMIESON ROWE

1MHz CLOCK
TO 2650
(PIN 38)

2

ABOVE: The wiring required on the 2650 Mini
Computer expansion board, in order to use the
CP1002. The address, data and supply connections
are provided already by the PCB.

LEFT: The schematic connections for the CP1002
ROM. No chip enable signal is required, as it
contains its own address decoding. The crystal
oscillator is optional.

ELECTRONICS Australia, October, 1979 	75

5pF=

2656
CP1002

	 1MHz CLOCK TO 2650
(SEE TEXT)

PINS 6-9, 34-37: SEE TEXT

4 	WRP (FROM 2650 PIN 22)

	4-miro

10

17

16

15

14_4 OPREO

TABLE 1: 2656/CP1002 SMI .enable outputs
_ ..._

PIN LABEL FUNCTION ADDRESS Miro

34 XO I/O enable FF 0
35 X1 Mem. select 0C00-0CFF 1
36 X2 Mem. select ODOO-ODFF 1
37 X3 Mem. select 0E00-0EFF 1

9 X4 Mem. select OFOO-OFFF or
1F00-1FFF 1

8 X5 I/O enable 00-03 0
7 X6 1/0 enable 04-07 0
6 X7 I/O enable FF 0

, _

What this means is that to prevent
bus conflict, no other memory devices
can occupy the same memory range. As
you won't need the original PIPBUG
ROM any more, this will free the bot-
tom 1K (address range 000-3FF).
However you'll probably have to shift
some of the RAMs out of the range
from 400-7FF and 800-BFF, to higher
blocks. Depending upon your system
and the amount of RAM you have, this
may be simply a matter of changing
finks at the output of the 74LS138
decoder on the CPU board.

As you can see, the CP1002 also
provides for a crystal clock oscillator for
the 2650 CPU. So ifyou haven't provid-
ed your 2650 with a crystal clock as yet,
this can now be done by adding a
4.000MHz crystal, three resistors and a
capacitor as shown. Space is already
provided for these components,
alongside the CP1002 socket on the ex-
pansion board.

The output of the clock oscillator
appears at pin 10 of the CP1002, and is
at 1MHz ready to connect directly to
the clock input of the 2650 chip (pin
38). Needless to say you will have to
remove the existing 74L5123 clock os-
cillator chip, to prevent it loading down
the new clock signal. If you have used a
socket for the 74L5123 this will simply
be a matter of unplugging the IC from
its socket. Otherwise you may have to
unsolder the IC and remove it that way,
although some may elect to simply cut
the PCB trace connecting its output pin
5 to pin 38 of the 2650.

In the CP1002 version of the 2656, the
eight "multi-purpose" pins are
programmed as memory block select
and extended I/O address enable out-
puts. Although these are unlikely to be

of much use in the 2650 Mini Computer
system, Table 1 shows the significance
of eight signals. Note that four of them
are memory chip enables for 256-byte
blocks, while the other four are enable
signals for extended I/O addresses.

When you have wired in the CP1002
and checked it out, you'll be ready to
turn on the system and try it out. As
with the original PIPBUG, PIPBUG2
starts at address 0000 and thus comes up
immediately due to the power-up
reset. But in this case it doesn't print its
prompt asterisk Or) immediately; in-
stead it waits for you to key in a "U"
from the terminal, in either 110 or 300
baud. This tells it which of the two rates
you want, and it then locks onto that
rate and sends out the prompt
character to show that it's ready for
business.

The commands for PIPBUG2 are the
same as for its predecessor, except for
the two extras. The format for the hex
addition command is

H sp AAAA sp BBBB cr
where H is the command character,

AAAA is one of the hex numbers to be
added, BBBB is the second number, sp
is a space and cr is a carriage return.
Leading zeroes are not necessary when
keying in the numbers.

Note that you can use this command
to perform a hex subtraction by using it
to tellyou the 2's complement of the
subtrahend first, then adding that to
the diminuend. To get the 2's comple-
ment you first work out the l's comple-
ment yourself, simply by complemen
ting all bits individualry. Then use the H
command to add 1 to this figure, which
will give you the 2's complement. Final-
ly you then use the H command again
to add this to the second number.

The format for the PROM program-
ming dump command is

P sp A sp BBBB sp CCCC cr
where P is the command character, A is
a parameter specifying the bits of each
byte to be dumped, BBBB is the starting
address in memory of the data to be
dumped, and CCCC is the number of
following words (i.e., one less than the
word capacity of the PROM to be

+5V

4
PO
D5-4 3

2
CPU BOARD f D4

1 DATA BUS
40
39 D1
38

32 AA1143:
31
30 Al2-..
29 All-.N
28 A10
27 A9

CPU BOARD 26
ADDRESS BUS 	A8-.0

A7 vs
25

.f

24 A6 v.
A5 23

A4■1 22
21
20 A2-+
19 Al-
18

2656-CP1002 PIPBUG 2/PIPLA ROM CONNECTIONS

CP1002 "PIPLA" ROM

loaded). As before sp means a space,
and cr means a carriage return.

The parameter A is used to specify
the dumping format. There are three
formats allowed; you can either dump
all 8 bits of each memory byte, only the
least significant 4 bits of each, or only
the most significant 4 bits. The three
modes correspond to the following
values for parameter A:

0 -- all 8 bits dumped
1 — only the least significant 4 bits
2 — only the most significant 4 bits
If options 1 or 2 are specified, the

four bits of data are right justified and
the upper four bits are dumped as
zeroes.

The remaining command functions
provided by PIPBUG2 are virtually
identical to those of the, original
PIPBUG. Hence there is the "A" com-
mand to examine and alter memory,
the "L" command to load from cassette
or paper tape, the "D" command to
dump to cassette or paper tape, the "S"
command to see and set the registers,
the "B" command to set a breakpoint,
the "C" command to clear a breakpoint
and the "G" command to transfer com-
mand to a user program. These are all
used in exactly the same manner as
those of the original PIPBUG.

As with the first version of PIPBUG,
there are a number of utility sub-
routines in PIPBUG2 which may be call-
ed by user programs. The most useful
of these are described in Table 2. Note
that as mentioned earlier, some of
these sub-routines are significantly
different from those in the original
PIPBUG when it comes to use of
registers, etc.

The PIPLA line assembler starts at hex
0400. As mentioned earlier it gives no
initial identifying message and assumes
a starting origin of OCOO for the
program to be assembled. So when you
call it, the response is simply

°COO.
Apart from this, its operation is very
similar to that of the modified
assembler I described in the April 1979
issue. You can change the origin as
desired with an ORG directive, store a
string of ASCII characters with an ASCI
directive, and return to PIPBUG2 with
an END directive. The only directive
not available is the DATA directive.

There is only one other point to
remember. The input buffer used by
PIPLA is only 24 characters long, com-
pared with the buffer of about 60
characters used by the modified
assembler. So you cannot have a long
string in an ASCI directive, nor can you
fa in comments after the operand field
of an instruction line. But you can still
have normal comment lines (identified
by an asterisk as the first character), as
long as they are shorter than 24
characters.

TABLE 2: User-accessible subroutines In PIPBUG2
,

LABEL FUNCTION CALL BY
,

CHIN

.....

Inputs a character to RO from
the serial terminal

....i

ZBSR *0009
(BB 89)

COUT Outputs a character from RO to
the serial terminal

ZBSR *0007
(BB 87)

BIN Reads two hex chars from the
terminal, forms byte in R1

ZBSR *000D
(BB 8D)

BOUT Prints the byte in R1 as a two-digit hex
number (Data in RO is destroyed)

ZBSR *000B
(BB 8B)

LKUP Converts a hex char in RO into
a 4-bit number (returned in RO also)

ZBSR 0026
(BB 26)

GNUM Fetches a 4-digit number from
the input buffer, stores in R1 and R2

ZBSR *000F
(BB 8F)

STRT Stores R1, R2 into 80D, 80E
ZBSR 0021

(BB 21)
...

INCRT Increments contents of 80D, 80E
ZBSR 0017

(BB 17)

CRLF Sends CR, LF to terminal
BSTA, UN 01A9

(3F 01 A9)

CHNG Converts the byte in RO into two
hex chars returned in R1, R2

BSTA, UN 028D
(3F 02 8D)

FORM Outputs 3 spaces to terminal
BSTA,,UN 0360

(3F 03 60)

GAP Output 50 spaces to terminal
BSTA, UN 0364

(3F 03 64)

ELECTRONICS Australia, October, 1979 	77

Use your 2650 system
to generate random Morse!
Trying to learn Morse code? The best way is to have an obliging by RICHARD ROGERS, VK7R0
"old timer" send you random groups of letters and numbers, so 4/439 Huon Road, South Hobart 7000
that you don't anticipate or "journalise". For those lacking an
obliging friend here is the next best thing — a program which turns
your 2650 Mini Computer into a random Morse generator.

One of the common errors of
beginners in copying Morse code is to
"journalise", or write down the end of
a word before it has been sent!
Random code groups are an excellent
practice material to help combat this
tendency. Once you are able to copy
random groups, plain language will
seem easy. Also, with random code
there are many more chances to hear
the letters which occur infrequently in
plain language.

The program described here was
originally written for my Central Data
2650 system, but the program as listed
has been modified to suit systems using
the Pipbug monitor program, like the
EA 2650 Mini Computer.

The program generates five-
character groups consisting of four
letters and one figure, eg ZF9OB 81LUY
etc, at speeds ranging from 3 to 25
words per minute. The starting speed is
selectable and the speed increases by
one WPM every five minutes. The
current speed is displayed on the VDU.
Below 10WPM, the characters are sent
at a 10WPM rate but the spaces
between the characters are increased,

As written, the program generates a
tone at the 2650 flag output. The tone
frequency used is ignored by a 110
baud VDU and nothing is printed on
the screen during the morse output. I
use a loudspeaker in series with a 1000
ohm resistor, connected between the
output of the flag buffer and earth, as a
monitor.

The program may be changed to give
a voltage suitable for controlling an
external oscillator by changing the
code at 04A3 from 76 to 74.

Some NOP's are provided within the
program to facilitate the use of any
other output port. For instance, the use
bit 0 of output port D as the tone
output, the following code changes are
required.
05EB change from CO CO CO CO to 04 00
F0 CO
049D change from 74 40 CO CO to 04 01
F$ CO

04A3 change from 76 40 co co to 04 00
FO CO
04

O
 AE change from 76 4Q CO CO to 04 00

F CO
The program may also be modified to

generate five character groups of

mixed letters, figures and punctuation
by changing 04F8 from 18 26 04 1A to CO
CO 04 30.

My thanks to Ron Brown, VK7ZRO,
for allowing me to test the program on
his system.

0446 IF 05 El 60 88 AS 90 40 28 DO 08 20 78 BO 48 El
0450 AO FO 68 DB 56 10 CO 30 18 70 98 B8 C8 7C 3C IC
0460 OC 04 84 C4 E4 F4 FC 56 CE E2 32 7A 86 94 84 B6

0470 4A 8C 54 00 00 (5 It 19 15 IA OF 38 2F 3B 2D 38
0480 2B 3B 29 38 27 38 25 3B 23 17 38 OF 3B OD 3B OB

0490 3B 1A DI 45 FE E5 80 18 6C 114 5A 06 00 74 40 CO

04A0 CO 3B 14 76 40 CO CO 3B OE FA 72 17 06 It 76 40
0480 CO CO 38 03 FA 78 17 04 5C F8 7E 17 09 14 OD 64
04C0 D3 85 01 E5 17 IA 02 05 00 C9 07 88 64 D3 CD 64
04D0 D3 17 II Of it 12 03 04 05 06 07 08 09 OA 0B 0C
04E0 OD OE OF 16 11 12 13 14 15 16 67 05 04 15 CB 29
04F0 OA 24 38 3C C8 20 08 IE 18 26 64 to C8 ID OA 17
0500 3B 2E C8 13 CI OD 64 43 CF 65 IA A7 01 14 08 06
6516 A4 01 C8 02 IB 62 01 Of 00 60 66 00 00 le 00 06
0520 04 IA C8 75 OA 72 31 08 C8 6E Cl OD 64 5D 111 58
0530 3F 04 BC 82 to 03 E8 61 16 AS 5E 1B 77 3F 04 EA
0540 07 06 OF 65 19 Cl 3F 04 75 3B 90 38 8E FB 73 64
0550 01 88 67 E4 Of 15 C8 02 111 63 OA 04 00 OE 25 97
0560 14 3F 02 B4 18 77 01 Et 00 00 00 00 77 OE 08 79

0570 05 00 07 11 75 01 DI 85 01 18 04 E9 6C IA 06 77

0580 01 A9 66 7? 61 06 62 OE 45 6A DO CE 65 6A 5A 77
0590 FB 64 09 57 75 FF 17 00 OA IA ID 52 41 4E 44 4F
65A6 4D 26 4D 4F 52 53 45 20 44 45 20 56 48 37 52 4F
0580 OA OD 31 33 20 2D 20 32 35 20 57 50 4D OA OA OD
15C6 53 54 41 52 54 49 4E 47 20 53 56 45 45 44 3F IA
OHO ID 00 0A OD 20 20 57 50 4D 00 E7 30 1E 00 ID E7

05E1 39 ID 00 1D 47 OF 17 76 40 75 FF CO CO CO CO 06
05F0 00 3F 65 50 3F 04 BC 12 IA 7A 3F 02 86 C3 3F 02
0660 84 3B 57 D3 03 DO DO 83 CC 05 68 3F 02 86 C3 3F
0610 02 84 3B 46 BF 15 68 CF 05 68 66 3E 3F 05 58 OF
0620 05 68 E7 19 ID 00 ID E7 03 IE 00 ID E7 69 19 10
0630 A7 02 04 79 06 02 82 FB 7D CC 05 5C 05 30 18 to
0640 CF 05 69 IC 05 66 CC 05 6A OC 05 67 CC 05 6B 3F
0650 05 6C 64 89 CC 05 5C OD 05 6B CD 04 9C DI CD 04
0660 AD OC 65 68 Cl DI 81 81 CC 05 54 20 CC 05 5A 3F
1670 05 3D 06 37 3F 15 50 OD 05 68 E5 19 18 62 85 01
0680 CD 05 68 ES OA IA OA ES 14 IA 04 85 OC ID 02 85
0690 06 3F 02 69 IF 06 IA

At right is the full hex listing of the author's ran-
dom Morse program. It starts at 0440.

86 	ELECTRONICS Australia, December, 1979

' .1 1' .) 	1 	 I I I 	I 1 II I I II IIIIIIIl41151/45ss,

Al I 	'.) 	1'

The S-100 Bus & how to
interface a 2650 to it
Most computer enthusiasts have heard about the S-100 bus
system, and that a wide variety of memory boards, floppy disc con-
trollers, video interfaces, speech synthesisers and other fancy
peripheral boards are made for it. But do you know how the S-100
bus works, and how it evolved? This article describes the basic S-
100 system and tells you how to provide your 2650 Mini Computer
with an S-100 interface.

by JAMIESON ROWE

Back in January and February 1975,
the US magazine Popular Electronics
described a build-it-yourself
microcomputer project called the
"Altair 8800". Based on the 8080
microprocessor, which had not long
been released by Intel, the Altair had
been designed by MITS, Inc, a firm in
Albuquerque, New Mexico. In fact the
authors of the Popular Electronics ar-
ticles were two of the MITS engineers
responsible for the design: H. Edward
Roberts and William Yates. Following
publication of the articles, MITS began
selling the Altair in both kit and fully
assembled form.

The Altair 8800 wasn't the first
microcomputer described for home
construction. The US magazine Radio-
Electronics had described a machine
called the "Mark-8" in their July 1974
issue, while here at Electronics Australia
we had begun to describe our EDUC-8
design in the following month. But in
the US in particular, the Altair became
very popular — so popular, in fact, that
it is generally regarded as having
launched the US hobby computer in-
dustry.

Although the original Altair design
used permanently wired multi-
conductor ribbon cable to inter-
connect the various printed circuit
boards (PCBs), MITS soon changed
over to a motherboard and plug-in PCB
system to permit more convenient ex-
pansion. The plug-in PCB cards were
double sided and mated with 100-way
edge connector sockets having two

rows of 50 contacts spaced on 0.125in
13.2mm) centres.

Not all of the 100 connections
provided by the sockets were actually
used for the Altair's interconnection
"bus" lines. In fact only about 60 were
used initially, the rest being left for
future expansion. Sixteen lines were
used for addresses, eight lines each for
data into and out of the processor, and
the remaining 28 lines for control
signals and power supply rails.

As the popularity of the Altair design
grew, other manufacturers hopped on
the bandwaggon with memory boards
and a variety of peripheral interface
boards, all designed to plug into the
Altair's 100-way sockets and hook up to
its interconnection bus. The "Altair
bus" thus became a de facto inter-
connection standard, followed fairly
closely by everyone who wanted to
make plug-ins for the Altair.

Then alternative processor boards
and complete computers started to
appear. These were obviously designed
to compete with the Altair computer,
but used the same nominal inter-
connection bus so that they could take
advantage of the variety of available
plug-ins to offer the same degree of ex-
pansion flexibility.

It was not practical for competing
computer manufacturers to continue
calling the de facto interconnection
standard the "Altair bus", so it became
known as the "S-100 bus".

At this stage it should be noted that
because the original Altair machine

used an 8080 processor, many of the
control signals on the Altair bus were
basically 8080 control signals. This pos-
ed no problems as far as the first few
competing machines were concerned,
as they too used the 8080 processor. So
for a while at least, the 5-100 bus was
basically a "pure" Altair/8080 standard.

But as time wore on, other processors
started to appear, and many of these
were "later generation" processors
which neither required.nor generated
all of the control signals used by the
8080. As a result, manufacturers of
these new processor boards were faced
with either making the new processors
"pretend" to be an 8080, or producing
5-100 boards which ignored some of
the control signals which had been
used on the original Altair bus.

Predictably, some took one course
and some the other. As a result the
newly named 5-100 bus began to
diverge from the original "pure 8080"
Altair standard. The divergence grew
even more as those making memory
and peripheral plug-in boards began to
take advantage of some of the features
offered by the newer processors and
dedicated controller chips.

So what happened was that although
the S-100 bus system had become an
"industry standard", its effectiveness as
a standard dropped significantly.
Whereas it had been possible to plug
virtually any board made for the Altair
bus into an Altair machine and get it
going almost immediately, people soon
found that all boards made for the 5-
100 system were by no means equal.
There could be all sorts of problems in
trying to combine 5-100 boards from
different manufacturers, and some 5-
100 boards just couldn't be made to
work together at all — either because
of signal timing differences, or because
some boards needed signals that the
others didn't produce.

Nowadays, the 5-100 bus system is
still regarded in the USA as one of the

The 100-way edge connector socket used by 5-100 plugins. It
has two rows of 50 contacts, spaced on 3.2mm centres and

78 	ELECTRONICS Australia, January, 1980

numbered 1-50 on one side, 51-100 on the other (running in
the same direction). Courtesy Radio Despatch Service.

IRV I 110-0.-411/

.169 20--.4.• IS

LINK AS
REDO

02 24

01 250.

	

XRDY 30 	
I

	

READY 72t, 	
PRESET 71

	

0 	

	

FOR IMO 	
06213 _44

nem on

4 7k
50941E0

DO? DI
DOS
DO6 29
DO4 36
O03 49
002 al
DOI 300
000 340

SY

017 430
ON 530
ON 920
014n0
D042
013 41
DUI 54
me IN

EXPANSION
DATA 509

Dl
DI
DO
D4
D3
02
Dl
DO

DO D311

RUN/WAIT

aka

11-100
DROOLS

SIGNALS IF
REQUIRED

:ran

1.1:15115:

0.11011660
II 1

16

ann

own,. REIN 710

PINT 73
7404/6

7404/6

JUNTA 550

141. 140

P4WRT SAO
POMP. 720

Ewe 770

MEW 470
SINE NO

SOOT 450

43411.011

7400/7

• Ira

WRY n

FS

FS

SPADA 	I „. C111179

DO SUFFERS 	II

VIO 40

MILD/. NO

L4 '0
0

a1117550

N7ACI

PAUSE

The author's suggested circuit for an interface to allow S-700 boards to be used
with the 2650 Mini Computer.

major buses used by the hobby and
small business computer industry. But it
is now only one such bus among many,
even in that country; quite a few of the
newer personal computers have used
other bus systems for expansion pur-
poses. And it has never been as popular
in other countries as it has been in the

USA, for a variety of reasons.
Why then would you want to provide

your 2650 Mini Computer with an 5-100
bus interface ? Simply because there
are still all sorts of interesting plug-ins
which are made for the nominal 5-100
bus. Big static and dynamic RAM
boards, PROM boards, bubble memory

boards, floppy disc controllers, speech
synthesisers, video boards, music
generators, and all sorts of fancy I/O
(input/output) interfaces. If you want
to hook up your 2650 system to way-out
things like these, an 5-100 interface is
probably the best way to do it.

Table 1 shows the 5-100 bus signals
that have nowadays become fairly stan-
dardised. The table shows the pin
number and the usual shorthand label

ELECTRONICS Australia, January, 1980 	79

TABLE 1: THE MAIN 5-100 BUS SIGNALS

Pin signal Explanation

I +8V Unregulated input to +5V regulators On plug-in cards.
2 +16V Positive unregulated voltage supply.
3 XRDY External Ready — ANDed with PROY (pin 72) and connected to

READY on the 8080. If XRDY and/or PRDY are pulled low, the CPU
will enter a Wait or memory cycle extend State until both are high.
XRDY is often used as a front panel control and can allow single step-
ping. PRDY is usually used to signal valid data from slow memory

4 VIO Vectored Interrupt 0 — A vectored Interrupt system is used when
very fast multiple interrupt response is required and is implemented
with a special circuit card

5 VII Vectored interrupt I
6 V12 Vectored interrupt 2
7 V13 Vectored Interrupt 3
8 V14 Vectored Intterupt 4
9 VI5 Vectored Interrupt 5

10 V16 Vectored interrupt 6
11 V17 Vectored interrupt 7
12 -
13 -
14 — These pins not standardised.
15 -
16 -
17 -
18 STAT DSB Status Disable — A low on this line puts the status line buffers

SMEMR. SINP, SMI. SOOT. SHLTA, SSTACK. SWO. and SINTA into
a high Impedance state.

19 C/C DSB Command/Control Disable — A low on this line puts the com-
mand/control line buffers PHLDA. PSYNC. PDBIN, PINTE. Mk and
PWAIT into a high impedance state.

20 UNPROT Unprotect — A positive pulse resets the Protect flipflop On the
currently addressed board so that it can accept data. (Compare with
PROT. pin 70)

21 SS Single Step — Used by front panel. A high disables Input buffer while
Panel drives bidirectional data bus.

22 ADD DSB Address Disable — A low on this line puts the 18 address line buffers
into a high impedance state

23 5151:7§15 Data Out Disable — A low on this line puts the 8 processor data out-
put line buffers into a high impedance state.

24 02 Phase 2 clock — The master timing signal for the bus In 8080-based
systems.

25 01 Phase 1 clock
26 PHLDA Halt Acknowledge — Processor Command/cOntrol output signal

which goes high following a HOLD signal. It Indicates that the data
and address buses have gone to the high Impedance state and the
processor has entered the HOLD state after completion Of the current
machine cycle.

27 PWAIT Wait 	— 	Command/control 	signal 	out 	which, 	when 	high,
acknowledges that processor is in a Walt or extended memory cycle
state.

28 PINTE Interrupt Enable — Command/control signal Out which indicates
condition of Interrupt Enable fIlptIop.

29 AS Address Bit 5
30 A4 Address Bit 4
31 A3 Address Bit 3
32 A15 Address Bit 15
33 412 Address Bit 12
34 A9 Address Bit 9
35 DOI Data Out Bit 1
36 DOO Data Out Bit 0
37 A10 Address Bit 10
38 D04 Data Out Bit 4
39 DO5 Data Out Bit 5
40 D06 Data Out Bit 6
41 012 Data in Bit 2
42 DI3 Data In Bit 3
43 DI7 Data In Bit 7

44 SM I 8080 status output signal which, when high. indicates that the current
bus cycle ls an op code fetch.

45 SOUT Status output signal which, when high, Indicates that the address but
contains the address of an output device and the data bus will contain
the output data when PWR is active (low).

(Contlnued on next mu

for the signal concerned, together with
a brief explanation of the signal's func-
tion. The information should be fairly
self evident, but a few supplementary
comments may help to make things
clearer.

Note first that no signals are specified
for pins 12-17 and pins S5-67 inclusive.
This does not signify that these pins do
not carry signals, or that they are Ig-
nored by S-100 boards and systems.
Quite the contrary; in fact, many
current 5-100 systems do employ these
pins to carry quite important signals.
The problem is that use of the pins is
not sufficiently standardised to allow
each one to be given a fixed signal
allocation.

For example pin 13 is used in various
systems to carry interrupt request
(IRQ), phase 3 shift clock (CK3), stand-
by power (STDBY), pause status
(PAUSE) or memory bank 8 select.
Similarly pin 67 is used in various
systems to carry signals such as phan-
tom disable (PHANTOM), non-
maskable interrupt (NMI), refresh dis-
able (RFSHDS131), memory disable
(MDSF31), refresh (RFSH), video sample
clock (SCLK) or address line 19 (A19).

So for some 5-100 boards, these pins
may carry signals which are essential for
correct operation. But because the
signals are not standardised, it is not
really feasible to provide them in a
generalised 5-100 interface.

The next thing to note is that among
the standardised signals, there Is a cer-
tain amount of duplication and func-
tional overlapping. For example XRDY-
bar (pin 3) and PRDY-bar (pin 72) both
perform the same function, while PINT-
bar (pin 73) and VI0-VI7 (pins 4-11)
overlap in their functions. These redun-
dancies are largely the result of the ad
hoc way in which the S-100 bus was
developed.

It should also he noted that many of
the 5-100 control signals are basically
those used by an 8080 microprocessor.
As such these signals are often not par-
ticularly compatible with either more
modern processors, or peripherals
designed to go with them. It may be
either difficult to derive the 8080-type
signals from those actually generated,
or difficult to use them once derived
and fed along the bus, or both.

So, in providing an 5-100 interface,
you are faced with the choice of either
making your processor "pretend" to be
an 8080 and using the standard 5-100
control signals, or ignoring these
signals and using alternative control
signals on some of the unstandardised
bus pins.

The first approach will tend to give
you somewhat greater compatibility
with the wide range of available 5-100
plug-ins. But it may also involve clumsy
interfacing logic, and prevent you from
taking full advantage of the features
offered by a more modern processor.
The second approach may tend to be
more elegant and more powerful, but

ELECTRONICS Australia. January. 1980 	81

tends to introduce hassles when you try
to use certain 5-100 boards. The choice
is up to you.

Of course, some of the 5-100 control
signals are more important than others.
Some signals are only needed if you
plan to have a fancy front panel on your
system — a feature which is not as pop-
ular nowadays as it was. Others are only
used for things like a hardware-
implemented single step facility, or
stack management hardware external
to the processor. If you don't want
these facilities, or don't need them,
then the signals can be ignored.

Perhaps the remaining general point
that should be made about the S-100
bus is that as you can see, it uses two 8-
bit data buses: one for data into the
processor, and the other for data out of
the processor. This is a carryover from
the original Altair design, and is again a
little clumsy by modern standards. In
general only one of the two buses is
ever in use at any instant, so it would be
more elegant and efficient to have a
single bidirectional bus.

But if you want to make your inter-
face compatible with most of the 5-100
plug-ins, you have to provide for the
two separate data buses — clumsy
though they may be. Of course you can
always provide your own bidirectional
bus as well, using eight of the unstan-
dardised pins. Just make sure that the
pins you use aren't needed by any of
your S-100 plug-ins for special control
signals.

Well then, let's get down to specifics.
What's involved in providing an 5-100
interface for your 2650 Mini Computer
system?

Before going any further, I would like
to stress that the remainder of this arti-
cle consists basically of a set of
suggestions, rather than the description
of an interface that has been built up
and tested. The circuit diagram given
has not been tested, as this would have
involved a considerable amount of time
and effort which could not really be
justified in view of the limited interest.
But it has been prepared from a careful
survey of 5-100 literature and reference
material, and I believe it to be fully
practical.

Basically if you want to provide your
2650 system with an S-100 interface
which provides each and every one of
the various standardised control
signals, it isn't easy. But on the other
hand, some of the control signals turn
out to be unnecessary in a 2650-based
system, except in very rare cir-
cumstances.

The interface shown in the circuit
diagram provides only the main control
signals, but should be suitable for inter-
facing your 2650 system to most S-100
plug-ins.

Let's run through the circuit, starting
from the bottom and working upward.
First are the 16 address lines ADO-AD15,
buffered by a pair of 81L595 or similar
Tri-state octal buffers. The inputs for

48 SINP Status output Signal which, when high, Indfcates that the address bus
Contains the address of an Input device and the Input date should be
placed on the data bus when PDBIN Is active.

47 SMEMR Memory Read — Status output signal which, when high. Indicates
that the data bus will be used to read memory data.

48 SHLTA Halt Acknowledge — 	Status 	output signal 	which, when 	high,
acknowledges that a HALT instruction has been executed.

49 ILO Phase 2 clock inverted
50 GND Signal end power grOund
51 +8V Same as pin 1
52 =16‘.! Negative unregulated voltage supply
53 SSW DSB Sense Switch Disable — A low disables the data input buffers so the

Input from the sense switches may be strobed onto the bidirectional
data bus.

54 EXT CLR External Clear — A low clears I/O devices.

55
56
57
58
59
60
61 These pins not standardised.
62
63
64
65
66
67
68 MWRITE Memory Write — A high indicates that the current data on the Date

Out Bus Is to be written into the memory location currently on the ad-
dress bus.

69 Status of protect flpflop (low for protect).
70 PROT Protect — A positive pulse sets the protect filpflop.
71 RUN Run — A high indicates that the Run/Stop filpflop Is set to RUN.
72 eaa Ready — See pin 3.
73 PINT Interrupt Request.— A low causes the processor to recognise en in-

terrupt request at the end of the current Instruction or while halted. If
the CPU Is In the Hold state or if the Interrupt Enable MAIN) is reset.
It will not honour the request.

74 PF=1 Hold — A low requests the processor to enter the Hold state. It allows
an external device to gain control of the address end data buses as
soon as the current machine cycle is completed.

75 PRESET Reset — A low causes the contents of the program counter to be
cleared and the instruction register is Set to 0.

78 PSVNC Sync — The command/control signal out which, when high, Identifies
the beginning of an 8080 machine cycle.

77 PWR Write -7 the command/control signal out which, when low, signifies
the presence of valid date on the Data Out bus.

78 PDBIN Data Bus in — The commend/control signal out which, when high.
requests data on the DI bus from the addressed memory or I/O.

79 AO Address Bit 0
80 Al Address Bit .l
81 A2 Address Bit 2
82 AS Address Bit 6
83 A7 Address Bit 7
84 A8 Address Bit 8
85 A13 Address Bit 13
86 A14 Address Bit14
87 All Address Bit 11
88 DO2 Data Out Bit 2
B9 DO3 Data Out Bit 3
90 007 Data Out Bit 7
91 014 Data In Bit 4
92 015 Data in Bit 5
93 D16 Data in Bit 8
94 Dil Data in Bit 1
95 DIO Date In Bit 0
96 SINTA Interrupt Acknowledge — The status output signal which, when high,

Identifies the instruction fetch owlets) that Immediately follow en
accepted Interrupt request presented on Wt.

97 SWO Write/Output — The statue output signal Identifying a bus cycle
which. when low, transfers data from processor to memory or I/O.

98 SSTACK Stack — Status output signal which indicates, when high, that the ad-
dress bus holds the pushdown stack eddress from the Steck Pointer
and that a stack operation will occur on the current cycle.

99 POC Power On Clear — Generated by PRESET or power on. Used to reset
CPU and I/O devices.

100 GND Signet and power ground

ELECTRONICS Australia, January, 1980
	

83

the buffers are taken from the address
lines (already buffered) on the 2650
Mini Computer's expansion board. —

Note that the S-100 bus requires 16
address lines, whereas the 2650 system
only has 15 lines available (ADO-AD14).
The input of the 16th buffer is therefore
tied permanently to ground.

One enable input of each of the
811595 address buffer devices is con-
nected to a gate. This allows the buffers
to be disabled, and the 5-100 address
lines to be floated in a high Impedance
state, either in response to the
ADD DSB-bar signal (pin 22) or when
the processor is halted. Other 5-100
boards are thus able to take control of
the address lines, for things like DMA
(direct memory access) data transfers.

Moving upward, we find two more
81L595 octal buffers, the first used to
buffer the 5-100 data out lines 000-
D07, and the second to buffer the 5-
100 data input lines DIO-D17. As with
the address buffers, the data out buffers
are controlled by another gate, so they
can be disabled either in response to
the DO DSB-bar signal (pin 23) or when
the processor is halted.

In addition, both the DO and DI
buffers are controlled separately by two
of the outputs of an 825103 device. This
is a programmable gate array, which
Signetics and Philips are making
available pre-programmed with the
logic functions necessary to generate
eight key 5-100 control signals from the
existing 2650 control signals OPREQ, R-
bar/W, M/I0-bar and WRP.

As you can see, besides the two data
buffer control signals the device also
produces the S-100 signals SOOT (pin
45), SINP (pin 46), SMEMR (pin 47),
PWR-bar (pin 77), PDBIN (pin 78) and
MWRT (pin 68). So it really takes some
of the hassles out of making the 2650
"pretend" to be an 8080!

The preprogrammed version of the
825103 is coded with the suffix CK1179,
and is available from your normal parts
supplier on order from Philips In-
dustries. It should cost you less than
$10, including tax.

The programming chart for the
825103/0(1179 is shown in Table 2, for
the benefit of those who want to
analyse the logic functions involved in
producing the S-100 signals. Note that
device inputs 14, 15 and IF are not used,
and can be left unconnected; similarly
the ninth device output F8 is not used.
Note also that inputs 16 to IE inclusive
are all effectively programmed to act as
active-high enable inputs, so that they
must all be taken to logic high level for
any output to be enabled.

What this means is that these inputs
may effectively be used to disable the
5-100 interface, whenever the
processor is dealing with the memory
and I/O ports provided in the original
2650 system. This is done simply by con-
necting active-low enable signals from
the existing 2650 system to some of the
825103 enable inputs, as shown. The
remaining enable inputs are simply tied

84 	ELECTRONICS Australia, January, 1980

TABLE 2: 828103/CKT179 PROGRAMMING, CHART

INPUT VARIABLES OUTPUT FUNCTIONS

10

H
H
—
—L
—L
H
H
H

11

H
L
H

H
L
H

12

—
—
L
L
H
—

H

13

—
—
—
—
—
H

—
————HHHHHHHHH—

14 	18 	IS 	17 	18 	RI 	IA 	18 	IC 	ID 	It 	IF

— 	— 	H 	H 	H 	H 	H 	H 	H 	H 	H 	—
— 	— 	H 	H 	H 	H 	H 	H 	H 	H 	H 	—
— 	— 	H 	H 	H 	H 	H 	H 	H 	H 	H 	—
— 	— 	H 	H 	H 	H 	H 	H 	H 	H 	H 	—
— 	— 	H 	H 	H 	H 	H 	H 	H 	H 	H 	—
— 	— 	H 	H 	H 	H 	H 	H 	H 	H 	H 	—

— 	— 	H 	H 	H 	H 	H 	H 	H 	H 	H 	—

OUTPUT POLARITY 	NAME
FO 	L 	b0 enable
Fl 	L 	117;376tale
F2 	H 	SOOT
F3 	H 	SINP
F4 	H 	SMEMR
FS 	L 	P710
F6 	H 	PDBIN
F7 	H 	MWRT
F8 	— 	—

10 = OPREO: 11 = A/W; 12 • WA 13 • WRP; 16-1E • enable Inputs (a thee high)

high via pullup resistors.
So if you have already provided your

2650 system with 7k of RAM, in addition
to the 1k PIPBUG ROM, and this
memory is all in page 0, you obviously
won't want any 5-100 boards to respond
when this part of memory space is be-
ing addressed. This is achieved quite
simply by connecting the PAGE 0-bar
enable signal (from the 7415138
decoder on the expansion board) to say
input 16 of the 825103, as shown.

Similarly if you have already Im-
plemented the four 2650 non-extended
I/O ports, you can disable the S-100 In-
terface whenever these are being ad-
dressed simply by connecting the C-bar
and D-bar signals (again from the
7415138 on the expansion board) to in-
puts 17 and 18.

Inputs 19-IE inclusive are still
available, and may be used to disable
the S-100 interface for any other
memory blocks or I/O addresses you
may have already implemented. All you
need to do is derive an active-low
signal from each enable signal, and
connect these to the spare inputs. Since
there are six available inputs (apart
from those used for PAGE 0-bar, C-bar
and D-bar), this should provide enough
flexibility for almost any situation.

Moving further up the circuit
diagram, we find the circuitry for the
remaining S-100 control signals.

The XRDY-bar and READY-bar signal
lines are connected via a NAND gate
to the OPACK-bar input of the 2650
processor, to allow memory cycles to
be extended for slow memory. Note
that the 2650 does not enter a wait state
when this is done, unlike the 8080; in
fact the 2650's "wait" state corresponds
to the 8080 "hold" state. However, the
function of the two 5-100 "ready" lines
should be unaffected, as these are
basically used for memory cycle exten-
sion.

Don't forget that in the original 2650
Mini Computer, the OPACK-bar Input
of the 2650 (pin 36) was permanently
earthed. So the copper track of the PC
board will have to be cut, to disconnect
this earth and allow the pin to be con-
trolled. As the copper track concerned
made other earth connections, a wire

link will heed to be added to maintain
these connections.

A flipflop Is used in the interrupt
logic, as the INTREQ-bar input of the
2650 must be held low until it is
acknowledged by a high on the
INTACK output. A link (L4) is shown, to
allow you to select whether the PINT-
bar or VIO inputs from the 5-100 bus are
used to set the flipflop and initiate in-
terrupts. As. may be seen the flipflop Is
reset by either INTACK going high, or
the reset signal. The latter ensures that
the flipflop is always in the reset state
when power is applied to the system.

The dashed gate shown in the reset
circuitry is actually the 741538 gate
originally used as an inverter in the
reset line of the 2650 Mini Computer.
The second input (pin 4), which was
originally tied to logic high, is now used
to accept the 5-100 PRESET-bar signal
(pin 75). This allows S-100 plug-Ins to
reset the system If necessary.

Links 1.1, L2 and L3 are shown to in-
dicate that you have a choice in
deciding which signals to feed out on
the 5-100 clock lines 01 (pin 25), 02
(pin 24) and CLOCK-bar (pin 49). As the
2650 does not use the two-phase clock
system of the 8080, the choice of signals
fed on these lines will depend upon the
requirements of the 5-100 plugins you
want to use.

If the plug-ins basically only use the
02 signal as a data strobe, for example
(this is fairly common), you will
probably find that the buffered OPREQ
("BOPREQ") signal will be most
suitable. On the other hand one or
other of the S-100 clock signal may be
used as a source of synchronised high-
frequency signals (say by a video inter-
face board, as a dot shift clock and In-
put to the timebase divider), In which
case the 1MHz master clock signal may
he more appropriate. Or you may need
to provide both 80PREQ and the
1MHz clock, on different lines, for use
by different boards. It will depend
upon the 5-100 boards you are using.

The only remaining point to note
about the interface'circuit concerns the
power supply rails. By convention, 5-
100 plug-in boards have their own 5V
regulators, and are supplied with an

unregulated (or only pre-regulated) In-
put of BV DC. So the main supply rail of
the 5-100 bus is the +8V line connected
to pins 1 and 51, and referred to the
ground pins 50 and 100.

The +16V and -16V rails shown on
pins 2 and 52 are secondary supply rails,
used rather less frequently by plug-Ins
requiring higher voltage for op amps,
D-to-A converters and so on. These
boards generally have their own 12V
regulators, working from the un-
regulated 16V lines.

If you don't plan to use plug-ins
which require the higher rails, you can
forget the +16V and -16V power
supplies. All you will need is an By
power supply, capable of supplying the
current. needs of your 5-100 plugin
boards. Needless to say, the ground
reference of the 8V supply will need to
be connected to the ground side of the
existing 2650 system power supply.

Finally, a few suggestions about the
physical side of your 5-100 Interface.

I would suggest that you don't try to
design your own interface and mother-
board. There are a number of good 5-
100 motherboards already available, at
quite reasonable cost. Similarly there
are quite a few S-100 "development
boards", complete with gold-plated
double sided edge connector pads, and
designed specifically to allow you to
wire up custom plug-ins.

As both these items are readily
available, it seems to me that the easiest
way to build your 5-100 interface is to
wire it up on one of the development
boards, with one or more lengths of
rainbow ribbon cable to connect the
board into your existing 2650 system.
The S-100 connections can be made
directly to the appropriate edge con-
nector pads, so that the interface board
can then be plugged into a standard 5-
100 motherboard.

This way, you won't have to design or
etch any custom PC boards; you'll be
using readily-available standard boards.
The interface will simply become
another 5-100 plug-in, which happens
to have an "umbilical cord" back into
your 2650 system. You also have the op-
tion of using a standard S-100 power
supply, case and card cage if you wish.

ELECTRONICS Australia, January, 1980 	85

*MODIFIED LINE INPUT ROUTINE

IACD 0700 LODI.R3 00
IACF E73C COMI.113 3C
IADI ICI5B0 BCTA.: ISVO
IAD4 3E7'96 BSTA.UN 0236
1407 E47F COMI,R0 7F
1409 9303 BCFR.Z 1AE6
1408 03 LODZ.R3
IADC 1871 BCTR.Z IACF
LADE 0408 LODI.R0 03 MOD BEGINS HERE
IAEO 8340 ZBSR *0?22 PRINT BACKSPACE
14E2 A701 SUBI.R3 01 DECREMENT BUFF PTR
1AE4 1869 BCTR.UN IACF LOOP BACK
14406 0503 LODI.RI 03
IAES ED7AC9 COMA.R1 1AC9P
1AEB 1809 BCTR,7 1906
1AED F979 BORR.16 1AE8
1AEF CF7A02 STRA.R3 11412$
IAF2 9890 ZBSR *0020
19F4 DB59 BIRR.UN IACF
IAF6 CF0429 STRA.R3 0429
IAF9 CD042A STRA:R1 0424
IAFC 0700 LODI.R3 00
IAFE 9845 !ERR *0025

ABOVE: A disassembler listing of the modified
line input routine, which lets you step back to
correct typing errors.

RIGHT: A similar listing of the modifications to.
allow you to re-type lines that are thrown out by
the assembler. It now types "?ERROR", and
repeats the address.

76 	ELECTRONICS Australia, February, 1980

*MODIFICATION FOR IMPROVED ERROR HANDLING
159E 00 00

1540 0D0400
1543 0E040E
1546 C976
1548 CA75
I5AA 17

15AB 0971
I5AD 01470
I5AF 17

1580 75FF
1552 740F
1584 0503
I586 OD75C3
1589 BBAO
1513B F979
I5BD BBA5
15BF 386A
15C1 1F160C

15C4 524052
15C7 524520
I5CA 203F

160C 3000
160E 301590
1611 3BDC
1613 02
1614 CI
1615 3808
1617 0420
1619 3F0284
161C 38D3

*LOAD & STORE SUER
LODA.RI 040D
LODA.R2 040E
STRR.RI 	159E
STRR.R2 	159F
RETC. UN
*LOAD ADDS SUER
LODR:RI 	159E
LODR.R2 	159F
RETC. UN
*NEU ERROR HANDLING ROUTINE
CPSL 	FF
CPSU 	OF
LODI.RI 	03
LODA.R1 	15C3P
ZBSR 	*0020
BORR.P 	1586
ZBSR 	*0025
BSTR.UN 	1545
BCTA.UN 	160C
*ERROR MESSAGE
RoR
RE

*MODIFIED START SEQUENCE
BSTR.UN *1500
BSTR.UN 	1540 G3 TO NEV SUER
BSTR.UN *15EF
LODE.R2
STRZ.RI
BSTR.UN *15EF
LODI.R0 2E
BSTA.UN 0284
BSTR.UN *15F1

MODIFY THE ERROR THRONOUT ADDRESS TO X.1590
AT THE FOLLOVING LOCATIONS:

162F-30 1684-EB 1704-05 1745--46
1780-81 1493-94 1902-03

Improving the 2650
mini Line Assembler

After using the 2650 Mini Assembler
for a while, I became a little irritated by
its lack of any facility to let you correct
minor typing errors as soon as you
notice them, before the end of the line.
As you'll know if you've used the
assembler, you have to finish the line
and either reset the original to step
back and re-type the line (assuming the
assembler doesn't throw you out), or
restart the assembler and also reset the
origin (if it has thrown you out). In both
cases the lack of flexibility is quite in-
convenient, as well as being tedious
and time consuming.

To get around these problems I have
developed two modifications for the
assembler, which make it considerably
faster and more convenient to use.

The first modification is to the line in-

put routine. Its effect is to let you step
back along the line input buffer, using
"delete" (rubout) characters. So if you
spot a typing error before you have
finished a line, you can step back to it
and then type the rest of the line again
before typing a carriage return.

Actually the modified routine is
arranged to echo "backspace"
characters to the terminal, instead of
the incoming "delete" characters, so if
your terminal can perform the
backspace function it will step the cur-
sor back to show you where you are go-

Mg. With terminals which don't per-
form backspacing you'll have to count

back yourself, but this is usually no
problem.

A disassembler listing of the modified
input routine is shown below. It is one
byte longer than the existing routine,
ending at X'1AFF instead of 1AFE.

The second modification is a little
more elaborate. It involves an ad-
ditional error handling routine, a
modified starting sequence and a cou-
ple of subroutines, together with
changes to all the error throwout ad-
dresses.

The idea of this modification is that
instead of throwing you right back to
PIPBUG when it finds an error, the
assembler now prints a curt "? ERROR"
message, and reprints the address of
the line concerned so you can re-type it
correctly.

The disassembler listing for this
modification is also shown below. I
think you'll find it worthwhile. 	ea • •

If you have used the 2650 Mini Assembler described in the April
1979 issue, you'll know it is a little inflexible when you want to cor-
rect typing errors. Here are two small modifications which make it
very much easier and faster to use.

by A. M. KOLLOSCHE
Higginbotham Avenue. Armeele NSW 2350

"Trace" routine helps
debug 2650 programs

Like most small microcomputer
systems, the 2650 Mini Computer
provides only one debug aid: a pair of
breakpoints, which are software im-
plemented by the PIPBUG monitor
program. These can be quite handy,
but there are many occasions when
they just don't help enough.

For a start, each breakpoint can only
be used once. When it is executed
once, PIPBUG replaces it with the
original instruction. So you can't use
the breakpoints to track down bugs
which are inside loops, for example -
the breakpoint disappears first time you
go around the loop!

The other main drawback is that the
breakpoint "runtime" routine simply
saves the processor register contents in
RAM, and then transfers control back
to the PIPBUG command loop. So if
you actually want to examine the
registers, you then have to use the
PIPBUG "see and set the registers" (5)
command. This can be very tedious and
time consuming when you have to use
the breakpoints over and over.

*81000 1600 1602
1 	00140200003100E280
B 001A0201004200E280
O 00140202003000E280
O 00 1A0203003000E290

00 1A0204002000E250
7 	001A0205003700E230
6 	00140206003600E280
6 	001A0207003600E280
O 001A0208003000E210

001A0209002000 E280
001A0204002000E280
001A0208002000E280
001A0200002000E260
001A0200002000E280
001A020E002000E280

P 001A020F005000E280
P 00100210005000E280
S 00100211005300E230
U 00100212005500E290

001A0213002000E230
001A02140020001250
001A0215002000E200
001A22 16002000E260
021A02 17302000E280
001A02180020001280

6 	00140219003600E280
O 0010021A003000E200

Most of these disadvantages can be
avoided by using the "trace" routine
described in this article. It was
developed some months ago for this
very purpose, and since then it has
helped me considerably in tracking
down elusive bugs.

Basically it consists of a subroutine
which may be called any number of
times, by temporarily patching ap-
propriate BSTA or BSTR instructions
into the program you are trying to
debug. When it is called, it first saves
the contents!of all of the 2650 registers.
Then it prints them all out on the ter-
minal, to provide a "snapshot" of the
current processor status. Then it
restores all of the registers again, and
does a return.

Before it prints out the register con-
tents, it prints three spaces. This is to
prevent confusion if the program you
are testing already involves printing.
After the spaces it prints the registers in
the same order that they are provided
by PIPBUG: RO, R1, R2, R3, R1', R2', R3',
PSU and PSL. Finally it prints a carriage
return and line feed, so that each
"snapshot" is on a different line.

A full source listing of the trace
routine is shown below, together with a
sample of its operation. As listed the
routine is located from 0440 to 0495, but
it may be relocated anywhere in page 0
without changes. Note that it stores the
processor registers in locations 0400-
0408 — ie, the same locations used by
PIPBUG for this purpose.

The sample tracing shown below was
produced by patching a call into the
author's Disassembler program, at the
end of the PRINT MESSAGE subroutine
(1D9C). The code at 1D9C was changed
to 1B39, to branch to 1DD6 where a
patch of 3F0440, 1F 1 D94 was located. As
you can see this gives a "snapshot"
after each character is printed from the
line buffer.

SAVE R0
& PSU

FORCE TO MARK.INHIBIT INT.
SAVE PSL

FORCE TO BANK 0.CLR C & VC
SAVE BANK 0 REGS

PRINT 3 SPACES
SET R3 AS INDEX
& R2 AS COUNTER
FETCH SAVED REG
MOVE TO RI
PRINT VIA BOUT SUBR
LOOP BACK TIL DONE 9
THEN GIVE CRLF
RESTORE ALL REGS

When you're trying to debug a tricky program in assembly
language, a breakpoint isn't always the answer — you can general-
ly only call it once. Here is a "trace" routine for 2650 systems which
can be rather more helpful. You can call it any number of times,
and each time it is called it prints out the contents of all processor
registers.

by JAMIESON ROWE

RIGHT: A full listing of the
trace routine, complete with
comments so that you can
see how it works.

LEFT: A sample of the routine
in operation. Here it was
patched 	into 	th e
Disassembler program, so
that a "snapshot" of the
processor registers is printed
after each character from the
Disassernbler's line buffer.

*DIAGNOSTIC "TRACE" ROUTINE FOR
*2650 SYSTEMS. J.ROWE MARCH 1979

0440 CC0400 	STRA.R0 	0400
0443 12 	 SPSU
0444 CC0407 	STRA.R0 	0407
0447 7660 	PPSU 	60
0449 13 	 SPSL
044A CC0408 	STRA.R0 	0408
044D 7710 	PPSL 	10 	FORCE TO BANK 1
044F CD0404 	STRA.R1 	0404 	SAVE BANK I REGS
0452 CE0405 	STRA.R2 	0405
0455 CF0406 	STRA.R3 	0406
0458 7519 	CPSL 	19
045A CD0401 	STRA.R1 	0401
0450 CE0402 	STRA.R2 	0402
0460 CF0403 	STRA.R3 	0403
0463 3F035B 	BSTA.UN 	0358
0466 07FF 	LODI.R3 	FF
0468 0609 	LODI.R2 	09
046A 0F2400 	LODA.R3 	0400+
046D CI 	 STRZ.RI
0461 3F0269 	BSTA.UN 	0269
0471 FA77 	BDRR.N 	046A
0473 3F008A 	BSTA. UN 	008A
0476 0E10401 	LODA.RI 	0401
0479 0E0402 	LODA.R2 	0402
047C 0E0403 	LODA.R3 	0403
047F 7710 	PPSL 	10
0481 000404 	LODA.RI 	0404
0484 0E0405 	LODA.R2 	0405
0487 0F0406 	LODA.R3 	0406
048A 000407 	LODA.R0 	0407
048D 92 	 LPSU
0481 000408 	LODA.R0 	0408
0491 93 	 LPSL
0492 000400 	LODA.R0 	0400
0495 17 	 RETC.UN 	 & RETURN

84 	ELECTRONICS Australia, February, 1980

Micro Basic Programs
for 2650 systems

Temperature Conversion, Radio Log

Here are two short programs written in "Micro Basic" — the cut-
down version of BASIC developed for small 2650 computer
systems by reader Alan Peek. One program converts temperatures
from one scale to another, while the other is a program to manage
a radio amateur's contact log.

"Micro Basic" for small 2650 microcom-
Following our review of Alan Peek's an invalid entry when the program is

being used.
The complete listing of the program puter systems, published in the April is shown in Fig. 1, with a sample of

1979 issue, it would seem that quite a operation in Fig. 2. As you can see, it is few readers have obtained Mr Peek's
fairly self-explanatory. interpreter and have been working

with it. Already two readers have sent
in programs they have developed, and 	

G I as they seem likely to interest readers
PROGRAM TO CALCULATE we are publishing details here. 	
DEGREES C,K,F OR R GIVEN ONE The first program came from Mr Syd

Brooks, of 6 Edgar Street, Ferntree Gul-
WILL YOU GIVE C,K,F OR R? F ly Victoria 3156. It is a simple little
PRESS + OR -+ program which can convert between
WHAT I S TEMP? 212 the Celsius, Fahrenheit, Kelvin and

Rankin temperature scales. Mr Brooks
has provided it with a little humour, to C=100 K=373 F=212 R=672
add to the interest, along with some
checks and reprompts in the event of

I P"PROGRAM TO CALCULATE"
2 P"DEGREES C,K,F OR R GIVFN ONE"
3 P
4 P"WILL YOU GIVE C,K,F OR R? " AA
5 TA:70,A1750A: 67, A:82 GI<
6 P"PRESS + OR 	AB TB=43 L1=X G3>
	

Fig. 1, at left is the
7 TB=45 LII=X G2>
8 02<
9 P"WHAT IS TEMP" IE LEX*=E
10 TA-70 G4>
11 TA-82 04>
12 TA=67 G4>

	
program while Fig. 2
above is a sample of
its operation.

full listing of temp-
erature conversion

13 TA=75 G4>
14 LE460+=lioR=E
15 LE460-=F.F32-54.9/=CPC273+.1K,E=P G3>
16 LE273+=KAK=E
17 LE273-=C,C94.5/32+=FPF460+=RDE=K
18 TK40 P"THAT'S IMPOSSIBLE STILL!" G3>
19 TC<400 P"THAT'S COLD!" G2>
20 TC>1999 P"GUESS" G3
21 P
22 P"C="C," K="H," F="F," Rm"R
23 G3
24 SA=C,F.K OR R B=SIGN E=TEMP%
25 SC=CELSIUS F=FAHRENHEIT KleELVIN
26 $R=RANKIN $
27 E

W ILL YOU GIVE Co Ks F OP. R?

The second program came from Mr
Horst Leykam, of 165 Victor Street, Dee
Why NSW 2099. Mr Leykam is a radio
amateur, with the call sign VK2BHF, and
explains that he wrote the program in
an effort to produce a more elegant
and effective way of maintaining and
referencing his contact log.

What this program does is maintain a
log of contacts, with each contact
represented by callsign, the name of
the operator contacted, the date and
the readability/signal strength details. It
allows you to add to the log "file" when
each contact is made, and then to have
an automatic search made for previous
contacts with the same callsign. This lets
you "refresh" your memory regarding
the name of the operator, and the
previous times that you exchanged
calls.

A file can be expanded until it fills
the allocated memory buffer space (hex
1000-1FFF, or decimal 4096-8191). As
each entry is made to a file, the
program tells you how many bytes of
memory are left — in decimal. This
allows you to save a file at any time on
cassette tape, using the normal PIPBUG
dump command, and then re-load it
into the buffer later using the L com-
mand.

The program can search for either
the first file entry matching the
supplied data (typically the callsign), or
for all matching entries. It also allows
you to alter an existing file entry,
providing the change will fit into the
same space. This allows you to correct a
previous mistake, when it is discovered.

A full listing of the program is shown
in Fig. 3, with a sample of its operation
shown in Fig. 4. When the program
starts up, it immediately asks you for a
command. You have five options,
each command being represented by a
single digit (1-5) terminated by a
carriage return.
1 — Is to enter a new file. Each line
should be delimited by a space and an
asterisk.
2 — Is to accept a data entry (say the
callsign), and search through the
current file for a match. The first line
found to contain the data will be
printed out.

ELECTRONICS Australia, February, 1980 	87

594 * 23/ 3/89
BYTES

RST

G1
ENTER COMMAND
?5
ADD TO FILE
BYTES L EFT= 3939
VK2XYZ 	FRED
MEMORY LEFT= 3905
ENTER COMMAND
?3
ENTER DATA
VK2XYZ
SEARCHING
CALLSIGN NAME DATE

Fig. 3 above is the
full listing of the
amateur 	log
program while Fig.
4, at left, is a sample
of its operation.

1 P"ENTER COMMAND" P G35
2 L4096=2 P"ENTER NEW FILE" S44
3 AB TZ=8190 G33
4 MB>Z 32 TB: 13 G 1<
5 P"MEMORY LEFT="8 190t 2-, "BYTES" Li= Gil<
6 P"ENTER DATA" P
7 L4070=C
8 AD
9 MD> C 3C TD: 13 G1<
10 P"SEARDHING" S44
11 P
12 L4096=2
13 L4070=C TZ= Q G34
14 MB< Z MD< C
15 TB:D 32 TD: 13 G2<
16 TD= 13 G2>
17 32 3C G3<
18 CZ
19 MB< Z
20 TB:42 CZ 61<
21 3.2
22 MB<Z
23 05 32 TB:42 61<
24 TF=2 61
25 TF=3 L4070= C P 612<
26 TF=4 P"TYPE NEW LINE" CZ P
27 CZ
28 MEi<2 TB:42 61<
29 12 MB<2 TB=42 G2>
30 AB MB>2 61<
31 P"LINE FULL"
32 61
33 P"MEMORY FULL" GI
34 P"END OF FILE="2 01
35 L42=K MK>4095 IF
36 TF=1 G2
37 TF=2 G6
38 TF=3 G6
39 TF=4 G6
40 TF=5 1.0=2 P"ADD TO FILE" P"BYTES LEFT="8190: Z- P G3
41 MB<Z
42 TB:38 32 61<
43 1.2=0 61
44 P"CALL SIGN NAME 	DATE 	RST" P R

that the end of file pointer is set up
properly. Otherwise it will be ignored.

Note that searching a full 4K byte file
can take up to four minutes. This is
mainly because the Micro Basic inter-
preter is rather slow in operation -
although Mr Leykam notes that his
program may well be capable of im-
provement (it was his first program-
ming effort).

Finally, a note regarding Micro Basic
itself for the benefit of those who may
not have seen the earlier story. Micro
Basic is a tiny version of BASIC, written
by Alan Peek for small 2650 microcom-
puter systems. The editor/interpreter
for Micro Basic squeezes into a mere
1.6K bytes of memory, so that it can
even run in systems with only 4K of
RAM (although Mr Leykam's program
will require a system with 7K of RAM).

As you may have deduced from the
program listings in this article, Micro
Basic achieves this remarkable
economy by the use of single-character
commands, reverse Polish notation and
an efficient way of packing the source
program into memory. Its unorthodox
approach takes a bit of getting used to,
but the ability to program rapidly even
in small systems makes it well worth
persevering.

A cassette of the Micro Basic
editor/interpreterlin PIPBUG format)
complete with instructions and a full
source listing is available from Alan
Peek at 10 Gale Street, Woolwich NSW
2110.

VK2XYZ 	FRED
	

1/2/89 	599 *
VK2XYZ 	FRED
	

23/3/89 	594 *

END OF FILE=42/35
ENTER COMMAND

3 — This is like command 2, except that
the program will print out all lines in
the current file containing the data.
4 — Is to allow altering an existing line
in the file. Note that the new line must
be the same length as the original.
5 — Is to add to the current file. Each
new line should be delimited by a
space and an asterisk as before.

If the file in memory is to be saved on
cassette, the last character in the file
should be an ampersand (&). This is
required by the alternative start-up
routine, in order to set up the end of
file pointer when the file is re-loaded
into memory. When a file has been re-
loaded from cassette, start the program
at' line 41 instead of line 1, to ensure

ELECTRONICS Australia, February, 1980 	89

`Execute' Program for
the 2650 minicomputer

One of the most often used but most
little understood terms bandied about
by computer proponents, both
professional and amateur alike is "ex-
ecute". The newcomer to computing,
on hearing the expression "let's ex-
ecute the program", could be forgiven
for thinking that this means "let's kill
the program".

In fact, the dictionary definition of
execute does encompass the meaning
"to carry out capital punishment", ie to
kill, but includes a host of other
meanings as well. Thus we can speak of
executing orders, plans or functions,
meaning to carry out these duties or
acts, or of executing a document such
as a will.

In deed, the kill implication is the last
meaning listed in my dictionary and is
definitely not the meaning intended by
our overheard programmer.

If we turn from a dictionary to a
glossary of terms, as usually can be
found at the rear of elementary
programming manuals, we come across
an alternative definition, such as the
one given below:

EXECUTE — to fully perform a
specific operation, such as would be ac-
complished by an instruction or a
program.

Our newcommer could now draw
the correct conclusion that when we
talk of "executing a program", what we
really mean is running, or, to be
specific, letting the computer run a
program.

"But," wails our beginner, "how do
you run or execute, to use the jargon, a
program?" Well, this requires a special
purpose program, rather similar in con-
cept to an assembler or an interpreter.

For the benefit of newcomers con-
fused by those last two large words, an
assembler is used to assemble
programs, while an interpreter is used
to interpret programs. Similarly, we will
use an executioner to execute
programs. (Enlightening isn't it?).

The program listing included with
this article is a fully optioned ex-
ecutioner, intended for use with 2650
computer systems. It will operate with

both machine level languages, and with
higher level language, such as Basic or
Pascal. It is completely relocatable and
is intended to reside in the topmost
portion of the user RAM.

The program can also be used in
ROM, although in this case its full ad-
vantages cannot be reaped. This is
because it uses a unique form of error
detection and correction, which in-
volves a special section of the program,
which modifies itself.

This special section, however, before
it runs, first checks to see if it is ROM-
resident. If it is, it neatly bypasses itself.

The error correction carries out a
series of CRC (cyclic reduncy check)
tests, incorporating Hamming code and
BCC (binary condition code) tests.
These checks and tests enable it to cor-
rect any possible errors in the
remainder of the program.

This meant, in fact, that it was only
necessary to debug the first section of
the program, as the second section
automatically debugged itself. This sav-
ed valuable time and meant that this ar-
ticle could be published one month
earlier than anticipated.

In order to use the program with
your system, first load the program you
wish to execute into the area of RAM it

13M 7640
1381 7518
1383 0422
1385 24A5
13137 DO
1388 C801
13BA 1873
138C 6850
138E 50
13BF 0A82
130 92
13C2 4A62
13C4 01
13C5 32
13C6 7A7A
13C8 62
13C9 0900
13CB 3102DB
13CE 3823
1300 086A

normally uses. If you have a ROM
based system, this step is not necessary.

Next, load in the execute program.
You can do this using either the A com-
mand of Pipbug, the hex input routines
published in the March 1979 issue or
the mini assembler published in the
April 1979 issue. The program is 73
bytes long, and should be placed at the
top of your memory.

If you have the 2650 Mini Computer
with only 4k of RAM, start at address
X'13AF. If you have implemented the 8k
RAM expansion, your starting address
should be X"IFAF if you have memory
only in page 0, or X'2FAF if you have
used the CPU RAM in page 1.

To run the EXECUTE program, simply
type G 13AF XXXX CR, where XXXX is
the HEX hex address of the first byte or
location of the program to be ex-
ecuted. Control will return to Pipbug
when the execution is complete. Please
note that this may take some time, es-
pecially if your program includes a
number of absolute and relative ad-
dressed indexed instructions.

A disassembly listing of the program
has been included with this article, as
an aid to those who do not have access
to a disassembler. Unfortunately, no
comments could be provided with the
listing as that would give the game
away. However, with the aid of the 2650
Microprocessor manual, novices
should be able to work out the way in
which the program operates.

(Editor's Note: Users are warned that
this program does "execute" in the
worst sense of the word.)

Newcomers to computing often wonder just what some of the
jargon used means. This article is meant as a remedy to this situa-
tion, and attempts to explain with a practical example just what is
meant by the term "execute".

by LUDI KRAUS

PPSU 40 13D2 180E BCTR,Z 13E2
CPSL 18 13D4 50 RRR,R0
LODI,R0 22 1305 50 RRR,R0
EORI,RO A5 1306 50 RRR,R0
RRL,R0 13D7 310234 BSTA,UN 02134
STRR,R0 1383 13DA 0875 LODR,R0 13D1
BCTR,UN 13AF 13DC D800 BIRR,Z 130E
IORR,R0 1381 130E C871 STRR,R0 13D1
RRR,R0 13E0 186E BCTR,UN 1300
LODR,R2 •13C3 13E2 04C0 LODI,R0 CO
LPSU 13E4 CC040D STRA,RO 0400
ANDR,R2 13A6 13E7 3B02 BSTR,UN 13E13
LODZ,R1 13E9 1679 BCTR,UN 13E4
REDC,R2 13EB 0978 LODR,R1 13E5
BSNR,N 13C2 13ED 0A77 LODR,R2 13E6
IORZ,R2 13EF DA02 BIRR,N 1313
LODR,R1 13C8 1311 0900 BIRR,P 1313
BSIA,UN 02DB 1313 C970 STRR,R1 13E5
BSTR,UN 1313 1315 CA6F STRR,R2 13E6
LODR,R0 13BC 1317 17 RETC,UN

96 	ELECTRONICS Australia, April, 1980

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	265.pdf
	Page 1
	Page 2
	Page 3
	Page 4

