GETTING INTO MICROPROCESSORS

EA ST 76

The Signetics 2650

We continue our survey of microprocessor chips and systems with this
article, which takes a more detailed look at the Signetics 2650 device
and its currently available evaluation kits. Although a relatively recent
entry into the market, the 2650 has a particularly powerful instruction
set and very flexible interfacing requirements. It seems likely to become
the preferred 8-bit device for general purpose microcomputers.

by JAMIESON ROWE

The Signetics 2650 is an 8-bit micro-
processor which is made using well
proven N-channel MOS technology. It
runs from a single +5V supply, which
tends to simplify power supply require-
ments, All inputs and outputs are TTL
compatible, and the chip requires only
a single-phase clock signal input. As the
chip operates in static mode, there is no
minimum clock frequency.

With the original 2650 chip, the maxi-
mum clock frequency was 1.25MHz, giv-
ing instruction cycle times of from 4.8 to
9.6 microseconds. However, the cur-
rently available 2650-1 chip is rated to
operate up to 2MHz, reducing the
instruction cycle times to the range 3.6
— 7.2us.

The broad architecture of the 2650 chip
is shown in the block diagram below. It
uses an 8-bit bidirectional data bus, and
a separate 15-bit address bus. This gives
a direct addressing range of 32,768 bytes

1

SUMRO 1T INT WE TryMny
w0uREss sTacn

j\
[um-un T10% ADDRESS -mmu]
£
1

[OPERAND AUDRESS lll‘.ll'll_]

mncnﬁ_q
" —

MUTPT CONTROL

(32k), arranged in four pages of 8,192
bytes.

There are seven 8-bit addressable
general purpose registers, one of which
is the accumulator RO. The remaining six
make up the register stack, and are
arranged in two groups of 3 selectable
by one of the bits in the Program Status
Word register (PSW).

Apart from the register stack there is
a subroutine return address stack, con-
sisting of eight 15-bit registers. This
allows storage of up to eight return
addresses, and hence provides for up to
eight levels of subroutine nesting. (A
nested subroutine is a subroutine itself
called by a subroutine.)

The arithmetic and logic unit (ALU)
performs arithmetic, logic and shifting
functions. It operates on 8-bits in parallel,
and uses carry-look-ahead logic. A
second adder is used to increment the
instruction address register (program

counter), and also to calculate operand
addresses for the indexed and relative
addressing modes. This separate address
adder, together with the separate instruc-
tion address and operand address regis-
ters allows complex addressing modes to
be implemented with no increase in
instruction execution time.

The PSW is a special purpose register
which contains status and contro! bits.
The PSW bits may be tested, loaded,
stored, preset or cleared using instruc-
tions which affect the PSW. Three of the
bits act as the pointer for the return
address stack; two others act as a “condi-
tion code” register, which is affected by
the results of compare, test and arithme-
tic instructions and may be used by con-
ditional branch instruction; other bits
store overflow, carry, the selection bit for
the two register groups, an interrupt
inhibit bit, a carry enable bit, a
logical/arithmetic compare select bit,
and flag and sense bits for external bit-
serial interfacing.

it has been said that the 2650 has the
most minicomputer-like instruction set
of any microprocessor currently avail-
able. There are 75 basic instructions, but
many of these are actually subdivided
into a number of variations. For example
the eight arithmetic instructions may be
performed either with, or without car-

J¢

RECSTER

Stars PROGAAM N

sratus

no WORD

MULTIPLERER

aLu

COMDI TION CODE
AND

BRANCH LOGK

1

ADDRESS ADDE R

NiE=

P!

@cuu s

INTERRIPT

Ae]
@S NTERRUST

DATABUS REGISTER

LG,

INTERRLPT h—
AL ¥ HOWL £ DGF h

«

INST RUC TION
I"°‘°"'G"°”""I I “hecisien I

: N
K]
Lonic

th
CONTROL LINES

OECNOING AND CONTAOL LOGIC

cLock
THING L OGKE

Y

The basic architecture of the 2650 microprocessor chip showing major data, address and control paths.

GETTING INTO MICROPROCESSORS

ry/borrow; this also applies to the two
rotate instructions. Similarly the four
compare instructions may perform either
arithmetic or logical comparison, while
four of the 12 branch instructions and six
of the ten subroutine branch/return
instructions are conditional upon the two
PSW condition code bits—giving typically
about 3 possible variants.

Also although there are nominally only
six input-output transfer (IOT) instruc-
tions, as distinct from the memory
reference instructions (which may also
be used for 1OT), two of these are
“extended’’ instructions which may
address any one of 256 distinct 8-bit
input-output ports.

One, two and three-byte instructions
are used, giving a high degree of
programming efficiency. Register-to-
register and simple 10T instructions are
one byte, extended 10T instructions are
two bytes, while memory-reference
instructions are either two or three bytes
Ionias required.

The memory reference addressing
modes provided by the 2650 are
generally agreed to be the most extens-
ive and versatile of any micro-processor
currently available. The modes are as
follows:

1. Immediate addressing, with the data
mask or value in the second byte of the
instruction itself.

2. Direct addressing, either absolute or
program relative with a displacement
range of from —64 to +63.

3. Direct indexed addressing, absolute.
4. Direct indexed addressing with auto
increment.

5. Direct indexed addressing with auto
decrement.

6. Indirect addressing, either absolute or

Py

tﬂ\““:
cecces®,
cereens

NEMNRCE > PO
PRy pra— ™

Y1 YY YY)
feretee

)
)

—

sesevne

444480

Treves
[]

L

de888e

(TTIYYYY
peasunans
"ll(ll“l

448eaen
: it"""!)
a$? 'Yy
nnc_u)
]
[]

:
&
g

T YT YYY
pesaessy
.llttl;l

!

[Ty 1T
THI888

program relative with a displacement
range of from —64 to +63.

7. Indirect addressing with post index-
ing.

8. Indirect addressing with post indexing
and auto increment.

9. Indirect addressing with post indexing
and auto decrement.

Memory and 10T interfacing of the
2650 is asynchronous, using “handshak-
ing" control signals. This makes the 2650
compatible with almost any type of

|

SEL wxe

SEL
wxs

RECEIVER

DECODE PAOM RAM
L R
e 4
2650 s y
1 1s Ah
A\
,
ADDRESS J 15,
BUFFER ABUSO - ABUS1A 4
1
-1
5]
=4
L
z
DBUSO - DBUS? s/ £
o
[
g
-
NON- NOM o
EXTENDED EXTENDED EXTENDED H
ouTPUT INPUT ouTryT g
1 2 2
2
{ B2
[) As 1 {s 110 o,
LI/
L
ry
SERIAL "
2 o 4,
£ DRIVER/ ~7

.
*OPREQ, RUN/IWATY, INTACK, whe. Rw. M/iD. DMA. PAUSE. iNTRED, RESEY. DFACK

The PC1001 evaluation board system, which is also pictured at top of this page.

LApRLtany EESYREVLY]

f5882008

memory and peripheral device.

The 2650 has a single level vectored
interrupt capability. Whe it enters the
interrupt mode, the chip is able to input -
an 8-bit address vector via the data bus.
This may be used with either direct or
indirect addressing to access interrupt
servicing routines in any part of the
memory space.

As you should be able to see from this
brief rundown of its salient features, the
2650 is a particularly flexible micro-
processor, and one which is very well
suited for general-purpose micro-
computer applications. As such it would
seem a good choice for anyone seeking
to build up a minicomputer-type system
based on a microprocessor.

At the same time, the relatively low
cost of the basic chip (currently around
$20) and its ability to operate with little
more than a clock generator and a ROM
in dedicated mode would also make it
a good choice for low level applica-
tions.

Signetics make two evaluation kits
based on the 2650, and these are cur-
rently available in Australia from Philips.
The more elaborate of the two is the
PC1001, which comes as a ready-wired
PC board together with edge connector
socket and literature. The other kit is a
little less elaborate, and comes as either
a completely wired PC board or as an
assemble-it-yourself kit. In wired form it
is designated the PC1500, while the D-I-Y
version is the K79500.

Both kits are basically small microcom-
puters, capable of being used directly
with a power supply and an ASCII

GETTING INTO MICROPROCESSORS

teleprinter to develop small 2650
programs in machine language. They
could also be expanded into quite pre-
tentious minicomputer systems, by
adding further memory and |OT facili-
ties.

An add-on RAM memory board is in
fact available, and is directly compatible
with either kit. Designated the PC2000,
it provides an additional 4k bytes of
memory.

At the time of writing this article, we
have only had the opportunity to
examine and use one of the PC1001
evaluation kits. This is on a PC board
measuring 203 X 175mm, with a 100-way
double sided edge connector along one
of the longer sides. The PC board is
pictured, and as you can see there are
quite a few IC’s apart from the micro-
processor.

In fact the PC board is a three-layer
assembly, with copper conductors sand-
wiched in between two layers of epoxy-
fibreglass as well as on the two external
surfaces. This has allowed Signetics to fit
a surprisingly large amount of circuitry on
the relatively modest PCB area.

On the PC1001 board is 1k bytes of
RAM, capable of storing quite a respect-
able user program. In addition there is
another 1k bytes of ROM, containing a
resident monitor-debug program which
Signetics have dubbed “PIPBUG”. This
will be described shortly.

There is an on-board serial asyn-
chronous teleprinter interface, which
may be adjusted by means of wire links
for either 20mA current loop interfacing
or R5232-type voltage interface.

In addition to the teleprinter interface
there are four 8-bit parallel 10T ports—
two inputs and two outputs. These are
wired to be accessed via the two-byte
non-extended” |OT instructions, so that
small systems with four or less
peripherals (apart from the teleprinter)
may be implemented with no further
hardware.

The PC1001 board has a 1MHz crystal
clock, and therefore is immediately com-
patible with a 110-baud teleprinter (serial
formatting is done by firmware routines,
so baud timing is derived from the sys-
tem clock).

Full data and address bus buffering is
provided on the PC1001 board, to sim-
plify addition of further memory or
peripherals. All of the control signals are
also available at the edge connector in
buffered form, which again simplifies any
required interfacing.

Although at the time of writing we
have not had the opportunity to examine
and use the PC1500/KT9500 evaluation
kit, we understand that this is based on
a PC board identical in size to that of the
PC1001, And although the second kit is
nominally a less pretentious one, it still
offers quite impressive facilities.

For example it still provides 1k bytes

GETTING INTO MICROPRO CES SORS il R A R S A

of ROM, with the same resident monitor-
debug program (PIPBUG) provided on
the PC1001. The only difference in terms
of on-board memory is the RAM, which
in this case is of only 512 bytes. This is
still adequate for a lot of modest
programming, of course—and you can
always add further memory, as the board
again provides fully buffered data,
address and control signal buses.

The serial asynchronous teleprinter
interface is still provided, but there are
now only two 8-bit parallel 10T ports.
However, these are programmable in
terms of direction, so that they may be
used for both input and output.

In place of the crystal clock, the
PC1500/KT9500 has an R-C clock oscilla-
tor using a 74123 dual monostable.

As not all of the PC board is used by
the basic circuitry of the PC1500/KT9500
system, the unused area is provided with
plated through holes on 0.3in centres, to
allow fitting of additional memory/
peripheral decoding 1Cs if desired.

In short, the PC1500/KT9500 evalua-
tion kit is only a little less flexible than
the PC1001. Both are in reality small
development systems, capable of being
used to develop and run 2650 programs.
And in their basic form, each could be
used to develop programs for running on
the other—apart from the memory size
difference. In that sense they are soft-
ware compatible.

Not only this, of course, but because
they use the same resident monitor-
debug program they are also virtually
identical in the operating sense.

As evaluation kit resident debug
programs go, PIPBUG seems quite a flex-
ible one. It recognises seven basic com-
mands, each of which consists of an
alphabetic character, any required
numerical parameters, and a terminating
carriage return. The parameters are given
as hexadecimal characters, with leading
zeroes unnecessary.

The seven commands and their func-
tions are as follows:

A — See and alter memory

B ~ Set breakpoint (2 permitted)
C — Clear breakpoint

D — Dump memory to paper tape
G - Go to address, run

L ~ Load memory from paper tape
S — See and alter registers

The D command may be used to
punch out any desired range of memory
locations, with leader, checksum and
trailer to facilitate reloading. Both the A
and S commands may be auto-incre-
mented, by terminating with a line feed
instead of a carriage return.

A full listing of PIPBUG is provided
with the evaluation kits, which is very
useful. Among other things, it allows the
user to make use of the teleprinter servic-
ing subroutines in PIPBUG, by arranging

SIMPLE ANSWER-BACh PROGRAM FOR SIGNETICS PCI@@1 SYSTEM

DEVELOPED BY JeROWE,"ELECTRONICS AUSTRALIA”

MAGALINE 1177776

NOTE: PROGRAM STARTS AT LOCATION S@@ (HEX)

LISTINGS
sa@ 7o Ce PPSU 40 sSET UP TTY

592 JF ¥2 86 BSTA,UN CHIN /FETCh Chak Fauk TTY V1A PIPBUG RTN
505 C1 STRL,RI /5AVe

586 JF 82 B4 ©B5TA,UN COUT /ECHY VIA PIPBUu ROUTINC

sey @l LODZ,RI /RESTJdz lis RO

SPA A4 BO SUdI,Hd "CR" /RO= CHAR -CR

sec 56 74 BRNR,R® =-)2 /CR? 1F NOT KEEP GOINu

SBE ¥4 VA LODIL,R@ "LF" /SUPPLY LF

S1@ 3F 32 B4 BSTA,UN CUUT

S13 25 2@ LODI,RI /SET Ri=g@

S1S @D 25 26 LODA,R) 526+ /FETCH ANSWER CHAR

Si18 C3 STRZ,R3 /SAVE

519 3F @2 B4 BSTA,UW COUT /PRINT

S1C A7 @D SUBI,R3 “CR" /R3= CHAR =GR

SIE SB 75 BRNR,R3 -11 /CR? 1F NOT KEEP GOING

520 @4 3A LODI,R3 "LF"™ /YES; SUPPLY LF

S22 JF 82 34 BSTA,UN COUT

525 1B SA BCTR.UN =38 /BACh Tu LUUA FOR WEW INPUT

527 47 4F 20
S2A 41 57 4l
52D 5% 2C 45
53@ 27 4D 2¢
533 42 55 s3
536 59 21 @D

SAMPLE UF QPERATIOws

*» 4500

HELLO THERE,
U0 AWAY,1'M BUSY!

DON'T BE LIKE THAT,PLEASE
G0 AWAY,1'M BUSY!

/3TART UF ANSWER BUFFER

ZANSWZIn LUST END WITH CR (KEX 8D)

WHAT AT PRESENT ARE YOU CUMPUTING?

This simple novelty program was written largely to verify that the teletype servicing
routines in PIPBUG could be called by a user program. The listing shows instruction
mnemonics and comments as well as the actual instructions in hexadecimal code.

for application programs to call them as
required.

To illustrate this, the author wrote a
simple novelty program for the PC1001
system. Its listing and a sample of the
operation are reproduced on these
pages, and as you can see it does nothing
more than monitor input from the
teleprinter, waiting for the person at the
keyboard to press the carriage return
key. When this occurs, it responds by
typing out a curt reply: "GO AWAY, I'M
BUSY!”,

1 wrote this little program mainly for
practice with the 2650 instruction set, and
also to check out the use of the PIPBUG
teleprinter servicing routines. The
gram inputs characters via the “CHIN”
subroutine in PIPBUG, whose calling
address is 0286, and outputs characters
via the “COUT" subroutine whose call-
ing address is 02B4. As you can see the
program itself starts at location 0500.

Note that the program uses one, two
and three-byte instructions, and requires
only 57 bytes of memory including the

pro--

answer message buffer. This illustrates
the programming efficiency possible
with the 2650’s powerful instruction set
and wealth of memory addressing
modes.

If you're interested in the PC1001 or
the PC1500/KT9500 evalution kits or the
PC2000 add-on memory, they are avail-
able from the Electronic Components
and Materials Division of Philips Indus-
tries, with offices in each state, or from
their distributors. Prices for the kits are
as follows:

PC1001 — $345 plus tax
PC1500 — $245 plus tax
KT9500 — $165 plus tax
PC2000 ~ $400 plus tax

Each of the basic kits comes with all
of the literature needed to use it. All you
need is a power supply and a tele-
printer. The teleprinter must com-
municate in ASCIl code, as with most
other kits. Here at EA we are currently
working on a way to allow this to be
done at low cost using a surplus Baudot
teleprinter. 2

GETTING INTO MICROPROCESSORS

A “habhy” system using
the Signetics 2650

Here is surely the simplest and lowest-cost way of getting to know the
Signetics 2650 microprocessor. A complete microcomputer system on
a single small PC board, you can build it for around $70, not counting
a power supply or terminal. Despite its low cost, it offers the same
debug and monitor program in ROM provided by more expensive sys-
tems, together with 256 words of RAM.

by JAMIESON ROWE

As we have noted in earlier articles, the
Signetics 2650 microprocessor is a par-
ticularly powerful device. Its architecture
and instruction set are very minicom-
puter-like, making it well suited for
general-purpose computing as well as
low-cost dedicated applications.

In their literature, Signetics note that
the device may be used to implement a
very low cost minimal “evaluation kit”
type system, one which would be very
suitable for those wishing to gain
experience with the 2650 with the
minimum outlay of both time and
money. However they themselves have
not made such a minimal evaluation sys-
tem available, only larger systems such
as the PC1001 and PC1500 systems.

This seemed rather a pity to us, as at
least one other microprocessor has been
available in a really minimal system, and
this has proved very popular. However
as the 2650 and its 2608 ROM chip have
been in rather short supply until recently,
there seemed little hope of being able to
remedy the situation as far as the 2650
was concerned.

Happily this situation has now changed

for the better. Just a few weeks ago we
learned from Philips Industries that the
2650 and 2608 chips were now readily
available, and at relatively low cost. (Sig-
netics is a US subsidiary of Philips.) We
accordingly suggested to them that this
would be an ideal opportunity to pro-
duce a low-cost “baby” 2650 system,
based on the minimal system suggested
by Signetics themselves. They agreed,
and offered to make available a set of
devices if we cared to try the idea.

This project is the result!

Basically, it is a complete general-
purpose microcomputer, just like the lar-
ger evaluation kits. In fact it has the same
debug and monitor program as the larger
kits—"“PIPBUG’’—resident in the 2608
ROM (1k x 8-bit words). It communi-
cates directly with a standard 20mA
asynchronous data terminal, such as an
ASR-33 Teletype or the video data ter-
minal described in our January and
February issues, and requires a single 5V
DC power supply.

The main difference between this sys-
tem and the larger systems is that there
is only 256 bytes of RAM memory for

user program storage, and there is no on-
board decoding or buffering for further
memory or peripheral expansion.

In short, it is a ““bare minimum” 2650
system, designed to be the cheapest and
easiest way of getting a 2650 up and run-
ning. At the same time, it offers the full
program development facilities of
PIPBUG, including the ability to examine
and alter memory from the terminal
keyboard; the ability to dump programs
to paper tape or cassette, and then load
memory from tape; the ability to
examine and set the processor registers;
the ability to set and remove up to two
breakpoints, for debugging; and the
ability to run the user’s program on com-
mand.

These are quite powerful program
development facilities, not usually found
on low cost systems. As a result, our
“baby” 2650 microcomputer should be
particularly suitable for educational and
training purposes, whether by schools
and colleges or by individual enthusi-
asts.

As you can see from the diagrams and
photograph, it consists of only a handful
of parts on a small PC board. There are
only six 1Cs, one transistor and a few
resistors and capacitors, and the PCB is
single-sided to keep the cost down.

Heart of the circuit is the 2650 chip
itself, a powerful 8-bit microprocessor
with an instruction set of 75 instructions,
and eight different addressing modes.
Fabricated using low-threshold ion.
implantation, it is an N-channel silicon

i

At left is our new “baby” 2650
- microcomputer, complete on
its small PC board. It offers the
same PIPBUG program in
ROM as provided on the lar-
ger systems. The full circuit
diagram is shown on the fac-
ing page, together with an
. optional power supply.

68 ELECTRONICS Australia, March, 1977

AOYT

AlddNS HIMOd
TVYNOILHO

QHVOE NO A3LNAIYLSIA LYOFXG 4

L <
i mm,am—

8ESIVL : ¥O-LD

W31SAS 0992 TVNININ .@.

L4

of - oL €

=

0LV'D3UdO

L} of Sisil L} 2} €

WA AT 10 A1\ | |

WAL Y1 1Y\ Ay | S

VYUYV N -

T\ VU, VT, W——

Y\ ¥, O, W, V. W, -
PPN
)\, V. ¥ ¥
9 . V¥, WY

NP PSPPI
NNV W, VW, W, W W

~

X962
Wvy
(413 ¥4

€0 za_ \la

V-9V SVYVEVY ZVIV OV M/Y 30

0a

=N

VL

£l

X962
Wvy
[45 14

za ia

VOV SYPVEV ZVIVOY 'M/H 3D

[+]]

(4 Lty Ot

6!

L} ol

i

AS+

(=]

6Vi8Y LV9V SYPVEV ZVLV OV £50.2SD 1SI 0SO

(9nadid) Wou

Ko
~

NP —q

1w W W VW N

SN

WV v VW v

r{A]

i

NG+

0592

aan

NS+

I
_
_
_
_

6€|

(=]
o
C
(72
mj
o -
ov1d 1 vostL [N
WAINIHd
3— | ALol
A§ + ——O +
AS+ |
DIULNI M= AG + _
CLENE .1 _
lm.r b 1% B
mw " ' quvosaan
3 | ALL WOH4
‘08 mvm_,um . v 3 &M O+
AE'E
) I
ISNISET X)evieniz $u _
$n I
3 |
= |
AS+
|
| 1353y
13534 [o=
. |
A F |
asnvdpe=] “
i
€
55 s+ |3 s _
€010k zI° 4 bo _
[€1 |
o 4
si| vy |
4dog u.u._onn |
S L gzLPL |
! b %05
$zz 9 I
< _
|

69

ELECTRONICS Australia, March, 1977

GETTING INTO MICROPROCESSORS

gate device which operates from a single
5V supply and offers TTL compatibility
on all inputs and outputs.

A 74123 dual monostable device is
used to generate the single-phase TMHz
clock signals for the 2650. The clock
oscillator is of the R-C type, but is easily
adjusted to the correct operating
frequency without the need for elaborate
instruments. More about this lateron . . .

As mentioned already, the PIPBUG
debug-monitor program is resident in a
2608 ROM. This includes reutines for ser-
vicing the data terminal input and output,
so that the system “knows”” how to com-
municate with a terminal as soon as it is
initialised. The code suffix for the 2608
with PIPBUG resident is CN0035.

Two 2112 devices are used to provide
the. RAM memory of the system. These
are low-cost static MOS RAMs, each
organised as 256 words or 4 bits, so that
the two together provide a RAM of 256
8-bit words. Some 63 words are used by
PIPBUG as its scratchpad area, leaving
193 available for user programs.

The remaining IC in the circuit is a
741538 low-power Schottky quad NAND
buffer, two gates of which are used for
simple address decoding to allow the
2650 to differentiate between the ROM
and RAM sections of memory.

The ROM is allocated to the address
range 000—3FF hexadecimal, or the first
1k of memory space. The RAM memory
is allocated to the next 256 bytes of
memory space, with hexadecimal
addresses 400—4FF. Basically this means
that when binary address bit AD10 is 0,
the ROM s selected, while when it is 1
the RAM memory is selected.

Gate G3 is used to enable the two 2112
RAM devices when AD10 is at the 1 level.
The second input of G3 is fed with the
OPREQ signal from the 2650, which is a
strobing signal used to indicate when bus
information is valid.

When AD10 is at the 0 level, the RAMs
are therefore disabled. At the same time
the ROM is enabled, because the AD10
signal from the 2650 is also fed to the
active-low chip-select input CS1 of the
2608 ROM device. Correct strobing of
the ROM is achieved by using gate G4
as an inverter to feed an OPREQ-bar sig-
nal to the CSO input of the ROM.

" Note that this simple address decoding
scheme is not completely unambiguous,
because the ROM is enabled whenever
AD10 is 0 and the RAMs whenever it is
1. Thus the ROM strictly occupies not
only the nominal range of 000-3FF, but
also higher ranges such as 800-BFF.
Similarly the RAMs occupy not only their
nominal range 400-4FF, but also higher
ranges such as 500-5FF, 600-6FF, 700-7FF,
C00-CFF, D00-DFF, E00-EFF, and
FOO-FFF.

This ambiguity need not cause any
complications, however, providing you

. . A
Torry ¢ v

PRINTER i -
T 2xINQI4 ol
e SE

+ @r’l : +

=N
3

74123

o
i H R
FROM TTY "33 Je = O »et
Keveoarp 33k [e Kl
& ‘ . S
o Tlel <
. 8 —_— ;
ﬁ% ?—__——n &
il
o : E G
N
. |3
»
-
o »
o -
- bel
4 2650 & o
- 4 1e
- -
. -
»o -
-
»
x[. e
x ;
RESET
S BT

L
i

(i

Cih s

tlnu

N
2
=3
@
(ZXX223

50k

330pF

TEETES

1]
+
o
<

Using this overlay diagram you should have no problems in fitting the components
to the PC board. Sockets are used for the 2650 and 2608 devices.

LIST OF PARTS

1 PC board, 175 x 135mm, code
77up?2)

8 PCB terminal pins (optional)

1 2650 microprocessor IC

1 2608 ROM (with PIPBUG: code

CNO0035)

2112B RAMs

74123 dual monostable

741538 low-power Schottky buffer

BC548 or similar NPN silicon

1N914, 1N1418 or similar diodes

40-pin IC socket, PC type

24-pin IC socket, PC type

~mmmamaN

RESISTORS

Quarter watt, 5%: 1500hms, 4 x 1k, 3
x 1.5k, 2 x 2.2k, 1 x 3.3k, 2 x 10k,
1 x 22k.

1 47k PC type tab pot, vertical
mount

CAPACITORS

1 47pF NPO ceramic

1 330pF NPO ceramic

5 .047uF LV polyester

1 0.22uF LV polyester

1 1.5uF 35VW electro or tantalum
Wire for links, solder, etc.

remember it and take it into account
when writing your programs. All it means
is that if you forget and your program
tries to address these non-existent higher
memory locations, it will in reality still be
talking to the same ROM and RAMs!

Many small systems use this type of
simple address decoding, to simplify the
circuitry and reduce costs.

The third gate, G2, is used to control
the read-write function selection of the
RAM devices. The inputs of the gate are
fed from the R-bar/W and WRP outputs
of the 2650, while its output goes to the
R/W-bar control inputs of the 2112 RAM
devices. The R-bar/W output of the 2650
provides its read-write control signal,
while the WRP output provides a write
strobe pulse designed to delay writing
until memory devices have stablised.

The remaining section of the circuit is
that used to provide the serial com-

munication ports, which are associated
with the flag (F) output and sense (S)
input of the 2650. The output port uses
the remaining gate G1 as a buffer, to con-
trol a 20mA output current in response
to the F output of the microprocessor.
The 150-ohm resistor in series with the
gate output sets the output current level,
which is sufficient to drive the normal
current-loop input of an ASCII teleprinter
or video data terminal. ~

The input port circuitry uses a BC548
or similar general-purpose NPN transis-
tor T1 to provide level translation be-
tween a standard 20mA current loop
input and the S input of the microproces-
sor. The input circuit provides its own
20mA source, and so is suitable for direct
connection to the keyboard contacts of
a teleprinter, or the corresponding out-
put terminals of a video data terminal
such as that described last month.

ELECTRONICS Australia, March, 1977 71

GETTING INTO MICROPROCESSO R S N

The 1.5uF capacitor in the base circuit
of T1 is to provide contact bounce
suppression in the case of teleprinter
keyboards, and also to provide filtering
of any noise induced in the input line.
The two diodes are to protect the transis-
tor from high amplitude noise impulses.

As you can see, the complete baby sys-
tem is built up on a small PC board
measuring 175 x 135mm. The pattern is
coded 77up2, and PC boards etched to
the pattern should be available from
board manufacturers by the time you
read this article.

Assembly of the system on the PCB
should be fairly straightforward using the
overlay diagram as a guide. Note that
there are a number of wire links, neces-
sary because the board has been kept
single-sided.

In view of the fact that the 2650
microprocessor chip and the 2608 ROM
are both fairly expensive, and are both
MOS devices, | suggest that you use
sockets for them. A 40-pin socket is
required for the 2650, and a 24-pin socket
for the 2608, both being of the 0.6in row-

Below is the PCB pattern, actual size for
those wishing to etch their own.

spacing DIL type. Use high quality
sockets if you can, to avoid contact trou-
bles.

The remaining ICs are probably best
soldered directly into the PC board.

I suggest that you wire in all of the links
first, then add the IC sockets and the
resistors and capacitors. Watch the
polarity of the 1.5uF tantalum electrolytic,
as this could cause malfunction if it is
connected the wrong way around.

Now wire in the transistor, the two
diodes and the two TTL ICs (74123 and
74L538), taking care that these are also
orientated correctly. Then finally add the
two RAMs, after having connected the
barrel and bit of your soldering iron to
the PCB supply lines to ensure that the
MOS 1Cs won't be damaged by static
charge. It is a good idea to solder the
supply pins of each IC first (pins 7 and
14), so that the internal protection diodes
become operational as soon as possible.

There are only eight external connec-
tions to the PC board. Two are for the
power supply, which may be almost any
reasonably well regulated and filtered 5V
DC supply. The total current drain is
around 250mA. If you don’t have a suit-

able supply handy, the circuit shown in
the small diagram would be quite suita-
ble.

The four connection points adjacent to
one another are for the serial input and
output. These connect to the teleprinter
or video data terminal, with polarities as
shown. Whichever type of terminal is
used, it should be connected for 20mA,
full duplex operation. v

The remaining two connections to the
PCB go to the reset switch, which is a
simple normally-closed pushbutton.
When pressed, this button forces the
microprocessor to reset its internal regis-
ters. Then when the button is released
the microprocessor begins running from
a known and predetermined state, fetch-
ing its first instruction from memory loca-
tion 000—the start of the PIPBUG
program residing in ROM.

The reset button therefore serves to
initialise the system, and is used for this
purpose both when power is first
applied, and at other occasions
whenever one wishes to return to
PIPBUG from an applications program
(apart from breakpoint returns, which
take place automatically).

72 ELECTRONICS Australia, March, 1977

GETTING INTO MICROPROCESSOR S |

When you have completed wiring the
PC board and connected it up to the ter-
minal, reset switch and power supply,
carefully remove the 2650 and 2608 chips
from their conductive foam and plug
them into their respective sockets (with
the power turned off).

There is only one adjustment to be
made, that in which the 74123 clock
oscillator is set up to operate at the cor-
rect frequency of TMHz. This is done
with power applied.

If you have access to a frequency cou-
nter, it can be done by simply connecting
the counter between pin 5 of the 74123
and the grounded negative supply rail,
and adjusting the small tab pot until the
counter reads TMHz. This is the prefer-
red way of setting the clock frequency.

However if you don’t have access to
a counter, the frequency can still be set
up fairly accurately using the teleprinter
or data terminal itself. This can be done
because only when the clock frequency
is the correct TMHz will the software-
timed serial output signals produced by
the 2650 be at the correct 110-baud data
rate required by the terminal.

To adjust the clock frequency using
this method, apply power to both the
system and the terminal. Then press the
reset button, and release. The printer of
the Teletype or the screen of the video
terminal should print a couple of
characters and then become static.

If by some lucky chance you have the
correct clock frequency already, the
printer or display screen should have
displayed a carriage return (CR), a line
feed (LF), and an asterisk. This is the
programmed output of the PIPBUG
program upon initialisation (the asterisk
is its prompt signal, signifying readyness
for an input command).

Most likely, you won’t get this
sequence of CR-LF-asterisk straight
away. But the idea is to adjust the tab pot
slowly and carefully from its maximum
resistance extreme, pressing the reset
switch after each change until you find
the setting where the terminal shows that
the characters are being fed to it at the
correct rate.

There should be a small zone of the
pot’s travel in which the characters are
printed correctly following the release of
the reset button. For most reliable opera-
tion, try to set the pot in the middle of
this zone.

With this adjustment made, your baby
2650 system is fully operational and ready
to begin work (or play!). With the set of
1Cs, you should have received a Signetics
Applications Memo (coded S$S50) which
explains how to use PIPBUG to feed
applications programs into the system,
run them, debug them, dump them on
paper tape (or cassette), and re-load
them. It also gives a listing of PIPBUG
itself, which among other things lets you
make use of some of its utility subrou-

o

SIMPLE ANSWER-BACY PROGRAM FOPR "3AEY' 2650

MICROCOMPUTER

WRITTEN BY Je«ROVE, "ELECTRONICS AUSTRALIA" MAGAZINE
ADDe. CODE MNEMONICS COMMENTS

44¢ 76 CO PPSU 40 /SET TTY TO MARX

442 J3F 22 86 2STA,UN CHIN /FETCH CHAR VIA PIPEUG RTN
445 Cl STRZ,R1 / SAVE

446 3F 02 B4 ESTA,UN COUT /ECHO

449 @21 LODZ,R1 /RESTORE IN R@

44 A4 @D SUBI,R@ '"CR" /TEST FOR CR

44C 58 74 BRNR,RZ =~12 /KEEP GOING IF NOT
44E @4 2A LODI,RE@ “LF" /1F YES,PROVIDE LF
458 3F 22 B4 BSTA,UN COUT

453 25 00 LODIsR1 /SET RI1=0

455 @D 24 66 LODA,Rl 466+ /FETCH ANSWER CHAR
458 C3 . STRZ,R3 / SAVE

459 3F 02 B4 BSTA,UN COUT /PRINT

45C A7 @D SUBIs,R3 'CR" /TEST FOR CR

45E SB 75 BRNR,R3 =11 /1F NOT,KEEP GOING
46C @4 OA LODI,R@ '"LF" /1F YES, SUPPLY LF
4562 3F 02 B4 BSTA,UN COUT

465 1B 5A BCTR,UN =38 /BACKX TO START AGAIN
467 47 4F 20 /ANSYER TEXT

46A 41 57 41

46D 59 2C 49

470 . 27 4D 20

473 42 55 53

476 59 21 @D /ANSWER MUST END WITH A CR:-

This simple novelty program should help you get your system going. Only the code
is actually fed into RAM, starting at location 440 hex.

tines such as the serial input and output
routines “CHIN" and “COUT".

To help you get your system up and
running, a listing is shown for a modified
version of the novelty answer-back
program which the author originally
wrote for the larger PC1001 system. Note
that all you actually enter into the system
are the two-digit hexadecimal machine
code words; the mnemonics and com-
ments are purely to help follow how the
program works.

To feed the program into the system,
you use the PIPBUG “A” command,
typing first “A 440” and then a carriage
return. PIPBUG will then type out on the
next line ‘440 XX”, where XX is the cur-
rent content of location 440 (probably
random). It then pauses. You then type
76", followed by a line feed, whereupon
PIPBUG does a CR-LF, and then prints

out the next memory address and its cur-
rent content. You then type “CO” and LF,
and so on until all of the program has
been fed in.

Then to run the program, type “G 440”
followed by a CR. PIPBUG will then
transfer you to the program in RAM.

Try typing in a comment, ending it with
a carriage return. The program should
answer with a terse “GO AWAY, I'M
BUSY!”

When you get tired of this reply, it can
be changed by feeding in a new string
of ASCII characters starting at address
467 hex. Note, however that the message
must end with a CRR (hex 0D).

Of course this is just a demonstration
program, to get you going. The next step
is to write your own, using as a guide the
Signetics 2650 programming book sup-
plied with the kit. Happy computing!

For those with a bigger
system in mind:

If your ultimate aim is to build up a large
2650 system, it may be better for you to
start with the single-board system shown
at right, than with our “baby”. Available
both as an assembled system (code
PC1500) and as a do-it-yourself kit
(KT9500), it provides all of the features
of the baby system together with full
memory decoding, fully buffered data
and address lines, and two bidirectional
8-bit input/output ports. Further details
are available from Philips distributors.

ELECTRONICS Australia, March, 1977 73

SIGNETICS 2650
MICROPROCESSOR

- MICROPROCESSOR |

Rememr this ' Recall this feature?

(last year) (last month)

NOW EASY TO TRY
NOW EASY TO BUY

START WITH THE INCREDIBLY SIMPLE

2650-KT9SEA
“BABY MICROPROCESSOR KIT”

NOW AVAILABLE FROM THESE
PHILIPS SIGNETICS STOCKISTS

NEW SOUTH WALES: Applied VICTORIA:CEMA,ICS, Sontron,
Technology, CEMA, Electronic Sycom, Tecnico

Enthusiasts, ICS, Tecnico (Sydney), SOUTH AUSTRALIA: Gerard &

Digitronics (Newcastle), Goodman, ICS, K-tronics, Protronics,
Macelec (Wollongong)

g World Imports
ACT: Daicom WESTERN AUSTRALIA:
QUEENSLAND: Electronic Atkins Carlyle, Willis Trading
Components, Fred Hoe, TASMANIA: W. G. Genders,
NS Electronics NS Electronics

==

\ 37 and Materials

A (E'):)ergtprg:g:nts pH I I-I ps
014

2 ELECTRONICS Australia, April, 1977

ADAPTABLE
BOARD COMPUTER
PROTOTYPING

® CONNECTOR

way SUPPLIED
® AVAILABLE PRE-
= ASSEMBLED AND
N =

TED - 2650 PC1500
OR IN KIT FORM

Two easy steps:

Plug in, Hook up Tm

+ 5 volts, ground, and ea
a teletype,...and you're

in business!

Here is a short

list of features. - 2650 KT9500

® 1 KBYTES ROM Ask your local
(PIPBUG EDITOR Philips stockist to
AND LOADER) BOARD EXPANDABLE show you the 2650 PC1500 Adaptable
TO 2 KBYTES ROM/PROM Board Computer Prototyping Card, and
@ 512 BYTES RAM (2112B - 256 x 4 get an easy start in Microprocessors.

STATIC NMOS RAMS) BOARD

PHILIPS ELECTRONIC -
EXC')DQ%%?%'E)E;]% EEQB&ES OF RAM COMPONENTS & MATERIALS,

P.O. Box 50, Lane Cove, 2066.

® TWO - 8 BIT PARALLEL B1/D1 Sydney 427 0888,
/0 PORTS Melbourne 699 0300, Brisbane 277 3332
® RS232/TTY SERIAL I/0O PORT Adelaide 223 4022, Perth 65 4199.

and Materials

priups] Electronic
% Components

153.0198

2 ELECTRONICS Australia, July, 1977

Four programs for our baby

by PERRY BROWN

Courtesy Applied Technalogy Pty Ltd

GUESSING GAME

LOCATION CODE
0 o7 07
0442 3F 04 Bé
QLS 05 00
Olk7 BS 63
049 19 74
on4B 12
Qi B4 00
QU4E 19 02
Q50 D9 75
Oi52 ES 00
ougz 18 74
Ol 77 10
0458 07 00
Q54 75 10
Gu3E 3¢ g B
0461 0?7 1F
0463 3F 04 B6
0466 38 3B
0468 07 09
O4bA ¢2
ME B
s
F
o461 32
ol B o
ouEE 75 10
0468 07 10
0L46A Ej
046B 19 61
0469 07 18
OL6F E}
0470 14 5¢
NS 07 28
01.'?2 38 30
o7 77 10
0478 05 30
Q474 A7 OA
047¢ E? 00
ougg A 02
Qly D9 78
Q42 87 3a
0484 01
oagg IF 02 BY
77 10
OiEh 03
0488 3F 02 BY
048R 07 02
090, iF Q4 ga
Y 3F 02 86
049 E4 30
0498 14 79
OLSA E4 39
QU9C 19 75
Q49E c3
049F 3F 02 By
0442 0%
Q4A3 L4 OF
0BAJ 17
QhAE OF 24 BF
QA9 E4 00
O4AB ik
OhAC 3F 02 By
OUAT 1B ?
4B 00 20 54
OleBg 52 59 53 0D
04B OA 52 43 41
Q4BC Ly 59 3F 00
ueo OD OA 48 49
04Ck 47 48 21 00
0408 0p OA 4C 4F
QLEC 57 21 00 Op
04DO 0A 57 55 45
Okgg 53 53 2D 00
Ol 0D 04 59 45
o4D¢ 53 21 20 41
OLEQ 46 54 45 52
O4E. 20 00 OD DA
OLE 4F 4B 20 31
NLEC 2D 3% 39 ¢

INP?

PRNT

RO H100!
1GTT Fy
R F2
R1 HIOO!
Inl F3
HN0Y
R3 H'00!
10!
R3 H136!
UN PRIT
B3 HI R
UN PRNT
ON INPT
R3> R!O9'
R2

Ra
BDRR R3 F6

R2
UR INPT

R2
HY 10"
B3 W01
o
B3 HMIO)
]

BCTR 167! rg
LODI R3 H118)
ri
ILTY F
B3 Hr28
UN PRNT
HY 10t
®1 B'30!
R3 H'0A°
B3 {100
BCTR 'LT1 F
Rt F7
R H'3A?
Ri
TN COUT
H1100
LODZ R3
UN cogT
R3 A102
uR
UK
COMI RO H130
SLTY INPE
RO H1391
5 g1 INF

13

UN cou
LoDz §3

ANDI RO H1de:
RET UN
LOBA+R2 MSAG
COMI RO M100!
RETU 1=/

BSTA UN cOUT
BCTR UN PRAT
uNUL SP T
FYscCR
IFRE A

DY 7 NUL

When called, the program will wait
until you enter any character. It will
then generate a-random number bet-
ween 1 and 99, which you must guess.
Starting address is 0440,

NIM

LOCATION

CODE

]

-des 39 oA
3

27
2R 83388e3uR

=~
£8

SEREBESEEBESLESNRNR
SR EBRLEYEERERERES

BBREFEESTAEEBINENSEr
R SNBRRRRERERER

STRT

Fi

HL

%)

Fa

23

=

:

MNEMONICS

Rl HI7
R3 H'29"
UN FRNT
UR F1

R3 H109!

LoDY

R3
B3 H'OF
UN cOut
n
R3
R
R} ROV

0 eF -
“bﬁ
gﬂﬁ
ot

EO
_b%ﬂ%ﬁ<ﬁ
<F“Fgwg o
o}
E 5y

o

ug
we E
=8

HOLIGr0O

-
HO

g%gHﬂmFEMIIH

(2]

The game of Nim: starting with 23 you
and the program take turns at sub-
tracting a number from 1 to 3. The one
that Jeaves 1 after their move wins.
Starting address is 0440.

MATHS DEMONSTRATION

LOCATIOR CODE MNEMONICS
0440 03 83 S1RT LODI RO 'ADDZ R3!
oL42 c8 1c STRR RO MOD
Obdply 3F O gé BSTA UN SUB 1
0447 3F 02 F4 BSTA DN CHIN
Qlhd EB 2B COMI RO '+'
OL4C 18 OE BCTR '=' PLUS
QL4E 2D COMI RU f=!
0L50 18 06 BCTR '=' SUBT
o452 23 24 COMI RO '%!
0454 1 28 BCTR '=' MULT
o456 1B 6F BCTR UN Fi
o458 05 A3 sUBT LODI RV 'SUBZ B3
OiSA c9 o4 STRER R1 HOD
o45¢c 3F Ok AF BSTA ON 3UB2
OL5F. 02 LODZ R2
uE0 83 MOD ADDZ R3
04kl 20 U0 COMI RO #100¢
Qué3 94 09 BCFR 'L F2
Qu65 o3 LODZ R3
0466 A2 SUBZ R3
o467 07 2D LODT B3 1=t
0469 CF O DE STRA RS A}
O46C 18 OB BCTR ON F3
QLEE EY4 OA F2 COHI RO HYOA!
0470 1A OF LT F,
072 06 31 LODL R2 H'0%!
0474 CE 04 DE STRA B2 Al
Q77 Ak QA SUBI RO H'OA'
0479 64 30 IORI RO H'30!
0478 CC O4 DF STRA RO A2
Qi 1¥F O, C9 BCTA UN END

1 64 30 F3 gggi % H"Sﬂ'

cc DE A

Okamg oy 33 . LODI RO HIGO!
- Qi g8 ¢c Qi DF STRA RO A2
OLBB IF O C9 BCTA UN END
O4BE 3B 1F BSTR UN SUB2
QL%0 gz] LODI RO H100!
92 o0 F5 COMI R2 H100!
94 18 03 BCPR '=' Fi4
0i96 83 ADDZ ®3
097 FA 79 | BDRR2 R2 F3
0493 06 00 P4 LODI B2 H'O0"
0498 Ey Od & COMI RO H'0A!
049D 1A 06 BCTR LT F7
049F 86 O ADDI R2 H'O1®
Ol a4 04 - SUBI RO H'QA'
Ohd3 1B 76 BCTR UN F§
QhA5 66 30 F7 I0RI R2 H'30r
04a7 CA 35 STRR R2 Al
Q04A9 ga 30 IQRI RO H'30¢
OB 3 STRR RO A2
O4AD 1B Y4 ¥ END
OHAF 3F 02 B4 SUB2 BSTA UN COUT
oyB2 o3 1ODZ R3
0483 ca STRZ R2
00k 3F 02 86 SUB1 BSTA UK CHIN
0487 75 O CPSL H'OAt
Q489 E4 30 COMI RO H*30¢
O4EB W 77 BCTR 'LTY SDB1
o4BD Eh 39 COMT RO Hf39¢
O4BF 33 73 BOTR ‘g7 SURY
et €3 STRZ R3
Oyc2 3F 02 By BST4 UN COUT
QICH 47 UF ANDI R3 H'OF!
Ohcg co STRZ R3
e 17 RETC UN
04Co 05 00 END LODI R} H'0O!
OiLh 0D 24 DC P8 LODA Ri+ NSAG
Q4CE 23 00 COMI RO HFQO!
04D0 18 ¢5 BCTR tu! FA
04D2 3F 02-B4 BSTA UN cOOT
04D5 18 74 BOTR UN F8
04,07 3F 00 84 FA BSTA UN CRLF
[THT 1F O4 4D BCTA UN STRT
040D] MSAR tat
Q4DE 00 Al
O4bF o0 A2
PYED 00 A3

This program provides the functions
of a simple 3-function calculator. It
will multiply, add or subtract two
single digit decimal numbers. Nor-
mal plus, minus and equals signs are
- used, with an asterisk symbol for multi-
plication. Starts at 0440.

92

ELECTRONICS Australia, October, 1977

2650

MESSAGE EDITOR
LOCATION CODE HEMONICS
[¥ 3r 00 8a FT BSTA UN CRLF
iy 3 o4 32 LODI RO 10T+
m 3r o2 52 BSTA UN COUT
3y 02 BSTA UN CHIN
ObhB o1 STRZ K1
O4iC ar o2 BSTA UN COUT
Oiul 3r 00 BITA UN CRLF
M3z lg Sk COMI R1 'T*
13 04 BCTR ‘'a' JT
05, Eg 52 COMI RT 'R’
0458 18 39 BOTR ‘= FR
0554 l? 43 COMI RT *C)
oiSe 18 2p BCIR '=' FC
058 1B 60 BOTR UK M1
o0 05 00 FT LODI R1 H'00!
ohe2 3r o2 86 ¥ BSTA UN
Ol CD 6k By STk (MEL)i1 YBXT
o:.sg l:g 18 COKL ‘BBt
ObSA 18 54 BCTR 'm! FI
ouGsC 7r COMI RO 'DEL'
OUEE 06 BCFR ‘'a? FP
0470 A% 02 SUBI R1 HrO2!
ou72 07 00 LODI B3 M1
ol.;l‘. 3B 17 BSTH UN
o’ 3r o2 sy TP BSTA UM COUT
0479 B & COMI RT LIMIT®*
0478 14 Oc BCTR 'LT* F2
047D 07 04 LODI R3 M2
O47F a oc BCTR UN PRNT
1 18 LODI RO 'ESC'
CD 64 BY BTRA (REL)RT TEXT
1F O 4O BCTA UN Fi
9 b5 57 F2BIRR B I
B 07 GA FC LODI R3 H'OA'
D 06 00 PRN? LODI R2 E'00¢
L4 A 17 SRR B2 F3
0491 1B 06 BCTR UN ¥4
0493 06 70 PR LODI R2 Bi0*
0495 07 G4 LODY RS H'OA*
0497 CA OF BTRR R2 13
0599 OF 24 A9 Fiy LODA +R3
049C Ea 1B COMI B0 VBSCY
0498 18 05 BCTR 'w' FS
040 3r 02 By BETA TM COUY
OLA3 1'13 3: BCrR g :l"Ol'
04A7 1B 00 BCTR UN F& ++
04A9 ‘1)3 RETC TN
Olgkk H1 YRS
QAR 20 V5P
OlC 08 YRS
ObAD 1B TRECt
OhAF g‘n i
Iy
0480 5B v
o4P) I "
us 1a s
1
O4Bl 00 TEXT

*THIS SETS MAX TEXT LENGTH
**F3 IS SECOND BYTE OF INSTR.

Upon being called, this program will
give a prompt character, and await a
command character. Command T
allows a message to be entered, C
allows a stored message to be
checked, and R allows it to be repea-
ted until the CPU is reset. In text input
mode, the Del character acts as a des-
tructive backspace for correcting
errors. To return to command mode,
type an ESC.

If the message being stored is too long
for the buffer, an F will be dl'splayecf

Starts at 0440.

ELECTRONICS Australia, October, 1977

93

2650

DO YOU
WANT TO BUILD
A POWERFUL,
LOW COST
HOME COMPUTER

4

START HEREY

HOME COMPUTOR SELECTION GAME

-()-()-()-()-()-()-0.(_().0-()-0-()-(|

SELECT A BASIC SYSTEM

A. EA BABY 2650 $75.00

B. KT 9500 COMPLETE
$199.00

EA 2650/KT9500
CONVERSION $142.00

C.

POWER SUPPLY
DECISION

LOW COST TV TERMINAL |

CURSOR, FULL EDIT FACILITIES

ETI 632 VDU PLUG IN VERSION
632 ECONOMY VERSION

A MUST TO GET THE MOST OUT OF YOUR
SYSTEM — INCLUDES AUTOMATIC SCROLLING,

+5, —12V
A. TALCPSKIT $15.00

B. AT 512 ASSEMBLED
UNIT —12
$27.50

C. AT 1250 HI-CURRENT
$47.50

CASSETTE
INTERFACE
For Low Cost
Bulk Storage

CT750 (Assembled) $37.50

Radio Electronics low cost
kit with test tape and
instructions

LIMITED
QUANTITY
ONLY

$22.50

SOFTWARE GAMES PACK

TAPE WITH LISTINGS $12.50

ASTRO TREK, HANGMAN, NIM,
POKER MACHINE, MASTERMIND ETC

2650 USERS GROUP

INITIAL MEMBERSHIP INCLUDES
PROFESSIONAL DOCUMENTATION

MEMORY

4K STATIC RAM KIT
1K RAM STICKS

PACKAGE CONTAINING A MOST

LISTINGS INCLUDING
TEXT EDITOR

ASSEMBLER
BLOCK MOVE

¥ YOUWIN !'! *

YOU NOW HAVE A MOST
COST EFFECTIVE HOME

ASTRO TREK
BAUDOT ROUTINES
VARIOUS GAMES
SORTING ROUTINES
MATHEMATICS PACK-
AGES ETC, ETC $40.00

COMPUTER SYSTEM

2650 HOME STUDY
PROGRAMMING COURSE

CASSETTES AND WORKSHOP
NOTES
Available soon

APPLIED
TECHNOLOGY
PTY. LTD.

ELECTRONICS Australia, December, 1977

72

ALSO INCLUDES UP DATE
SERVICE

NEED MORE INFO send
$1.00 and return address
for full details

APPLIED TECHNOLOGY P/L
109-111 Hunter St., Hornsby 2077.
Phone: 476 4758, 476 3759

Hours: Mon — Fri. 9 — 5, Sat All Day.

A low

cost

video display unit

Here is a new design for a low cost video display unit, capable of
displaying data from a microcomputer on a standard TV receiver
or monitor. It displays 16 lines of 32 characters and offers both
flaghing cursor and a destructive backspace facility. Ali timing is
derived from a crystal oscillator, and no setting up is required.

This Video Display Unit (VDU) was
designed primarily for the
microprocessor system user, who re-
quires a video terminal of minimum
complexity to enable him to com-
municate with his system. Therefore
many of the unnecessary features of
commercial style VDU's were aban-
doned in arder to provide a cheap but
effective video terminal for such
applications.

Sixteen lines of 32 characters was
selected as the screen format which
allows for adequate display of program
steps. With continuous roll-up facility,
the user can see at least his last 16 lines
of information. The cursor, indicating
the position of the next character is fix-

ed permanently on the bottom line
line 16). Carriage return and fine feed
(non-print characters) are decoded and
these are normally all that would be
required for a basic unit. However, a
back space control function has been
included mainly for the benefit of those
who might use such a unit as a TV
typewriter. This control allows editing
of the bottom line before a line feed is
given. Back space actually types a space
in the location of the cursor after mov-
ing it back one character position,

The VDU uses all standard readily
available TTL IC chips, except for six
CMOS memory chips and the character
¥enerator chip.

The method of actually displaying a

62 ELECTRONICS Austraiis. February, 1978

by MICHAEL O’NEILL

Physics Departmaent,
Newcastle University

character on a TV screen will not be
described in detail here, as reference to
the issue of EA for January 1977 should
make this clear. The VDU described
here uses the same character generator
IC described in the earlier articie (i.e.,
the 2513), and hence allows for the dis-
play of the full 64-character subset of
ASCil known as "6-bit ASCil”. This is
the same character set displayed on
most teleprinters.

A 4.7MHz crystal oscillator provides
all of the clock pulses far the VDU, As
can be seen from the block and circuit
diagrams, this base frequency is divided
doewn 1o produce the horizontal and
vertical sync pulses required by the TV
set. The 4.7MHz signal is also used to
clock the output shift register used to
convert the parallel “row data” from
the character generator into the serial
data required as video infarmation by
the TV display.

Incidentally it has been found that a
4.43MHz crystal of the type used in the
subcarrier oscillator of colour TV
receivers may be used instead of the
nominal 4.7MHz crystal. This can be
worthwhile, as the 4.43MHz crystal is
generally cheaper and easier to obtain.
Naturally when the lower frequency

SPECIFICATION

VDU dispiays the 6-bit ASCIi character
set, in 16 lines of 32 characters. Al timing
derived from a cryslal-locked oscillator;
no setting up required. Continuous iine
scroiiing of display. Maximum input data
rate 50 charscters/sec. Destructive back
space faciiity tor editing. Fiashing cursor
indicates next character position.

Uses standard TTL iCs for iow cost.

At left is the assembled PC board. Note
that the version shown here uses a
100pf capacitor paralleled by a 30pf
trimmer in place of the crysal.

Mapo=b

c1

OHPOSIT!
vIDE
ouTPUY

2l e KX ca

e

D
i
i
|

ik v

[

ELECTRONICS Australia, February, 1978 63

Video display unit

crystal is used, both of the TV sync
pulse frequencies are lower also, but
most TV sets seem to be able to lock
onto them quite easily, As the vertical
frequency becomes 45.5Hz instead of
50Hz, some sets may produce a small
amount of horizontal wavering or
“snaking”, particularly if there is same
50Hz ripple getting into the vertical os-
citlator from the receiver's power
supply.
If such an effect is experienced and
found annoying, then a 100pF capacitar
with a 30pF trimmer in parallel may be
substituted for the crystal if a 47MHz
crystal is not available. The trimmer
capacitor can be varied until the TV set
locks onto the VDU sync pulses.
Further trimming may be required to
obtain a steady display.
Note that if this capacitor is used, a
220 ohm resistor is required as an addi-
tion between pins 2 and 3 (joined
together) on IC1 and ground. This is in-
dicated an the circuit diagram as R*
and can be soldered onto the board,
vertically, from the appropriate side of
R2 and the outer ground line.
A further chain of frequency dividers
enerates the line address information
or the charatter generator and the
load pulses for the shift register. One
load pulse occurs for every six clock
ulses given to the shift register, thus
oading it with the required five bits of
data for a character row and also giving
a single '"dot’’ space between
characters. Since this load pulse occurs
for each character across the screen
(i.,e. 32 times for each horizontal TV
scan) it becomes the ideal clock pulse
for the memory address.

Nine address lines are required to ad-
dress the memory, which holds each
character to be displayed on the screen
in its ASCIl code. The memory is re-
addressed each frame and therefore a
character remains in its particular loca-
tion in memory until changed by an ex-
ternal control signal. The memary con-
sists of six 2102, 1k x 1 RAMS, six being
required to hald the six bit ASCll code.
This provides 1024 6 bit words, but anly
512 are used.

The outputs of the memories are
connected directly to the character
Eenerator. The memories are normally

eld in the read mode and each time
the address changes, the outputs from
the memories change to provide a six
bit ASCIl code for the character
generator.

As just mentioned, an external con-
trol signal is required to change data
held in memory. To do this we must
have a written command, together with
an indication as to where in memary its
contents are going to change. Memory
location indication is achieved by com-

64

g +¥CC

roui'

4 TMHz . —gge _ COMPBSITE
BSCILLATBA i yioep
10k
3.3k k3
3
’ SERIAL
I = 3 oUTPUT
SYNC cLOCK
GENERATOR
CINE - LOAD
SYNC L SHIFT
REGIS TER
CHARACTER [4
BENERATOR -
ADDRESS [4 5
i CHARACTER z
GENERATOR
LOAD PULSE cElCynsor
L1 ai0 ADORESS
cLoCK g e
4
$
555
| e
- AL OUTPUT I_
L a1
(ALY A2 - ¥
@ ST S > 2
MEMORY 3
ADORESS 5655 :: 51216 RAM §| [4 [o Ascn
: =
CCC G L ar > > s
0w |’ l‘ ,
A
[[RIW _ |
DECODER
COMPARATOR - BS CR__LF
AoLL
PULSE
up/DOWN juip L L
COUNTER 3>
cLOCK [N CLEn
[INPUT.
CONTROL
STROBE

[

Above shows the black diagram, while at

parators and a set of counters that
duplicates the memory address. This
extra set of counters are advanced one
count by the input strobe pulse, which
indicates that a new character is being
entered either from a keyboard or a
camputer. The comparator gives an
output when the memaory address
equals the count on the duplicated set
of counters, and this output is used to
ate the ASCII input into the correct
ocation in memary.

Because of this gating technique, a
character can only be written into
memory every frame, which im-
mediately indicates a baud rate limita-
tion of 500 baud. Since this VDU was
designed for microprocessors, this
modest baud rate should not be a
prablem as the VOU will operate at the
110, 150 or 300 baud rates used by most
debug ROMS in microcomputers.

It the output ot the comparators is
fed to the CE-bar input con the
character generator chip, it disables the
chip for that particular location, and
therefore a single bar is generated on
the screen. Tiis accurs instead of

ELECTRONICS Australia, February, 1978

right is the component averlay pattern.

generating a character and therefore a
cursor appears. Since the cursor
appears permanently on the 16th line,
only five of the nine address lines need
ta be compared, thus controlling the 32
positions along the line, The blinking
effect of the cursor is achieved by
?ating the cantrol signal with a low
requency astable multivibrator; a 555
timer has been used for this purpose.

At this peoint it should be clear that
we now have a “page” of information
displayed on the screen with a cursor
indicating the next character position.
Let’s now take a look at how the scroll-
ing of lines is achieved.

The memory address counters can be
divided into two parts. The first five ad-
dress lines contro!l the 32 characters
across each of the 16 lines, while the 16 -
lines themselves are controlied by the
last four address lines. If at any time an
extra clack pulse is given to this last ad-
dress counter it would add an extra
count and thus change the character
line position as they appear on the
screen. If the pulse is applied to this
counler during the time that there is no

LASD6/XZ8 LT

QU0 B0 6 Uld | saui dgr pue soudeded 3oL 10
1 Induj @qQOAIS B uld IHWNZ Y TYISAYD

—— o g

8o
- A
.||. m m....__ 60108 LI
Q
° 3
Ry

198 198V £ uid
9 48 HOSV 9 uid .
T80 LLD
S ¥4 DSV § uid .
¥ Ug DSV ¢ uid g gy 47z 0D
£Ua NOSY € uid N 0D W INEE 6D
Z U@ NSy 2 wid | ONP3AP AST ANL¥ 61D iNZ0° 8D
I G #DSVY | uid L gL mieg LD
SUOHINIUGD) ML LD WRLNEE 9D
jo0s Indu) 4NL20° 91D E LA
el sy S1D 1d0EE #D
INZI0° #LO FLIT AN
el 4ngy £LD 40068 2D
Jdoge ZLD LT ™
S¥OLIDVAVYD
1Y
Wwio 0IZ »d ¥8'9 0LY
SWwyo 089 614 Wz 64
JL 8Ly Y6t 8Y
L £1d ¥8'9 ¥
¥EE 9LY Y89 9¥
YOL SLY ¥eZ. Sy
swyo 0fy rLy B9 #¥
YOL €LY ¥zz £y
¥oZL 71y SWYo oLy o
OL LIy Swyo ozr LY

SHOISISIY

Z0LZ SPDI L6L¥. O£DI OZPL SIDI
2017 PPDI I6LPL 61D ETLPL PLD
201z £pD1 WOKL 8IDI EZLRL ELDI
P . 017 Z¥Dl S6KL LIDI OLBL TUDI
NS . 2017 14Dl T6PL WD 20bL LD
AN : 0L 0bDI S6PL ST £60L OLDI
SRS AV €60 6£31 OFEPL PTDI 8OKL 6DI

Ser. 9€31 VOPL £TDI SSS 8DI
SBbZ /€31 Z0bL T EIWL LI
26vZ 9631 B08L LIl £TL¥L 9DI
€157 SED1 0P 02D1 kvl SOI
g6rZ ¥TI1 L6V 61D1 OOFL #DI
S6vs €521 €6pL 81DI E6¥L €I
€2pr 7€ €692 Z1D] E6HL T
08/ LEDI 80P 91DI T0kL DI

S4INJHID A3LVHOIINI

1S Sidvd

e

§ mmr._.mu _J

. g
L : s
LN e i Ly i

ELECTRONICS Australta, February. 1878

Low cost video display unit

e 3

AT

| lt(lla
NG AT

_Jl

L\ifzzqqu_Jnlug

b

_1!;!};; 9 0ja)0

o0 Jllll

TR
paselboee

ansjsejsogsled

lp

T

@‘

L

o

EEJ

uag_;u r

u—JJf

°unu&____g F:E:\]
ll:i °uun
ll'l "]'::;E:'Eiiiqj;%;

ll :H}'

ad0

NOW

l o 00
G on N

(-1 4
n bW

it

0000000

' 1o [0

Tqesssiaaesiing otoefog ® HITTWIII T iu g * 0o
s o= =5

Actual size reproduction of the P

display on the screen (i.e. the time
between frames) then the next time a
frame appears on the screen it will start
at one extra character fine due to this
extra count. This extra clock pulse is
Fenerated at the end of a line, or when

ine feed is detected, and gives the
scrolling effect.

When roll-up.does occur another
pulse is alsu generated which applies
the ASCH code tui a4 spate to the
memories and a write command is
Flven at the same time, This immediate-

v gives.a clear line on line 16, to type
onto after the previous line is rolled up.

A decoder-is used to detect when
cartiage tetus hine feed o tack e
infucaati s 0 ginen o thy v

C pattern on the component side of the hoard.

control bit inn the ASCIH code — bit 7, is
used for this purpose.

The video information from the shift
register is fed to the output of transistor
T1 via a 1k resistor, and is mixed with
the inverted sync pulses which are

gphed to the base of the transistor.

e 10k and 1.3k resistors provide the
correct 1:3 ratio for syne and video in-
formation This composite videa is then
vutput vid anoisolatng capacitor and is
suitable for applying to any video
amplifier employed in standard TV sets.

Experience has <shown that the video

‘output from the VDU is suitable for

applying to the grid or the hase (de-
pecding an whether valve or solid
S fothe den dooer g TV set

ELEC

without any aiteration or disconnection
of any components.

When checking for this input, one
should ensure that the take-off for the
sync separator is after this stage of
ampiification in the TV receiver. *

There is absolutely no setting up re-
quired with the VDU. Random
characters should appear on the TV
screen as soon as power is switched on.
1o enable a clear screen when first
turned on, a ciear,input has been
provided on the PC board. it requires a
switch to the +5V rail, or a logic 1"
applied to it. This can bé obtained from
an unused key on the terminal’s
kevhoard giving manual clearlng, or
ahtternainel by means of a capacitor to

TRONICS Austraha, February, 1878 67

lL.ow cost video display unit

o ® o

JIUNT

i

it
‘l‘%;: ¥

iy

L1899}

' TITIN z

-

.1,1.....5

%o

The PC pattern for the reverse side of the board, again shown actual size.

the 45V supply rail, to give automatic
clearing on power-up. A 47uF tantalum
should work.

A link, LK, has been provided on the
PC board 1w provide an option re-
garding harizantal pasitioning of the
VDU display. With the link out, the
video informaticn is generated in the
centre of the period between harizon-
tal sync pulses, giving a display which
should be centred on most TV sets. If,
however, it is found that the display is
notin the centre of your TV screen, this
link can be inserted and the whole pic-
ture will be shifted about three
character widths to the right of the
screen,

The printed circuit board for the

VDU measures 155 x 160 mm and has an
input socket facility where the required
input data lines can be entered via a 14
pin DIP connectar, using flat ribbon
cable. This makes for a very neat con-
nection, However, for those wishing to
keep costs down, the same inputs are
available at the edge of the PC board
where wires can be saldered directly to
the copper. The strobe input is
triggered by a negative edge; if this is
not available, an inverter on this line
would be required.

Power supply requirements are +5
Volts at 1.2 Amps and -12 Volts at
around 40mA. The higher +5V supply
current is required because of the TTL
chips used. Three terminal regulators

68 ELECTRONICS Australia, Fabruary, 1978

rated for 1.5 Amps are adequate for this
voltage supgly.

A UART has not been included on
the PC board because the VDU was
considered to be a separate self-
contained caontrol srstem which
accepts parallel data only, and if serial
data is required by a microcomputer
system then an external device such as
a UART should he added, Paralle! data
is also acceptable to soma
microprocessors and makes for easier
programming.]

Editor’s Note: For those who da wish
ta add serial interfacing and a
keyboard, to produce a complete self-
cantained terminal, we hope to supply
the necessary information shortly. @

Easy expansion kit for
2650 microcomputers

Many microcomputer enthusiasts have shown interest in building
up medium-scale systems based on the Signetics 2650
microprocessor. This can be done quite easily and at surprisingly
moderate cost, by combining the Signetics KT9500 evaluation kit
with the “RAM-stick” and motherboard system which has been
developed by the local firm Applied Technology.

by JAMIESON ROWE

Computer habbyists in Australia are
currently showing a lot of interest in
systems based on the Signetics 2650
microprocessor. | believe one reason
for this was EA’s "baby” 2650 system,
which | described in the March 1977
issue. This provided a really simple and
low cost way of getting the 2650 “up
and running”, and allowed many hob-
byists to become familiar with the
device and its powerful minicomputer-
like instruction set.

Of course the “baby” system was
very small. Although it offered the
same “PIPBUG” monitor program as
the larger 2650 evaluation kits, resident
in a 1k-byte ROM, it provided only a
modest 256 bytes of RAM for user
programs. And having been designed
for economy rather than ease of expan-
sion, it was not readily expanded into a
larger system.

For this reason 1 suggested in the
originai article that those who were
already fairly sure they would be
proiressin% to a larger 2650 system
might be better advised to start with
one of the Signetics evaluation kits,

such as the PC1500 or the assemble-it-
yourself KT9500,

As it happens, however, those who
elected to start with the baby system
can still change over to the KT9500 fair-
ly easily — particularly if they followed
our advice and use({ sockets for the
microprocessor and monitor ROM
chips rather than solder them directiv
into the PC board.

Applied Technology Pty Ltd has con-
version kits available, so that you can
upgrade from the baby system to the
KT9500 at minimum cost. The conver-
sion kit provides the 9500 PC hoard
together with all of the required parts,
apart {rom the 2650 microprocessor,
the 2608 ROM with PIPBUG, and the
two 2112 RAM chips.

With the KT9500, you have a much
better starting place for an expanded
system. Along with the PIPBUG ROM
and 512 bytes of user RAM, there is full
address Jecodin and fully buffered
data and address f)us lines. Alva provid-
ed are two bidirectional 8-bit in-
put/output ports, as well as serial in-
put/output ports for a teleprinter,

video terminal or similar device. The
complete system is mounted on a PC
board measuring 175 x 213 mm, which
plugs into an accompanying 100-way
edge conneclor.

Needless to say even though the
KT9500 already offers enlarged
capabilities, most enthusiasts find that
they want to begin expanding it not
lonf after they have it up and running.
Probably the most common urge is to
expand the memory, so that larger
programs can be developed and run;
the other urge is to replace the dual-
manostable RC-timed clock oscillator
with a more stable crystal clock.

To help you expand the KT9500 along
these lines, Applied Technology has
developed a “"mother board” expan-
sion kit which utilises their “RAM-
stick” memory modules. As explained
in our December 1977 issue (page 96),
the AT RAM sticks are small PCB
modules designed to be stackable bz
means of DIL sockets. Each stic
provides 1k-bytes of low power static
RAM, allowing an enthusiast to build
up his system’s memory in convenient
and affordable increments,

lhe motherboard expansion kit
assembles to form a PCB measuring 174
x 228 mm, The 100-way edge connector
socket which comes with the KT9500
mounts directly on this PCB, so that the
two boards now become an L-shaped
assembly,

Adjacent to the main socket on the
motherboard are six 1Cs, two of which

ELECTRONICS Austratia. February, 1978 71

are used to implement a crystal clock
oscillator. This uses a 4MHz crystal, with
division to the IMHz required by the
PIPBUG monitor and its serial com-
munications routines. The remaining
four ICs are used for additional address
decoding and data bus buffering.

The address decoding circuitry uses a
7415154 device to decode address bits
10, 11, 12 and 13. The sixteen decoder
outputs thus become enable lines for
16 contiguous memory blocks of 1k-
bytes each — so that they can be used
to select up to 15 RAM sticks along with
the PIPBUG ROM on the KT9500. The
ROM must now be driven by the new
decoder, and 1o enable this to be done
a copper track must be cut on the
KT9500 PCB, and replaced with a wire
link to an unused edge connector pad.
The on-board RAM chips are not used,

The motherboard is provided with
four undedicated 16-pin DIL sockets
along the front. These may be used for
connection to the 8-bit input/output
ports on the KT9500, or for any other
desired purpose.

The motherboard PCB is double sid-
ed, although for economy it does not
have plated-through holes. The con-
structor is thus faced with the rather
daunting prospect of soldering in some
116 through-board wire links; however
while doing this you can be cheered by
the thought that you are saving money!

As it happens the through-board
links are the major part of the job in
assembling the kit, in any case. Apart
from the l1inks there are only six 1Cs,
twelve bypass capacitors, two resistors
and the crystal. Plus the 100-way con-
nector and the four 16-pin DIL sockets
for the RAM sticks, of course, So overall
the assembly shouldn’t be unduly
tedious or time-consuming.

Using the motherboard it is thus
quite easy to provide the KT9500 with a
crystal clock, and to expand its RAM by
1k-byte increments up to 15k. You can
then expand the system still further, if

ou wish, by adding a second mother-
oard with up to 16 further RAM sticks.

The picture on the fac-
ing page shows the
Signetics KT9500 at
right, with the Applied
Technology mother
board and "pingback '
RAM sticks at left. The
picture at left shows
the two when assembl-
ed together. Uip to
15 RAM sticks may be
used.

Incidentally Applied Technology is
Eroducing a metal case suitable for

ousing the KT9500/motherboard
assembly, together with power supplies
and even a floppy disc if you planto go
that far. It should be available by the
time you read this.

Prices for the various items described
above are as foilows, with all prices in-
clusive of tax. A complete kit for the
KT9500 is $199, with the conversion kit
for the baby system costing $142. The
motherboard Eil costs $35, while the
4MHz crystal costs $7.95. Wired and
tested RAM sticks cost $25.50 each, but
you can buy the RAM stick PCBs
separately for $6 each,

One of the things that is making the
2650 microprocessor increasingly pop-
ular with hobbyists is the growing
library of support software. Much of
the software has been generated by
hobbyists themselves, many of whom
started with our baby 2650 system.

Just about all of the software that ihas
been generated to date is available to
members of the 2650 Users’ Group, so
that it can be very worthwhile to join.
The group is associated with Applied
Technology, and further information is
available from them at 109-111 Hunter
Street, Hornsby, N5W 2077 (telephone
02-476 4758, 476 3759. Initial
membership costs $40, for which you
Fel a documentation package with
istings of many useful programs.

These incIuJe an assembler, a text
editor, block move and search routines,
hexadecimal input and listing routines,
a disassembler, a reassembler, a tape
verifier, maths routines, and many
games programs including " Astro-
Trek” and a Lunar Lander. Many of
these programs are also available on
cassette tapes, for a3 modest extra fee.

Next month we hope to present a
few sample programs from the growing
library of 2650 software, to whet your
appetite. Who knows — they may spur
you not only to join the Users’ Group
and get the rest of the library, but to
write some programs of your own!

ELECTRONICS Australia, February, 1878

73

MICROPROCESSORS

(E.A. FEB/MARCH 1978)

Based on a clever design by Michael O’'Neill of Newcastle

Uni., this compact module is an ideal terminal for micro-

processor users. The heart of the terminal is the E.A. 100

V.D.U. as described in E.A. February, 1978. Exclusive

features of our kit include —

v Top quality P.C.B. with plated through holes.

7t Step by step Assembly Manual complete with waveforms
and detailed circuit description.

% 4.43 MC. Xtal and trimmer cap supplied.

¥r Sockets for memories and character generator (to simplify
setting up).

¥ Low power drain — uses low power Schottky devices, not
standard TTL.

¥ Full service backup — details with kit.

E.A.100 V.D.U. (Complete kit) $99.50

OPTIONS

KB04 PROFESSIONAL KEYBOARD

ENCODER/UART (See E.A. March)

MODULATOR/POWER SUPPLY

KBO4 Proffessional
§ieyboard

Wb Man iy
NEW RELEASE
V’/V\/\/\/\/\/\/\/\/]/

We have now available a superior
quality keyboard with UNIVERSAL
ENCODING. This exclusive feature
makes the keyboard ideal for software
scanning or use with any keyboard en-
coder. It is ideal for the E.A.100 V.D.U.
and eliminates the tedious switch to
switch wiring associated with other
unencoded keyboards.

The KBO4 is laid out in ASR33
format and includes two user defined
KB04 UNIVERSAL KEYBOARD $59.50 keys.

KB0O5 NUMBER PAD $16.50 A matching number pad KBOS5 is
KB0O6 CURSOR CONTROL also available, as well as cursor control
KB10 MATCHING BLANK SWITCHES set KBO6 and spare key switches (KB10).

2650 Micro Computer

Now that you have the low cost terminal, you should consider the 2650
for your own microprocessor system. The 2650 is easy to learn to program,
simple to use and features a powerful instruction set and a rapidly growing
wealth of software support.

Using the kits detailed below you can readily expand your 2650 as your
requirements and budget permit. The end result is probably the most cost
effective home computer available in Australia to-day.

All systems are supplied with the incredibly effective PIPBUG operating
system which handles all serial communication with the 2650, enables you to
examine and modify address locations, set the registers, set breakpoints and
also include a powerful routine that loads and dumps programs using a stan-
dard cassette tape.
BABY 2650 — STARTER KIT $75.00
B2650/KT9500 CONVERSION KIT $142.00
KT9500 FULLY BUFFERED KIT $199.00
KT9500 MOTHER BOARD with COMPONENT KIT (2650 RSMB) $35.00
RAM STICKS 1K x 8 MEMORY MODULES $25.50
2650 USERS GROUP $40.00

gr\ /
2

POSTAGE $2.50CERTIFIED PER ORDER b

AppLI E D POSTAL ADDRESS P.O. Box 355, Hornsby, 2077
TECHNOLOGY welcome here

SHOWROOM 109-111 Hunter St., Hornsby 2077

pTY- LTD- '(9-5 Monday to Sat)

PHONE 476 4758 — 476 3759

76 ELECTRONICS Australia, March, 1978

Fast 8-bit bipolar microprocessor

SIGNETICS 8X300

Signetics has recently released an evaluation kit for its new 8X300
bipolar microprocessor. In this article we give a brief summary of
the 8X300 chip itself, and of the evaluation kit.

The 8X300 has been designed to be a

fast microprocessor controller, and
because of this differs considerably
from conventional NMOS

microprocessors that we have con-
sidered in the past. Perhaps the major
difference is that it is implemented with
bipolar Schottky technology, and can
fetch, decode and execute an instruc-
tion in only 250'ns.

The device is supplied in a 50-pin DIL
ceramic package, and runs from a
single 5V supply rail. An external pass
transistor is required to complete an
on-chip voltage regulator, which
supplies 3V to selected areas of the
chip. This helps to maintain the total
current drain of the chip at less than
450mA.

Clock requirements are met by con-
necting a crystal directly to two pins.
Alternatively, out of phase signals from

an external clock generator can be us-
ed. The remaining pins are divided into
four functional groups, as detailed
below.

The first thirteen pins connect to the
instruction address lines, and allow up
to 8192 words of program to be directly
addressed. The next sixteen pins are the
instruction word lines, allowing sixteen
bit instructions to be passed to the
processor.

Another eight pins are used for data
memory and 1/O purposes. Designated
as the interface-vector (1V) bus, these
allow data to pass from and to the
processor. The remaining pins are used
for IV bus control, and halt and reset

functions.)
The chif) includes full instruction-
decoding logic that interprets the par-

ticular class of instruction, such as in-
put/output or arithmetic and logic, and

The ew suation kit includes 256 bytes of RAM and 512 words of PROM.
80 E\E¢CTRONICS Australia, March, 1978

by DAVID EDWARDS

pertorms the indicated operation. The
decoding and control logic supplies all
internal signals for the processor, as
well as signals on the control lines for
directing the data input and output.

The processor also contains its own
program counter which is automatically
incremented upon execution of the in-
struction. The counter may also be left
unchanged or loaded with a new value.
Control of the current address is
provided by the address register and
may be derived completely or partially
from the program counter, from the in-
struction data lines (ARo through AR4),
or from the output of the
arithmetic/logic unit (lines ARs through
AR12). Because of this flexible
instruction-address scheme, the order
of execution may be altered by instruc-
tions or under conditions determined
from selected data.

The processor manipulates 8-bit data
bytes. Internal data is stored in 8-bit
read/write registers—R1 through R,
R11, and an auxiliary register. The aux-
iliary register holds one of the operands
used in two-operand instructions, such
as ADD or AND, and a single-bit
overflow register stores the carry-over
bit from additional operations.

Interfacing with external circuitry 1s
through an 8-bit bus called the
interface-vector bus and consisting of
lines 1Vothrough V7. The bus carries
both address and data information, and
the accompanying data-1/O control
lines tell the external circuitry which of
the two types of information is on the
bus. These lines include write- and
select-control, right- and left-bank-
signal, and master clock lines.

Since the interface-vector bus carries
addresses as well as data, 1/0 ports on
the external circuits must be enabled
before data transfer can take place. This
is usually accomplished by placing an
address on the bus under program con-
trol and then activating the select-
control line, which indicates that a valid
address is on the bus. When presented
with an address, each of the possible

512 1/0 ports (two blanks, each of 256
addresses) either enables itself upon
identifying the address as its own or dis-
ables itself if the addresses do not
match.

Within the processor, the interface-
vector bytes are addressed in a unique
fashion. Each byte has an 8-bit field-
programmable address. When a given
address is selected, the byte is
automatically designated, and the
8X300 can then communicate with the
/O device. Moreover, once enabled,
the addresses remain so until the
processor changes them. This direct ad-
dressing feature is especially con-
venient if a few ports are to be accessed
frequently. However if the time re-
quired for this operation is an imposi-
tion on the user, instruction memory

aan be extended so that the selection of -

rts is automatic upon instruction
tch.

The interface-vector bus is par-
titioned into two banks, allowing the
8X300 to select ports dynamically. The
processor uses the left-bank (LB) and
right-bank (RB) data-control lines as
master enables for the 1/O ports, as
shown in the typical interconnect
scheme of Fig. 1. Any two /O ports can
be active at the same time provided
they are on opposite banks, and the
ports recognize address, data, and con-
trols only when enabled by the bank
signal to which each is connected. Bank
partitioning can thus be considered a
ninth address bit that is alterable by the
processor within an instruction, and it is
this additional bit that permits direct
addressing of 512, or 2°, 1/0 ports.

In a general data operation between
two 1/O ports, first an address is
presented to one bank that enables an
/O port and disables all others on the
bank. Next, another address is
presented to the opposite bank, effec-
ting a similar selection there. Then the
operation between the two takes place.

Each 8X300 operation is executed in
one instruction cycle (250ns), which is
divided into four quarter cycles. The in-
struction address for an operation is
presented at the processor output dur-
ing the third quarter of the previous in-
struction cycle, and the program
memory returns the instruction to the
processor during the first quarter cycle.

In terms of processing data, the in-
struction cycle may be viewed as having
two halves, an input and an output
phase. During the first half of the in-
struction cycle, data is brought into the
processor and stored in an interface-
vector latch. Storage is completed dur-
ing the first quarter cycle, and in the
mext quarter cycle the data is processed
through the ALU. In the second half cy-
de, the output data is presented to the
bus and finally clocked into the
designated 1/0 port.

Bank selection during the input and
eutput phases is independent. Thus
data may be received from the right
bank, processed, and then deposited in

+5V

PROGRAM STORAGE

TYPICAL SYSTEM CONFIGURATION

USER
CONNECTION

A\

)

14
LI)

2N5320

'.11T

: Vee VR VER :'VBO—W'B—7 B 4

|

8732

10-115 SC 4
ROM/PROM/RAM :ﬂ WeC ad
TTL COMPATIBLE , 8X300 MCLK s
UP TO 8K x 16 BITS X MICRO- _LB
(825115) 1 CONTROLLER M
so == —] Boc
MH2z E
Xz ;)
[— Y| 8733 |
AT ——1 _L
RESET = :
GND
t I} BIC
~ . ot
[]
- Figure 1
the left bank or vice’'versa, ormayeven which have been selected

be sent to and from the same bank.
Bank selection during instruction cycles
is specified by the instruction.

Each sixteen bit instruction is divided
into one of eight possible classes. The
MOVE instruction allows the contents
of selected registers to be exchanged,
or placed on the IV bus, or vice-versa.
The ADD, AND and XOR instructions
are similar, except that with these in-
structions the contents of the auxilary
register are combined with the source
register before the MOVE part of the
instruction is executed.

The XEC instruction allows a selected
instruction at a different address to be
executed without incrementing the
program counter.

The NZT instruction allows a con-
ditional branch to be implemented,
while the JMP instruction implements
an unconditional branch.

The remaining instruction class,
XMIT, allows a binary pattern specified
in the instruction to be placed in a
specified register or on the IV bus. It is
similar to a load-immediate instruction.

As you can see from Fig. 1, the main
peripheral chip required to implement
a typical working configuration, apart
from ROM and RAM memory, is the
8T32 dual port register. This is an 8-bit
bidirectional data register, which is
accessable via either a microprocessor
gort (normally connected to the IV

us), or a user port.

A unique feature of the 8T32 is the
way in which it is addressed. Each
device had a field programmable 8-bit
address, which is used to enable the
microprocessor port when that address
is present on the IV bus. A control
signal (select control) is used to dis-
tinguish valid addresses from data.

Enabled ports remain open until
another valid address is presented on
the control line. Two 8T32 devices

simultaneously can be differentiated
from one another by means of the LB-
bar and RB-bar lines, which separate
the IV bus in two banks.

The evaluation kit for the 8X300 con-
sists of a single large printed circuit
board, measuring 280 x 210mm. It is
fitted with an edge connector and
matching socket on one edge. Included
with the 8X300 chip are four 8T32s for
external interface, 256 bytes of RAM for
working data storage, and 512 words of
PROM program storage.

Part of the PROM is programmed
with 1/0O control, RAM control and
RAM integrity diagnosticﬁ programs,
with the remaining space being left free
for user programs. Access is available to
all address, instruction and IV buses as
well as all controls and signals of the
8X300 itself. An area of the board is
provided so that additional circuitry
can be mounted using wire wrap
techniques.

Controls are also provided for
diagnostic and instructional purposes
by allowing various operating modes,
such as single stepping, instruction jam-
ming and repeated instruction jam-
ming. In these latter cases, the jammed
instruction is selected by means of
board mounted DIL switches.

An 8X300 programming course is also
available. This consists of a large folder
of written material, and is accompanied
by 10 pre-recorded cassette tapes
which interact with and explain the
written material.

In conclusion, the 8X300 chip and its
‘association evaluation kit are both
rather specialised and will probably be
of most interest to professional control
equipment designers, rather than hob-
byists. Further information can be ob-
tained from Philips Electronic Com-
ponents and Materials, 67 Mars Road,
Lane Cove NSW 2066. 2

ELECTRONICS Australia, March, 1978 81

Special offer for EA readers:

Low cost record of
useful 2650 software

Here is some good news for those using small microcomputer
systems based on the Signetics 2650 microprocessor. Electronics
Australia and Philips Electronic Components and Materials, in con-
junction with the 2650 Users’ Group, have produced a low cost
175mm 33 1/3rpm record of useful 2650 system software. You can
load the software into your system via any standard cassette inter-

face.

by JAMIESON ROWE

Most small microcomputer systems
based on the Signetics 2650
microprocessor use the monitor/debug
program ‘PIPBUG"”, resident in a ROM
(read-only memory), to control
program entry, manipulation and ex-
ecution. And compared with many
similar monitor/debug programs
supplied with small microcomputer
systems, PIPBUG is very good. It allows
you to dump programs onto paper tape
or cassette and reload them into
memory, and to run them in controlled
fashion with up to two breakpoints.

However like most small
monitor/debug programs, PIPBUG has
its limitations. After you have used it for
a while, these become fairly apparent.
You soon find yourself hankering for a
faster and more convenient way of
feeding long programs in, examining
them when they have been fed in,
moving parts of them around in
memory, checking the accuracy of
dumps, dumping and reloading, and so
on.

As it happens, many of the utility
Erograms required to do these things

ave already been produced, by peo-
ple who have been working with small
2650 systems for a while. So there’s no
need for newcomers to “reinvent the
wheel”.

To help those who are just starting to
get under way with their 2650 system,
we have gathered together a group of
these utility programs which we think
are likely to be of most interest and
value. With the generous support of
Philips Electronic Components and
Materials, and the co-operation of the
2650 Usérs’ Group, we have recorded
the resulting “‘software package” on a
low cost 1775mm 33-1/3rpm disc. This
can be played on any standard record
player, and fed into your 2650 system

via a standard cassette interface such as
the one we described in the April 1977
issue (File number 2/CC/19).

The programs in the package include
routines for feeding in programs faster,
listing them more efficiently, moving
them around in memory, searching
them for certain instructions, verifying
dumps, measuring the length of
programs in dumpe§ form, disassembl-
ing them for analysis, dumping them
and reloading at higher speed than
with PIPBUG, and producing dumps
which automatically begin execution
when they are IoaJed. There are also
two short game programs, for amuse-
ment and system demonstrations.

All of the programs recorded on the
disc have been dumped from a 2650
system using PIPBUG, so that they are
in the Signetics ““Absolute Object For-
mat”, and hence suitable for loading
into other systems under PIPBUG con-
trol. The system from which they were
dumped has a total of 4k (4096) bytes of
RAM in addition to the 1k PIPBUG
ROM, with the RAM occupying the
hexadecimal address range 0400-13FF.
Some of the programs currently occupy
memory locations near the top of that
range.

As many small 2650 systems are likely
to have at least this much RAM, most of
the programs should be usable as they
are. However if your system has a
smaller memory, you should still be
able to use many of the programs.
Quite a few of them are either
relocatable without any changes at all,
or require only a few minor changes.
Others are already located down at the
bottom of RAM memory space, and
should be directly usable.

The programs have been recorded
on the disc using the 2-tone ‘“‘audio
FSK” technique, with binary 1 and

80 ELECTRONICS Australia, April, 1978

“mark’’ represented by a tone of
2400Hz, and binary 0 and “‘space”
represented by 1200Hz. These are the
same tones used in standard microcom-
puter cassette interfaces, based on the
so-called ‘“Kansas City Standard”
originated by the American magazine
Byte. Hence you should be able to feed
the programs from the disc into your
system simply by connecting a standard
record player up to your system’s
cassette interface, in place of the
cassette tape recorder.

If you experience any trouble
loading them into your system in this
way, it will probabry be because your
cassette interface is not set for exactly
the standard frequencies. A judicious
adjustment of the interface may
therefore be required, by trial and
error, until loading takes place correct-
ly. This will be a simple procedure if
you are using the cassette interface
described in the April 1977 issue, as you
will only need to adjust the 4.7k ““clock
adjust” preset pot a little one way or
the other.

As a special offer to EA readers, we
are making the 2650. Software Package
Recording available at the nominal
price of $2.50, or $3.00 posted
anywhere within Australia. However
your remittance should be accom-
panied by the order coupon given in
this article, unless you live in a State
where this requirement is illegal — in
which case a letter giving the same in-
formation may be sent instead.

But note that this offer is strictly
limited. Only 1000 discs have been
produced, and when these have gone
the offer must close. So be early if you
don’t want to miss out! ‘

As you can see from the photograph,
the 2650 Software Package Recording
comes inside a matching protective
sleeve. On the sleeve is printed brief in-
formation on each of the various
programs on the disc, and their use.
However in order to let you evaluate
their potential value to you in advance,
the remainder of this article gives a
somewhat expanded description. Also
given are program sizes and
relocatability.

Supplied in an informative sleeve, the

record plays on a standard player. It

provides nine handy items of 2650 software, plus two games.

1. HEX INPUT ROUTINE

This simple program allows either
programs or data to be fed into your
system in hexadecimal code from a ter-
minal keyboard, more speedily and
more conveniently than with the
PIPBUG input routine. The data or in-
struction bytes are fed in as lines of any
length, each line beginning with the
address in which its first data byte is to
be stored. The address and each data
byte -must be terminated by any con-
venient non-hex character, such as a
space or comma.

Thus by typing:
440s3Fs82569sCDs84s7Fr

where “‘s” is a space, and “r"’ is a
carriage return, the input routine will
load 3F into location 440, 82 into 441, 69
into 442 and so on. Note that the last
data byte on the line may be ter-
minated by the carriage return
character; a space is not necessary. The
program automatically provides a line
feed, also.

When typing in both the address and
the data bytes, no leading zeroes are
necessary. Thus an address typed as
“440” is automatically interpreted as
0440, while a data byte with a value of
02 may be entered simply by typing

““2s". Zero bytes may be entered by
simply typing a terminator character,
such as a space.

As the program automatically enters
only the last four digits before the ter-
minator, in the case of an address, or
the last two digits in the case of a data
byte, errors discovered before typin
the terminator may easily be corrected.
Simply continue typing, to make the
last four or two digits correct. Thus

typing:

44F0440s6BCos

will enter C8 into location 0440. But
note that when correcting errors in this
way, you must type in any leading
zeroes as well.

Any number of lines may be entered,
as long as each line begins with its ap-
propriate initial address. The addresses
of each line need not follow those of
the line before, nor preceed those of
the next line; all lines are treated in-
dependently. This allows convenient
correction of lines,and entering of mul-
tiple programs.

To escape from the program and
return to PIPBUG, either type a
Control-G (BELL character) or press the
system reset button. It may be
necessary to type control-G twice.

ELECTRONICS Australia, April, 1978

As recorded on the disc, the hex en-
try routine occupies memory locations
1250 — 162D. However it is relocatable
and may be moved anywhere in page 0,
that is anywhere from 0440 to 1FFF
(PIPBUG itself occupies 0000 — 03FF). It
also contains no scratchpad locations,
making it suitable for storage in a ROM
if desired. It uses PIPBUG subroutines
STRT, CHIN and COUT. Call by typing
G1250r. This program was written by
the author.

2. HEX LISTING ROUTINE

" This program enables you to list a
program or data stored in your system’s
memory on a terminal, in hexadecimal
code, more conveniently than with
PIPBUG. The listing is done in lines,
with each line beginning with a 4-digit
address and followed by up to either 16
or 8 two-digit groups representing the
data bytes, separated by spaces. The
memory range to be listed is given to
the program.as part of. its calling
protocol; when called the program lists
the memory contents in the specified
range, then returns control
automatically to PIPBUG. It must
therefore be called separately for each
listing.

As recorded on the disc, the listing
program occupies memory locations
1200 — 1248 inclusive. However it is
relocatable, and may be moved
anywhere in page 0. It may also be
stored in a ROM if desired. Call by typ-
ing G1200sAAAAsBBBBr, where AAAA
is the start and BBBB is the finish ad-
dresses of the range to be listed.

At present the program is arranged to
listin lines of up to 16 data byte groups,
so that lines will have up to 53
characters. If the terminal -or printer
you are using can only handle lines of
32 characters or less, you can alter the
program to list in 8-byte groups by
changing the instruction byte in loca-
tion 1244 from ““OF” to “07". .

The hex listing routine uses PIPBUG
subroutines GNUM, STRT, CRLF, BOUT
and COUT. It was written by the
author.

3. BLOCK MOVE & SEARCH

The block move routine- allows you
to move the contents of the locations in
any designated memory range either
up or down in memory. It may thus be
used to move complete programs or
data, or to move part of a program for
insertion or deletion of instructions.
The destination and source ranges may
overlap, so that moves of as little as one
byte are permitted in either direction.
Note, however that the program uses
indexing and will not move data cor-
rectly where either the source or
destination ranges flow over 2650 page
boundaries. However the source and
destination range may lie in separate
pages.

As supplied the block move routine
occupies memory locations 1100 —
1183. However it is relocatable and may
be moved anywhere in page 0. It uses
PIPBUG subroutines STRT and GNUM.

81

2650 SOFTWARE PACKAGE RECORDING

It is called by typing
G1100sAAAAsBBBBsCCCCr, where
AAAA and BBBB are the start and finish
respectively of the present memory
range occupied by the block to be
moved (i.e., the source range), and
CCCC is the start of the memory range
to which it is to be moved (i.e., the
destination range).

After moving the data, the block
move routine automatically returns
control to PIPBUG. The routine was
written by lan Binnie.

The accompanying block search
routine is designed to search through a
designated memory range for a
specified pattern in two adjacent
locations. Wherever the pattern is
found, the routine prints out the ad-
dress of the second byte of the pattern.
It may therefore be used to find specific
instructions in a program, or data in a
table. It can searcﬁ any desired memory
range, even a range which flows over a
2650 pa%e boundary.

The block search routine is designed
to be used in conjunction with the
block move routine, and this is why the
two are combined on the record.
However the two are quite indepen-
dent, and may be separated if desired.
As supplied the block search routine
occupies 1190 — 11D7, but it is
relocatable and may be moved
anywhere in page 0.

To call the block search routine, type
G1190sAAAAsBBBBsXXXX, where
AAAA and BBBB are the start and finish
respectively of the memory range to be
searched, and XXXX is the two-byte
pattern to be found. The routine will
print out the locations at which it is
found, and then return control to
PIPBUG. The block search routine uses
PIPBUG subroutines STRT, GNUM,
CRLF and BOUT. It was written by Craig
Barratt.

4. TAPE VERIFIER

After you have dumped a program
from your system’s memory onto paper
tape or cassette using PIPBUG, this
verifier program lets you check that the
tape or cassette has a faithful copy. It
does this by reading the tape or
cassette, and comparing it with the
original still residing in the system
memory. If there are any errors, the
verifier program will type out an ap-
propriate message. Otherwise it will
tvpe out “TAPE OK".

The verifier checks for both address
and data BCC (block control character)
errors on the tape or cassette, as well as
for data byte errors. Currently the
verifier occupies memory locations
1360 — 13F3 inclusive. However it may
be moved to any desired part of page 0
bv modifying the contents of tge in-
struction bytes currently in addresses
13B6 and 13B7. The five least significant

bits of the byte in the first location and
the full byte in the second must corres-
pond to the address of the byte SIX
BYTES after the second of the two
bytes, for correct printout of the
verifier messages.

Thus currently these bytes are 37 and
BD, corresponding to address 13BD. If
the verifier were moved to occupy 760-
7F3, you would thus need to change the
contents of 7B6 and 7B7 to 27 and BD
respectively. If it were moved to oc-
cupy 500-593, the contents of 556 and
557 would need to be changed to 25
and 5D respectively. Note that the sixth
least significant bit of the first of the
two bytes is always set; this is for cor-
rect indexing.

To use the verifier, simply call it by
typing G1360r. Then feed in the tape or
cassette, as if you were loading it. Note,
however, that for correct operation the
original program on the tape or
cassette must still be resident in the
system memory. The verifier will either
type out a message as soon as it finds an
error, or will give the “TAPE OK" signal
at the end of the tape. After giving a
message the verifier returns control
back to PIPBUG.

The verifier uses PIPBUG subroutines
CRLF, CHIN, BIN and COUT. It was
written by the author.

5. DISASSEMBLER

This program may be used to ex-
amine a program or part of a program
in your system’s memory, and produce
both a hexadecimal listing and a
reconstruction of the program in
mnemonic or assembly language. This
allows convenient analysis of programs,
and is also of value in tracking down
subtle logic errors, errors in program
entry and errors in calculating relative
addresses and PC-relative branches.

Not all of the codes in the 2650 in-
struction set are translated into
mnemonic form by the disassembler;
some infrequently used codes are ig-
nored. However all commonly used
codes are translated, and absolute ad-

dresses are calculated tor relative ad-
dressing instructions. This allows very
convenient program analysis. However
please note that the program does not
calculate the absolute address correctly
for relative indirect addressing instruc-
tions which are “forward referencing”’
— i.e., those which reference higher
addresses.It does calculate the correct
address for those which are backward
referencing.

The disassembler listing is 31
characters wide, making it suitable for
use with almost every kind of terminal
and printer. It occupies the memory
range OFO0 — 1082, and is not easily
moved.

To use the disassembler, call it by typ-
ing GFOOSAAAAsBBBBr, where AAAA
and BBBB are the start and finish of the
range in memory occupied by the
program or section of program to be
disassembled. For long programs, the
disassembler will pause after listing
about 64 lines to allow manual form
feeding. To .continue the listing, type
any character on the terminal
keyboard. Control is returned to
PIPBUG at the end of the listing.

The disassembler uses PIPBUG sub-
routines STRT, GNUM, BOUT, AGAP,
CRLF, CHIN, COUT and FORM. It was
written by lan Binnie, with
modifications by the author. s

6. TAPE MEASURE

If you acquire a program on paper
tape or cassette in Signetics Absolute
Object Format, it is usually easy enough
to feed it into your system and try it out.
However in order to list it or disassem-
ble it for analysis, one needs to know its
length or the range it occupies in
memory. This program is designed to
read programs stored on paper tapes or
cassettes, and print out the memory
range of each Elock‘ It prints out this
information at the end of the tape or
cassette, as a small table having one line
per block. :

The program occupies the range 440
— 4FE, and is not easily relocated. It
also requires RAM buffer area above
4FE, for storage of block start and finish
addresses during reading. Four bytes of
storage are required for each block on
the tape to be measured. To use the
program, simply call it by typing G440r,

ELECTRONICS Australia, April, 1978 . 83

2650 SOFTWARE PACKAGE RECORDING

then feed in the tape or cassette to be
measured.

Please note that the program lists the
ends of blocks as one location in
memory higher than their true posi-
tion, so that the block ends listed
<hould be decremented to find the true
ends.

The tape measure program uses
PIPBUG subroutines CHIN, BIN, STRT,
COUT and BOUT. After printing out
the block information at the end of the
tape or cassette, it returns control
automatically'to PIPBUG. It was written
by the author.

7. DUMP FOR AUTO-START

This routine duplicates the function
of the dump routine in PIPBUG, except
that it allows you to produce program
tapes or cassettes which begin ex-
ecuting automatically as soon as they
have been loaded into your system us-
ing the PIPBUG load routine.

The routine currently occupies the
range OE60 — OEF7, but may be moved
anywhere in page 0 by changing the
contents of the last two bytes. These
currently contain the branch address
0E7C, and if the routine is moved they
must be changed to contain the cor-
responding address.

To use the routine, type
GE60sAAAAsBBBBsCCCC, where
AAAA and BBBB are the start and finish
of the memory range to be dumped,
and CCCC is the address at which
automatic starting of execution is to oc-
cur upon loading. Then turn on the
tape punch or set the cassette recorder
for recording, and finally type a
carriage return. The routine will return
control to PIPBUG after performing the
dump.

The routine uses PIPBUG subroutines
STRT, CRLF, COUT, GAP, and BOUT. It
was written by the author.

8. 300 BAUD BINARY DUMP

This program is designed to dump
programs onto cassette tape, in binary
format and at 300 baud, so that they
may be reloaded into your system con-
siderably faster than with the 110-baud
Absolute Object Format used by
PIPBUG. This gives roughly a six times
reduction in loading time, for the
programs themselves.

The program provides two main op-
tions. Programs may be dumped alone,
or preceeded by a bootstrap loader. If

receeded by the bootstrap loader,
Einary cassettes may effectively be
loaded using the normal PIPBUG load
routine. If dumped without the
bootstrap, binary cassettes must be
loadeddusing the following binary
loader.

For dumping programs with the
bootstrap preceeding, the following
binary loader must be resident in
memory, because it is used as the

84

bootstrap source.

Dumping programs with the
boostrap loader preceeding them does
increase the loading time, tending to
reduce the advantage over normal
PIPBUG dumping and loading.
However it saves having to load in the
binary loader in advance. And the in-
crease in loading time is really only
significant for very short programs;
even programs as short as 256 bytes still
load in little more than half the normal
time (39 seconds compared with 68
seconds). For large programs the
loading time either with or without the
boostrap is drastically reduced: an 8k
memory dump can be reloaded in 52
minutes, compared with over 30
minutes with PIPBUG.

A further option provided is for the
dumped program itself to be set for
automatic execution after being load-
ed.

The binary dump routine occupies
1200 — 12FF and cannot easily be
relocated. Its starting address for
dumps preceeded by the bootstrap is
1204; for dumps without the bootstrap
start at 1223. Call by
G1204sAAAAsBBBBr (or

-G1223sAAAAsBBBBr) for non auto-start

of the dumped program, or
G1204sAAAAsBBBBsCCCCr (or
G1223sAAAAsBBBBsCCCCr) for auto-
starting, where AAAA and BBBB are the

start and finish of the program being

dumped, and CCCC is the address for
auto starting.

The routine uses PIPBUG subroutines
STRT, GNUM and CBCC. It was written
by lan Binnie.

9. 300 BAUD BINARY LOADER

This routine is designed to load
programs into memory from 300-baud
cassette recordings made using the
preceeding dump routine, when the
cassettes do not have the loader already
present as a bootstrap. It is also used by
the dump routine as a source for the

bootstrap. It occupies 440 — 497, and
cannot easily be relocated. Call by
G440r. Written by lan Binnie.

10. NIM GAME

A simple version of the traditional
computer game of strategy. When call-
ed by typing G440r, it announces itself
and explains how to play the game. It
occupies 440 — 588. The version
presented has been adapted by the
author from a program written by Perry
Brown.

11. NUMBER GUESSING GAME

Another simple game of strategy, for
amusement and diversion. Like the Nim
game, it announces itself and explains
how to play. It occupies 440-59F, and is
called by typing G440r. The version
presented here has been adapted by
the author from a program written by
Perry Brown.

Programs 3, 5, 8 and 9 are presented
by permission of the 2650 Users’ Group
ancf Applied Technology Pty Ltd, and
we thank them for their courtesy in
allowing us to do so. Further informa-
tion on these programs is available to
members of the Users’ Group. If you
are interested in joining the group, its
address is 109-111 Hunter Street,
Hornsby, NSW 2077. Initial membership
costs $40, for which you get a
documentation package with hex-
adecimal listings. of many other useful
programs.

Incidentally, we aren’t able to supply
hexadecimal or source listings of the
programs on the record. However this
should be no problem, because you
can produce hex listings and
mnemonic listings of them for yourself,
using the hex listing routine and the
disassembler program-on the disc itself!
Both of these programs will happily
process themselves along with all of the
others, too — so that you can make the
hex listing routine list itself, and the dis-
assembler disassemble itself . ..

In short, we think you’ll find the 2650
Software Package Recording very han-
dy, and good value at the price. If you
agree, why not fill in the order coupon
below and send it in with your remit-
tance?

r---------------- -----1

Australia.

...............

..........................

| enclose $

ORDER FORM FOR EA-PHILIPS
175mm DISC OF 2650 SOFTWARE

To obtain your special offer record of useful 2650 system software, complete this
form and send it with a cheque or money order to Electronics Australia, PO Box 163,
Beaconsfield, NSW 2014. Note that only 1000 records are available, and when these
.are exhausted the offer will close. Records are $3.00 each posted anywhere in

, being payment for

|
--------------- .- = " a2 . -‘- a . l
i

POSTCODE i
|

discs

L---------------------J

ELECTRONICS Australia, April, 1978

INFORMATION CENTRE]

NOTES & ERRATA

2650 SOFTWARE RECORD (April 1978):
In the section on page B1 describing the
Hex Input Routine, the memory ad-
dress range currently occupied by the
routine should read trom 1250 to 12BD
hevadecrmal, Also in the sedlion on
page 83 describing the Tape Verifier,
the current content of location 13B6
should read 33, not 37 as shown,

ELECTRONICS Australia, May, 1978

117

New, expandable
2650 mini system

The Signetics 2650 microprocessor has become quite popular
among computer hobby enthusiasts, spurred on by our “baby”
2650 system described in the March 1977 issue. This and the re-
cent release of 1024 x 4 bit RAMs has prompted us to redesign the
circuit, with this article and the unit described herein as the result.

Our previous approach was to pre-
sent a design for a printed circuit board
unit only, which reduced costs to a
minimum. With this project however,
we are also describing a case and power
supply, so that the unit becomes a com-
plete stand-alone mini computer. Of
course, if desired the PCB can be used
by itself, as before.

We estimate that the complete unit
will retail for around $115.00, which is
very reasonable considering the
features of the unit.

What are the features of the unit?
Well, it has a ‘debug and monitor
program resident in a Tk ROM, a stan-
dard 20mA asynchronous communica-
tion link, a minimum of 1k of RAM, full

memory decoding, provision for -

memory and I/0O expansion, and an on-
board power supply.

All this is contained on a single-sided
PCB, measuring only 218 x 81mm. The
only other components required are a
reset switch and a power transformer
and associated hardware.

At the heart of the circuit is the 2650

MPU chip itself. This is an 8-bit device,

with an instruction set of 75 instruc-
tions, and having eight different ad-
dressing modes. It is fabricated using
fow threshold ion implantation, and is
an N-channel silicon gate device
operating from a single 5V supply, with
all inputs and outputs TTL compatible.

A 74123 dual monostable is used to

generate the single phase TMHz clock

required. A trimpot is used to set the
correct operating frequency, which can
be adjusted without the use of special
test equipment.

The debug/monitor program, code

54 ELECTRONICS. Australia, May, 1978

by DAVID EDWARDS

named ““Pipbug”, is resident in a 2608
ROM. Pipbug recognises seven basic
commands, each of which consists of
an alphabetic character, any required
numerical parameters, and a ter-
minating return. The parameters are
f;iven as hexadecimal characters, with
eading zeros unnecessary.

The seven commands and their func-
tions are as follows: ’
A — See and alter memory;
B — Set breakpoint (2 permitted);
C — Clear breakpoint;
D — Dump memory to tape;
G — Go to address, run;
L —Load memory from tape;
S — See and alter registers.

Only two of a maximum of eight RAM
chips are shown in the circuit diagram
at right. The rest are wired similarly.

/322

.
WaLSAS HILNAWOO INIW 0ssz (V3 ain
+!
WNIVINVL
) @ H
" , @
::::::::::- ; a »
. q £
oooooouuoorT
€k vz NJHAV 3 XOVdO N3snad
AS+ Nasnad
LOYWIXZ H3Imod ok ‘|
. i OIULNIF-
HOLVOIONI e 3 zZ|duM
a31 1YNOILdO n 3
a3l C
HIWHOISNVHL . AS+

W—=No Ast
° . , Y
L : e R v ane .4 o1t 4
o o 2 LD X H L g—
r o S 3AE1-0001 v S—m._ﬂ. ? oatdo) w H»m O 2 Wous N
3330-0000 ¢
o ¢ 3980-0080 M e“ ziav * g .w..%.m
33200000 | N e
M 44£0-0000 MG e ISNISET $n
(MO $
PR —— M - o AS+
> S S - sav PLENLXZ
DD N 2 W w 2. W T E o
o 227 o YD) PN p] 2od o 7|Lav ovid o z
) p 22l o 2 2 2237t p] 22 d o L € Uosk
NOISNVAX3 o 2222 . a2 22237t)] 2elad 5|59 el e IVNINE3IL
e G D DD D BB DD DN DI DD I e ox S vie
o 0332238, PEDIDDDDDDD SN A DI DDE A 1l i per ot
T * yl ? M” oav 8eSL Hm.- |H|—
L O—gz| /W 2y
- = 3 2 .W.momm% o—jora-ciav LA
ca . T3 =% O—gp{an/a-niav
T X1 1Y) Ty
. 17 BN B
pd 2l a) J 2 1 22221l £e
o 2 2) 2 P U 222221 [MM
55§55 % 5555 mefe
NORIVE " o DD T T Y ° DBD U L
m 22 W e i d— sa
o w. M W 3 MM N #00 e
P & * z]*? asnvd aaA
z¢] ¢
oL

AS+ & _ _

55

ELECTRONICS Australia, May, 1978

New 2650 system

The D command may be used to
dump out onto paper or magnetic tape
any desired range of memory locations,
with leader, checksum and trailer to
facilitate reloading. Both the A and S
commands may-be auto-incremented,
by terminating with a line feed instead
of a carriage return.

Pipbug is explained further in
Signetics Application Memo SS50,
which you should receive with the 2608
ROM. 1t also includes a listing of Pip-
bug, which among other things lets you
maie use of some of its utility sub-
routines such as the serial input and
output routines “CHIN’’ and “COUT".

Only two ICs are required to imple-
ment the basic 1k of RAM provided,
thanks to the new 2114 memory
devices. These are 4096-bit static
memories, organised as 1024 4-bit
words. Access time is 650ns or better,
and all inputs and outputs are TTL com-
patible. At the time of writing, only
devices made by Synertek are available,
and these are coded SY2114.

We understand that in the near
future similar devices will be available
from National Semiconductor (coded
MM2114) and Signetics (coded 2614).
At present, the Synertek devices are
available from Radio Despatch Service
Pty Ltd, of 869 Gearge Street, NSW 2000,
and also from Dick Smith Electronics
stores and dealers.

Memory address block decoding is
performed by the 74L5138 device. The
A, B and C inputs, operating on address
lines AD10, AD11 and AD12 produce
output signals which effectively divide

This close-up photograph of the board
should aid in placing the components
on the PCB.

56

List of component parts

SEMICONDUCTORS

1 2650 MPU chip

1 2608 CN0035 ROM (Pipbug)

2 2114 1024 x 4 static RAMs

1 741538 quad open collector gate

1 74123 dual Schmitt trigger

1 7415138 decoder

1 7805, LM340T-5.0 5V regulator

1 BC548 or similar NPN transistor

2 1N914 or similar silicon diodes

2 EMA401 or similar silicon diodes

CAPACITORS

1 2500uF 16VW PCB mounting elec-
trolytic

2 1.5ufF tantalum electrolytics

5 0.1uF polyester

1 270pF polystyrene

1 47pF polystyrene

RESISTORS (all 7aW)

1 10k trimpot (5mm lead spacinf)

1 22k, 5 10k, 1 6.8k, 1 3.3k, 2 2.2k, 4
1k, 1 150 ohm, 1 10 ohm

MISCELLANEOUS

1 40 pin DIL socket

1 24 pin DIL socket

2 18 pin DIL sockets

3 PCB standoffs (9.5mm)

1 SPDT miniature toggle switch

1 SP miniature momentary contact
switch

transformer, 240V to 15VCT @ 1A.
DSE 2155, A&R 2155 or similar

1 PCB, coded 78up5, 218 x 81mm

1 case, 284 x 93mm (see text)

1 output connector (see text)
4
1

-

rubber feet

mains cord, mains plug, grommet,

cord clamp and terminal block
2 aluminium brackets (see text)
Machine screws and nuts, PCB pins,

solder, tinned copper wire,

hookup wire, rainbow cable
NOTE: Resistor wattage ratings and
capacitor voltage ratings are those
used for our prototype. Com-
ponents with higher ratings may
generally be used provided they are
physically compatible.

the memory space into eight 1k blocks,
each of which is uniquely decoded
within the 2650’s memory address
“‘pages”’ of 8k.

The first 1k block, from 0000 to 03FF,
is assigned to the ROM, with the next
block, 0400 to 07FF, assigned to the first
1k of RAM. The first 63 locations of this
block are used by Pipbug as temporary
storage locations, so that user memory
commences at 0440.

A 74LS 38 quad open collector gate is
used to perform the remaining
housekeeping functions. One element
is used to combine the R-bar/W and
WRP signals, to form the W-bar (P)
signal, which is then used to drive the
R/W-bar lines of the RAMs.

ELECTRONICS Australia, May, 1978

A second element is used to buffer
and invert the signal from the reset
switch, allowing a cheap and readily
available normally-open type switch to
be used.

The third element is used as a 20mA
current sink for the teleprinter (TTY)
output signal. It was for this reason that
an open collector type gate was used,
necessitating the three pullup resistors
on the other element outputs. The
current level is set by the 150 ohm
resistor, and is sufficient to operate the
current loop input of an ASCII TTY or
video data terminal.

The remaining gate element is not
strictly required, but since it was
available, we have used it to provide

TRANSFORMER
15V 7.5V 0OV
[

7805

-+
iN FROM
TERMINAL

— -

+
OUT TO
TERMINAL

" 74LS138

f

two buffered interrupt request inputs.

The TTY input circuitry uses a single
NPN transistor, along with a few passive
components to provide a level transla-
tion from the 20mA circuit to the TTL-
compatible sense input. The passive
components form a filter to mitigate
the effects of induced hum and switch
bounce, if present.

The power supply circuit is very sim-
ple, requiring only two diodes, one
electrolytic capacitor and a three ter-
minal regulator, apart from the mains
transformer. Five 0.1uF capacitors are
distributed about the circuit, to
minimise noise and spikes on the supp-
ly lines.

All of the previously mentioned cir-
cuitry is built up on a single printed cir-
cuit board, coded 77up5. In order to
contain costs, we did not use a double
sided board, so that a number of links
are required. Most of these are normal
uninsulated links, although there are
-eight insulated links which wander
across the board.

Provision has been made on the
board for up to four pairs of 2114 RAM
chips, ‘giving a total on-board capacit
of 4k bytes of RAM in addition to the 1
byte Pipbug ROM. Note, however that
only one pair of 2114’s is required for
operation; the other three pairs are op-
tional, to allow you to expand the
system as required.

Four pairs of 2114s represent the
maximum number which can-be con-
nected to the 2650 without overloading
the address and data outputs. For
further memory expansion, buffering
will be required.

As you can see from the
photographs, the board dimensions are
such tiat in the case we have used it
can be stood on edge from front to
back. This is an aluminium case of
similar dimensions to that used for the
Mini Scamp microprocessor design,
and also the Minibrute power supply.
The prototype was obtained from Dick
Smith Electronics Pty Ltd.

Use the
overlay
diagram at
the top of
the page to
guide you in
placing
components
onto the
PCB. Eight
insulated
links are
required,
joining the
corresponding
letters.

You can see
in the
photograph
at right how
much room
is left in the
case for ex-
pansion pur-
poses.

The method of mounting used allows
room for at least two similar sized
boards in the case as well, so that
mechanically, future expansion is quite
easy. It also means that both sides of the
board are accessible at once, so that
servicing and addition of extra parts is
quite simple.

The board is supported on two
brackets, which we fashioned from
scrap aluninium. The large bracket at
the rear holds the board near the rear
panel, so that the regulator can use the

anel as a heatsink. The front of the
anrd is supported by a single bracket
fastened to the floor of the case. We
used PCB standoffs as well, so that the
PCB could be removed easily; but these
may not be necessary in all cases.

We used a DIN socket as the terminal
interface connector, as these are cheap
and readily obtainable. It was fitted to
the rear left hand corner, to minimise
the length of wire needed from the
PCB.

The reset switch is mounted in the
front left-hand corner, with the board a
little to the right of it, to allow
clearance for the supply electrolytic
capacitor. The transformer and
associated components are mounted in
the right hand side of the case, leaving
the centre section clear for expansion
purposes.

Commence construction by fitting all
the hardware and support brackets to
the case. The front panel of the
prototype was made using ‘‘Scotchcal”

ELECTRONICS Australia, May, 1978 57

New 2650 system

photosensitive aluminium, and we hope that commer-
cial versions will be made available in due course.

We assembled the LED indicator and its support
components on a small piece of tagstrip, mounted im-
mediately below the LED BEZEL. Only one wire is re-
quired from the tagstrip to the transformer, the earth
connection being made via the chassis and the tab of the
power supply regulator.

Commence construction of the PCB by fitting the
uninsulated links. All soldering should be done with a
small pencil shaped bit, and with a minimum of solder.
Be careful to avoid solder bridges.

We recommend that sockets be used for the CPU
chip, the ROM chip, and the RAMs if you are at all un-
sure of your soldering ability with these MOS devices. Or
if you wish to add extra RAM at a later date. Fit the
sockets to the board at this stage, before any other com-
_ponents are fitted.

Now fit all the passive components, followed by the
TTL ICs. Circuit board pins for the external connections
should also be fitted at this point, if they are required.
Mount the regulator IC, and then locate and drill the
mounting hole for it in the rear panel.

The next step is to fit the eight insulated links to the
board. Use rainbow cable, and join the lettered points
together, routing the wires between the components, so
that a neat finish is obtained. Once this has been done,
mount the board in the chassis, and complete the con-
“nections to the outer connector, the reset switch and the
power transformer. ‘

Now visually check the completed board for mis-
placed or misoriented components, and for dry joints
and solder bridges. Bolt the regulator IC to the chassis,
using a little heatsink compound for improved heat
‘transfer. Do not insulate the mounting tab from the
chassis.

Now monitor the 5V rail, and switch on. If the supply
does not rise immediately to 5V, switch off, and trace and

rectif{l the fault. If all is well, adjust the clock preset so .

that the signal at pin 5 of the 74123 is TMHz. If you have
no means of measuring this frequency, leave this adjust-
ment till later. '

Now switch off, and insert the MPU chip, the ROM
chip and one pair of RAMs. Note that the lower RAM is
inverted with respect to all the other ICs. Then connect a
suitable TTY or video terminal, and switch it on.

Switch the computer on, and then press the reset
switch. You should be rewarded by a carriage return, a
line feed and an asterisk (*). If you get something garbl-
ed, adjust the clock frequency while repeatedly pressing
the reset switch till an asterisk appears. Once this
happens, set the preset to the micrdﬁe of the region
wherein an asterisk can be obtained.

Now check out the Pipbug commands, and verify
that you can load data into memory. If you have purchas-
ed the 2650 Software Package Recording offered in the
April 1978 issue, then you will be able to load and run
some of' the smaller programs, such as “Nim” and
““Number Guessing”.

Note that if you can afford the fuli 4k of memory,

- you will be able to run all of the programs, with room left
over for your own programs as well. And if you haven't
ordered your record yet, do it now, as stocks are strictly
limited. ‘ :

Finally some comments concerning the expansion
capabilities of the board. Most of the MPU pins required
for expansion have been made available on the board.
Some of them are grounded via links for normal opera-
tion, so that these ﬁnks will have to be removed for ex-
pansion purposes. '

Eight links have been provided at the 7415138 out-

puts so that the memory configuration can be altered if
58 ELECTRONICS Australia, May, 1978

ffff/

This is an actual size reproduction of the PCB pattern.

required. These are arranged in a DIL pattern, so that a socket
and programming plug can be used if desired.

The address and data lines, as well as the W-bar (P) signal,
have been made available, so that memory expansion and in-
put/output capabilities can be provided. It is our intention to
present a second article in the near future, showing how to ex-
pand the memory. up to at least 7k of RAM, and provide two
non-extended 1/0O ports. ; 2

MINI COMPUTER BREAKTHROUGH!

ST

EPBET MU SRR

Here it is at last — the first mini-computer kit system for the electronics enthusiast who"

knows nothing (or a lot) about computers.

If you’re one of the people who think that computer technology is beyond you, this is

the system for you.

Just imagine it — after building it, you use your standard record player to ‘input’ the pro-
gram with the EA/Signetics record, and you’re using your computer right away. You don’t
need to know any complicated machine ‘languages’. You communicate with it in English!

Incredible bargain — you’d pay over $800 for a similar built-up system!

VIDEO DISPLAY 2650
UNIT — KIT PRICE MING-COMPUTER

YOUR OWN
TVSET $226.90 KIT PRICE $115.00

YOUR OWN

CASSETTE RECORD PLAYER

INTERFACE’

OR CASSETTE

KIT PRICE $24.50 RECORDER

TYPICAL SYSTEM

2650 MINI-COMPUTER
Fantastic new 2650 Mini Computer (see May "78 EA). Comp-
lete kit includes all electronic parts, PC board and power sup-
ply plus case, Marvi-plate lid and deluxe brushed aluminium
front panel.

Complete kit for above: Cat K-3447
PCB (78up5), fibreglass, only: Cat H-8341

$115.00%%
. $5.00

.$28.50
$19.75

2650 microprocessor chip only: Cat Z-9201
2608/CN0035 pip bug 8k ROM only: Cat Z-9309

VIDEO DISPLAY UNIT

Incredibly low cost Video Display Unit uses your own TV set

as the monitor. See EA, February & May ’78 for details.

Basic Video Display Kit: Cat K-3460 $97.50 ¢
Video Modulator Kit for above: Cat K-3462$4.50 %
ASCIH Keyboard Encoder Kit for above: Cat K-3464 ..$39.50 ¢
UART IC (S1883/MM5303N/TMS6011: Cat Z-9204 .. $5.90 %
Keyboard Console Metalwork: Cat H-3130$24.50 %
Keyboard (fully assembled): Cat X-1180 $55.00 &

CASSETTE TAPES
AC/DC cassette recorderideal for this system.)
Cassette recorder Cat A-4092

Cassette tapes: C60 LN — Cat C-3350
‘C90 LN — Cat C-3352"..

DICK SMITH ELECTRONICS 5 &

SYDNEY

147 Hume Hwy, Syo .
rose St,

Chullora. Ph: 642 8922,
We've moved!

SYDNEY

162 Pacific Hwy,

Gore Hiit. Ph 4395311
Ample parking at door.

MAIL ORDER DEPARTMENT: PO Box 747, Crows Nest, NSW 2065

SYDNEY:
125 York St,
City. Ph 291126

Parramatta. Ph 683-1133 City. Ph 67-9834
ist floor — friendly store! New: right in town!

Phone 439-5311. Post & Pack extra

EA/SIGNETICS
RECORDING —
PRICE $2.80

CASSETTE INTERFACE

Enables your cassette recorder or record player to interface
with mini-computers such as the 2650. Kit includes PC board
and all components except power transformer. The complete
PC board assembly will fit inside your 2650 mini-computer
case, the 2650’s transformer providing the AC power. We
believe this kit to be the best available on the market to suit

" the 2650 system. Other kits require long setting-up time and

the final result is not nearly as good as with this one.’
Complete kit (as above) Cat K-3465 . $24.50 %
PCB only (Cat H-8331) .. . $3.75

PAPER TAPE READER KIT N

See page 33 or our new catalogue for full details. Ideal for use
with the 2650 mini-computer. Kit includes all electronic com-
ponents, handsome black anodiséd aluminium case, ribbon
interface cable and complete assembly and interface instruct-
ions, schematics and software.
Tape-Reader Cat K-3466 .

SOFTWARE RECORDING

This is.a 33-1/3 RPM recording of useful 2650 system soft-
ware. By using it on your record player or dubbing it onto a
cassette and using it in your cassette interface system you can
program the 2650 directly for exciting new programs and com-
petitive games. It contains |1 programs you can run.

Record Cat B-6300

$95.00

SHOP HOURS
Meon Fri 9AM

BRISBANE ADELAIDE

166 Logan Rd, 203 Wright S
Richmond. Ph 42-1614 Buranda. Ph 3916233 C ity. Ph 212 902
Easy access: huge stock. Opens 8.30AM Now Open

WE HAVE DEALERS RIGHT ACROSS AUSTRALIA — THERE'S ONE NEAR YOU!

ME LBOURNE
656 Bridge Rd

ME LBOURNE
399 Lonsdale St,

(INFORMATION CENTREJ

MICROCOMPUTERS: | would like to
learn something about computers and |
was thinking about getting the 2650
system described in your May 1978
issue. However ! don't think | will
because wherever | look | come up
against an impenetrable wall of un-
intelligible jargon. | have looked in half
a dozen books, pamphlets and in-
troductions to various systems, “struc-
tured so that the user not familiar with
computers can learn to generate code
with a minimum of effort...” but have

ELECTRONICS Australia, Juiy, 1978

found without exception a mass of un-
intelligible jargon. s there any book
which has a list of codes together with
their binary equivalents and an ex-
planation in readable English of what
they are supposed to do? If so | would
be very grateful if you could let me
kngw. (R. H., Alphington, Vic.)

® We agree that there do not seemto
be any easilfr read up-to-date books on
machine {anguage programming,
which make no assumptions regarding
the background knowledge of the
reader. Most people have had to
plough their way through many
different books and articles, to gain
even a modest understanding. And
whether it would be a proposition for
anyone to write such a book now is
perhaps in doubt, as machine language
may not be in wide use for much
longer. Incidentally, there is no stan-
dardised machine instruction code
used by all of the various
microprocessors; virtually all of them
use different codes.

Notes & Errata

LOW COST VIDEO DISPLAY UNIT
{February 1978, File No 2/CC/23): In
the circuit diagram on page 63, R9 and
R6 should be interchanged, along with
C11 and CB8, The parts [ist and overlay
diagram on page 65 are correct. Note
also that the polarity of C19is incorrect-
ly marked on the overlay diagram.

125

Central Data

Get into computing the
economical, expandable way

FEATURES:

Signetics 2650 microprocessor based —

All processor signals buffered for TTL fan out of 10
Supervisor programme in 1k of PROM

* 730 bytes of RAM available to the user

* Provision for 3k of additional PROM on the board

* Cassette Interface on the board using 1200/2400 Hz
Kansas City standard

Composite Video output with 16 lines of 80 characters
display format

&
*
o

Two parallel input ports, and one bit selectable output
port

Central Data dynamic RAM boards are available
with 16k, 24k, or 32k bytes of memory.

Central Data software includes an Assembler/Editor
and an 8k BASIC tape. A Debugger, 12k BASIC and
Assembly Language Package is coming soon.

Other hardware now available and on the way
includes Central Data Computer Mainframe with
Power Supply, ASCII keyboard with solid-state
low-profile keyswitches and +5 volt operation
and Floppy Disc controller with one, two or
three drives.

The Central Data System Board CDYSBDA facilitates the writing o .
of programmes in Hexademical with only the addition of a TV For general and specific information:

monitor, ASC!l Keyboard and power supply. TECNICO ELECTRONICS

The System Board can be expanded by connecting the S-100 Board

CDS100BDA. This allows you to plug in any S-100 static memory

board with an access time of less than 500ns or the Central Data

dynamic RAM boards CDXXKBDA.
Premier Street, Marrickville,
N.S.W. 2204. Tel. 55 0411.

2 High Street, Northcote,

Vic. 3070. Tel. 489 9322.
MO808/778

76 ELECTRONICS Australia, September, 1978

Add full buffering and parallel 10 ports:

How to expand
your 2650 system

\

Since the publication of our 2650 mini computer design in the May
1978 issue, we have had many requests for information on expan-
ding this system. Here is the first of two articles in response to
these requests. It tells how to add full address and data bus buffer-
ing, memory page decoding and four parallel input-output ports.

Before discussing how the 2650 Mini
Computer can be expanded, let us first
spend some time discussing the reasons
for expansion. The basic design, as
Fresented in the May 1978 issue, is
imited in memory size to 5K total (1K
ROM and 4K RAM), due to the bus
driving capacity of the processor.

Of course, this is quite a respectable
amount of RAM, and allows quite large
machine language programs to be run.
However, when one considers handI-
ing large amounts of data or text, or
running a BASIC interpreter, one finds
that it is not quite enough. TCT BASIC,
for instance, which was reviewed in the
September 1978 issue, requires 4K of
RAM for the interpreter, another 1K for
use as scratchpad memory, plus
whatever RAM is required for user

program storage.

Thus, a definite need for extra RAM
exists. The 2650 CPU can address a max-
imum of 32K of RAM, and now that
2114 RAM chips are more readily
available, a memory of this size is quite
feasible. In fact, to implement an 8k
RAM board requires only 16 2114 chips,
and these can easily be accommodated
on a single board.

The second main limitation of the
original design is that the only external
communication with the CPU is via the
20mA teleprinter interface. This limits
not only the data transfer rate, but the
number of devices which can be con-
nected to the computer.

Of course, peripheral devices can be
configured as memory, but this is not
the approach which was taken by the

70 ELECTRONICS Australia, November, 1978

by DAVID EDWARDS

designers of the 2650 CPU chip.
Instead, they chose to implement
peripheral communications via
dedicated input/output ports.

Of particular interest to a small
system, such as we are interested in, are
the “non-extended” 1/O ports. These
are accessed via four special instruc-
tions, REDD, REDC, WRTD and WRTC,
which are all singlebyte instructions.

The non-extended 1/O ports can be
implemented as either two bi-
directional ports, or as two separate in-
put ports and two separate output
ports. We have chosen the latter ap-
proach, as we felt it to be more flexible
for a small system.

Provision of these output ports will
enable the computer to communicate
with high speed devices in parallel

FROM 3
Cin. Din Cout
BOARD 74LS02 STROBE STROBE STROBE 00
B : o
%‘.— g/ %/ G1 /8 N > *) > g : 74 o EXPDAI;JTSAION
4 D4
] rewelll I ¥ X X 4 7 8
o7 81LS95 t 1 ‘ J o8
&2 74LS374, 74LS374,
Z » _sﬂ.sss_ o _ausss_) | eé | | T |, o
: 2 G G2 G —< A cK B cK STROBE
N N
N
|19
8 G2 /8 (] 8 8
4 / A —
B
C INPUT D INPUT C OUTPUT = D OUTPUT
81LS95 13
a1 r‘ > \ 74L502 74LS02
Faom y X 3 1 iz
BOARD > S 4 1 .
ADO
20
AD2 AD2
AD3 AD3
— a8
AD5 =
ADs >-13/ g 8/ 1 suses f—ABe /13 aps 2ORETS, AD14-D/CQ
Aba ADS AD13-E/NEO _
AD9 o ADS M/i0 O D
s == seie »
Api1 —-[?ﬁ AD12 l 74L8138 O PAGE 0
= > O PAGE 2 MEMOSY
WRP FROMO OPAGE 1 SELECT
" s CPU BOARD OPAGE 3 . .
va V4 ,— DATA OUTPUTS ——
WeP) ! . i VCC'YO Y1 Y2 Y3 Y4 Y5 Y6
) opreaO—r] 2 - ‘;':8,‘;%553?;‘:“ 16 |15 J1a 113 |12 {11 |0
phd D
Rwo—q - (DATA BUFFERCONTROL)
FROM 8
CPY 19 10
BOARD 3)
BW(P) BOPREQ BR/W 74Ls02
BUFFERED CONTROL
SIGNALS VCC Q8 D8 D7 Q7 Q6 D6 D5 Q5 CLOCK TR BB PE] ®
20 |19 s hi7 |16 |15 |1a f1s f12 |4 A C G2 G3 G1 Y7 GND
i UseLecT” ™ ENABLE -/ OUTPUT
VCC G2 A8 Y8 A7 Y7 A6 Y6 A5 Y5 \ 7415138
20 ho |18 |17 J1e J15 ha h3 2 |11 A A A [2 2

NOTE: A MAX. OF 3K RAM AND 1K
ROM (PIPBUG) CAN BE USED
BETWEEN 2650 AND ADDRESS AND

VCC Y4 B4 A4 Y3 B3 A3

DATA BUFFERS.
DATA BUFFER MUST BE DISABLED

WHEN THIS RAM AND ROM
IS SELECTED.

FEFFEEPE
G1 A1 Y1 A2 Y2

81LS95

rather than serial format. Other uses in-
clude digital-to-analog and analog-to-
digital conversion, as well as control of
devices such as motors and lights, and
the input of the system data.
Expansion of the 2650 Mini Com-
puter thus involves the provision of 1/0O
ports, and additional RAM. In order to
provide these, it is necessary to buffer
the address and data lines, so that
overloading does not occur. We have
designed two new circuit boards, one
concerned with buffering the address
and data lines, and providing the 1/O
ports, and the other concerned only
with the provision of extra RAM.
Each board has the same dimensions
and mounting holes as the main CPU
board and is intended to mount in the
case in the same way as the CPU board.

6 |7 9
A3 Y3 A4 Y4 GND

10 1]2 B |4 |5 |6
OUTPUT Q1 D1
CON;ROL

-@. 2650 EXPANSION BOARD

No power supply components are in-
cluded on either board, and connec-
tions between the boards are made us-
ing rainbow cable.

The expansion-board, coded 78up9,
contains the address and data bus
buffering, the 1/0 ports, and memor
“page”’ decoding. The RAM board,
coded 78up10, contains 16 2114 RAM
chips, as well as optional address and
data buffers.

The expansion board may be
powered from the existing power supp-
ly, while the RAM board requires an
additional power supply. Details of the
RAM board, and the required power
supply will be given in the following ar-
ticle. In this article we will give full con-
structional details of the 'expansion
board.

ELECTRONICS Australia, November, 1978

D2 Q2 @3 D3 D4 Q4 GND
74LS374, 74C374

7 I8 [9 [0 I1 2 3 |4 |5 [6 |7
Y1 A1 B1 Y2 A2 B2 GND

74LS02 .

2/CC/-

Turning now to the circuit diagram,
we can discuss the expansion board in
more detail. National Semiconductor
81LS95 octal Tri-state buffers have been
used to implement the data and ad-
dress buffers, as well as the two input
ports. The output ports are im-
plemented with 74LS374 or 74C374 Tri-
state octal latches. Page selection and
1/0 port selection is achieved using a
74L5138 one of eight decoder.

The 81LS95 device is most probably
unfamiliar to most readers, so a brief
digression concerning it will no doubt
clear up a few doubts. This device is

ackaged in a 20 pin DIL package, and

as eight non-inverting buffers. Two
control inputs are provided, G1-bar
and G2-bar. If either or both of these
inputs is at a logic 1 (high) level, the

71

How to expand your 2650 Minicomputer

outputs of the buffers are placed in a
high impedance or Tri-state mode.

This facility is used to enable several

devices to be wired in parallel on the
one bus. Only one device drives the
bus at any time, with all other devices
switched into the Tri-state mode. This
should become clearer if we now turn
to Fig. 1, a simplified representation of
the bi-directional data bus.
" . When the CPU is transmitting data to
the RAM or the 1/O device, the R-
bar/W line is high. This disables the
output of buffer B, and places it in the
high impedance state. Buffer A,
however, is enabled, because it’s out-
put enable signal is low. So the data
placed on the bus by the CPU is
transmitted to the RAM. The output of
buffer B does not load the bus, because
it is in the high impedance state.

Similarly, when the RAM or 1I/0O
device is sending data to the CPU,
buffer A is disabled, and buffer B
transmits the information.

Returning to the main circuit
diagram, we can now discuss the ad-
dress and 1/0 decoding. The control
signals for the non-extended 1/0 ports
are multiplexed together with 'the two
high « ler 2650 address lines, AD13 and
AD14. A control signal, M/IO-bar, is
provided to enable them to be
separated. These three signals are
applied to the A, B and C inputs of the
74L5138. .

Control input G1 is driven by the
buffered OPREQ signal, while input
G2-bar is driven by the inverted WRP
signal. This latter signal is obtained
from the CPU board after the
modifications detailed in the box ac-
companying this article have been
carried out. .

The ““O” output from the 74L5138
then becomes the C port select line,
while the 2" output becomes the D
port select line. These signals are used
to enable the output buffers of the
81LS95s used for the input ports, so that
information at the port inputs can be
transmitted to the CPU. |

The same signals are also gated with
the buffered W (P) line, and are used to
clock the two output port latches. This
clocks the valid output data on the data
bus into the appropriate output latch.
The data is then available for peripheral
devices until fresh data is clocked in.
The output enable lines of the latches

have been earthed via links, so that
they can be strobed externally if

necessary.

We have specified two pin-
compatible ICs for the output port
latches. The low power Schottky
devices (74L5374) were our first choice,
but there may be supply problems with
these. However, the CMOS dévices can

CPU

be used, and are available.

The four high-order outputs of the
7415138 decoder form the page-select
lines. These go low whenever an ad-
dress within the relevant page is
selected, and are used to select the ap-
propriate 8k block of memory.

A spare gate from the 74LS02 used for
decoding the output port control .

BI-DIRECTIONAL BUFFER]

Nm LS95
A o

RAM

This diagram shows the
way in which the bidirec-
tional data buffer
operates. Only one of the
eight separate buffers is
shown.

FIG. 1

170

1/8-81LS95 Q8 I

R/IW

grovided by utilisin

out, are listed below:

nent lead).
pin 14 of the 74LS38.

near pin 9 of the 74LS38.

the 74123 device.

0.47uF for operation at 300 baud.

Modifi'cations‘ to CPU board

A possible timing conflict exists in the data bus of the 2650 Mini Computer
System, described in the May 1978 issue. We have had no reports of this con-
flict causing operating faults, but recommend that the following
modifications be carried out to eliminate this possibility.

The modifications require the use of an extra logic inversion, so this is
the gate previoucly used as the interrupt request

uffer. This avoids the need for an extra gate package, although it does
mean that buffered interrupts are not available.

The alterations involve re-routing the WRP signal from the 2650 so that it is
not gated with the R-bar/W signal, but instead is used to gate the 74L5138
address decoder. An inverter is required to do this, as only active low inputs
are available as unused inputs on the 74L5138.

The modifications required, and the order in which they are best carried

1. remove the links earthing pins 12 and 13 of the 741538 quad buffer.

2. remove the 10k resistor connected to pin 12 of the 74L538.

3. remove the link earthing pin 4 of the 7415138 address decoder.

4. cut the track leading to pin 9 of the 741538, and join pins 9 and 10 of
the 741538 together with a small piece of tinned copper wire (used compo-

5. cut the track leading to pin 11 of the 74LS38 at Ein 11.
6. add a 1k resistor on the copper side of the board

7. connect pin 11 of the 74L538 to pin 4 of the 74L5138.
8. connect pin 12 of the 741538 and pin 22 of the 2650. Pin 22 is available

9. check that steps 1to 8 have been carried out correctly, and that there

are no short circuits or solder bridges between IC pins.
We have also had a small number of reports of ringing on the clock in-
put to,the 2650, causing faulty operation. This ringing, if present, can be
eliminated by connecting a 22pF ceramic capacitor between pins 5 and 8 of

Finally, we would like to note that-in theory both of the problems men-
tioned above may occur with the “baby” 2650 system described in the
March 1977 issue, although there have been no reports of trouble.

Note also that the 1.5uF capacitor in the sense line should be reduced to

etween pin 11 and

72 ELECTRONICS Australia, November, 1978

" PARTS LIST

6 81L595 octal Tri-state buffers
2 7415374 or 74C374 octal Tri-state
latches
- 7415138 decoder
741502 quad NOR gate
PCB, coded 78up9, 218 x 81Tmm
0.1uF polyester capacitors
15-way chassis mounting sockets
and plugs to suit
Solder, tinned copper wire, rainbow
cable, machine screws and nuts,
tapped spacers, PCB pins

TR ===

NOTE: Resistor wattage ratings and
capacitor voltage ratings are those
used for our prototype. Com-
ponents with higher ratings may
generally be used provided they are
physically compatible.

These two photographs show how the two boards are assembled in the case, and
how they appear when removed. Arrange the boards as shown in the lower
photograph while completing the. interconnections.

RIGHT: Use this
overlay diagram of the
CPU board to find the
appropriate connec-
tion points. You may
also need to refer to
the overlay diagram on
page 57 of the May
1978 issue.

signals is used as an inverter so that the
data buffer can be disabled whenever
page O is selected. This is required to
prevent a conflict, as the Pipbug ROM
and existing RAMs are on the CPU side
of the buffer. Without this disabling,
the data buffer and RAM or ROM
would both try to drive the data bus

whenever a read operation in page 0
was performed.]

The page 0 signal is coupled via a
link, so that a different configuration
can be achieved if desired. The reasons

for this will become clearer in the next-

-article.
Note that strictly only 3K of RAM can

be inserted on the CPU board when the
expansion board is connected, due to
bus loading limitations. This presumes
that all devices present their maximum
specified load. However in practice we
found it possible to insert the fourth
pair of RAMs, and still have correct
operation.

ELECTRONICS Australia, November, 1978 73

How to expand your 2650 Minicomputer

Before commencing construction, we recom-
mend that you carry out the modifications detailed
in the box. The following constructional hints
assume that this has been done.

The circuitry is all contained on a single-sided
board, coded 78up9, measuring 218 x 8Imm. Note
that the board has provision for a 40-pin IC (a possi-
ble future addition), but this is not used at present.

As you can see in the photographs, the new board
mounts parallel to the CPU board. To do this, we
removed the nylon standoffs used initially, and
replaced them with tapped spacers screwed either
side of the existing mounting bracket using a short
length of threaded rod.

By arranging the cabling between the two
boards in a suitable way, itis possible to remove both
boards as a unit from the case, with a minimum of
unsoldering. This is made easier if the TTY socket and
the 1/0 sockets are mounted-from the inside of the
case, so they can be removed by simply unscrewing
them, without unsoldering.

While this mounting method is a little awkward,
and not conducive to extended servicing, it does
leave enough space for at least two additional
boards, and it is economical (motherboard systems
have a high initial cost).

The existing transformer and power supply on
the CPU board have enough reserve capacity to run
the additional board as well, so no mods are re-
quired in this area. The power supply rails from the
new board are simply connected in parallel with
those on the CPU board.

Commence construction by fitting the 1/0
sockets, and by arranging the mechanical supports
for the board. Make sure that the support pillars do
not short to any of the tracks on the board (use in-
sulated pillars if necessary). Then remove the board
from the case, and commence to fit the components.

A low wattage, chisel pointed iron will be re-
quired, as well as some fine resin filled solder. A
good light will also be necessary.

Fit all the passive components and links first. Leave
the bypass capacitor between the 81L595 address
buffers out at this stage, and fit it only after the ICs
have been inserted. Sockets are not required for the
TTL ICs (ie, all but the 74C374’s, if used) provided you
are careful with your soldering iron.

Once all components have been fitted to the
board, inspect it very carefully to check for solder
bridges, wrongly oriented ICs or other similar faults.
We do not recommend PCB pins for most of the in-
puts and outputs to the board, as there is not suf-
ficient room for them.

Now remove the CPU board from the case, and
place it in position on your work bench next to the
expansion board, with the two “front ends” adjacent
to each other. Using suitable lengths of rainbow
cable, and using the two overlay diagrams as a guide,
make the required interconnections. Remember to
leave enough length so that the two boards can be
folded copper side to copper side, and then
assembled in the case.

Take your time when making the interconnec-
tions, as any mistakes will be difficult to correct later,
as well as being difficult to trace. It will be easier if
you make use of the colour code of the rainbow
cable, and make say the DO line back, the D1 line
brown and so on.

Insert the link to disable the data buffer
whenever page 0 is selected, and connect the page 0
line to the G2-bar input of the 74L5138 on the CPU
board.

Here is a full sized reproduction of the PCB artwork. Commercial

boards should be also available.
ELECTRONICS Australia, November, 1978

75

How to expand your 2650 Minicomputer

ABOVE: The position of the 10 sockets
can be scaled from this photograph.
Mount them from the inside of the
chassis.

DATA
IN

The wire leading from pin 11 of the
74LS38 (the WRP-bar signal), must be
extended to the G2-bar input of the
7415138 on the expansion board.

The two power supply rails are
available near the three terminal
regulator. Make sure that you do not
get the polarity wrong.

Once you have finished and checked
all the interconnections between the
two boards, you can wire up the 1/O
sockets. We used 15-way Cannon D
Subminiature plugs and sockets. The
connection scheme we used is shown
in the accompanying diagram.

The eight pins in a row are used for
the data connection, with the remain-
ing seven pins used for vontrol and
power supply signals. The 45V and OV
signals are the main supply rails, while
the +10V and —10V signals can be
derived from the power transformer
using a bridge rectifier and two elec-
trolytic capacitors.

The strobe signal is obtained from
the expansion board, while the control
signals can be selected from the other

(+10V UNREG.)
CONTROL 1
STROBE
CONTROL 2
(-10V UNREG.)

+5V ov

111t

N —

DATA LINE

FEMALE 15-WAY CANNON CONNECTOR
ON CPU CHASSIS VIEWED ON WIRING SIDE

BELOW: The overlay diagram is used ABOVE: This is the suggested wiring

both to place the components on the
PCB, and to make the connections
between the PCBs.

D INPUT "

C INPUT

D OUTPUT

diagram for the 15way Cannon connec-

tors we used for the 10 sockets.

C OUTPUT

BUFFERED
DATA

ports as desired. For example, to run
the OP-80A paper tape reader, a ninth
data input is required, so this can
become one of the control signals.
Once all the wiring is comﬁleted, and

has been checked thoroughly, testing
can commence. This can be done
before the board assembly is replaced
in the case. Fit a heatsink to the
regulator tab, and reconnect the three
wires from the transformer

Monitor the +5V rail, and switch on.
If it does not rise immediately to the
correct value, switch off and trace and
rectify. the fault. Assuming all this is
well, connect up your terminal, and
check-that Pipbug and whatever RAM
is fitted is working correctly.

The output ports can be tested by us-
ing a small routine of instructions to
write data to them and checking that it
appears on the appropriate output pin
with a multimeter. You can use the Pip-
bug BIN routine to get data bytes from
your terminal, the BOUT routine to
echo them, and the WRTC or WRTD in-
structions to transfer them to the out-

76 ELECTRONICS Australia, November, 1978

suoiffiemstim PAGE 0
PAGE 2
PAGE 1
PAGE 3

put ports.

Similarly the input ports can be
tested by reading tﬁem via REDC and
REDD instructions, and using the BOUT
routine to print the byte obtained on
the terminal. With nothing connected
to the inputs, you should get hex-
adecimal FF from both ports.

Now use a clip lead to ground one in-
put pin at a time, and check that the ap-
propriate byte is displayed. For in-
stance, shorting the bit O data input
should change the display from FF to
FE. :

Once you are satisfied that all facets
of the unit are operating correctly, the
board assembly can be fitted to the
case. Use of a magnetised long blade
screwdriver will be found helpful in this
operation, if you are using steel screws.

In the next article, we will give details
of the 8K RAM board and the ad-
ditional power supply components re-
quired with it. This additional supply
will also provide the +10V and —10V
unregulated voltages mentioned
previously. 2

ES D850 MiNI COMPUTER SYSTEM

Extra RAM for the

In this second article giving expansion details for the 2650 Mini
Computer System, we give details of an 8K RAM board based on
2114 static RAM chips. Optional address -and data buffering is
provided, as well as full address decoding.

The 2114 static RAM chip, which forms
the heart of the memory system, is only
a relatively new device. These are 4096-
bit devices, organised as 1024 4-bit
words. Access time is 650ns or better,
and all inputs and outputs are TTL com-
patible. They are packaged in 18-pin
DIL form, and require only a single 5V
supply.

Specified maximum power supply
current is 100mA, with typical devices
drawing about 80mA. This implies an 8K
array would require a suEply current in
the vicinity of 1.5A, and that the dissipa-
tion in the RAMs would be about 7.5
watls.

The new board described in this arti-
cle holds a maximum of 16 2114 chips,
as well as five buffer and housekeeping
chiﬁs. It is intended primarily for use
wit

2650-based systems, -but can be

adapted for use with other
microprocessors. Optional address and
data buffers have been provided, as
well as on-board address decoding.

Turning now to the circuit diagram,
we can discuss the circuit in more
detail. The optional data buffer is
Erovided by two 811595 octal Tri-state

uffers, wired as a bi-directional buffer.
The direction of the buffer is controlled
by the read/write line,

Low cost 741504 hex inverters are
used as the address buffers, with two
spare inverters used to buffer the
read/write line. These inverters also
provide the required control signals for
the data buffer. .

The RAMs are connected in pairs to
form 1K blocks, with half of the data
lines going to each chip. The two chip
enable lines for each pair are con-

by DAVID EDWARDS

nected together, giving a total of eight
active-low chip enables,

These are controlled by the 7415138
decoder, which decodes address lines
10, 11 and 12. The 7415138 is gated on
and off by the page select signal and
the buifered oEeration request
(BOPREQ) signal. The page selectline is
generated on the expansion board, and
is derived from address lines AD13 and
AD14. It is also used to disable the data
buffer when the page concerned is not
selected.

The buffers on the expansion board
described in the October 1978 issue are
capable of driving at least one of these
RAM boards without the use of the ad-
ditional buffers. in this case, all that is
required to support the RAM chips is
the 7415138 decoder.

Since the address lines are loaded

ELECTRONICS Australia, December, 1878 83

VCC G2 AB YB A7 Y7 AR Y6 A5 ¥

5
oATA FROM i o0 f1e f1e Jiz e s lia s liz Js1
EXPANSION — 5 g5 a1 A2 f/ DATA I‘I_} H H H

BDARD »
DB-O7
B1LSSS ADDRESS !/10 B1LS9S >
. 8K RAM ARRAY
& 18 g 16x2114 . .
19
[&5 |1[234[55|7|59|1o
4 4 G1 A1 Y1 AZ ¥2 A3 Y3 as Y4 GNB
19 P
¥4 -1 Vi 8 DATA QUTPUTS-——
4 / YCC'YB Y1 Y2 Y3 Y4 Y5 ¥B
.- f1is s ba 13 |12 |11 |18 |a
B1LS9S
ci -
7ALS138) l—-
BWR) : : n = 2P T" 5 |6 T'T]
2/6-74LS04 A C ®FACIB G1 y7 GND
. SELECT/ “-ENABLE -
SELECT Ty
PAGE Siaat
-!-:—s YGC AB YB A5 Y5 A4 Y4
BOPREO - / Tu T1a bz f1a J1o e s
; " oo o
AO1E A
ADN 25
AD12--- 3 c 74LS04
A
Pl pp Bl
ADDRESS FROM At Y1 A2 ¥Z A3 ¥3 GND
8/ S FAL)
EXPANSION
BOARD AD0-ADI / Lt 7
10/6-74L804 VCC A7 AB A8 1701 1/D2 HD31/04 WE
18 Jrz Jas 15 fra f13 b2 s lie
2114)
@ 2650 RAM BOARD
20CG/ [T s ls 7 I8 8
A8 A5 A4 A3 AD Al A2 TF GND
more than the data lines (each data line ABOVE: This is the , $B1 or sim.
connects to 8 2114s only, while the ad- complete circuit A A LR BST i o s 1ov
dress lines connect to ali 16), and since diagram of the TSV Lmosxe, (UNHEG)
the cost of two 74L504s is negligible new RAM board. "
compared to the RAM cost, it is The address and 200v 2 : 2 -5V
probably worthwhile buffering the ad- data buffers are - j . 13
dress lines. optional. 25y ' 3500 ' v
On economic grounds, the extra cost RIGHT: The " _I _L
of the data buffers can probably be goaged : . =
A e g power E
justified also. Use of the buffers has the v ok h
. . sSUppy snown nere O 10V
advantage that the system access time is IUNREG)

not degraded by the extra bus
capacitance that otherwise occurs.
Note that we have not specified in
either the circuit diagram or the PCB
overlay diagram the order in which the
data lines and the ten lowest address
lines should be connected. This is

because it is immaterial which way they

are connected.

All that is important is that each ad-
dress should define a unique memory
location, so that data is not lost or
destrayed when reads and writes are
performed. It is for this reason also that
the logic inversion occuring in the ad-
dress buffer is allowed. All the inver-
sion does is shuffle the actual RAM
storage locations about, withoutactual-
ly losing any of them.

It is important, however, that AD10,
AD11 and AD12 be connected in the
correct order, so that the memory chips

is adequate to
supply a single,
fully populated
RAM board.

2500
1EVW

can be fitted in pairs. This allows the
memaory to be fiﬁed in increments of
1K, so that the caost of the RAM chips
can he spread over time.

Before discussing the constructional
details, let us first return to the power
supply requirements. The maximum
theoaretical current requirement for a
fully populated board is 16 x 100mA 4+ 2
x 26mA (81L595) 4 2 x 4 SmA (74L504)
4 11ImA (74L5138) = 1673mA. Ob-
viously, if it is intended to run several
RAM boards, the best approach s to
use an external 5V supply, such as'the
Minibrute described in the November
1977 issue.

If only one RAM board is to beé

ELECTRONICS Australia, December, 1978

Ak

-

..i_.

2

driven, things become a little more dif-
ficult, however. The maximum current
required is in excess of that which can
be obtained from a single three ter-
minal regulator. However, in practical
cases, the actual current will be
somewhat less than this.

If fact, the measured current con-
sumption of the prototype board, fitted
with full buffering and 14 2114 chips
was only 720mA. So use of a standard
three-terminal regulator should be
possihle in most practical cases.

The suggested power supply we have
shown is based on the use of aTO-3 en-
capsulated three terminal regulator, on
the basis that heatsinking of these

85

devices is easjer. In our particular case, construction was
aiso simplified.

We used an additional 15V 2A transformer and an encap-
sulated bridge rectifier, along with two 2500uF 16VW elec-
trolytic capacitors. The bridge rectifier is not strictly re-
quired, as the centre tap of the transformer is earhted.
However, it allows a negative supply rail to be developed,
and this can be used to power devices attached to the non-
extended 1/0 ports, as detailed in the October 1978 issue.

A second advantage of the encapsulated bridge is that it
simplifies the mounting arrangements, as it can be bolted
directly to the chassis. As you can see in the photographs,
we mounted the additional transformer between the front
panel and the original transformer,

The capacitors are clamped to the bottom right hand cer-
ner of the back panel (use PC mounting tupes), with the
bridge and regulator mounted above them. The wiring can
be completed by suitably bending the component leads.
Use solder lugs for the chassis connections to the regulator.

Construction of the RAM board should be quite easy. The
PCB is coded 78up10, and measures 218 x 81mm.

Fit all the links first, and then.the RAM stockets. We
recommend sockets for the 2114s as this allows them to be
removed easily, or added in stages. Then fit the bypass
capacitors, ancrfinally the TTL ICs. Sockets are not required
for these.

At the right is a full size reproduction of the PCB pattern,
which may be copied or traced. Commercial PCBs should be
available in due course. Use the photograph below as a
guide while wiring the power supply.

When the board is complete, check it
carefully for sofder bridges and dry
joints, The next step is to complete the
connections between the RAM board
and the expansion board. There are
two different configurations which can
be achieved, however.

If you wish to maximise the amount
of RAM, this can best be achieved by
making the new RAM board page 7 of

the memory. This will then allow at
least 3K of RAM to be retained on the
main CPU board. It does mean,
however, that the memory will not be
conlinuous, as page 0 cannot then be
completely filled with memory.

If continuous memory is desired,
then the best approach is 1o remove ali
RAM from the CPU board, and make
the new RAM board exist at page 0. In

order to retain Pipbug, it will then be
necessary to leave 1K of RAM vacant at
locations 0000 to 03FF.

In order 1o prevent bus conflicts, il
will then be necessary to disable the
data buffer on the expansion board
only when Pipbug is selected, rather
than when page @ is sefected. This can
be achieved by connecting the chip
enable signal for Fipbug to the buffer,

ELECTRONICS Australia, December. 1978 87

BFF
SFF
TFF

FF
FF
FFF

Parts List

16 2114 static RAM chips

1 7415138 one-of-eight decoder

9 0.7uf polyester capaciltors

1 PCB, coded 7Bup10, 218 x 81mm

OPTIONAL PARTS REQUIRED FOR
BUFFERING

2 811595 octal Tri-state buffers

2 74L504 hex inverters

Solder, tinned copper wire, rainbow
cable, mounting ﬁardware, PCB pins
NOTE: Resistor watlage ratings and
capacitor voltage ratings are those
used for our prototype. Com-
ponemts with higher ratings may
generally be used provided they are
physica”\; compatible.

ABOVE. Use this overlay diagram both
to assemble the components onto the
PCB, and 1o find particular 1K memory
blocks.

BELOW: As you can see in {his
photograph, we actually labelled the
RAM blocks with their addresses.

BELOW: The way in which the three PCBs can be removed from the case for ser-
vicing and the way in which the cables between them are arranged can be seen in

this view.

rather than the page 0select signal. This
can be done by opening the link on the
expansion board, and running a wire
from the 0 output of the 7415138 on the
CPU board to the apened link.

In all other respects, wiring of the
RAM board is identical for both cases,
and s quite straight forward. Simply
connect the appropriate control, data
and address leads beiween the expan-
sion board and the RAM board. If you
do not use the address and data buffers,
use the second set of address and data
inputs.

Once construction is complete, test

the board before inserting the 2114s.
Do this by applying power, while
maonitoring the supply rails. [f they do
not rise immediately to 5V, switch off
and trace and rectify the fault. Once ail
is correct, plug in one pair of 2114s, and
switch on, again monitaring the supply
rail.

Test the RAM, and the address and
data bus buffers, if fitted, by loading
and running a small program from this
area of RAM. Assuming all is OK, you
can insert the remaining 2114s. These
can be likewise tested by running
programs known to be OK.

88 ELECTRONICS Ausiralia, December, 1978

2114 RAM chips are available from
Radio Despatch Service, of 869 George
Street, Sydney, Dick Smith stores,
Applied Technology of 109 Hunter
Street Hornsby NSW, and from Pen-
nywise Peripherals, of 19 Suemar Street,
Mulgrave Victoria.

Please note that under normal con-
ditions, the 2114 chips do dissipate
significant amounts of heat, and
become warm to the touch. For this
reason, it is advisable to operate the
unit in a well ventilated environment,
10 reduce the overall temperature rise
of the case,]

New gamé programs for your 2650 computer:

Music player, Rotate
and Conway’s “Life”

Here are three very interesting programs for microcomputer
systems based on the Signetics 2650, developed by a father and
son team from Hobart. With them, you will be able to program and
play your own computer music, play John Conway’s game “Life”,
and test your mental endurance with the letter rearrangement

game “Rotate”.

by PETER and HUGH CAMPBELL

19 Brushy Creek Road, Lenah Valley Tasmania 7008.

The ‘’Music’”’ program occupies
locations X’4A0 to X’5D3, and uses Pip-
bug routines. It contains absolute ad-
dresses, and is not easily relocated. The
music is generated at the flag output of
the 2650, and some form of audio
transducer is required. This can simply
be an audio amplifier and speaker, con-
nected via a suitable attenuator, to the
buffered flag output of the CPU.

Monotonic musical notes are
generated by pulsing the flag output at
suitable rates, with the program
“reading” the music from a section of
memory. The timing of the music is
determined by a time value called
“UNIT”, which'is an even number of up
to 15-bits, such that X’5160 is about 1/32
of a second.

Each note is specified by two bytes.
The first byte represents the number of
UNITs that the note will last: X’01 gives
a duration of 1 UNIT, while X'00 gives
256 UNITs, or 8 seconds with a UNIT
value of X’5160.

The second byte is split into three
fields. The most significant bit, bit 7, in-
dicates either a note (0) or a rest (1). The
next three bits, bits 4, 5 and 6, specify
the octave. 111 represents the top oc-
tave, while 000 represents the lowest. In
‘practice, the three lowest octaves are
not usable, giving a range of only five
octaves.

The remaining four bits in the second
byte represent the note within the oc-
tave. The first note in any octave is E,
represented by X'0, while the last note

is D sharp, represented by X'B.

For rests, bits 6 to 0 are not used, so
all rests become X'80.

It is best to start and end all programs
(tunes!) with X’80 80, a long rest, to
separate the music from the noises Pip-
bug makes while communicating with
the terminal. To signify the end of a
tune, insert X’02FF after the long rest.

Fig. 1 is a hexadecimal listing of the
program, as well as two tunes. “Yankee
Doodle” occupies locations X'5D4 to
X'6B7, and requires a unit value of
X'2800, while ‘/Bach’’ occupies
locations X’6B8 to X'7A3, and requires a
unit value of X’7000.

To run the program, type: G68C (ad-
dress of first note) (value of unit) cr. The
last two parameters are optional. If they
are not given, the program will use the
previous values. Thus to play “Yankee
Doodle” type: G58C 5D4 2800cr; and
for “’Bach’’ type: G58C 6B8 7000cr.

The second program presented here
is called ‘“Rotate”. The computer

enerates a 4 x 4 array of the first 16
Fetters.of the alphabet, arranged in a
random order. The object of the game
is to rearrange the array into the follow-
ing form:

ABCD
EFGH
I JKL
MNOP

The array can only be rearranged by
rotating blocks of four letters

clockwise. The block to be rotated is
specified by the letter in its top left
hand corner. It is invalid to try to rotate
by calling letters on either the bottom
row or the right hand column of the
array.

If a mistake is made, it can be cor-
rected ance between valid rotations.
Any two adjacent letters can be ex-
changed, with the proviso that only one
exchange is permitted. When the re-
quired pattern has been achieved, or
when the game is aborted, the program
w(iill print out the number of moves us-
ed.

The program occupies locations
X440 to X’5C7, and uses routines from
Pipbug. To run the program, type
G440cr, and the computer will respond
with “PRESS ANY KEY”. Once this has
been done, a random pattern will be
generated and printed, and the prompt
message “ROTATE:” given.

A sample game is sﬁown in Fig. 2. If
you wish to rotate a particular block,
type the letter in the top left hand cor-
ner of that block. If you wish to cancel a
move, type carriage return, and the
program will respond with “CANCEL",
and then reprint the last but one block.

If you wish to exchange two adjacent
letters, type X. The program will res-
pond with “EXCHANGE:”, and expect
you to type in the two desired letters. It
will supply the comma separating the
letters. If you cannot solve a particular
pattern, type Z, and this will abort the
game.

An average pattern, with only one
exchange permitted, should take
between 25 and 30 moves. Early
attempts may take more. A hex-
adecimal listing of the complete
program is given in Fig. 3. .

The third and final program is the
Eame of “Life”’, which is now well-

nown in computer circles. Life was
originated by American computer
programmer John Conway, and details
of it were first published in the October
1970 issue of ““Scientific American”, in
Martin Gardner’s column

ELECTRONICS Australia, December, 1978 ‘91

LIFEs HEX LISTING

4C
1k
F9
00
14
1€
1£
TF
Cu
3
06
ko (
01
1k
[¢18
G
9u
ol
(1)
3k F1
3F
99
01
Y
75
EL
Fa
ce
(o[
c8
4
8
ca
6F
00
4D
ks
66
CcL
LS
10
98
Ok
Ok
oL
36
20

ceee
-oL1e
0CR0
GC30
0Cc4c
0Cs0
ocel
(&1
VCBO
0C90
cCeo
CCEQ
GCCC
GCLO
aCEC
CLFO
uLOG
cIo
0120
CL30
OL&0
oLS0
oL'60
oL70
" OLBO
0L90
0€F0
0DRC
cLCe
CcLLo
OLEC
OLFO
0r0C
Ok YO
or2C
0E.30
CE4O
GE S0
CrE0
0L70
0k80
OK9C
OEPO
OrBC
OrCO
ORI O
CELO

76
Ki%
as
3B
€éF
e
12
45
3k
ér
ce
2
&5
2k
EC
15
[6X¢]
08
o2
oL
30
(9
39
FE
19
Ce
1K
0¢
(U5
5C
2F
Lo

75
3k
co
OF
©0
4

Fr
1C
(0] 3}
B
3k
3k
14
)
ko
49

(627]
12
1R

ObL
17

62
04
FC

1
64
ocC
3r
15
as
oo

Ck

30 ¢
GO

KOl1AIE: HEX LISIING

FF 3F
79 1b
02 66
62 Ik
3k 02
5F 3b
22 3B
C3 85
1F 0«
EC CE
04 wk
50 19
B4 17
04 2C 3F
C3 A2
B7 C8
1F 04
3F 00
04
53
84
43
o7
53
41 4k

0440
0450
0460
04170
0480
0490
04,0
04B0
04C0
o4p0
04EO
04F0
0500
0510
0520
0530
0540
0550
0560
0570
0s8c0
0590
05,0
O5SEOD
05C0

05

DE
18
L9
64
S
3t
o2
56

05
71
4]
€0
86
0

MUSIC: HEX LISTING
9L 3b £5 12 1A 18 04A0 04 00 OC AS 56 1k 05 58 €2 %4 70 24 70 C1 51 51
07 3B 13 12 1A 04 - 04BO 51 81 51 77 10 B3 C3 86 00 75 11 46 OF L2 OL 65
04 0A 3E Cb 17 59 04CO BC C3 OE 25 EC 06 FF k5 00 18 05 DO D3 L2 F9 7k
10 05 08 3k 71 3. 04D0 75 01 84 80 87-00 86 00 CB 22 CA 1F 77 10 87 44
1k 03 76 40 14 F9 OLEOD 86 01 9A 06 87 OF B6 00 1A 76 OL 85 56 77 01 Ab
77 18 05 GO 06 08 04FO 09 AA 06 76 40 04 08 1B 31 28 00 F9 SA AB TE AA
EO 51 KA 78 3b 40 0500 78 93 07 8C 8B 76 8A 73 9A 06 87 UL 86 00 1A 7A
b6 04 32 3¢ OC 39 0510 53 13 53 E5 01 98 03 1B 01 CO 47 03 9F 05 1k CO
1C OL 8F k& 4E 98 0520 CC CC 93 12 24 40 92 13 77 11 AB S0 AA 4L 92 05
59 75 05 FF 3F OC 0530 93 07 80 1B 4k F9 46 44 Ol 4C 04 FC 64 18 93 8F
20 18 22 k4 4F 18 0540 04 FC 8L 04 FB 75 11 Ok Ok Of 0B 87 02 86 00 CB
0C 39 85 01 45 FC 0550 06 CA 03 1F 04 AO 06 B6 77 10 E4 FF 1C 00 22 09
Fa 65 03 15 OF 04 0560 FS 87 8A 86 00 94 06 87 OEL 86 00 1A 78 74 40 75
03 CL 2k F4 FS5 03 0570 01 86 02 77 01 AF 04 FA Ak 04 F9 B7 1L 86 00 87
3F OC 26 06 00 CA 0580 OE 86 00 1A 7A F9 6k A6 02 IF 05 45 75 FF 3F 0%
CA OA LO' FE 77 FS 0590 DE OC 04 2A 98 06 0 23 09 20 '1E 04 CA 1L C9 1A
04 1B 1L FB 09 07 0SA0 CE 05 57 CL 05 S6 3F 02 Dk 77 08 OC G4 2 1C 04
Le 1A 04 04 20 1B 0SB0 A0 CE 04 FA CL 04 F9 1F 04 AO 0S5 D4 02 FC 11 2F
LS 3F 9C OC kA 04 OSCO 1k 97 2B 3k 37 2F 42 74 4b 17 57 22 60 9C 69 8t
£S5 OA 1k 78 01 26 0SLO0 72 00 19 k8
09 99 OE 86 01 k6 , s
S on or 30 GF 0o YAMKEE DOODLED HEX LISTING
3k Gb 07 09 Cz 82 05D4 80 BO 08 43 08 B0 08 43 08 80 08 45
b4 30 1A 79 k4 39 OSEO 08 80 08 47 08 80 08 43 08 B0 08 47 08 B0 08 45
3F OC 39 3k SH CC OSFO 08 80 08 3A 0B B8O OB 43 08 B0 08 43 08 B0 08. 45
15 E4 OF 16 F8 05 0600 08 80 08 47 08 80 14 43 08 8C 08 42 08 80 C8 3A
EC 05 27 1k E8 05 0610 08 80 08 43 08 BO 08 43 OB 8O 08 45 08 80 08 47
6F 30 CL 6k ¥C 56 0620 08 BC 08 48 08 RO 08 47 08 80 08 45 08 80 08 43
03 3B 33 08 2F 50 0630 08 BO 08 42 08 B0 08 3A 08 80 08 40 08 KO 08 42
22 C8 22 38 OF OD 0640 08 80 10 43 OC 80 10 43 10 80 08 40 10 BO U8 42
13 08 10 CA Ok LU 0650 02 80 08 .40 08 80 08 34 08 80 08 4008 80 08 42
67 03 17 00 00 00 0660 08 80 10 43 10 80 08 3A 10 80 08 40 02 B0 08 34
44 55 88 70 C8 6E 0670 08 80 08 38 08 80 10 37 10 80 10 3& 10 80 08 40
85 03 F£ 69 A5 OC 068G 10 80 08 42 02 80 08 40 08 B0 08 3A 08 80 08 40
184 04 3E 52 1b 04 0690 08 80 0B8.42 08 80 08 43 08 80 08 4C 08 80 08 3A
10 G8 64 &8 63 88 06A0 08 80 08 43 08 8C 08 42 08 80 08 45 08 80 10 43
1£ 05 1L 07 01 1# 06BO OC 80 10 43 8C 80 02 FF
ol o3 8; gt °F BACH: HEX LISTING
FC CD 6F 30 59 78 06B8 80 80 06 43 06 45 04 47
05 01 8L Ok EE 5 06CO 04 4A O4 48 04 48 04 SO 04 4A 04 4b 04 53 04 52
Er 05 00 CD Ok kk 06D0 04 53 04 4A 04 47 04 43 G4 45 04 47 04 40 04 4A
1C OC EB IF OL AF O6ED 04 48 04 47 04 45 04 43 04 38 04 43 04 42 18 43
00 14 3r OC 39 18 O6FC OC 80 18 47 OC 48 18 4A OC 4A 18 48 OC 4% 18 45
0A 00 20 3L 20 32 0700 06 80 06 80 18 47 OC 48 18 4p OC 47 06 45 03 47
OU 20 3C 31 35 53 0710 03 48 OC 47 OC 45 18 43 OC 80 02 R0 06 43 06 45
35 53 00 0720 04 47 04 4A 04 48 04 48 G4 50 04 4A 04 4A 04 53
0730 04 52 04 53 04 &4& 0& 47 C4 43 04 45 04 47 04 40
0740 04 4f 04 48 04 47 04 45 04 43 04 3A 04 43 04 42
0750 04 43 04 47 04 4A 04 53 04 &4F O4 47 04 43 04 47
0760 04 49 18 4A 06 80 02 8G 03 80 06- 43 06 45 04 47
) 0770 04 4A 04 48 04 48 04 SO G4 4A 04 4R 04 53 04 52
22 A: :2 gg gz gg 0780 04 53 04 4f 04 47 04 43 04 45 04 47 04 40 G4 4P
OF 3F oo o 18 es 0790 04 4B 04 47 04 45 04 43 C4 3A 04 43 04 4z 18 43
. 07A0 80 80 02 FF
05 44 06 UF 3¢ 05 -
Ob 18 OL 3F 04 k7 .
03 ¢z 3k 2ze 18 76 Fig. 4 (top left):
€4 £S5 01 95 1k 49 This is a hex- 2]3
gi éﬂ ;3 Sg :3 g: adecimal listing aTx1s
o BB CB 13 Ok A
BC Ok 65 E7 Ck 65 of the Life
05 58 k4 41 1A 1z Program. 6]7|8
04 SA 79 9E 22 3F)
86 3B of 38 79 02 Fig. 1 (top right): The rules of cell life, death and birth
4c 58 79 02 A3 92 The listing shown are as follows: .
04 0€ 19 1B 56 OL pole ic For th > . L i
04 41 CF 65 E7 07 3 or the 1. A live cell will survive if it has two or
3F 02 E4 K6 03 98 [MUSIC program, three live neighbours.
g’z ?g -%rl gi 2(9) 'gb and two tunes. 2. A live cell will die if it has less than
' 2 :
59 00 00 06 52 4F Fig. 3 (left). This is twphgr more than three live
41 54 3F 20 00 43 it neighobours.
the.listing for the | 3. A birth i Il will if
48 41 4k 47 45 3A f Rotat - A Dbirth in an empty cell will occur i
4 20 00 20 4L 4F 8ame of Rotate. it has exactly three live neighbours.
49 45 an 4C 50 48 It uses routines | 4 Births and deaths. take place
from Pipbug. simultaneously.

“Mathematical Games”’. Further infor-
mation was published in the November
1970, January 1971 and April 1971 issues
of the same magazine.

Since it was first produced, Life
programs have been developed by
many different people (it is said to have
been responsible for more “foreign
order” computer time than anything

else). People all over the world have
played Life, and come up with many in-
teresting patterns.

Life is a matrix game concerned with
the life, death and birth of cells.
Imagine each cell to be in a two-
dimensional linear matrix, such that
each cell location has eight possible
neighbours, as shown:

ELECTRONICS Austral_ia, December, 1978

To work with practical terminals the
program operates with a. limited size
matrix, but makes it effectively “in-
finite” by having “wrap around” from
side to side and from top to bottom.

In our version of Life, live cells are
represented by O’s, and dead or empty
cells by blanks. The program starts with
an initial pattern (fed in by the player),
and calculates the new patterns
“generation by generation”’.

93

94

MCRODCOMPUTER

CT-64

® 64 OR 32 CHARACTERS PER LINE

® UPPER AND lower case LETTERS

® FULL 8 BIT MEMORY

® 128 CHARACTER ASCII SET

® 110/220 Volt 50 - 60 Hz POWER SUPPLY

® SCROLLING OR PAGE MODE OPERATION

® CONTROL CHARACTER DECODING - 32 COMBINATION
@ PRINTS CONTROL CHARACTERS

® USABLE WITH ANY 8 BIT ASCll COMPUTER

® REVERSED BACKGROUND - ENEENIEEIING

IN KIT FORM.

FOR FURTHER INFORMATION PLEASE PHONE 31 3273
m OR WRITE TO:
K= P.0.Box 380, Darlinghurst NSW 2010

ELECTRONICS Australia, December, 1978

Music playa

*G440
FRESS ANY KEY

0JMD
EFLI
BFHK
CNAG

RO1ATE: F

oJUMD
EFLI

BNFK
CAHG

ROTATE: N

O0JMD
EFLI
BANK
CHFG

ROTATE: N

0JmMD
EPLI
BAFN
CHGK

KOTATE: F

0JMD
EPLI
BAGF
CHKN

ROTATE:
EXCHANGE: L,M

OJLD
EFMI
BAGF
CHKN

ROTAIE: P

OJLD
EAFI
BGMF
CHKN

ROTATE: ™

OJLD
EAFI
BGKM
CHNF
ROTATE: CANCEL

OJLD
EAFI
BGMF
CHKN

KOTATE: G

OJLD
EAFI
BHGF
CKMN

KO1ATE:
YOU 100K 07 OVES

Fig. 2 (above). Here is a sample printout
from the Rotate game. The “Z” com-
mand was used to terminate the game.

Fig. 5 (at right on facing page): This
sample listing is an example of the
“Life”” program in operation. This cell
pattern stabilises at generation four.

e and Rotate programs for the 2650

The program listing provided (Fig. 4)

is intended for use with the Low Cost’

VDU of February and April 1978, and
uses a matrix of 16 rows of 32 cells. To
use the program, type GC00 cr, and
then switch to the appropriate baud
rate (110 or 300 baud). The type a U for
110 baud operation, or a Y for 300 baud
operation.

‘The program will respond with the
word “LIFE”, followed by the prompt
character “':".

If you respond with “N’”, the
program will expect a new matrix to be
supplied. The program will echo the N,
followed by a carriage return and line
feed. A pattern may then be written in
(or “seeded”) by using the space bar
for blanks (these are printed as dots),
O’s (for Oboe) for live cells, and line
feeds (LF) for new lines.

Blanks are not required on the right
hand side of the pattern. Carriage
return (CR) will permit overwriting of a
line, allowing error correction. Once
your pattern is complete, use LFs if
necessary to advance to the bottom of
the matrix.

Once the pattern is completed, the
program will reprint it, and give the
prompt sign again. If you now respond
with a Gxx, X'xx generations will be
evolved, with a printout after the last
generation. GO0 will produce printout
after 256 generations, while G01 will
produce a printout after only one
generation. Andsoon . . .

Immediately after you have typed in
this command, the program will res-
pond with a message such as <<15S, to
indicate that in less than 15 seconds it
will print out the result of the Gxx in-
struction. After printing the result the
new generation count and prompt will
appear at the bottom left hand corner

0
GENERATION 1 000
0
GENERATION 2 00
0
00
GENERATION 3 00
00
00
GENERATION 4 0 0
00
00
GENERATION 5 0 0

00

of the screen. This may overwrite live
cells, so try and keep your patterns in
the centre of the screen (patterns to the
right will wrap around to the left).

The remaining instruction is P, which
causes the program to printout the ex-
isting matrix. The instruction is not used
a great deal.

Fig. 5 shows the result of a simple
pattern. This stabilises after four

enerations, and then continues,
orever unchanged.

One of the most interesting.and sim-
ple patterns has been named the
“Glider”. The seed for this is shown
below:

0
0
000
Can you work out what will happen
with this pattern? (the name is a good
clue!).

If your VDU can cope with 24 lines,
the program can be adapted to
produce a 24 x 32 matrix. The EME-1
VDU, described in the January and
February 1977 issues, is such a terminal.

To do this change the following
locations:

locsetion C95 from 46 to 66

CEL 3F 5F
D28 3F SF
DBa 34 54
DBB 38 50
E72 3F 5F
E7D 30 5@

The complete Life program occupies
locations X’C00 to X’EEC inclusive, and
requires additional RAM extending to
X’F54. However, the first part of the
program is a self-contained 1/0
module containing a baud rate in-
itialisation routine and some sub-
routines which duplicate the functions
of Pipbug’s CHIN, COUT and CRLF
subroutines. The 1/0 module may be
used by other programs, either where it
is or moved elsewhere.

The memory locations occupied by
the module are from X’C00 to X'C75 in-
clusive. The baud rate initialisation
routine begins at X’C00 and ends at
X’'C58-59 with a BCTR, UN instruction
which currently produces a branch to
the start of the main section of the Life

rogram at X'C76. To make the routine
Eranch to the start of another program
instead, the displacement of this in-
struction would need to be changed, or
possibly the instruction changed into a
BCTA,UN type.

Incidentally although the 1/0

module at present offers a choice of
either 110 or 300 baud operation, the
higher rate may be changed quite easily
to 1200 baud if you desire (and if your
terminal will work at this speed). Simply
replace the contents of location X'C18
(currently X’59) with X'14.

To use the baud rate initialisation

ELECTRONICS Australia, December, 1978

routine, type G C00cr. Then type U for
110 baud operation, Y for 300 baud
operation (assuming the routine is set
to give this alternative speed), or E for
1200 baud operation. Of course it is
necessary to switch the terminal for the
appropriate baud rate as well.

Note also that you may need to
reduce the value of hash filter capacitor
on the asynchronous input of your
computer, in order to operate reliably
at 1200 baud (or even 300 baud in some
cases). In the case of the EA 2650 Mini
Computer, the value of the capacitor
should be reduced from 1.5uF to about
0.1uF.

Once it has selected the desired baud
rate, the initialisation routine will
branch to the desired main programi,
with the 1/0 subroutines set up for the
correct baud rate.

The actual subroutines are used in
exactly the same manner as those in

Pipbug. The calling addresses are:

CRLF X'C26
CHIN X'C5A
CouT X'C39

Needless to say, you can also run the
Life program at 1200 baud, simply by
making the above change to, the 1/0
module with the output branch still
pointing to X'C76.

However, if you are running Life at
1200 baud, it is better to change the
program so that it prints out after every
generation, and stops automatically
when the pattern stabilises. To do this,
change the following locations:

location D68 from @BC to @D

D63 78 A9
DAY 1A 77
DAA EC 10
DAB @5 76
DAC 27 29
DAD 1B 75
DAE 8 1@
E8L PE @C
E85 A8 78
EAZ gc B
EAL e o
EA2 En £5
EA3 AL B2
EAL a1 76
EAS g2
EAG PE FB
EA7 ED 7E
ERB E4 F9
EA9 g? 7
EAA 1L FA
EAB pc 7A
EAC E8 CP
EAD 1IFIF
EAE g0 @C
EAF AF - EB

Once you have made these
modifications, simply feed in a starting
gattern (using the N command), and sit

ack and watch. The program will con-
tinue until a stable pattern is achieved,
at which time it will stop. Note,
however, that it cannot detect recurr-
ing cyclical patterns, so watch out for
‘these. To stop them, you will have to
use the reset facility of the 2650. @

95

How to use the Matsushita modules:

Add a low cost
printer to your 2650

Here are the details of how to interface the Matsushita model EUY-
10EQ23LE printer and its companion driver board, model EUY-
PUDO024C to your microprocessor. Details of a suitable power
supply are also provided, as well as driver routines to suit the 2650

microprocessor.

Obtaining hard copy has always been
one of the major bugbears of the home
computerist. Seccndhand ASCH
teleprinters are available, but can cost
several times the price of the rest of the
system put together. {If you can afford a
new teleprinter, you needn’t read any
further!)

Baudot teleprinters are available at
quite reasonable cost, but require a
code conversion from ASCIi to Baudot,
which as well as being messy, tends to
raise the overall pacﬁa e price quite
markedly. So when Philips {the local

agents for Matsushita printers) supplied
us with details of the new printer, we at
once decided that this would be a boon
for the home hobbyist.

Approximate price of the printer unit
and the interface board is $200.00 plus
tax if applicable. Power supply re-
quirements are quite modest, and
could possibly be met from existing
supplies, or from junk box {or redun-
dant, if you want to be nicel) com-
ponents.

The units are supplied with com-
prehensive instruction manuals, giving

These two phoroiraphs show the printer module and inter-

face board assem

ted in a small aluminium case, along with

the power sup/:)!y components. Note the paper roll holder
mounted on the

lid of the case.

by DAVID EDWARDS

full derails on both mechanical and
electrical interfaces, as well as
flowcharts and programs suitable for
use with the Motorola 6800 "D2
evaluation kit.

Overall size of the printing unit is 110
x 90.5 x 39.5mm. Printing is on elec-
trosensitive paper 60mm wide, utilising
a travelling head containing seven elec-
trodes. The head scans From left to
right, and can print 32 characters on
each line. Approximately two lines can
be printed each second.

Characters are formed from a7 x 5

74 ELECTRONICS Australia, January, 1979

o _ [“IcoNNECTOR
CONNECTOR; ’ i £ 5V a8y 1OF ELECTRO-
1 ! 1 1 [; SENBITIVE
pATAG oxFooxd FoeF kG ok 3 aseh | PRINTER
i - - 10k 4
D0 O 3 3 ‘D_-.—-IAS or My
‘ LI LT > '
i)
010 $———-—-—m o8 [|
A A . '
10
020 3 D P 10k |
I CHARACTER _2av |
‘11 GENERATOR
°3"~'|= 3 —b—— AT Fazsra, 04 l 1 |
(e I e e s —to [R5}
Ol O D— Ad o]
i o 12/
< e DR —ub (e
050~ r 17 A o l |
i -t —tio[mErsTH
o1 {
T = o e B R oo {314
! e o |l
' pswres] | 00 || @ |——————————— ——20—{WEAD 2 |4
l 10k ‘ !
' +5V -y 2 | [t———— ~—2o{Thean 1 4
] 1
16% '
! a4
| COUNTER f
| as |
| |
i at |
| 0
+5v |
% I
27%E AsRdA
16k !
3— AV !
.
[
FREQUENCY 100K
IVIQER AWy
o 172
SWITCH Aok
AWy
2
[y PILK-UP
‘ o
19 P
LOBIC O LOGIC
aNo] GHO WIDTH P M
j (SET)
I
sy ol -y |
I BYNC.
[t :
R Wi H
I EEQ € (+ oA 01
powER OIS POWER GND l -I !
GND L_ﬁ_____u_;u_%_______________________________'_._4‘Lui____]
Fra.o 1

Here is the schernatic diagram of the interface board, which is used to generate the head drive signals from the computer
!

outputs.

dot matrix, and ara approximately
24mm high. Lines are spaced 2mm
apart, The dots are formed by passing
current pulses from the appropriate
electrodes to the aluminised paper.
This burns off the top layer of the
paper, leaving a black dot.

Head movement is achieved with the
aid of a 24V DC motor. A cam and
switch synchronised to the head
provide pulses to strobe the characters
in time, thus ensuring even character
spacing, even if the motor speed varies.

The motor unit does not contain any
electronics, and is provided with two
cables to connect to the interface
board. This board (Fig. 1) contains an
i/Q circuit, an input data processing
circuit, a timing circuit and a character

enerator ROM. Data is input in the
orm of a six bit parallel ASCl code,
and converted to the appropriate dot
format by the character generator.

A DIP switch is provided to select
either 16 or 32 characters per line; nor-
mally this would be set at the 32
character position. Three control signal
lines are provided, but only two are
necessary for a simple interface.

The PRINT signal is used to initiate
printing. When this signal is received
from the CPU on the interface board,
the printing motor is started, and the
hea(f starts to scan across the paper.
Once the first character has been
printed, the DATA REQ signal is pulsed,
to signify to the CPU tEat a second
character is required. This sequence is

ELECTRONICS Australia, January, 1979

repeated until the complete line has
been printed.

The third control signal is BUSY,
which is used to tell the CPU that the
printer is accupied in printing a line.
Provided the CPU waits for an adeguate
time after the last character has been
sent to the printer, it is not necessary to
use this signal.

Two power supplies are required for
the interface board: +5V at 50mA and
—24V at 200mA. The printer derives its
supply voltages from the interface
board. Fig. 2 shows a simple supply
which is suitable, using two three-
terminal regulators and a readily
available transformer,

The printer is connected to the CPU

‘via an 8-bit 1/0 port. For 2650-based

75

Adding a pri;wter to your 2650 system

systems, this would normally be the D
port. The connections we used, based
on the [/O port diagram pubiished in
the November 1978 article on expan-
ding the 2650 Minicomputer, are
shown in Fig. 3.

Connections to other processor
systems will be broadly similar in con-
cept., The BUSY signal, if required, is
available at pin 4 of the edge connec-
tor.

Needless to say, one needs suitable
driver routines in the computer so that
it can communicate properly with the
printer via the interface. For the benefit
of those with 2650 systems | have
written some utility routines to do this.
One is a basic printer driver subroutine,
while the other two are a hex memory
dump routine and a message printing
routine. Both of these call the basic
subroutine for the actual printing.

145F 51
1460 51
1461 5t
1462 51
1463 45 OF ANDLsh1
1465 0D 62 59. LODARsh]
1468 CF 34 3L S1RAR,R3
1466 17
146C 17 02
J46E 3F 02 LB BS1A, UN
1471 3F 0D Aa BSTA, UM
1474 38 19 BS 1, U 146F
1476 CD 04 OF SThAsh |
1479 CE Q4 10 STRA.R2
147C 07 00 LODLI > R3
147E 09 94 LULn,R1 1514
1480 3B 5D EBS1H, UN 145k
[482 09 90 LULK, R 1514
1484 3B 5D K Th, Uty 1464
[486 LL 04 DE LULA, k!
1489 3B b4 BYS'1H s UN 145F
1488 09 FA LULk,KI 1487
148D 3B S4 By UN 1463
148F 04 20 LOD] » hD
1491 3B 55 BSTR, LN 1468
1493 0b 84 0L LUODA K]
1496 3B 47 B:1ks UN Y4 SF
1498 0L 84 O LUbA, k1
1498 30 46 BSIR, UN 1463
149D 08 FB LOLR» RO Lau?
149F EA D9 CUOMR > RO 1u7a
14At 98 OE BLFR,EQ [4%1
14A3 08 Fa LULR, kO L499
1485 B8 LO CUMK, RO a7
14p7 98 08 BCFHEG 1481
14A9 20 FOHZ,HO
1488 3B 96 HETRsUN 1542
14AC 3F 14 00 BSTA, LN
14A8% 9B 22 BCFR,UN [F3EK]
1481 09 Eé LOLH,RI 1499
14B3 0p D2 LULR,RE 1487
148 be 02 HIRkK»R2 14b9
1487 D9 00 HlhhsH1 14H9
1489 3F 00 A4 Hblps LN
14HC 46 DY ANDL, R2
14BE 98 4F BCRRLERQ tapk
14C0 20 EUHZ s RO
14CI 3F 14 68 bB51ASUN
14C4 3B kT BSTRs UN tapb
14C6 1F I& 7C BCTA, UN

FG. 6

Fig. 4 shows a flow chart of the main
subroutine, PRINT. This treats a portion
of memory as a 32 byte buffer, and
transfers the ASCI| characters stored in
it to the printer with the appropriate
timing. It will detect a null character in
the buffer, and then fill the remainder
of the line with spaces. This gives the
effect of a carriage return.

To print a number of lines, it is
necessary to call the routine the ap-
propriate number of times, changing
the buifer contents between calls. To
achieve the effect of a blank line, place
a null character {(X'00) in the first buffer
location.

Fig. 5 is a disassembler listing of the
PRINT subroutine in 2650 machine
code. It occupies locations X1400 to
X143t inclusive, and requires a 32 byte
area of RAM to be set aside as the

buffer. At present this occupies

{406 77 1% 87 BB F3 84 7R 78

1482 TE @7 48 F3 87 B9 9e 04

1419 B2 93 1§ BF M 30 1% 19

1418 pd 48 FA B L7 (B FE 7D

2R ET MOIB 11 7O P4 BR B

1422 TE IR <3 DR 00 &4 79 b

1433 €7 96 FF 15 78 28 85 2@
3 FSTEFITL S I8 17 U

MWW MBLI

MO33 31328 3331 iR

R B B

33033 BE 47 oF 4F St

S B 45 §F Rf 62 59

CF 34 3£ 17 77 @2 3F a2

b478 DB 3 88 A4 3B PO UL A4

1478 8F CE @4 19 B7 @@ B9 W
46938 30 93 98 3B 30 40 #
1488 ¥E 3B 54 83 FR 3B 34 ®

1498 28 3B 55 4D o4 8(: 3B 4
1498 8D a4 &0 3B 40708 E5 EQ
(4RB DY 95 BE B F4 ES DA W
t4pe B
1488
t4Bd
149
14C8
1408
1403
48 &

[alns
[e

=
P
[en)
[
.
g
i
&
—
.
oK
[+~]
o
)

o

BY £6 8 D2 DR &F 09

LR = R R e B < S~ ~]
e O T S s

——
f S T

To the left is a listing of the hex listing
routine. This was used to produce the
listing above of all the programs
presented in this article, on the new
printer. It is reproduced actual size.

14C9 77 02

TACE 3F 00 A4 B&1A8, UN
14CE 07 00 LUDT » 3
1aDo 0C Ha O LULA, RO
14aD3 CF 34 3t SThAsR3
taDpg 18 ta BRCIFs k& takl
1abR 09 7 LULRsR1 fapl
1408 OF 04 pP LULARZ
1aby g 02 BIhK.R¥ taky
14DF 19 00 BikRsR1 i4E1
14kl 2B L9 Helhsuh t4Lg
T4k3 L7 20 Cumi sh3
f4ak5 98 69 BUF RS EG 14L0
14*»7 3F 14 00 BsTA,UN
fa4kh B 62 BCIRs UM 14CE
1akl 3B FA Belhs U 14EB
T4kE 17 Q. 7

Shown above is a dissassembler listing
of the message printing routine, while
below is a flow chart of the print
routine, which is used to control the
printer.

TURN ON
PRINTER

CLEKX BUFFEK
POINTER

CLEAR NULL
POINTER

INC BUFFER
POINTER

NULL POINTEK?

GET CHAR FKOM
BUFFENX

INC BUFFER POW TER

MKSK BATA
SENG TQ PRINTER

2
BUFFER POINTEK? 3

DELAY TOmaec

‘ HETUKN ’

FI& 4 FLOW CHART FOR PRINY ROUTINE

ELECTRONICS Auvstralia, January. 1979 77

Adding a printer to jmur 2650 system

locations X"143F to X'145E inclusive,

The PRINT subroutine is relocatable.
To change the starting address of the
buffer, which must be in the same page
as the subroutine, put the address of
the byte before the desired starting ad-
dress into locations X'1414 and X"1415.
Note that bits 6 and 7 of location X’1414
must remain as zeroes, while bit 5 must
remain a 1.

Fig. 6 is a disassembler listing of the
listing program, which will print out a
listing of a specified area of memory. As
the print format is only 32 characters
wide, it prints only the line starting ad-
dress and eight bytes per line. To call
the program, type G 146C XXXX YYYY
cr, where XXXX and YYYY are the start
and end respectively of the required
memory block.

The program occupies locations
X'145F to X'14C8 inclusive. It uses Pip-
bug routines GNUM, STRT, ANS| and
PIPBUG. It contains absolute addresses,
but can be moved fairly easily.

Locations X'1469 and X'146A must
point to the byte before the start of the
PRINT subroutine’s butfer memory.

Bytes X'14AD and X"14AE must point
to the starting address of the PRINT
subroutine, Bytes X'14C2 and X"14C3
must point to the new location of

1400 77T 10

1408 071 QO LOLT »R3J

L404 F3

140% 04 2A LOLL RO

1407 F8 E BDRR, kO 1407
1409 ©7 40 Lubl , RS

1408 F3

140C 07 00 LObY . HY

140k 06 00 LUDl s R2

1410 @2 LODZ,R2

tal1l 98 18 BCFhsEQ 142h
1413 OF 34 JE LODALkR3

1416 18 19 BC1Rk, LG 143}
1418 64 a0 IOR} »RO

141A FO

141B 04 C7 LOL1 s RO

141D €O STRZS RO

141E F8 17D BERR, RO 1410
1420 E7 20 coml,R3

1422 18 11 bCiIh.EQ 1435
1424 10

1425 F4 B8O

1427 98 7B BCEN,EE 1424
1429 1b 65 HC IR, UN 1410
1428 DE 00 HIRhs» k3 142b
1420 04 20 LUUL » RO

142F 1b 67 HCIR. UN 1418
1431 06 FF LUUI .2

1433 1E 78 BUCThe UM 1421
1435% 20 EORZ»hO

1436 05 20 LUl s K1

1438 FB8 T: BLRh, K 1438
143A F9 7C bBLkhhsn1 1438
143C 15 10

143E 17 FIQ. 5

The hex listing reproduced above is for
the routine used to control the printer.
ftis written as a subroutine.

2xEM401

DSEF':‘GGYTZE
A
A & ACH

" N

FIQ. 2 PRINTER POWER SUPPLY

The connection diagram for the 2650
Mini Computer is shown below. We
used the 0¥’ output port.

PIN No.
+5V Al ———————— + 5V

M320T-24

ouT _2av
GND 0.11

L M340T-5
ey

Shown above is the circuit diagram of
the suggested power supply. It uses a
readily available transformer.

LDQIC GROUND B2
POWER GRCUND 8,15 ——I——_DV
R4 -1V

[
01 v
D18 . ¢
D2 °
Dz 0 * .
" Q3| o o
D4
D4 12 ST olconTROLY
| D3| (CONNECTS TD
Ds 13 - i DATA LINE OF
i s o C iN PORT)
PRINT § Lo
| Q
DATA REQ H) Q

EDGE CONNECTOR ON
PRINTER INTERFACE
{NUMSBERB AND LETTERS
REFER TO EDGE
CONNECTER PINS)

D DUTPUT PORT
MALE 15 WAY CANNON CONNECTOR
(CABLE SIDE SHDWN)

FIG. 3 CONNECTION DIAGRAM

current location X'1468, and bytes
X14C7 and X'14C8 must point to the
new location of current location
X147C.

Fig. 7 is a disassembler listing of a
message printing subroutine. This ex-
pecis R1 and R2 10 contain the starting
address of an ASCIl message. This
message is printed when the sub-
routine is called. The end of the
message is signified by a null character.
Messages can be stored anywhere in
available memory, provided they are in
the same page as the message program.

The message subroutine is
relocatable, and uses the Pipbug
routine STRT. Locations X"14D4 and
X'14D5 must point 10 the byte before
the first byte of the PRINT buffer, and
locations X"14E8 and X"14E9 must point
to the PRINT routine itself.

Fig. 8 is a hex listing of zll three
routines, produced by the hex listing

78 ELECTRONICS Australia, January, 1979

program on the new printer itself. It is
reproduced actual size, so you can see
direcily the size and quality of the prin-
ting.

Fgurther details on the mode! EUY-
10E023LE printer and companion inter-
face board (model EUY-PLUD024C) can
be ocbtained from the local agents,
ELCOMA, of 67 Mars Road, Lane Cove,
NSW 2066. . 2

Notes & Errata

NEW GAME PROGRAMS FOR YOUR 2650 (December 1978,
File No. 8/M/32): The hexadecimal listings of the programs
given in this article did not reproduce with full clarity. To
assist readers who found difficulty in feeding the programs
into their system, we reproduce a new and (hopefully)
clearer set of listings below.

LIFE: HEX LISTING

ecee
gcle
gCc20
ac3e
@Cap
2Cs0
2C60
ec7e
acsoe
2Co0@
¢ CAg
¢ CB@
gcce
@cDg
@CE@Z
¢ CFro
g Deo
gDl1o
@D20
¢D30
@D40
@DSo
D60
2D70
2D80
2D90
@ DAG
@DB@
@DCB
@ DD@
@ DE@
@DFO
G EQQ
GElQ
GE20
GE3@
GE4Q
BESQO
GE60
GE70
GEB0Q
2 E9O
@ EAB
¢ EBG
BEC@
@ ED@
GEE@
*

76
3B
25
3B
6F
72
12
45
3F
6F
26
22
AS
2E
BC
15
@23
28
g2
2D
30
29
39
FB
19
GE
1B
24
a2
5@
2E
Do
20
@D
17
28
62
24
Fo
DF

77

64
ec
3F
75
35S
\]4}

ROTATE:

za4qe
[214
2460
care
o48¢
0492
G 4A0
@4B@
g4ace
24D@
Q4EQ
B4F 0
2508
2510
8520
2530
0540
2550
2560
2570

25806

2590
@5SA0
25SBO
@5Co
*

116

6
DB
18
D9
64
58
3B
g2
56
65
B8
E4
g2
c3
g2
65
oF
75
23
45
54
41
20
56
a5

40
1E
F9
1]
74
76
iAa
TF
ac
3F
26
E4
a1
1B
ecC
27
98
2D
a4
3B
3F
99
21

75
3B
Cco
@B
4
40
7D
21

SA
ac
28
gA
1B
22
Al

28
6E
2E
4F
Fl1

ac

‘2

24
c2
C3
25
37
24
a4
2A
77
@B
7A
Fo
oe
c8
(2]
a1
6E
3F
g2
oA
ED
Bé
A
47
3C

FF
1C
GB
7B
3B
3B
14
75
E4
39
a7
18
SD
67
ES

@D.

AS
Fa
3F
@D
39
26
30
3B
3F
2c
1A
2D
59
3B
19
44
c8
50
21
49
18
25
FO
9C
1C
25
A4
IF
22
2E
32

HEX LISTING

FF
79
a2
62
3F
6F
22
Cc3
IF
BC
24
14
B4
24
23
B7
IF
3F
IF
53
41
4E
20
45
4A

3F
1B
66
DB
22
3B
3B
85
24
CE
4E
19
17
2¢
A2
c8
¢4
20
¢4
53
54
43
2A
53
4F

as
71
80
60
86
30
20
67
79

.65

CE
GE
26
3F
E4
a7
B2
8A
40
20
45
45
59
gA
46

64
26
26
27
E4
98
e7
95
Fé6
BB
65
26
28
g2

‘a1

OF
26
1B
QE
41
3A
ac
4F
(4]
4c

25

31
FF
eF
58
1A
2F
26
@3
OE
B7
10
3F
B4
18
65
a1
70
25
4E
20
2e
55
@D
42

c8

24

FB
1A
10
3B
85
ac

20
3F
@D
7D
ac
ac
DA
1C
c2
Fa
ES

EE
A
39

17

23
1C,
21

CE
FF
a3
23

6E
a3
88

75

3F
23
5B
o1

25
26
GE
GE
@D
46
3C
1]

28
66
52
1F
1C
26
26
40
14
65
17
EE
2s
3F
28
B7
gE
3B
6D
59
11
gA
20
2A
47

27

@D
7D
24
17
48
(2}
E8
CD
ec
98
23
39
9E
[2]]
98
52
65
a9
26
ES
IF
3F
44
@E
E4

a7
3B
1B
20
@D
65
10
@D
18
4C
75
24
(]
EF
ED
2E
45
30
20

ELECTRONICS Australia,

12
59
3B
17
74
1B
12

E4
4E
SA
6D
CcD
FA
25
9A
g6
77
65
99
00
29
ac
ac
oF
BO
4C
34
23
27
3B
FB
2E
c8
FS
E9

75
10
@D
75
CcD
E4
BF
22
35
3C

FS
F6
6C
BS
23
1B
3F
25
ac
CE
SA
B7
3F
86
a4
65
B3
26
3F
4B
57
58
4F

January, 1979

1A
1B
oF
77
40
1C
14
GE

EE
E4
3F
2E
4B
FF
g2
85
19
23
24
ES
19
7B
5a
17
85
1a
eE
85
23
@a
22
Fo
63
@3
77
a1
10
CE
4E
10
oE
2o
E4
@D
53
32

1B
23
46
3F
E4
64
@s
76
14
65
1C
18
g2
3B
18
B7

34
22
45

43
4F
48

7D
@7
o4
10
1B
77
D@
B6
1C
S9
2@
ec
F4
23

aF

ca
24
D2
ES
AS
29
72
3B
E4
3F
15
EC
6F
23
22
13
a7
44
85
18
10
1A
a1
6E
Fo
as
EF
1C
2o
oA
20
35

(4]

18
oF
2s
@D
23
64
E2
gE
BC
@s
24
86
4cC
o4
g4
3F
3B
B4
59
41
48
4B
41

3B
3B
oA
2s
23
18
S1
a4
gD
7B
18
39
65
CcD
ec
2A
1B
1A
3F
BA
99
e2
#B
30
(49
E4
as
302
3B
c8
28
a3
55
23
o4
28
25
44
Fo
CD
(A}
25
ec
14
oe
20
53

12
gA
3F
44
18
ca
AS
18

65
gE
58

5A
3B
58

26
44
a2
28

1B
00
54
41
20
4B

25
13
3B
28
76
2s
FA
3A
8A
2s
22
85
23
2E
26
D@
1D
24
9C
1B
0E
24
27
1A
39
oF
27
cD
33
22
10
17
88
FA
3B
64
1B
a3

FS

6F
8D
(4]
E8
3F
20
3C
-1}

9aA
26
24
26
@D
3B
a1

TA
BB
65

79
SA
79
19
CF
B4
3F
77
21]
3F
4E
1]
50

D9
Fé
18
3F
o4
18
1B
1C
13
CE
1A
22
79
A3
56
B7
a3
69
5@
52
o8
45
4D
44

78
a4
59
3B
F9
28
40
39
98
ac
18
FC
24
23
cA
FS
a7

24
24
E6
ac
82
39
cc
s
25

5@
(2Y)
D@
48
6E
ac
g4
88
1A
6E
@D
78
ES
EE
AF

32
S3

79
23
64
as
E7
76
49
es
GE
65
12
3F
@2
9A
GE
a7
98
3B
52
4F
43
3A
4F
43

MUSIC:

HEX

G4A0 G4 09
64B@ S1 81
@ 4C8 BC C3
¢4D@ 75 01
G4EQ 86 01
G4FB 09 AA
€500 78 93
2518 53 13
2528 Co Ce
2532 93 67
@540 @4 FC
6550 @6 CA
2568 FS 87

7570 @1

86

¢58¢ QE 86
259@ DB @C
2 SAB CE @5
¢SBZ AG CE
gsCe 1E 97
@5D0 72 20
*

YANKEE

DOODLE:

@5D4 80 80
@SEQ 08 80
@S5F@ 08 80
o600 08 80
@612 08 80
0620 08 80
2630 08 80
0640 08 80
2650 22 80
2660 08 80
2670 08 80
0680 10 80
0690 @8 80
06A0 @8 88
96B@ @C 80

*
BACH:

26B8
gé6ca
26D@
@6ED
@6F0
2700
e710
2720
@730
2740
@752
6760
2778
2780
2790
e7A0
*

HEX

80

LISTING

8C AS
St 77
GE 25
84 80
9A 06
26 76
27 8C
S3 BS
93 12
8¢ 1B
8E @4
@3 IF
8A 86
22 77
22 1A
@4 2A
S7 CD
%4 FA
2B 3E
79 F8

28 43
28 47
28 3A
28 47
28 43
28 48
28 42
19 43
28 40
18 43
@8 38
28 42
28 42
28 43
18 43

S6
10
BC
87
87
49
8B
21
24
4F
FB
e4
(1%}
21
7A
98
[4)
CD
37

o8
28
4]
]
a8
28
28
ec
28
10
28
o2
28
2]
8a

LISTING

8¢ @6 43

@4 4A B4 48
24 53 24 4A
%4 48 24 47
@C 82 .18 47

26 82 @6 88

23 48 '6C 47
04 47 B4 4A
g4 52 04 53
04 4A 24 48
84 43 ga a7
04 49 18 4A
B4 4A 04 48
g4 53 04 4A
24 43 @4 47
88 88 @2 FF

26
o4
24
24
ec
18
ec
g4
a4
o4
24
26
G4
24
o4

8@
80
8@
80
80
80
80
80
80
80
8@
80
8@
8a
80

45
48
47
45
43
47
45
48
4A
47
4A
80
48
47
45

28
28
28
14
28
28
28
10
28
28
10
@8
28
28
g2

o4
74
24
z4

ec
18
¢4
24
e4
24
a2
24
24
24

58
86
ES
(4]
[%1%]
1B
73
1B
13
44
2B
B6

- 87

FA
A6
23
a2
iIF

HEX LISTING

43
43
43
43
43
47
3A
43
3A
3A
37
40
43
42
FF

47
14
43
43
4A
483
43

47
45
53
8a
59
43
43

c2
1]
"]}
CcB
1A
31
9A
21
77
a1
GE
77
GE
AE
@2
29
DB
a4
4D

o8
28
28
28
28
a8
28
10
28
10
18
28
28
28

¢4
o4
24
@ac
13
ec
24
24
24
24
a3
o4
o4
B4

70
11
as
cA
@D
1]
87
47

24

@A 2B

80
80
8a
8@
80
80
8@
80
8@
8@
80
8@
8o
80

4A
45
3A
4A
4A
8¢
1
43
43
4A
82
4A
45
3A

E4
20
F9
as
1B
28
as
57

28
28
28
28
28
o8
28
28
28
28
10
28
o8
28

o4
24
24
18
ac
g2
24
24
o4
24
26
24
o4
24

24

o]
IF
85
F9
OE
23
5@
FC
87

708
oF
D3
77
56
SA
86
9F

64
22

45
47
43
42
45
45
40
40
40
40
3a
3Aa
49
45

4A
47
43
48
47
80
4A
45
3A
47
43
4A
47
43

ac
D4 0
22 6

FF 1
1A
87
45

28
28
28
28
28
28
10
28
@2
10
28
28
28

o4
24
24
ec
26
26
o4
2a
24
24
@6
24
23
a4

c 80
748 7
IE 8
75
ca 1
04

39

80

80
8ad
8@
80
8¢
80
80

80
80
80

FF

2A
2 FC

ct
D2
D2
10
77
AB
20
2s
4D
18
86

S1
GE
F9
87
a1
7B
1A
1F
9A
93
1]

51
65
7B
44
AB
AA
TA
ce
as
8F
CB

22 929

4 48 75
6 00 87

3F @2

D C9 1A

1C 24
11 2F

C 69 8E

78
a8
28
28
28
28
a8
28
28
28
28
28
10

‘84

24

18
23
@6
24
84
84
a4q
24
a4
a4
18

45
45
3a
47
a3
42
42
42
3A
4e
ae
3a
43

52
4A
43
45
47
45
53
40
42
47
a7
52
4A
43

Program a 2708 in under five minutes!

Simple EPROM burner
suits SC/MP and 2650

Using only four low cost ICs, this single board design will allow any
static microprocessor, such as the SC/MP or 2650, to program
2704 and 2708 type EPROMS. Programming time for 1K bytes is
just under five minutes, and no special interface circuits are

required.

The basic circuit configuration and
idea used in this project came ofiginally
trom one ot our readers, Mr M|
Ogden of Hope Yalley, South Australia.
As s0on as we saw it we decided that st
was too gond an idea 1o publish purety
in basic circuit form, So wirh Mo
Ogden’s apptoval we hdave expanded
the originagl concept into a tull con-
struction project.

Like all good tdeas, Mr Ogden’s
delightrully simple. PROM program-
mung interfaces normally have 1o
provide address and data latches, as this

intermation must be held static during
the relatively Inng periods taken to
program PROM locations, But some
microprocessors, like the 2650 and
SCA/MP, are static devices, and are
capable of being forced into o “hnld”
or “wait” state withouat loss of data. This
i to allow them teo be used with slow
memaory of peripheral devices. Why
not take advantage of this facility, and
use the processor iself as the address
and data latches for the PROM

programmer?
With static processors like the 2650

84 ELECTRONICS Austrata. February. 1979

by DAVID EDWARDS

and the SC/MP the idea turns out to be
very easy and straightforward. All that is
necessary 15 to arrange simple logic so
that to program fm('h PROM location
the processor is made o begin a nor-
mal instruction cycle storing the re-
quired data to the appropiiate address,
then “held” or frozen with the data
and address information present on the
bus lines untii the programming cir-
cutiry has done s job.

Before discussing the operation of
the circut in detail, an explanation of
the operaton and programming re-
quirements of an EPROM is in order.

The popular 2708 EPROM uses
floating-gate avdlanche mode MOS
transistars as the storage eells. Stored
charges on the floating gates are used
to control the conduction of the MO5
transistors, to determine whether they
effectively store a 1" or 4 "O".

The floating gate’s charge s produc-
ed by inducing a non-damaging
avalanche breakdown in the drain-
channel juncuon of the cell Hiﬁh
energy electrons from the dvalanche
breakdown are then injected into the
floating gate, charging i1 negatively.
Since the floating gate 15 surrounded by
an extremely effective insulator, thas
charge will remain practically in-
definitely, and hence the stored pattern
will dlso remain.

To erase a programmed EPROM, the
chip is irradiated with ultra-violet light,
The resulting pheotons impdart enough
energy to the trapped eclectrons o
allow them to escape from the floating

In this phatograph, you can see how
the new hoard fits into the 2650
Minicomputer case.

-5V +5V + T2V

Ll L

Apo— Y
aMo———— T
[¥] L
a3 5
Ad 4
A5 3
I 2

|

>
o

2

Iy

2708

asrwef }

Do : | ofEA
pro— 19 !
o2 1 i
03 Orem——— 13 :
[TY W I
o5 15 ! X
o5 18 PROGRAM ’—a-—a/'o
o7 17 _?_

T :

!

+5V

Wiy

+12v

+ GV - > 4 4
L L
330k LI 3
007 1 o T
10K I—"-“ 10k —+
18 1 14 1
74L$123/2 7415123/
NwDS 1, ol | o
MONO 2 MOND 1
- 0.5msac imeec
Arw s a
[

330k 3
ooard

L]

1
330kF
001

Ell—o’

DPACK

aL8123/2 74LS12372
13 LYY Ll 1Y oft

- hBI?NO 3 H MOND 4
imsac
10k, a 12 40 BD.Smlecc_’ 12
c

Oy

o

PROGRAM

OPREDO- 24 13
WRPO- ; ndnnannon
7eLSD4 D
Mﬂo——'Do’—o—- | 1 g
12 e ouoeTaTy
1 12
13 12 1
A1 - . 74L530
L 18 [] 1 8
A120—:|-D0‘———O-—-{; 3
4
a1 1 10 s I 5 : v ; 0
&

suo—PHot o .
sso—uot o - MO |

gate, leaving it uncharged.

An erased EPROM has all memaory
cells effectively containing 1's, so
programming consists of inducing
avatanche mode breakdowns in the ap-
propriate cells to produce the required
zeros. In principle one programming

ulse is required for each memory
ocation. The appropriate address and
data information must be applied to the
address and data pins of the EPROM.

In practice, due to power dissipation
limits, it is necessary ta apply relatively
short programming pulses, and to cycle
repetitively through zll memory
locations until a sufficient number of
programming pulses have been applied
to each location.

Turning now to Fig, 1, we can see
how the iasic idea can be used to im-
plement a simple EPROM programmer.
The microcomputer’s address and data
fines are connected directly to the
EPROM. In the read mode, a chip select
signal is derived from the high order
address lines by a decoder im-
piemented with a hex inverter and an
eight input NAND gate,

This decoder allows the EPROM 1o

be patched into any available area of
memeory. To use the top 1K section of
memary, it is not necessary to use the

VIEWEP FRAM
ABOVE

FIQ. %

inverter; the address lines can simply
be connected directly to the NAND
gate.

In the program mode, the chip setect
input is connecled to the +12V line.
The output of the address decoder is
now used to enable a monostable
{mono 1) with a period of 1ms. This
manostabie is triggered from the out-
put of a second monostable (mono 2),
which itself is triggered from the write
select signal.

Thus the first monostable is only
triggered when a write instruction oc-
curs to a valid EPROM address. The
output of this monstable is used to
drive the hold line of the processor,
halting the write operation in
midstream, and [eaving the appropriate
address and data information on the
pracessor buslines. Fig. 4 shows the
timing relationships schematically.

At the same time, a third and delay-
ing monostable (mono 3) is triggered,
with a pulse width of 0.1ms. The trailing
edge of this pulse is used to trigﬁer a
fourth monostable (mono 4) which has
a puise width of 0.5ms. The outputs of
this monostable are used to drive the
programming pulse generation cir-
cuitry.

The programming pulse has an

ELECTRONICS Australia, February, 1979

@. 2708 PROM PROGRAMMER

(D).

VIEWED FRDM

BELDW

CC/-

Above is the complete circuit diagram
of the programmer, while below is a
diagram illustrating the timing
relationships between the monostable
multivibrators.

TRIQGERING EDGE

QENERATED
BY WRITE SlGNALl

0.5msec l

MOND 2

1msec l
MODND 1
(HOLD) I
0.1maec
MGNQ 3
(SETUP DELAY)
‘ 0 5muec l
MONO 4
{PROG PULSE)
CPU "FRDZEN"
FOR TH|S TIME
FIG. & r

amplitude of 26V, and lasts for 0.5ms.
Approximately 0.4ms after the end of
the programming pulse, the output
fram the first monostable returns to the
quiescent state, and the hold is remov-
ed from the processor,

Thus to program the EPROM, all that

a5

2708 EPROM programmer

Qa4q@
@a450a
d4as6d
24748
aagae
D490
dang
ZA4AB3
24C0
24D@
D48
BAFP
@502
@512
#52¢
25238
2546
25509
2560
as78
2588

@a
17
a2
66
ac
iB
52
a4
as
3a
a7
a9
24
1A
CC
2g
4E
53
52
4F
@A

eF
ac
DB
co
84
6A
k):
55
@5
3F
25
F7
@7
e6
84
54
20
57
52
49
20

of:)
o0
@2
65
25
76
Fé
CE
26
@4
3F
3F
36
95
59
4F
50
49
4F
4c

13
3D
Ccg
E8

la
4a
DA
24
74
gC
29
a2

B
¢S
3B
20
52
34
52
oa

g3
BC
74
SE
3F
77
a2
56
3B
33
8A
69
DE
26
ES
50
45
43
20
52

@c
7¢C
co
16
g2
go
D9
27
95
£8
2@
@D
24
70
1a
52
53
4g
ac
52

C8
ge
73
EQ
B4
75
ae
a6
FF
25
C8
a4
8@
3B
76
4F
53
26
4F
4F

This hex listing is a 2650 version of the
program required to control the
EPROM programming operation.

EM401

1000

1¢
3D
g3
5C
g9
18
CD
@s
a5
a5
32
SA
C8
C3
IF
47
2@
54
43
a7

a8
BC
6E
17
F8
3F
@4
Bs
1B
26
ac
3B
11
9B
aa
52
41
4F
41
52

#B
7D
@9
3F
gE
e2
53
26
35
SF
84
F9
aF
22
Cé
41
4E
20
54
41

C8
BC
5D
4%
24
DB
CE
2A
B85
3F
53
24
da
82
53
4D
59
52
49
4D

@D
@8
D3
BA
26
CD
24
3B
@6
g
EC
28
5B
3B
57
2D
28
45
4F
4D

a8
7C
gz
Co
DA
24
sS4
9FE
5@
79
84
3F
1a
Cl1
49
2Aa
4B
41
4k
49

a8
532
D8
83
6k
St
3B
3aF
3B
3F
57
g2
SA
ac
54
Sa
45
44
53
4E

cg
78
ae
Ca
D9
CE
EA
22
8C
B4
18
B4
rds)
84
43
48
59
29

aa
D9
c8
8A
6C
a4
cD
86
ae
4@
i9
FB
2a
57
48
45
a
45
3a 98
47 4D

FIG. §

Shown below is the power suppl

circuit. The components marked wit

an asterisk (*) are already present in the
2650 Minicomputer.

-'l' 1 +25v
EHIOIG
» >
2155 | 12) /72 1
A 1) ;{ * rats o5y Emaor
Wb 1
tom _|. 12V
0¥ T3¥ -Ga + =
O 12V,
14 EMADY w
ov F % saa)
N W 0 -5V = =
s \LJ
Joco o 5.1V (N} = PCB CONNECTION PIN
+ w * N 2080 MINICOMPUTER
FIG. 3 ._.I__ 1

1s required is to switeh to the program
mode, and then to program the
processor to write the appropriate data
to each location in turn, repeating this
writing sequence until the required
number of programming pulses have
been applied to each location.

All of the timing requirements are
provided by the four monostables, all
that the program has to do is provide a
repeated “block move” function. A
block diagram of a simplified routine to
do this 1s shown in Fig. 2

Power supply requirements for the
2708 are quite complicated, —5V, +5V
and +12V supplies are required for
normal operation, while +26V is re-

uired during programming. Fig. 3
giows how these voltages can be deriv-
ed from a standard transformer, using
zener diode regulators. The +5V supp-
ly can be obtained from the existing cir-
Cuttry.

86

We have designed a suitable printed
circuit board for mounting the EPROM,
address decoder, monostables and
power supply components. It is coded
79upl, and measures 218 x 81mm.

Provision has been made so that this
board can be used with any suitable
Eroeessor. Positive and negative going

old signals are available, and the write
monostable can be triggered from
either positive or negative going
signals. Any starting address for the
EPROM can be decoded, up to H7C00.

Construction of the board should be
well within the capabilities of most
enthusiasts. We recommend that 4
good quality socket, preferably a zero-
insertion force type, be used for the
2708. The remaining ICs can be
soldered directly in place.

The programming switch can be
mounted directly on the board, using
tinned copper wire, or it can be ex-

ELECTRONICS Australia, February, 1979

PAOM PROG

ENITIALISE
LOOP COUNTER

SET UP
ADCRESSES

PROGRAM
LOCATION

INCREMENT
ADDRESSES

SET UP
ADDRESSES

TEST
LOCATIGN

PRINT

ERRORA? ADDRESS

INCREMENT
ADCRESSES

ALL
LGCATIONS
NO TESTED?

YES

FIG, 2

This is the flowchart for the controlling
program. Use it to write the routines
required by your processor.

tended with a cable if desired. It should
be placed in a position where acciden-
1al aperation is unlikely, to ensure that
no accidental programming occurs.

As the board has to be wired directly
to the address and data busses, we
recommend that it be mounted in the
main computer case. Make sure,
however, that access can be gained
relatively easily to the EPROM socket
and the read/program switch.

2708 EPROM programmer

ks s e S - - SNVRISR e mam

In order to illustrate the use of the Prom Programmer
board, we have used it with the 2650 Mini Computer. In
this case, the M/1Q-bar signal is connected to the address
decoder instead of AD15. The OPREQ and WRP signals are
also connected to the decoder, using the spare inputs to the
NAND gate.

The A input of monostable 2 is grounded, and the R-
bar/W signal applied to the B input. The Q output of
monostable 1 is used to drive the OPACK-bar line. We
elected to make the EPROM occupy locations from H'3C00
to H'3F00, the last 1k of page 1. To do this, it is necessary.to
apply AD10, AD11, AD12, AD13, and AD14-bar to the NAND
gate.

We chose this area so that it would be relatively easy to
provide a small amount of RAM in the same page. This is
required because of the limitations of the 2650 absolute ad-
dressed memory reference instructions. We used the spare
RAM sockets on the main CPU board, wired up as the first
4K of page 0.

The 2650 program we developed to control the Prom
Programmer is given as a hex listing in Fig. 5. 1t occupies
locations H'0440 to H'0581 inclusive, and is not easily
relocatable. To call the program, which uses Pipbug routines
CRLF, COUT, GNUM, CHIN and BOUT, type G492 XXXX
YYYY ZZZZ cr, where XXXX and YYYY are four digit hex
numbers represneing the start and end addresses of the area
of RAM to be copies into the EPROM, and ZZZZ is a similar
number representing the address of the first EPROM loca-
tion.

The program will respond with the message "SWITCH TO
PROGRAM THEN PRESS ANY KEY”. The read/program
switch (it should normally be in the read mode) is now mov-
ed to the program position, and any keyboard key of the
terminal pressed.

The program will then respond with the message
"PROGRAMMING”, and then appear to do nothing while it
actually programs the EPROM. A 1K “‘burn” will take nearly
five minutes, shorter burns proportionately less.

When the programming is complete, the program will
print out “SWITCH TO READ THEN PRESS ANY KEY”. When
this command has been carried out, the program begins to
verify that the data has been stored correctly in the EPROM,.
Firstit responds with “ERROR LOCATIONS:" and then gives
a list of any locations not correctly programmed. If there are
no errars, the message “NIL” will be displayed.

If you obtain a small number of errors, this indicates that
there was insufficient programming at these locations. To
remedy this, simply repeat the programming process for all
of the block you are attempting to program.

To use the programmer board with a SC/MP system, con-
nect the address and data lines to the appropriate points on
the board. Insert the two 10k pullup resistors on the OPREQ
and WRP lines, but leave these lines unconnected. The Q-
bar output of mono 1is used to drive the SC/MP HOLD line,
while the SC/MP’s NWDS signal is used to drive the A input
of mono 2. The B input of this monostable is pulled per-
manently high by the 10k pullup resistor provided.

That is all the hardware aiterations required, apart from
providing the appropriate power supplies. Of course, you
will need to write an appropriate controlling program, to
output the required data to the EPROM. Use the flow chart
provided as a guide,

Do not attempt to program a block of memory smaller
than about 256 bytes, as otherwise the Eower dissipation
limits of the 2708 may be exceeded. If you have to program a
small block, reduce the number of program loops (specified
in location H'04B6), by a proportionate amount, and then
program the PROM repeatedly until a correct burn-in is
achieved.

Once an EPROM has been programmed, it is
recommended that the transparent quartz window above

88 ELECTRONICS Australia, February, 1979

You can either copy this actual sized reproduction of the
PCB artwork,or trace it directly. Alternatively, commercial
boards should be available in due course.

the chip be covered with an opaque layer, to prevent possi-
bie leakage currents generated by ambient light from caus-
ing malfunctions. _
If you wish to erase a programmed 2708 EPROM, you will
need a source of ultra-violet light with a wavelength of 2537
Angstroms. A suitable source is the TUV 15W lamp (cat. no.
57415P/40), available from Philips. it fits in a standard 20W
fluorescent holder, and should be ordered from an elec-

Use the overlay
diagram at the
right when you are
assembling the
PCB. Note that
address decoding
is achieved by the
address wire
conneclions, using
the hex inverter
as required.

The photograph
below is of the
completed
prototype. Note in
particular the way
in which the
address wiring has
been completed
for addresses
3C00-3FFF.

LEAVE UNCONNECTED FOR 2704

trical or lighting store.

With the window of the 2708 about
25mm from the tube, an exposure time
of approximately 30 minutes will be
required. This will erase all sections of
the device. Note that lamps of this type
must be used with caution, as eyes and
skin may be affected by long exposures.

In the next issue, we plan to publish
details of suitable 2650 utility routines
for programming into a 2708. These will
include a hex input routine, a hex
listing routine, a block move routine, a
search routine and a tape verify
routine, and possibly other yseful sub-
routines. ®

ELECTRAONICS Australia, February, 1979 89

Can be stored in a 2708 EPROM:

2650 utility programs

Here are five utility programs for the 2650 microcomputer, suitable
for loading into a 2708 EPROM using the programmer recently
described. The routines allow you to perform hex listings, enter
programs rapidly in hex from the keyboard, search memory blocks
for an instruction, move program or data biocks in memory, and
verify program tapes. A number of useful subroutines are also
available for use by other programs. ’

The routines presented in this article
are modifications of those originally
presented on the Philips/Electronics
Australia software record, described in
the April 1978 issue. The original
routines are quite useful, but have one
disadvantage: they have to be loaded
into memory every time that the com-
puter is switched on.

By having them stored permanently
in a ROM, however, you can avoid this
trouble, and make them available for
use at a moment's notice. So after com-
pleting the EPROM Programmer, my
thoughts immediately turned towards
these routines, and w{|ether they could
be stored in a ROM.

Cb
3B
FE
3=
¢F
3r
a2
FA
3F
56
CC
D3
3B
515
a2
Fo
¢4
Z6
18
DF
FA
3cC
FE
gF
22
75
gF
8F

gF
6E
CE
73
FA
3C
ac
EC
3C
C3
ér
D3
cez
gC
86
cr
2C
34
8
4F
19
2A
BE
FD
Fg9
21
FE
FE

CE
FA
FF
4ac
a2
3B
FB
FE
37
ee
CF
gr
aF
Fa
32
FB
28
3C
EF
ae
EE
gg
FF
az
17
ar
3D
gF

CedE
cola
622
£63a
g64ad
e65¢
geed
ge7e
gegad
Aeog
Z 6A7
Fo65E
#6082
B6eDE
B6EF
Z6FF
G7E9
€713
avesg
7738
gr4e
752
2762
E77&
G13¢
g79¢e
g7A0
ATED

FA
3B
aF
3B
3F
a7
gr
gr
3C
3F
FE
CF
gc
8F
E4
ar
g4
3F
z1
4B
34
9E
ZF
3B
ne
S8E
3F
ED

oF
as
17
ED
69
67
a4
98
3c
B4
gF
FE
FE
14
98
38
Aa
CE
EF
46
aF
22
17
cr
38

FB
ar
DA
gr
aD
aD
aF
aD
2A
E7
FF
ac
44
3F
79
Fa
29
9B
FA
41
FR
3B
CD
BE
66
FD 8D
58 38

Fa 19

17
CD
a2
FC
erF
8F
98
z7
9A
a7

18
aF
aF
g2
2¢
5%
Gco
22
93
55

ID
a7
ar
FC
77
ar
54
6B

84 ELECTRONICS Australla, March,

‘FB

My first idea was to have the EPROM
occupy the uppermost memory
locations, i.e. from X'7C00 to X'7FFF, so
as to leave all of the space below this
for memory expansion. However, when
| examined the programs in greater
detail, | realised that it was necessary to
have a small amount of RAM available
in the same page as the EPROM,
because of the limitations in 2650
memory reference instructions.

The additional hardware required to
shift 1k of the existing RAM up into
page 3 proved to be too complicated,
so | compromised, and decided to put
the EPROM at locations X3C00 to
X'3FFF inclusive — le., at the top of

18
3B
FA
ar
ar
3B
3B
ar
3B
@B
zZ2
FE
Be&
71
cD
3B
18
@B
98
3c
cC
1B
ZD
@ag
F2
ac
3C
9B

3F
Fa
BE
ae
gz
4C
CF
FF
F3
@0
46
CF
84
76
Br
95
a9
E6
6@
a7
8F
6B
RF
E6
AD
8F
8F
22

p2
cD
aF
gA
B4
9E
Bac
98
3F
ar
D3
8F
3F
a2
Fa
9B
25
EE
I¥
ED
FE
V]
FC
FF
@F

12)=]
aF
FB
ap
17
e
8F
#3
2
FF
B3
FA
3C
3F
3B
22
3D
re
3C
gr
3F
@F
ZE
98
F&
FC CC
rC CC

FIG. 2

ad
FC
aa
EE
3B
3B
1B
ar
1B
Cé
ac
3B
43
3F
97
@5
3B
CB
DB
54
24
3C
CE
ar
3B
3B
3D
ar

77
CE
17
@F
Fg
E9
69
EF
64
E7
ar
Fa
1B
3C
3F
3D
E#
EA
6E
59
a¢
25
gF
FD
5S4
4B
65
FB

B2
¢F
@D
FD
B4
35
3B
FaA
3B
2a
FE
6F
43
2A
@e
g6
23
3B
4]
e
8F
3E
FF
17
AE
75
3B
g

75
FD
ar
17
2
6E
ES
EC
G5
18
3F
er
3F
1B
24
31
F4
CE
Da
3F
Fa
g9
17
Fa
gr
4]
ane
66

76
aF
Do
16

FA
6D
gl
D7
18
66
FF
18
B4
ce
GE
FAa
c3
66
40
3D
3F
FE
CE
a9
FC
3F
EE

1978

by DAVID EDWARDS

page 1. The maodifications to achieve
RAM in this page then became quite
simple, involving only ane extra gate.

My system at the moment has page 0
completely filled, with the 1K PIPBUG
ROM at the bottom of the page, and 7K
of RAM filling up the remainder. This
RAM is mounted on the prototype 8K
RAM board {see December 1978), with
pairs of 2114s occupying all locations
except those corresponding to the ad-
dresses occupied by PIPBUG.

Note that this involves a rearrange-
ment of the high-order address
decoding. The 74L5138 decoder on the
expansion board is used as the page
decoder, and controls the 74LS138s on
both the RAM board and the CPU
beard. The 7405138 on the RAM board
becomes the page 0 decoder, while
that on the CPU board becomes the
page 1 decoder. Refer to Fig. 1 for a
diagram of the wiring.

The chip select signal for PIPBUG is
now obtained from the 74L5138 on the
RAM board, while the four "spare”
RAM pairs on the CPU board are con-
trollecf)by the 74L5138 on that board.
Strictly speaking, only three of these
pairs should be used, to avoid
overloading the address bus, but in
practice we have found that all four
pairs can be used without problems.

It is now necessary to disable the
main data buffers whenever either
PIPBUG or the four RAM pairs are
selected. This is the function of the ad-
ditional gate, the 74L530 shown in Fig.
1. This is an eight input gate, and is used
to replace the inverter provided on the
expansion board. It can be mounted on
a small piece of Veroboard.

These modifications allow a max-
imum of 13K of memory to be used, in-
cluding 11K of RAM. PIPBUG occupies
locations X'0000 to X'03FF, RAM from
X'0400 to X'2FFF, and the EPROM from

When in ROM, the programs must
reside at location X’3C00 to X’3DBD.

X‘3C00 to X'3FFF. This should allow
quite large programs to be run.

The uppermost RAM locations can
be reserved for scratchpad use by

rograms in the ROM. Only six
ocations are required by the programs
presented in this article, so this leaves
nearly 11K of RAM available for your
programs.

Now that the hardware has been
sorted out, we can discuss the programs
themselves. These use PIPBUG routines
GNUM, CRLF, BOUT, COUT, LKUP,
CHIN and BIN, as well as RAM
locations CNT, BCC and MCNT.

The first program provided is titled
HEX LIST. This produces a hexadecimal
listing of any desired memory block,
with each line consisting of an address
followed by 16 data bytes. To call this
routine, type G3C50 AAAA BBBB cr,
where A is the start address of the
memo‘r{v area to be dumped, and B is
the end address. The listing will include
the specified start and end addresses.

If rou wish to have fewer data bytes
per line, change the contents of loca-
tion X'3C65 to the appropriate hex-
adecimal number before you burn the
EPROM.

The second routine is called
SEARCH. It will list all locations within a
given memory bloek that match a given
test pair of data bytes. The matching ad-
dresses are printed out in a. single
column. To call this program, type
G3C6A AAAA BBBB XXYY cr, where A
and B are the start and end addresses of
the range to be searched, and XXYY is
the test pattern.

The addresses printed out are those
of the first byte of the matched pairs.
The searchis inclusive, and includes the
start and end addresses.

The third program is called HEXIN,
and will enable data or programs to be
entered into RAM much faster than us-
ing the PIPBUG “A” routine. To call the
program, type G3ICBA AAAA cr, where
A is the aJdF:ess of the first RAM loca-
tion at which bytes are to be entered.

The program will respond by printin
out the start address on a new line, an
then wait for you to enter hexadecimal
characters, Bytes are separated by
spaces, and only the last two characters
entered before a space are accepted by
the program. This means that if you
make a mistake, you can simply type in
the correct characters before typing the
space.

After 16 bytes have been accepted,
the program will give a CRLF, and then
print the current address at the start of
the new line. In this way, if you are
careful, you will produce a hex listing as
you input the bytes. To terminate the
entry mode, type a control-G "BELL”
after the space entering the last byte.

The fourth program is titled VERIFY,
and is used to check that a PIPBUG ab-
solute object format dump tape is cor-
rect and contains no errors, before the
master in RAM is destroyed. To use the
program, simply type G3CDD cr, and

ELECTRONICS Australia, March, 1879

85

2650 utility programs

ADDREBE AND

BUFFERS

ADDRESS AND \ 2700 EPROM

1
| |
I |
[} 1 .
850 DATA LINES | | DATA LINEB ! ICO8-IEEF
. , —/
| BUFFER
| DISAHLE | l
I | ,

- d - . {ALL ADDRESS
1 l | DECODING
| | i ON BOARD)

4% RAM PIPBUG | raLsso

2000-2FFF DOD0-03FF | |

8 i | Th AAM |
Al_ 1 O0400-1FFF [
! |
- (] ! l
\ (4 ! !
3¢ 4 : | I
[(| | ;
|' | I
L i1 [I !
2 34 867 i | !
i TALBI3S '
TALBIN | PAGE BELECTE (TALE13R K |
| 33 | I
] | T | l
| [I I
: |
Fi@. 1 CPU SOARD : EXPANSION BGARD | RAM ROARD : PROM BOARD

The schematic diagram shows how the author’s system is configured.

then play back the tape to be checked.
The program will then read from the
tape, and compare its contents with
those of the appropriate section of
RAM,

if all is correct, the program will res-
pond with the message "OK". If a fault
is found, the message "FAULTY" will be
printed. This program can only be used
to check 110 baud tapes produced by
the PIPBUG Dump command. The
RAM dumped must still be in memary
when the verification is performed, of
course.

The fifth and final program is called
MOVE. It will shift a specified block of
memory to any other location in
memory. A memory block can be an
size, and can be moved either upwards
or downwards in memory by any
amount. To use the program, type
G3D3B AAAA BBBB CCCC cr.

A and B represent the start and finish
locations of the block of memory to be
moved, and C represents the new start
location. The program will move the
memory starting at A and ending at B so
thatitstartsat CandendsatC + A —B.
The original memory block will only be
changed if the new locations overlap
the old locations.

The MOVE program can be used to
copy memory from one page to
another page, and can also move
blocks straddling page functions.
Memory locations will not be

destroyed if the new start location is the
same as the old start location.

A ‘number of useful subroutines are
also included as part of the programs. If
you branch to location X'3CF8, the
message ""OK” will be printed, and if
you branch to location X3DOE, the
message "FAULTY" will be printed. In
both cases control will return to
PIPBUG after the message is printed.

A message printing subroutine is in-
cluded at locations X"3CCB to X"3CDC.
This expects R1 and R2 to point to the
start of a an ASCII message string, The
string must be terminated by the null
(X'00) character. If you enter this
routine at location X’3CCB, the
message will be printed on a new line,
while if you enter at location X'3CCE,
the message will be printed on the
current line.

A subroutine called GPAR is located
at address X*3C07. This uses the PIPBUG
subroutine GNUM to get three

arameters from the PIPBUG line
guffer, and store them as bytes in
locations X'2FFA to X'2FFF inclusive.
The first parameter is stored in
locations X"2FFA and X’2FFB, and is call-
ed START.

The second parameter is in-
cremented, and then stored in
locations X' 2FFC and X‘2FFD. It is called
END. The third parameter, called NEW,
is stored in locations X'2FFE and X'2FFF,
" The subroutine INCRT is called at

location X’'3C2A, and increments the
value START. It then compares START
with END, and sets the condition code
bits accordingly before returning. The
condition code is set to “less than” (10)
if START is less than END.

Ancther useful subroutine is called
PADR, and is called at location X'3C3C.
It will print the value of START, as a four
digit hexadecimal number, at the start
of a new line. The address is followed
by a single space.

A number of smaller subroutines are
also contained among the Pro rams,
but these are rather specia iseg, and
will not be used very often. Interested
readers can use the disassembler to
disassemble the listing, and hence
locate them.

To burn the program into a 2708,
simply load it into a convenient area of
RAM, and use the program supplied
with the Prom Programmer article (Jan
1979) to copy it into the PROM. The
program contains absolute addresses,
and will only run at the correct
locations, starting at X’3C00. RAM must
exist at locations X'2FFA to X'2FFF in-
clusive.

Note that the listing of the programs
given in this article shows them stored
temporarily in the RAM at locations
X'0600-—07BD. This should be a con-
venient place to store them initially in
most systems, before burning them into
your PROM. &

ELECTRONICS Australia, March, 1979 87

Track down faults in your memory boards:

Here is a memory diagnostic routine for your 2650 Mini Computer.
It will exercise each and every bit In a specified memory range with
four distinct tests, and produce a printout of any faulty iocations. It
can also be used to track down intermittent fauits.

Memory testing can be a very tedious
and time consuminﬁ process, so most
operators of small systems' simpl
assume that ajl is OK, and get on wit
writing programs..But when a program
you have triple checked and are sure is
OK fails to operate correctly, you start
to wonder about your memory.

Ninetynine times out of a hundred,
of course, the memory is working cor-
rectly, and the bug is in your program
{morai: check, check anJcheck again,
and if you can get a second opinion, do
sol). But what do you do if the program
still refuses to operate correctly?

Weli, you can always employ the oid
standby, the walking finger test. This in-
volves placing your index finger in turn
on all of the memory chips. The chip
{or chips) that sends you running to the
first aid cabinet is then faulty. Don't
laugh, this does work, and I have used
it in the past.

But this test will not show up faults
like open circuit address or data lines,
or short circuits between adjacent PCB
tracks. This type of fault is quite com-
mon on large memory boards, as they

ga
EA
ga
3F
FB
g2
¢D
55
@4
CE
60
Bg

1D
@B
5A
g2
@Ps
75
@a
28
62
84
EC
Fa

DA
17
1B

B4
3F
18

SE
ccC
3B
602

84
za

D9
25
g4
69
8A
g2
24
602

1A
34
BC
F7

1E
16
na
4c
Fl
77
G
o4
BC
ga
B4
a4

Ra4sd
458
Gasd
2470
P4as@
g49@
Q4Aag
gaBg
gace
@4D@
P4EQ
g4F@

@9
@D
oa
24
3B
4@
D9
3F
6d
26
ceC
iE

g2
29
ac
29
23
3F
CE
84
F2
EE
60
cCa

have more and more memory cramm-
ed onto them.

In these situations, what is required is
some sort of software test routine
which will exercise all memory
locations of interest, and provide clues
as to where the fault is. This is the func-
tion of the program described in this
article,

The tests described here are based
on those presented by Charles E. Cook,
in the October 1977 issue of the US
magazine, "Kilobaud”, Two of the tests
are quite simple, and check that each
location can store and read back both a
null (X'00 and a delete (X'FF).

The third test is known as the “walk-
ing bit test”, and is perhaps the most
important test. It verifies the
“changeability” of each bit of the test
location, by storing first the pattern
00000001, then 00000010, and so on up
to 10000000, each time checking that
onli the correct pattern can be read
back from the memory. The test bit (the
;I)) has been "walked” through the test

yte.

The fourth test is really a combina-

71
na
1B
B4
Ba
DA
a7
]
pa

ca 15
6D 17
g6 AQ
@9 65
@l Cc8
ca ai
Ca g2
1a 77
gC 84
6A D2
CD la
22

17
]
24
3B
Al
3B
3B
3B
60
oA
5D

3B
2a
57
Fa
17
F8
D7
F3
BC
74
FE

Eg
oe
g2
2¢
76
g2
@5
34
66
B4 FF
A4 8E

FIG. 2

16
3B
g8
69
24
42
EC
4D
ET7
a4
3B
9B

a3
2a
53
JF
27
DB
5F
3F
76
6@
A4
5A

co
B4
IB
@z
25
c9o
3B
Ga
3B
BC
7@
F§

Memory test routine

by DAVID EDWARDS

tion of the three earlier tests. The
whole of the test area of memory is first
cleared, and then tested for correct
clearing (this is the first test). Next, the
walking bit test and the delete test are
performed on the first test location.
Then before these two tests are carried
out on the second location, it is tested
to see if it is still zero. If it is not, then
there is obviousiy a memory fault of
some type or other.

This process is repeated in turn
throughout the test memory area, and
forms the fourth test.

In order for the operator to be able
to use these test resuits, it is necessary
to know not only the type of faults en-
countered, but also their locations. Te
simplify matters, we have called the first
test the Z test, the second the L test, the
third the W test, and the fourth the §
test. Then all the program has to do is
print out the code letter of the test,
followed by the appropriate address,

A flowchart for the basic test routine
is shown in Fig. 1. Test S is carried out at

- the start of the main loop. The failure

sections incorporate the-error message
Frinting routines, and produce a listing
ive entries wide, which can be accom-
modated on a 32 character-per-line
VDU.

If the test routine is run once, it will
catch and record all permanent faults,
but is unlikely to give any indications of
intermittent faults. To catch this type of
fault, we must repeat the basic test
routine a large number of times.

It would be wise, of course, to
arrange that once a fault has been
detected, that the program stops at the
end of the current basic test. Hf this is
not done, then there is a fair chance
that you will be rewarded with a great
screed of endlessly repeated error
.message sets, whereas only one set is

This is a hexadecimal listing of the 2650 memory test program. You can use the . required.
dissassembler program to produce a mnemonic listing of it.

ELECTRONICS Australia, March, 1879

incor-
89

The complete program,

2650 memory test routines

ﬁorating alt of these points, is given as a
exadecimal listing in Fig. 2. It occupies
locations X440 to X'4FA inclusive, and
is not easily relocated. It uses PIPBUG
routines COUT, BOUT, CRLF and
GNUM.

To be able 1o use this program, the
memory area it occupies must be work-
ing correctly, and so must the
processor. If you are not sure about
this, try it anyway; if it works, then all is
OK. Otherwise, you will have to do
some fault-finding and corrections first.

To call the program, tﬁpe G48F XXXX
YYYY ZZ cr, where X is the start address
of the memory range to be tested, and
Y is the end address. Remember that
the existing contents of the test area
will be destroyed, and that you cannot
test the area of memory occupied by
the test program.

The parameter Z determined how
many basic tests are to be carried out.
X'01 gives one test, X'02 gives two, and
so on up to X7F, which produces 127
tests, Allpnegative numbers such as X80
and X'FF, produce an unlimited
number of tests, terminated cnly when
an zrror 1s detected.

The first time you use the program,
specify only one test. Any errors you

et will almost certainly be permanent
aults, and should be found and cor-
rected first. Only when this has been
done should you attempt to trace inter-
mittents using multiple tests.

In these initial tests, it may be advan-
tageous to test only small amounts of
memory at a time, say 1K blocks. This
will allow you to isolate any faults more
rapidly.

At this stage, you are probably
wondering what alrthe rather strange
lists of error locations mean, and how
they can be used to locate faults in your
memory. Well, simple faults should
show up as easy to understand patterns.

For instance, if a data line to a par-
ticular chip is open, then all locations in
this chip should fail the W and L tests.
Similarly, if an address line to a
particular chip is open, then we would
expect test f to fail at all locations
where this address line would normally
go high. This is because the open line
will normally float high, so that when
we address lower bytes, we will actually
write into higher locations, and will get
an S message when we do address these
bytes.

Further information on the types of
faults which can occur in memory, and
the results they produce with our test
program, can be obtained from Cook’s
article, In any case, you will have to play
at being a detective, and apply a little
deductive reasoning.

Finally, a few detailed comments on
thec‘nrogram.for those who may wish to
modify it. The start, end and current ad-

80

‘ START ’

‘ [e - —TI
INITIALISE | I
TEST ADORESS i |
i | |
1 | |
[| FAILURE 8
GCLEAR TEST vESy |
LOCATION | Y |
| -
1 [:
RS e |
' l
{
ALL | WALKING
LOC ATIONS | [} l
CLEARED? | FAILURZ? |
: No FAILURE W I
TEB ADbAEss } y I
i
) | STORE FF TQ |
_— | TEST chnlon I
l |
oE > | il
| STOAE OK? |
YES FAILURE Z | |
j | FAILURE L
! - | A\ |
| . 1 ;
INCREMENT | !
TEST ADDRESS |
INCREMENT
: TEST ADDRESS }
l I
ALL |
LOCATIONS]
TESTED? i ALL NO |
LOCATIONS - - |
| TESTED?
YES | |
MAIN LOOP
L. vesf W MMWLO®? 4

INITIALISE
TEST AODRESS

1 -

FIG. 1 BABIC TEST ROUTINE
Readers with systems based on CPUs other than the 2650 can use this flowchart to

write their own diagnostic routines.

dresses are stored in locations X’45C to
X'461, while the number of tests is
stored in location X’48E. The number of
error messages on each line is specified
in locations X'488 and X'4AF.

To remove the auto-stop facility
when errors occur, change locations
X'48B and X'48C to the NOF code, X'C0.
If you wish to obtain an error message
every time the walking bit test fails,

.rather than just once for each walking

bit test, change locations X’46A an
X’46B to NOPs.

ELECTRONICS Australia, March, 1979

By changing locations X’4ED to X'4F2
inclusive to NOPs, you can delete the
repeat forever facility, and obtain a
maximum of 256 basic tests (specify X'00
in the calling line).

In conclusion, | wish you happy fault
tunting, and successfu{ debugging of
r,our own programs. Because once you

ave assured yourself that your
memory is OK, then you realise that the
reason your program won’t run cor-
rectly is because you have written a bug
into it)

INFORMATION CENTRE]

Notes & Errata

2708 PROM PROGRAMMER (February
1979, File No. 2/CC/35): In the overlay
diagram on page 89, the 0.01uF and
0.0047uf capacitors connected to pins
14 and 15 of the 74151385 should be ex-
changed. The circuit diagram is correct.

To prevent spurious triggering of the
monostable chain, we have found it ad-
viseable to ground the clear line (pins 3
and 11) of*the 74151385 during reads
from the PROM. This is best achieved
by using a three pole instead of a two
pole switch for the read/program
switch.

ELECTRONICS Australia, March, 1979 125

Educational, Hobbyist, Business, Industrial, Microcomputer users. . .

Quality
Plated thru
Hole PCB

4,00 MC/S
Crystal Clock

On Board 1K Ram
(2114)

1K Monitor in

EPROM

Fully Buffered
Data Lines

2650A Microprocessor

: Connector

Fully Buffered
Address Lines

.. .EUROCARD 2650: a professional quality, expandible
single card computer engineered to meet todays needs.

COMPLETE COMPUTER

The DB1001 is the heart of an incre-
dibly flexible computer system based on
the 2650 microprocessor. Designed by
BOB ARMSTRONG the DB1001 fea-
tures; on board 1K RAM, 1K EPROM
monitor, serial 1/0, 4.00 crystal clock,
fully buffered address and data lines.

Memory expansion and extra 1/O
devices can be readily connected using
the E58 BUS which is also Z80 and
S—100 compatible. The 1K EPROM
can be readily reprogrammed to various
aperating systems such as 1200 BAUD
PIPBUG or BINBUG V3.6.

The DB1001 is available in kit form
or assembled and tested. Conversion
kit is available to convert the EA2650
starters kit (DB1001 Kit $135.00%)

DATA/BYTE 100:
ENORMOUS EXPANDABILITY

DATA/BYTE100 is the system confi-
guration using the DB1001 CPU card.
Additional memory and 1/O cards

) bankcard
welicome here

readily plug into a mother board to
produce an enormously versatile main-
frame which can also incorporate floppy
disc drives and high speed printer. By
selecting from the individual modules
you can design a DATA/BYTE 100
system to meet your exact specifi-
cations.

NOW AVAILABLE

DB1006; a 6K RAM card which
with the TK RAM and 1K ROM on the
DB1001 becomes a full 8K system.
(Kit $140.00%)

DB1008; a 8K static RAM card con-
figured as 2 separate 4K byte blocks
selected with DIP SWITCHES for each
address boundary. (Kit $175.00*)

DB1048; a dual 4/8K ROM and high
speed cassette interface card. Accepts
2708 or 2716 EPROMS with your resi:
dent software. Also contains 2708
containing the full software to generate
the cassette interface and digitally con-
trolled dual cassette system together

*Prices inciude sales tax. Please allow
$2.00 post and package.

FOR MORE INFORMATION
SEND $1.00 FOR OUR
1979 CATALOGUE:

APPLIED
TECHNOLOGY
PTY.LTD.

with full file handling. (Kit $130.00%)

DB1500; a plug in power unit sup-
plying 5V @ 5A regulated, —5V, £12V
750mA from an external DB1505
transformer and bridge rectifier. (Kit
$45.00, transformer $27.00%)

DB1202; a wire wrap card for cus-
tom applications. (Kit $25.00)

DB1203; an extender card for trouble
shooting the E58 BUS. (Kit $25.00)

EASY TO USE:

No matter what your application,
DATA/BYTE 100 system is easy to use
and understand. You can select from
the extensive software base for the
2650 or use the newly released MICRO-
WORLD BASIC which is a powerful
MICROSOFT ™ compatible 8K BASIC
which will run in ROM or RAM on your
system. The soon to be realeased 16K
dynamic memory card and floppy disc
controller will enable you to build your
system to over 100K capacity!

APPLIED TECHNOLOGY, 1A PATTISON AVE,, WAITARA. (02) 487 2711 (3 lines)

SHOWROOM 9-5 MON TO SATURDAY

MAIL ORDERS P.0. BOX 355, HORNSBY 2077.

Faster dumping &
loading for the 2650

Here are some utility routines which will enable your 2650 system
to dump programs, verify and reload them — all at 300 baud and
using a binary format. This gives dumping, loading and verifying
times roughly one sixth of those using PIPBUG's 110 baud hex for-
mat. The routines are intended for storage in a 2708 EPROM along
with the utility routines described in March 1979.

by DAVID

Once your 2650 system is up and run-
ning, one of the first things you dis-
cover is that a lot of your time can be
spent waiting while programs are
dumped to or read from cassette tape.
So naturally, any means of speeding up
this process is most welcome.

We have presented 300 baud
routines in the past, but these have
mainly been -intended for use with a
PIPBUG format bootstrap leader, rather
than to be stored in ROM. They also
provided an "autostart” facility, where
a program could be arranged to begin
executing automatically as soon as it
was loaded.

The present author feels that in a
small cassetre-based system, such as the
majority of 2650-based systems current-

3LEFR
ance
3DDY F9

hr A A W

C2 05 £3 74 47 32 14
73 33 77 74 ar 33 A3
apI7 E5 Fa IF |7 77 1A 05 @@
aDF” 1A : 67 12 3p 51 61 C1
3EFE 12 L7 3F 3C 27 3F 3E a3
aTL" 7D CF FA 33 2C 7E FE 3P 27
s¥ar CF FC 37 IT 7C Fro3F
3737 Fa £T 3F 3C 14
argn 22 3F 72 3k el = E1 17 2 ¢1
3757 Fa 33 26 ap COF
3567 3C 76 33 iC se
3c?r SF CL 38 £2 an 17 27 GC
3F57 3L 3a 9% 79 33 6T 3B
3gor F B CD *F FC 37
IzaP FE 17 33 §7 90 30 77 38
3ESF *F 3F 3C 2A 1a 73 IF 37

52 |p

ly in use, an autostart facility is not a
great deal of use. This is because many
small systems have no easy means of
automatically stopping the tape
transport once a Ioadphas been com-
Eieted. The tape transport must really

e stopped by hand, before the loaded
program is started. -

For this reason | have chosen to write
new routines from scratch, specifically
to be stored in an EPROM. This made it
possible to use some of the routines

70

Y PF FD

EDWARDS

already existing in the ROM (see March
1979), and thus minimise the amount of
code to be stored; it also ensured that
Llf}e routines would be ROM compati-

e.

in fact, the finished routines require
only 251 bytes storage, which still leaves
a total of 327 bytes unused in the 1k 2708
EPROM. 6 bytes ot RAM are required as
a scratch pad, at locations X'2FFA to
X'2FFF, but this is the same RAM as
used by the earlier routines.

The recording format used by the
new routines is shown in the diagram.
As the routines were intended only for
use with cassette tapes, the leader and
trailer consist of 10 second periods of
continuous mark. Only a single block is
usad for each dumip, and it is nearly im-

74 4@ 12 a4c
ny
77 38 7 18
75
953
n
3
9n
7¢
Fa IF
pe ar
3 3F

12 1a
A 76
9C TF
¢p 7F FC 3%
27 CC
FF 3F
76 11 F3 Here is a full hex
listing of the two
3c F& IF

17 76
S {?‘F
9
an

44 TP

possible to separate blocks in a cassette
recording (unlike paper tape). In addi-
tion, gaps between blocks take up ad-
ditional time during both dumping and
loading.

No provision for autostarting is
made. At the end of a load, control is
passed back to PIPBUG. A colon (2} is
used as the prompt to signify the start
of the block.

Two block checking code (BCC)
bytes are included. The first one is used

ELECTRONICS Australia. April. 1979

300 baud routines.

to ensure that the start and end ad-
dresses are read in correctly from the
tape. The second BCC checks for a faul-
ty data byte.

The format used differs from that
used by PIPBUG, in that both start and
end addresses are specified initially on
the recording for the memory area to
be dumped. This change was made
solely because it suited the existing
ROM routines.

The routines are intended to occupy
locations X'3DBE to 3EBS, as shown in
the listing. However ! suggest that you
use the hex input routine to load them
initially into another area in your RAM
{say X'1DBE—1EB8). The PROM
programming program given in the
February 1979 issue can then be used to
store them into the EPROM at the cor-
rect addresses.

The first section of the listing, from
locations X3DBE to X’3E01 inclusive are
the actual 300 baud input and output
routines, called 3IN and 3OUT. These
are completely self contained, and are
fully relocatable without modifications,
as all relative addressing is used. They
are written as subroutines, and are
equivalent to CIN and COUT of
PIPBUG. The calling address for 30UT
is X’3DBE, while that for 3IN is X’3DE4.

30UT and 3!N can be used to com-
municate with your terminal at 300
baud. The bit rate is set by the LODI in-
structions at locations X'3DD8 and
X'3DDF, and assumies a TMHz clock
rate.

The remainder of the space is oc-
cupied by the DUMP, LOAD and
VERIFY routines. To dump a program,
t{lpe G3E02 AAAA BBBB cr, where A is
the start address of the memory area to
be dumped and B is the end address.
The dump will include locations A and
B. A ten second blank leader is provid-
ed at the start of the dump, with a
similar sized trailer. A 4k dump will take
just under three minutes,

To verify a tape, rewind it, type
G3EA2 cr, and then start the tape. The
contents of the tape must still be stored
in memory of course, as the verification
consists of comparing the data from the
tape with the corresponding data stiliin
memory. The program will respond
with “OK” if the tape is correct, Or
“FAULTY” if a BCC or data error is
detected.

To load a tape, type G3E53 cr, and

LEADER
10 SECS
MARK

T PROMPTY

D} START
D ADDRESS

I'_‘l}
D ADDRESS

D ADORESS BCC

D‘\

> DATA

td

|

|

I
-
=]

D DATA 8CC

TRAILER
10 SECS
MARK

CONDENSEDL 300 BAUD
SINARY FDAMAT
This is the recording format used, All
numbers are in binary.

then start the tape. If a BBC error is
detected in the addresses read from the
tape, the message “FAULTY” will be
produced, and the load will stop.
Assuming the correct addresses are
read from the tape, the load will
proceed.

Once the data file has been read in,
the data BCC is checked. If the BCC
from the tape agrees with the
calculated BCC, the message “OK" is
printed. A mismatch will produce the
message “FAULTY".

| have found the routines to be quite
reliable, and have made quite a few 4k
memory dumps with complete success.
The reduced loading time is very
convenient, allowing quite large
programs to be reloaded very quickFy.

The routines use the PIPBUG routine
CBCC, and the existing ROM routines
GPAR, FAULTY, OK and INCRT. Oniy 4
instructions require changes to relocate
the program; these are located at ad-
dresses X'3E05, 3E27, 3E7F and 3EB6.
Other absolute instructions in the
programs point to locations in PIPBUG,
the RAM buffer area, and the existing
ROM.

To burn the programs into your 2708
EPROM, load them into a convenient
area of RAM, as well as the PROM
program. It is not necessary to
reprogram the compiete PROM: simply
program in the new routines at the
correct locations.

Note that in order to allow the
routines to operate correctly, it is
necessary 1o disable the monostables
on the PROM board when in the read
mode, as detailed in the Notes and
Errata section of the March 1979 issue.

ELECTRONICS Austraha, Apnl. 1979

71

2650 mini assembler
simplifies programming

Here is a handy “real time" assembler program for small 2650
microcomputer systems. You can use it to load programs directly
into memory in mnemonic assembly language — much faster,
easier and more reliable than having to do ali the detailed coding
and displacement calculations yourseif!

by JAMIESON ROWE

Programming a computer in machine
language tends to be a very slow and
tedious business. {f you're doing it this
way at the moment, you’'ll know what |
mean. |t can be challenging enough to
work out the basic flow of a program —
then you have to sit down and
painstakingly slog through the coding,
instruction by instruction.

But time and tedium aren’t the only
problems, When you try running such a
program coded by hand, the odds are
that you'll find quite a few “"bugs” caus-
ed by coding errors and mistakes in
working out relative addressing dis-
placements.

People using larger computers
generally don’t need to worry about
such problems, because they don't
have to program in machine language.
in fact many couldn’t do so even if they
wanted to (which is unlikely), either
because they've never learned how or
because the operating system on their
computer has no provision far loading

or running programs in this form!

The closest such folk ever need to
come to machine language Is assembly
language programming, using easy-to-
remember mnemonic symbals for the
various instructions. An assembler
program running in the computer itself
is then used to translate this symbolic
version of the program into machine
language. The assembier takes over all
the detailed coding, and works out all
of those tedious displacements. Not
only that, but it does them much faster
and far more reliably than mere
humans!

Assemblers for some microcomputer
systems have been available for quite a
while now, giving users of these
systems most if not all of the advantages
possessed by larger systems. For
industrial and commercial users of the
2650 microprocessor, Signetics
themselves provide a "’cross assembler’”
— an assembler for 2650 code which
itself runs on another machine.

*G 1680
265% LINE ASSEMBLER

HELLO THERE!

@44@.*THIS IS A DEMINSTRATION

Gaad.*

BH4aG. *

Paud. ORG 508

2588. DATA 5 14

€502, LODILR3 FF SET UP R3 AS INDEX
B504. LODA,R3 *=+580 FETCH CHAR

D537, COMI,RO 2@ CHECK IF EQF (NUL>
2589. BCTALEQ @1 LEAVE IF FOWND
P5aC. ZBSR =20 QOTHERYISE GO PRINT
BSEE. BCTR.UN S5Q4 & CONTINUE
@é512.@} ZBASR *25 END: GIVE CRLF
512, ZBRR 22 & LEAVE--RETURN TO PIPBUG
P54, ASCI "HELLO THEREI"

@528, DATA @

0521, END

*G588

Fig. 1: A demonstration of the mini assembler in action. As you can see, a
program may be run immediately following assembly.

76 ELECTRONICS Australla, April, 1979

For smaller 2650 systems, more con-
ventional “resident” assemblers have
recently become available. A limited-
facility “line’* assembler called
Prometheus was developed by the

_British Mullard company, and made

available in a special ROM/RAM
application card. However it was rather
too expensive for hobby applications.
Similar L an assembler was developed
within the 2650 Users’ Group in Sydney,
but was memory-orientated and re-
quired quite a deal of RAM.memory.
Neither assembler was really well suited
for small hobby systems.

Now for the good news. In this arti-
cle, you will find details of a new 2650
assembler which | believe is almost
ideal for small hobby systems. It oc-
cupies only 1300-odd bytes, so that it
should fit into almost any 2650 system.
Yet it will let you perform convenient
and fast assembly of programs, from
your terminal keyboard and in real
time, You tr\pe in the mnemonics; it
works out the code and plugs it into
memory.

As you might expect, it is not a full-
scale assembﬁer like those you would
find on large systems. It is basically a
line assembler, which treats each in-
struction as a separate entity. But it
does offer a very useful feature not
found on many small line assemblers:
limited forward referencing, which lets
a branch instruction reference a
memory location not yet known. This
means that once you get used to its
limitations, you can do almost as many
things with this assembler as you can
with its bigger brothers.

Incidentaily | can’t take much of the
credit for this assembler. | haven’t
written it from scratch, but have
developed it from a small assembler
called PIPLA written by the software

eople at Signetics. | came across PIPLA
ast year when | toured the Signetics
plant during my trip to California.

The people at Signetics told me they
had written PIPLA to Eo into a spedal
ROM device along with a modified and
enhanced version of PIPBUG. When |
showed interest in it, they let me havea
copy along with a source listing,

| didn’t have much of a chance to
look closely at PIPLA during the trip
but was able to do so when | came
home. It didn’t take long then to make
a rather important discovery. Not unex-

pectedly, PIPLA used quite a few utility
routines from the moﬂified PIPBUG —
but the modified PIPBUG was so
different from the familiar old PIPBUG
thlat the two were virtually incompati-
ble.

Obviously PIPLA in its original form
was not going to be all that much use to
- all those 2650 users who were already
committed to the old PIPBUG. If it was
to be of value to such people, somecne
was going to have to sit down and con-
vert it to use the routines in “old
PIPBUG". ...

Well, the rest is fairly obvious. The
job took a while, as it had to be fitted in

etween maore urgent things. There
were a few complications, because
some of the required routines in the
modified PIPBUG were so different
from thase in the old PIPBUG that the
routines in “old PIPBUG” could not
easily be used at all. | had to add these
to PIPLA itself, at the same time reduc-
ing the size of PIPLA wherever possible
to minimise the increase in memory
space.

Eventually I finished the basic con-
version job, and after the inevitable
debugging the modified PIPLA began
running on my system with '‘old
PIPBUG". But this wasn’t quite the end
of the story. ’

Once you got used to its limitations,
it was a very handy piece of software.
But there were a rew mildly irritating
little shortcomings. When you called it,
it simply printed out a suggested initial
“origin’’ or startinE address far
assembly. Wouldn't it be nicer if it an-
nounced itself with a suitable message?

Similarly, it lacked a facility for accep-
ting numbers and other data constants,
in hexadecimal. Wouldn’t it be nice if it
had a “DATA” directive like bigger
assemblers?

To cut a long story short, these
facilities were added and the result is
presented here, Based on PIPLA but
with quite a bit of modification and a
couple of additional features, it is quite
a capable little assembler. Certainly you
should find it a big step forward in
speed and convenience if you're still
programming in machine language.

What will it do? Well, it will acceptall
of the standard 2650 instruction
mnemonics — LODA, STRR, BCTA,
BSTR and so on. it can also recognise all
of the commonly used register/condi-
tion code mnemonics RO, R1, R2, R3,
P, Z, N, LT, EQ, GT and UN. It will
accept symbols for indirect and index-
ed addressing, up to 10 label symbols
for forward referencing, four different
pseudo-operatian or assembler direc-
tives, and comments. '

The input format required by the
assembler for the symbolic source lines
is:

LBL OPC R/C $YM OPND

where the symbals have the following
meaning:

15CC
1500
15E8
I15F9
1600
1618
162p
1632
1640
1658
1668
1670
1688
1698
16A0
16B8
16C@
16D@2
16E8
16F0
1708
1718
1728
1738
1740

1756

17606
1778
1788
1798
17AG
1788
17Ce
1708
17E@
17F8
1800
1819
1azp
1838
1848
185@
1860
18709
1888
1898
18A08
18BB
1gCa
18De
18EB
18FQ
1900
19.18
192p
1930
1948
1958
1568
197a@
iogp
1998
1948
198@
19CP
190P
19E@
19FQ
1a08

1ASS
1A68
1ATE
1ABP
1A98
1AAD
1AD@
1ACDE
1ADE
1AE®
1AF @

ac 18
tF 6D
D 3B
1A €D
a7 ta
aB D¢
E4 2A
c3 E7
7A At
BF CF
1B 56
68 94
p2 c2
pD B2
gD E4
dA 3F
B4 BD
F4 @2
45 FF
DI DI
A4 3p
TA 41
B7| 3r
B9 A6
#4D BS
42 98
F3 Cc2
G2 18
EB F2
27 84
17 26
58 EF
@F A4
op 23
32 28
F@ SA
2P @2
4E 20
81 41
49 B4
54 52
B8 49
52 68
4E 44
88 as
52 28
43 54
BEC 43
52 EB
44 44
B8 53
52 AB
45 54
gC 42
2p 58
sg 53
12 42
52 DB
44 52
Aac 4AE
28 T4
52 54
B2 52
52 9B
58 52
Il 53
208 9F
54 5@
1]

1A 86
18 84
4C 49
BA oe@
le IF
14 @r
CE P4
BF 61
IC 2o
BB AP
BB AQ

o2
94
oF
op
cF
@D
18
a9
¢C
TA
B7
28
BF
aF
IT:]
17
62
1¢
ED
6D
1E
c2
1A
Bi
By
Fi
CE
78
9a
20
D4
74
BF
24
20
20
FB
20
53
82
5a
4F
#a
49
aF
B4
41
aF
B4
a9
55
g4
45
53
gl
a6
52
B
41
4F
]
43
as
1
55
5@
1c
ac

6C
BB
4E
g8
a2
TA
28
C1
| 93]
iB
jol:]

2A
EF
B4
SA
-]
69
19
-1
41
g2
34
3A
15
94
TA
cc
17
7
Ba
1]
BCc
95
AS
9C
6E
8a
EF
[]4]
CE
cp
ac
ca2
52
[}
20
45
B3
43
ac
ce
s2
49
44
52
45
16
4D
43
84
42
53
34
46
52
75
4E
42
FC
50
57
B@
44
54
92
53
44
11

3F
AD
45
A4
52
22
a6
24
3F
6A
SA

tF
ga
BD
Py
PE
E4
F9
1P
BC
20
12
B2
F3
21
B4
84
22
cF
2a
1]
Ga
ec
ge
@2
B4
gD
64
E4
79
pa
18
aF
38
FB
2@
51
Fé
49
aF
B
sa
ar
G2
5A
aF
BC
5a
4F
a2
Sa
55
a1
52
52
12
g2
49
:[M
op
52
g1
a5
56
11
ac
41
1

1]
1B
28
38
2
Ea
Fe

g2
Bs
CF

17
29
oE
5B
aB
ap
D3
61
as
cc
1c
EF
c2
87
12
@D
3B
18
c9
c3
gD
B4
77
58
24
3B
29
3@
ap
gF
86
AL
o8
52
8o
28
45
1]
44
53
68
52
al
20
52
42
E@
ap
ay
AD
42
ag
B8

AG

1]
S8
52
42
ca
Sq
52
54
53
4C
13
52
a4

Ad
77
41
IA
Cct
2p
62
Ce
g6
23
aa

5B
94
Pa
7B
D7
98
pé
18
BD
pa
pa
a4
1B
B!
18
3B
D}
26
FC
ET
cF
1!
al
F6
IB
¥B
94
ta
DA
CE
86
aF
cp
3a
Fo
ep
AE
82
s2
54
a1
at
4E
a1
at
43
81
a1
a4
g1
a1
53
pa
o0
508
ga
aj
53
11
&5
45
B2
55
sg
i1
2@
al

87
s
52
BA
c2
98
cz
Dt
E4
ED
29

Fa
25
8E
ar
a4
ac
B

1A
cc
2A
22
29
6A

-IF

85
¢B
BF
ES
1B
g9
T4
Fa
AE
co
BA
IF
¢e
89
78
B4
@6
BF
ge
20
AE
1
a4
ac
.E]
52
49
6C
as
a5
ac
aé
a3
EC
ay
53
AC
54
42
DB
53
42
De
4E
48
Fa
-an
5A
B4
53
a2
94
54

FF
ga
53
EA
ce
a2
21
)}
TF
TA
cD

ga
iB
DA
1A
2E
ar
.} 3
pC
Ba
3B
Fa
9E
15
17
iF
ac
TA
Ba
5C

19

ag
28
@4
98
15
15
17
GE
CF
3]
85
L]
Fa
2p
ee
Fg
28
4F
B4
52
4F
a8
52
4F
B8
52
4F
]
52
S5
L]
52
53
-]
55
52
ec
52
at
Bt
43
42
12
ac
53
ai
41

ar
13
45
Ba
a4
DB
Di
54
98
ce
oa

AL
FY.}
ap
16
iz
18
D!
oA
BA
18
2A

ar
e
Do
ce
AR
g2
4@
ar
Bc
3F
98
PE
ce
BF
52
11

77
40
ok}
ga

‘AD

AD
56
¢D
a4
FC
Iy]
28
FF
3]
75
31
Fo
20
54
88
sa
aF
pa
a9
AE
g4
49
43
84
a9
a4
24
ag
as
B4
a1
spg
12
a1
a3
a4
54
a5
B!
52
1)
11
a1
a4
g4

17
42
A4
-3
ag
B H
aD
83
g9
27

3F
FO
o9
aB
3
A&
[v
CF
-2]
17
sc
E2
ca
TA
3B
Fa
3e
1B
98
3
BE
Fa
a5
7F
54
20
AT
A
75
BF
67
28
20
5@
g2
2p
aF
po
a4
53
64
a4
a1
24
54
42
E4
a4
at

54
42
BC
53
58
5C
52
42
4p
44
57
BB
53
53
BF
58
ee

a2
ac
a7
FC
57
45
SE
18
Fo
28

1A
1B
IF
Fo
D3
38
Ba
74
PE
14
3B
18
14
B2
DF
81
94
cc
24
7a
CF
Ba
BD
b
#D
FB
g1
78
Bl
A
E7
17
28
Y]
Fo
28
52
81
a1
sa
pe
54
4E
T
52
a3
82
sa
a4
p2
a3
53
gc
55
5@
Bc
58
53
11
44
58
1@
4C
5p
1c
ac
ep

36
45
1A
15
D2
F@
ar
71
79
9B

95
1D
an
2]
ac
1E
BF
4B
CE
ce

FB
95
E4
a6
1c
1B
Dl
PF
A0
T4
98
75
ps
a2
B
13
87
77
(13
B3
<1
ai
20
ac
g1
a7
ag
LD
39
a9
Y
as
1
18
a6
a3
8@
aa
53
14
sS4
52
74
53
42
FB
4E
S4
78
54
54
BS
53
a2
18
pe

35
52
a3
EF
D2
@8
a9
@F
CF
AS

CE
p2
A4
9a
1A
g2
[4]
PE
EA
pa
oF
cc
CE
a8
23
16
87
D1
3a
Gl
at
24
P8
pa
3F
EF
3a
g1
a8
1c
1A
2c
Fe
20
S4
F@
2@
af
88
a1
aF
a1
al
af
B4
at
af
b1
a1
55
Bt
ot
52
te
ac
59
a4
at
ap
Bt
a5
a2
12
55
58
1¢
ae

an
2D
Ea
@a
D2
Fa2
E7
SA
7A

Fig. 2: A complete hex listing of the assembler. The gap from 1A02 to

is occupied by the input and labels buffers.

TA54

ELECTRONICS Australla, April, 1979

77

2650 MINI ASSEMBLER

LBL is an optional label; if present it
must be one of the labels used in
the operand field of a previous in-
struction, for forward referencing.

OPC is the instruction or pseudo-
operation mnemonic; the standard
2650 mnemonics are used, as given
in the Signetics manual.

R/C is the register or condition code, if
one is required; either the symbols
given earlier may be used, or a
single-digit hexadecimal number.

SYM is a special symbol or symbols to
indicate indirect addressing and/or
indexing, if required.

OPND is the operand for the
instruction; it may be a
hexadecimal data number or an
address, and if an adress it may be
given either as a hex number or
one of the labels for forward
referencing. In the case of relative
addressing, the assembler expects
an absolute hex address, and will
calculate the required
displacement. The only exception
is for ZBRR and ZBSR instructions,
where the -actual displacement
must be typed in.

Each of the above symbol fieids
should normally be separated from
those adjacent by one or more spaces.
If the label field is not used, a leading
space is not required although one or

more spaces may be used if desired for
appearance. The separator between the
OPC and R/C fields may be a comma
instead of a space, and the space
between the $YM and OPND fields may
be omitted if desired.

If the first character of a line is an
asterisk (*), the assembler assumes the
line is a comment only and ignores it. A
comment line may have up to 56
characters apart from the asterisk.

The symbols used to indicate in-
direct addressing and indexing in the
SYM field are as follows:

** Means indirect addressing.

Means normal indexing. Note,
however, that when indexing is
specified the index register must
be given in the R/C field, unlike
the normal assembler format. This
is no real problem since RO is
always the implied
source/destination register for
indexed instructions.

‘+' Means indexing with auto-
increment. Again the index
register must be given in the R/C
field.

‘—' Means indexing with auto-
decement. The index register must
be given in the R/C field.

Where indirect addressing and in-
dexing are to be specified in the one in-
struction, the two appropriate symbols

are used together with the indirect ad-
dressing symbol given first, For ex-
ample:

LODA,R3 *+8A0

which is a load indirect through address
X'8A0, using R3 as the index register
and with auto-increment. Thus R3 will
be incremented and added to the ad-
dress found in location 8AD to generate
the final effective address for the in-
struction.

The function of the label operators is
to help you in writing forward memory
references. That is, references in the
operand field of instructions to
locations in the program which have

et to be fed in, and are therefore not
nown in terms of their exact absolute
address.

There are restrictions on the use of
the label operators, as follows. They can’
only be used in the OPND field of
branch instructions, and they cannot be
used in relative addressing instructions.
Nor can they be used with indirect ad-
dressing or indexing. This limits the use
of the labels fairly severely, but they
can still be quite handy.

Ten different label
allowed, represented by the symbols
@0—@9. Each one can be used in the
operand field of instructions any
number of times before it is finally
defined by specifying it in the label
field of an instruction or pseudo-op.
Note that all references to a label must
precede its definition, due to the way in
which the assembler handles the labels.

operators are

ELECTRONICS Australla, Aprll, 1979 79

2650 MINI ASSEMBLER

However after being defined a label
operator may be re-used again.

As mentioned earlier, the assembler
recognises four different directives, or
pseudo-operators. These are basicall
instructions to the assembler itselt{
rather than symbolic instructions to be
assembled into machine code. The four
directives recognised are as follows:
ORG is a directive to the assembler to

reset its program counter; i.e., the
pointer which the assembler uses
to store the assembled program
instructions into memory.The
format of this directive is

ORG nnnn

where ‘nnnn’
number specifyin

is a hexadecimal
the new

program counter value. Leading

zeroes are not required.

ASCl is a directive to the assembler to
store in memory a string of
alphanumeric characters, in ASCII
code. Following the directive
mnemonic the assembler skips any
leading spaces, then takes the next
character it finds as a string
delimiter. Alli of the foliowing
characters up to the next
occurrence of the delimiter
character are then stored as an
ASCll string. The actual string may
be up to 52 characters long, The
format- for this directive is thus

ASCI < delim > ¢ string > { delim>

DATA is a directive to the assembler to
store one or more data bytes in
memory, beginning at the iocation
given by the current value of the
assembiler’s program counter. The
directive format is
DATA nn nn nnnn nn nn nn ...
where each ‘'nn’ is a two-digit hex-
adecimal number, and the
numbers are separated by spaces.
if an error is made while typing a
number, it may be corrected mere-

by t{)ping in the two correct
igits before the terminating
space. Leading zeroes are not re-
quired. Up to 18 data bytes may be
entered on a line if no corrections
are made.

END is the directive which is used to
indicate to the assembler that no
further source material is to be
“assembled. When this directive is
encountered the assembler returns
to PIPBUG.

if desired, comments may be added
after the operand field on most source
lines, providing the comments are
separated from the operand by at least
one space. The only type of source line
where this cannot be done is one con-
sisting of a DATA directive, as the
assembler searches to the end of the
source line for data numbers for this
directive. No special symbol is required

to distinguish comments foilowing
source instructions or directives.

The assembler resides in memory
from location 15CC to 1AFE, inclusive.
Part of this range is not used by the
program itself, but is used as a line in-
put buffer, scratchpad and label buffer
area (1A02—1A54). The initial starting
address is 1600, so after loading into
memory the assembler is called by giv-
ing PIPBUG the command G1600r
(where “r” is carriage return).

When calied, the assembier first
types out an identifying message: 2650
LINE ASSEMBLER". It then types out a
sugi;_lested tnitial origin, which is X'0440
— the start of the available RAM above
PIPBUG's scratchpad area. If you don't
wish the assembled program to start at
this address, you can immediately
change the program counter to
another value by using the ORG direc-
tive.

You can now type in your program (o
be assembled, line by line, When you
conclude each line with the usual
carriage return, the assembler will
attempt to assemble it. If you have
made no format (syntax) errors and it
can do so, it will indicate this and its
ability to accept a further line by typing
the new value for its program counter
at the start of the next ﬁne. You thus get
a continuous indication that all is well,
along with an indication of the memory
space being used by your program.

If you make a format error and the
assembler cannot assemble the line, it
will abort and return to PIPBUG via the
‘¥ error message routine. After work-
ing out what went wrong, you can
return to continue the assembly by

80 ELECTRONICS Australia, April. 1979

either re-starting at address 1600, or by
starting at address 160E. The latter
preserves any forward reference labels
you mar have been using, although the
assembler’s program counter is disturb-
ed. You thus have to reset it with an
ORG directive.

| have prepared a small demonstra-
tion of the assermbler’'s use, which is
shown in Fig. 1. As you can see the
program assembled is a very short
message printing routine which starts at
X'0500, but its assembly illustrates most
of the thinﬁs you need to know about
the assembler and the way it is used.

Note that the first three input lines
are comments, which are effectively ig-
nored by the assembler. Note also the
way the assembler prints out the
current value of its program counter at
the start of each line, so that you can
see how much memory the program is
taking up. Needless 1o say you also
make use of these addresses when typ-
ing in backward-referencing operands
-— an exampie of this is shown in the
line commencing at address 050E.

Finally, note that after assembly, the
program which had just been assembi-
ed was called from PIPBUG by typing
G500. It then ran, typing out the simple
message “HELLO THERE". -

Needless to say, once you have
assembled a program and checked that
it runs, you can dump it in the normal
way o cassette tape or paper tape using
the normal PIPBUG dump routine.

Well, there it is — a small but very
practical assembler which should make
programming your 2650 very much
easier. Incidentally for those who
would like to analyse the assembler’s
operation in detail, full source listings
will be available from cur Information
Service for a fee of $4.00, to cover
photocopying and postage. 2

Lunar Lander game

This moon landing game program is written in TCT BASIC, and can
be run on the 2650 Mini Computer. It is quite realistic, taking into
account the moon’s gravity, and the decreasing mass of the lunar
lander as the fuel is used up. It als¢ has limits on both the rate of
fuel usage and the acceleration to which the lander is subjected.

Moon landing is a simple
mathematical game which has been

layed on computers from the very ear-
y days. In its simplest form, as describ-
ed here, all that is required is a terminal
capable of displaying about 16 lines of
text,

The scenario is that the operator
(LEM pilot} is in the lunar lander a
specified distance above the lunar sur-
face. The LEM has a certain initial
velocity, and a quantity of fuel. The

Baa&Ss
g21@
2gals
ag28
8225
ae3e
d@3s
zA36
oeae
peal
g045
2454a
BE55
@56
BBs7
2860
BB6E
8066
pas?
eg7e
a7}
2875
2376
o280
ae8 1
aeg2
ae8s
8goo
2a95
2iee
@195
B6l11e
glit
Bl12
8115
arieé
8117
glis
B128
22008

GOSUB 2@8:IF A<13 GOTO 35

IF M<a5ga@ GOTO 45
NaN=1:IF H<=% GOTO 57
IF N<=¢ GOTO 15

GOTO 25

PR"'":PR"NO FUEL LEFT!"

GO SUR 2pd
IF H*>8& GOTO 355
IF V=g VUs-V

IF Vv>-1 GOTO 85
IF V=5 GOTO 98
IF v>-18 GOTO 95

IF 8i1=%2 STOP

IF $1=%3 GOTO 12

GOTO 75

PRGOOD LANDING":GOTO 75
PR'ROUGH LAVDING'":GOTO 75

PR'FUEL RATE (KG/S) '
INPUT=R:IF R>=@ GOTO 115
GOSUB 120:GOTO (1@
PR"DURATION (S) '3

GOSUB 1202:GOTO
RETURN
PR"IMPOS3IBLE -

1145

PR"PREPARE FOR LAVDING':R=0

INPUT =N:N=INT(N):IF N>2 GOTO

pilot has to specify when and how
much fuel to use, so that the LEM can
be made to land on the moon with
zero, or at least minimal, speed.

It sounds quite simple, doesn‘t it! But
you will probably change your mind
once you have actually tried to do it, as
there are a number of traps for unwary
pilots.

First of all, you can simply run out of
fuel before the LEM reaches the sur-
face. Once this happens, the LEM simp-

PR"": PR"LUNAR LAYDER":PR"BY D.W.EDYARDS 3/9/78"

FIN 2:T=@:V=-25:E=200:G=2:H=12Q0:"1= 1042

GOSUB 1@Z:1F Re«57@ GOTO 25

PR"":PR"FUEL RATE TOQ HIGH!":PR"MOTOR BURNS OUT":GOTO SO

PR"":PR"G FORCES TOO HIGH!™:PR“LANDER BREAKS UP":80T0 75

PR"": PR"TOUCHDOWN AT", T»"S":PR"TERMINAL SPEED =",-V,"M/§"

PR"":PR"A NEW LUNAR CRATER",M*UxU/ 50806, "M"
PR"DEEP WILL BE DISCOVERED SQ0N!"
PR"":PR"D0 YOU YANT TO PLAY AGAIN":

INPUT 75t:52="NO"; $3="YES"

PRLANDER DESTROYED'":GOTO 75
PR'":PR'HEIGHT =",H,"M":PR"SPEED =", -V, "M/ 5"
PRFUEL LEFT =",M=-5808,"KG"tPR"TIHE =", T,"s"

118

TRY AGAIN'":RETURN
M=M=-R: A=E*R/M=G: T=T+ 1t H=H+V+A/2: V=V+A: RETURN

FIG. 1

82 ELECTRONICS Australia, April, 1879

by DAVID EDWARDS

ly drops, and digs a big crater (this is
quite soundless however, as there is no
atmosphere on the moon to support
soundwavesl}.
If you specify too high a fuel rate,
one of two things can happen. Firstly,
ou may overload the motor, causing a
gurnout, followed by a long drop to the
moon, and another big crater, Or you
could exceed the allowable G forces on
the LEM. In this case, it will simply fall
apart, and the pilot will proceed to the
lunar surface unaided!
Assuming that you can avoid all these
pitfails, you still have to ensure that
our landing speed is sufficiently low,
gecause even though moon gravity is
approximately one fifth of earth gravity,
your inertia is still the same. In fact, to
achieve a good landing, you need to
have a terminal velocity of less than 1
metre per second, or a{mut 2.2mph.
In fact, the only good point about
this simulation is that it is not in real
time, and you have lots of time to think
between moves, A typical landing will
take about 50 seconos of simulator
time, and about 10 minutes reai time,
Fig. 1tis a listing of the program. You
will need about 2K of RAM to run it,
apart from the 5K required by the TCT
BASIC. Putting it another way, you will
need to have page 0 full of RAM, apart
from the 1K occupied by PIPBUG.
Load it in exactly as per the listing,
remembering that the punctuation
forms part of the program, and should
not be changed. To start the program,
simply type RUN. After the program
name and trumpet blowing section, it
will give you a small list showing initial
hei Et, velocity, time and fuel stocks.
Velocity is measured positive
downwards, i.e., towards the lunar sur-
face.
The program will then Ex?ect you to
type in a fuel rate in kg/s, followed by a
uration in seconds. This is how you
specify to the program what propulsive

This listing of the Lunar Lander was
written in TCT BASIC, but is adaptable
to other types of BASIC.

LUNAR LANDER
BY D.W.EDWARDS 3/9/78

HEIGHT = 1880.00 M
SPEED = 25.8¢ M/5
FUEL LEFT = 58080.088 KG
TIME = B.88 S

FUEL RATE (KG/5) =608
DURATION (S) =3

FUEL RATE TOO HIGH!
MOTOR BURNS OUT
PREPARE FOR LANDING

TOUCHDOWN AT 22.8# §
TERMINAL SPEED = 6%9.08 M/S

A NEW LUNAR CRATER 952.28 M
DEEP WILL BE DI SCOVERED S0O0N!

D0 YDU WANT TO PLAY AGAIN?YES

HEIGHT = 1000.08 M
SPEED = 25.00 M/5

FUEL LEFT = 5000.088 KG
TIME = B.06 5

FUEL RATE (KG/5) =480
DURATION (5) =18

G FORCES TOO HIGH!
LANDER BREAKS UP

DO YOU WANT TO PLAY AGAIN?YES

HEIGHT = 19@g8.00 M
SPEED = 25.88 Ms5

FUEL LEFT = 582808.00 KG
TIME = 0.8@ 5

FUEL RATE (KG/S5) =280
DURATION (5} =2¢

HEIGHT = lQa6.44 ¥
SPEED =-38.51 M/S

FUEL LEFT = 1000.06 KG
TIME = 28.B8 5

FUEL RATE (KG/S5) =0
DURATION (5> =1¢¢

TOUCHDOWN AT 77.82¢ 5
TERMINAL S5PEED = 75.48 W/5

A NEY LUNAR CRATER 683.84 M
DEEP WIL1. BE DISCOVERED S00N!

FIG. 2

Hustrated above is a printout showing
how the program reacts to a variety of
“wrong” inputs.

force you require, and for how long.
The program will then calculate your
new height and velocity, and present
these, along with the elapsed time and
amount of fuel remaining.

All you have to do then is supply the
appropriate numbers, till the program
terminates, Note that only positive fuel
rates and times are accepted, and that
the program turns all times into integer
numbers.

Fig. 2 shows some sample printouts of
typical games. Note that all outputs
have less than 32 characters per line,
although the program listing does not.
If you are using the Low Cost VDU
(February and April 1977), the
automatic carriage-return [line-feed
facility will tet you see all of the listing
as you feed it in.

If you let your family and friends piay
this game, be warned. It is very engross-
ing, and you may have trouble getting
them away from it! £

ELECTRONICS Australia, Aprit, 1979

a3

“Micro BASIC”

for small 2650 systems

If you have a 2650 microcomputer with only PIPBUG and 4K bytes
of RAM, you probabily think it's too small to run even a cut-down
version of BASIC. Well, not any more — you can now get an inter-
preter called “Micro BASIC” which will run in systems this small.
Editor Jim Rowe reviews Micro BASIC in this article.

Not long ago, | received a ‘phone call
from a reader, Mr Alan Peek of
Woolwich NSW, who told me that he
had successfully written a “‘micro
BASIC" interpreter for very small 2650
systems. As he was proposing to offer it
for sale to readers, would | be in-
terested in trying it out and perhaps
publishing a short review?

It sounded interesting, so | asked for
a few more details. He explained that
he had written the interpreter to run in
systems with as little as 4K of RAM, to
allow those with such systems to be
able to program them rapidly and easily
for useful tasks. He had managed to
squeeze the imer’)reter itself into a
mere 16K bytes of memory, by using
single-character commands, reverse
Polish notation, and an efficient way of
packing the source program into
memory.

At my invitation Mr Peek sent a
cassette of his interpreter to me a few
days later, along with a copy of the
literature he is supplying wilﬁ it. Since
then | have been able to spend some
time using it and discovering its
capabilities.

For convenience the program is best
visualised as divided into two sections:

the interpreter proper, which translates
and executes the source program in
“run’ mode, and a text editor which is
used for teeding in, modifying and
listing the source program.

The text editor ﬁas similar functions
to those found in other interpreters,
although they are used a little different-
ly because of the different way that this
editor packs the source statements into
the RAM buffer. Unlike other inter-
preters, this one does not accept line
numbers from the programmer — it
supplies its own, which are attached to
lines in simple incrementing order.

Doesn‘t this make it hard to insert ex-
tra lines, when you need to? No, you
can use the editor functions to insert or
delete lines as required. All that
happens is that when you do this Micro
BASIC simply re-numbers all of the
lines.

It takes a little while to get used to
this if you have been using a more con-
ventional BASIC interpreter, but once
you do it is just as convenient as the
conventional approach,

As far as the interpreter itself and its
operation are concerned, probably the
most obvious differences from conven-
tional BASIC and Tiny BASIC inter-

—

VI ns D -t

i0 TB=1 G3

t2 E
13
>

84 ELECTRONICS Auslralia, April, 1979

preters are the use of single-character
statements and reverse Polish notation.
But again these don’t really take long to
get used to, and many people prefer
reverse Polish notation — as witnessed
by the popularity of calculators which
use it. Many people also like the ability
to shorten BASIC statements to single
characters, because it lets them pack in
larger programs!

There are a few differences from nor-
mal BASIC in the actual statements, but
not of a major nature. Instead of the
familiar IF ... THEN statement, Micro
BASIC has a “TEST” statement, but this
functions in a similar fashion. Similarly
string input and output statements (A"
and "O”) and a “"Memory (M)” state-
ment which performs similar functions
to the conventional PEEK and POKE.

Micro BASIC has a random number
function, although this works in a fairly
unorthodox fashion, When this func-
tion is reached during program execu-
tion, a “1” is printed out on the ter-
minal and the operator is expected to
press any key. The time delay before a
key is pressed is used to generate a ran-
dom number. Rather unusual, but then
so are some other random number
functions!

Two statements offered by Micro
BASIC which are not found on many
small BASIC interpreters are a variable
increment and decrement. It also has a
CALL statement, and the ability to have
multiple statements on a line. Unlike
most other BASICs you can also have
comments anywhere on a line, even
between statements.

A sampfe of a small program written
in Micro BASIC is shown here so that

P™MICRO BASIC NUMBER GUESSING GAME"™
P P™WHAT WILL BE OUR UPPER LIMIT " IA P
P™NOV PRESS A KEY" LAll+»R,@=T $T= COUNT OF TRIESS

P"RIGHT.HERE ¥WE GO I*"

PPGUESS= ™ 1G LTI+#=T SINCREMENT COUNTS
TG>R P"TOO BIG" G5

TG<R P"TOO0 SMALL" GS

P"YOU GOT IT IN™,T,"TRIES"

P"WANT TO PLAY AGAIN? |=YES,@=NO" 1B

11 P"BYE" SMUST HAVE BEEN NOS

LEFT: Micro BASIC comes as a casselte with accompanying
literature. The earl
those now supplied are typed. ABOVE: A sample program,
written in Alan Peek’s Micro BASIC,

notes shown were handwritien, but

G1
MICRO BASIC NUMBER GUESSING GAME

WHAT WILL BE OUR UPPER LIMIT ?108

NOW PRESS A KEYis
RIGHT.-HERE WE GO1
GUESS= 758

TOO SMALL

GUESS= 175

TO0 BIG

GUESS= 767

TOO0 SMALL

GUESS= 771

T0OO BIG

GUESS= 769

TOO SMALL

GUESS= 778

YOU GOT IT IN & TRIES
VANT TO PLAY AGAIN? I=YES,8=NO?7€
BYE

How the sample Micro BASIC program
looks when running on a small 2650
system.

you can see how it looks. Note the
comments, identified by dollar signs at
each end. Also the input statements,
represented by 1" characters, and the
test statements (“T"). A listing is also
given showing the same program when
running.)

The literature which comes with
Micro BASIC includes a full source
listing. This is all hand written, but in-
cludes plentiful comments. Alan Peek
explains that he is happy for users to
understand how the interpreter works,
and to make mods and improvements if
they wish. A generous attitude, to be
sure,

The explanatory material supplied is
quite helpful and easy to follow,
although those with hawk eyes will be
able to spot quite a few spelling errors.
! did, but then that's part of my job!
Despite this 1 think most people will
find it tells them all they need to know
about Micro BASIC.

In short, Alan Peek’s BASIC seems a
very Jaractical niece of software, well
suited for small 2650 systems despite a
few unorthodox features. It seems
good value for money at $8.50 for a
cassette with instructions and source
listing, including postage.

You can get it from Alan Peek by
writing to him at 10 Gale Street,
Woolwich NSW 2110. @

ELECTRONICS Australia, Aprii, 1979

85

A training system from
Signetics: Instructor 50

Described by Signetics as a “desktop computer”, the Instructor 50
has been designed primarily as a training tool. It offers a number of
features not found on small evaluation systems, and comes com-
plete with both a comprehensive set of training manuals and a tape
cassette loaded with eight demonstration programs.

by JAMIESON ROWE

Since 1976 when microprocessors
really began to * take off”, many small
microcomputer systems using them
have appeared on the market. Some of
these have been intended for the hob-
byist, while others have been
“evaluation” kits or systems intended
to help engineers become familiar with
the particular microprocessor con-
cerned. ‘

But very few systems have been
designed. srecifically for training and
educational purposes. This is a pity,
because the concepts involved in
microcomputer operation are relatively
unfamiliar to many of the people who
are going .to have to operate them,

program them, design them into equip-

ment or service equipment which will
use them.

Until now, those wanting to become
familiar with microcomputer concepts
have generally had to get hold of a
small hobby or evaluation system, and
largely use it to teach themselves by ex-
perience. Most such systems have been
rather poorly supported by user
literature, particularly when it comes to
the introduction to gasic concepts.

The Signetics ““Instructor 50" system
is an attempt to fill this very gap. Itis a
small desktop unit designed specifically
for training, and comes complete with a
comprehensive set of training manuals.
Also supplied as part of the training
package is a cassette tape with eight
demonstration programs, ready to feed
into the system via a standard cassette
recorder.

Superficially the haraware side of the
Instructor 50 looks rather like many of
the small evaluation systems, -except
that it comes as a small cabinet rather
than a naked PC board. It has a hex-
adecimal data input keyboard and an
eight digit 7-segment LED display, with
a separate 12-key pad for feeding in
commands to the monitor program.

Like some of the evaluation systems it
has an inbuilt cassette tape interface,
which will operate with any normal

audio cassette recorder. However un-
like the majority of evaluation systems
it also has full buffering and decoding
for system expansion using the S-100
bus convention — a feature which will
no doubt make it of interest to hob-

Instructor 50 easier and more straight-
forward to use. :

For example there is a ““fast patch”
data entry mode, which allows instruc-
tion and data bytes to be loaded into
memory rather faster and more con-
veniently than the normal “display and
alter’”” mode. There is also a single-step
run mode, in which you can step
through programs instruction by in-
struction, and a breakpoint facility
which enables you to exit from a
program at any desired point with the
processor’s status preserved so that you
can analyse what had happened to that
point.

Neatly housed in a small desk-top case, the Instructor 50 system comes complete
with three comprehensive training manuals.

byists and small business users.

As you might expect, the Instructor
50 is based on the Signetics 2650
microprocessor. Along with the 2650 it
has 512 bytes of RAM for user programs
and a 2656 SMI (system memory inter-
face) device which contains a 2K byte
monitor program in ROM, together
with 128 bytes of RAM for the monitor
scratchpad.

The monitor program built into the
SMI is rather more powerful than is
usually found in evaluation systems.
Besides the usual facilities for entering
program instructions and data, examin-
ing memory and processor registers,
and running programs, it offers a
number of features which make the

92 ELECTRONICS Australia, May, 1979

The monitor commands concerned
with the cassette interface are also
more powerful than is usual. The “write
cassette” command used to dump a
program or data block to tape allows
the block to be given a file identifica-
tion number (from 00 to FF hex), while
the “read cassette’” command may be
used to seek and load either a specified
file, or the first file encountered. There
is also an “adjust cassette’” command,
in which the Instructor 50 can be used
to indicate the optimum playback level
for the cassette tape machine.

In short, then, the Instructor 50
hardware seems to have been designed
with particular emphasis on flexibility
and convenience of use — making it

especially suitable for use as a training
tool.

Of course what tends to make it of
even more interest as a training system
is the accompanying literature. This
comprises three separate manuals, all
about 215 x 275mm, and with a total of
about 600 pages between them.

By far the thickest of the three
manuals is the Users’ Guide, which is a
comprehensive guide to the system'’s
hardware, software and operation. This
manual gives an introduction to
microcomputer basics, a description of
sKstem operation, an explanation of
the control functions and monitor
commands, full details of the 2650 in-
struction set, and a useful glossary of
microcomputer terms. It also gives full
circuit details, a full listing of the
monitor program, and calling details
for useful monitor sub-routines.

The second of the manuals is an in-
troductory guide for those who need
additional background in logic, binary
numbers and basic computer opera-
tion. It goes into these subjects in con-
siderable detail, yet in a straightforward
and easily understood fashion.

The third book is a software
applications manual. Along with a brief
revision of Instructor 50 operation it
gives eight demonstration programs
designed to illustrate various aspects of
microcomputer programming. Each
program is described in depth, with an
explanation of its operation and use
together with a full listing.

The eight programs described in the
applications manual are in fact those
provided on the demonstration
cassette which comes with the Instruc-
tor 50, so none of the programs has to
be fed into the system by hand. The
programs are titled “Electronic
Billboard’’, ‘““Desk Clock’’, ‘‘Stop
Watch”’, “Crap Game’’, ‘‘Beat the
0Odds”, “Slot Machine’”, “Train”’ and
“Instructor 50 Music Theme”.

After looking through the manuals
and using the Instructor 50 for a while
my impression is that both have been
very carefully planned. They integrate
together to form an attractive teaching
package, which seems particularly well
suited for providing people with a
sound but easy to follow introduction
to microcomputers.

At the quoted price of $390 plus 15%
sales tax the Instructor 50 costs a little
more than typical evaluation systems,
but still seems, quite good value for
money considering its potential as a
training tool. | imagine schools,
colleges and industrial organisations
will find it of considerable interest.

The Instructor 50 is available from
Philips/Signetics stockists Cema
Distributors, Soanar Electronics,
Technico Electronics, Radio Parts, Fred
Hoe & Sons (Brisbane), Applied
Technology and Silicon Valley stores. It
is also available from the Electronic
Components and Materials division of
Philips Industries, with offices in each
state.)

LECTRONICS Australia, May, 1979

93

Psst! Want the most complex clock in town?

LED display for your 2650

Interfacing your 2650 Mini Computer to a set of common-cathode
LED displays requires only a single IC and a handful of other parts.
With such an interface you can have your 2650 perform many

nhumber display tasks — inciuding display of the time!

by DAVID EDWARDS* -3 anglo Road, Campsie, NSW 2194

There are many applications where a
processor is requirecrto drive a simple
numerical display, and this can be
achieved in a variety of ways. It is possi-
ble to have either a multipiexed or
non-mulitiplexed display, for instance,
and one can decode Irom binary or
BCD 1o seven-segment display format
with either hardware or software. The
circuit presented here uses hardware
for the BCD to seven-segment
decoding function, but has the mul-
tiplexing of the digits under software
control.

A singie 4511 CMOS IC is used to
convert incoming BCD numbers to
seven-segment format, and is con-
nected 1o bits 0 to 3 inclusive of the ”D*

non-extended output port on the 2650
system. Refer to the November 1978
issue for details of how to impiement
the 170 ports available with the 2650
CPU. Four 470k resistors are used to
puil the inputs low, 50 that the decoder
is present to the “O" state if no input
signals are connected,

The lamp test (LT} and blanking input
(BI} pins are tied Eermanently high,
while the latch enable (LE} pin is tied
low. +5V is supplied to the 4511 from
the 2650 Mini Computer, and bypassing
is provided by a 100uf eiectrolytic
capacitor, in conjunction with a 0.1uF
ceramic or polyester capacitor.

A four digit common-cathode LED
display is required, and several options

+8V $
160
15viwas

D QUTPUT
PORT

-
>
arok] a7ou] avou]

470k

F ey
A=V
il
il

NEBTE

o
-
-
b
k-

FOUR DIGIT LED DISPLAY

18 8
1 [] []

VIEWED FROM VIEWED FROM
ABOVE BRLOW port,

94 ELECTRONICS Australla, June, 1979

are available here. For the author’s
prototype, a National Semiconductor
mulitidigit dispiay type number
NSB7881 was used. This has four 0.7in
digits mounted on a common PCB.
Similar units with 0.3in and Q.5in high
digits are also available, coded NS5B3831
and NSB5881.

A similar unit by Fairchild is availabie
from Dick Smith Electronics, and was

"advertised in the March 1979 issue, at

the very reasonable price of $4.95. The
third aiternative is to construct the dis-
play from individual seven-segment
displays, such as the LT303 or TIL313
devices.

The 7 segment outputs of the 4511
are connected to the commoned seg-
ment lines via 82 ohm current limiting
resistors. The four common cathode
digit lines from the display are driven
by BC337 switching transistors. BC548s
could be substituted if required. Base
signals for the transistors are developed
from the remaining four D" output
port bits, bits 4 to 7 inclusive,

As you can see from the
photographs, the prototype was con-
structed on a small piece of Veroboard,
and connected to the computer by a
short length of rainbow cable. It is not
necessary 1o use a socket for the 4511,
just exercise the normal precautions
during soldering. Refer to the
November 1978 issue for details of wir-
ing the connector to the computer,

The completed display unit can be

®G1ER@ 440 459

Ba48 76 4@ PPSU 46

442 75 18 CPSL 18

Ba44 B4 82 1.0DI,RB 82
@446 FO WRTD, RO

a447 F9 TE BDRRJR1 @447
8449 A4 46 LODI, RO 46
J44B FO WRTD., R@

344C F9 7E BDRR.R1 @44C
d44E B84 25 LODILRO 25
2456 Fo WRTD.REG

3451 F9 TE BDRR,R1 G451
A450 B4 1@ 1.0DI,Ré 1@
8455 F@ WRTD. R@ .
B456 F9 7TE BDRR»R1 @456
2458 1B 6A BCTR,UN @444
Fig. 2: A listing of the small routine

written by the author to demonstrate
the LED display.

Fig. 1: The circuit for the author’s software-driven
four digit LED display. It interfaces to the 2650
Mini Computer via the non-extended “D* output

aa40 49 75 18 3F 02 DB 77 @8
0450 E6 60 1A 2¢ @6 49 75 20 f4
0460 19 @5 @@ CA 77 1€ €5 51 @6
@470 75 12 1B S3 @4 @5 F8 TE CO&
488 44 @F 17 DC F8 7E 17
249@ 3B 71 @1 a4 64 4@ 3B
@4A3 22 44 64 18 3B 5C 717 1@

tested before connecting it 1o the com-
puter. Connect +5V 1o the board, and
observe the display. No numerals
should be visible. If any are, switch off,
and check the wiring associated with
the four transistors. Assuming all is well,
use a clip lead to connect the number 4
input bit to +5¥. The right-most digi
should now read 0", with all other
digits off.

By applying +5V lo inputs 5,6 and 7
in turn, you should be able to make the
digits read zero in turn. If you want to,
you can apply BCD codes to the inputs
of the 4511 by pulling the appropriate
pins high, and check that the ap-
propriate digits are displayed.
However, if you were like the author,
you will want 1o see the computer
operate the display, and will not bother
to carry out this test,

Fig. 2 is a listing of a small program
which will exercise the display. It is
complelely relocatable, and can be
stored anywhere in memary. The first
address is the starting address. The
program assumes thal the display unit is
connected 1o the D output port,

The program repeatedly writes four
data bytes to the display, with a small
delay Letween each successive wrile.
The first data byte is X'82, and this dis-
plays the numeral 2 in the left most
digit of the display. The nybble "8~
{binary 1000) turns on this digit, while
the nybble 72" is decoded by the 4511
to produce the seven-segmeni code for
the numeral 2.

Similarly, the second data byte (X'46)
displays a 6 in the 2nd digit from the
left, and so on. The delay between each
WRTD instruction, produced by the
BDRR, R1 instruction, is necessary in
order to provide a glitch free display.
Without this delay, all segments of the
display tend to glow, due to inherent

75 21 o8
67 81 94 C! ES
1D 3B 1D F% 7C
Cé IB 68 50
75 18 @1 3B
a2 3B 6@
ce 17

94 C2
24 1A
FA 7A
5@ Sg
64 80
3B 63

clock.

circuil delays caused by
capacitance:

You can change the number dis-

layed by altering the lower four bils of
I::Jcalions X'445, 448, 44F and 454. To
turn a selected digit completely off, use
a non-BCD number such as X' A to F.

The second proFram presented here
is shown as a hex lisling in Fig. 3. It oc-
cupies locations X'440 to 4AA inclusive,
and is again completely relocatable. It is
called TIME, and will make the com-

uter and display unit appear to be a 24
ﬁour clock. it uses the Pipbug routine
GNUM to get an initial starting time
from the fine buffer.

To call the program, type G440 AABB,

stray

The photographs above show two views of the
prototype display built by the author on a small
piece of Veroboard. The wiring is not critical.

Fig. 3 (feft): A HEX LISTING OF THE TIME program,
which turns the 2650 and display into a 24-hour

where AA is the current time in hours
fe.g. 20 if it is BPM), and BB is the
current number of minutes past the
hour. D¢ not press the carriage return
key until the current minute has end-
ed; the lime displayed will then be cor-
rect to the nearest second (provided
you press the cr key preciselv at the 60
second time).

The program assumes that the CPU
oscillator is running at exactly TMHz.
Changing the contents of location
X'467 %)y one will vary the timing by ap-
proximately one part in 10,000. if loca-
tion X'467 is incremented, the clock will
slow down. To return to Pipbug, press
the reset switch.

ELECTRONICS Australia. June. 1979 95

An improved
2650 disassembler

Here is an improved disassembler program for small 2650
microcomputer systems, designed to complement the mini line

assembler. It will translate all
mnemonic form, calculating ope

2650 machine code back into
rand addresses as it goes — mak-

ing it ideal for program troubleshooting. With a minor change and

the addition of a small routine it
commented “source” listings.

can also be used to prepare fully

by JAMIESON ROWE

An assembler program can be a very
handy piece of software when you've
written a program and want to feed it
into your computer. But when your
program is in the machine and won’t
run properly or doesn’t do what you
expected (one of these is usually the
case!l}), the assembler won’t help you
much. Far more useful when you've
reached this stage is a disassembler
program, which as the name suggests
does just the opposite of an assembler:
translate from machine code back into
human-readable mnemonic language.

On the surface, a disassembler
mightn't sound as if it would be of
much help when you're trying to track
down those elusive program
After alt, in translating back to
mnemonic language it merely gets you
back to where you started! This might
be so in theory, perhaps, but in practice
thinis generally aren’t that simple.

What tends to happen is that after
feeding your program into the system,
either via an assembler or directly in
code you have assembled yourself, you
try running it and then discover the first
batch of bugs. Generally these are sifly
mistakes, which you correct as you find
them by patching in small corrections
— chaniing the condition criterion for
a branch, adding in missing instruc-
tions, and so on.

Unless you have a major change to
make, the tendency is to code the

atches yourself, as this is faster than
oading in and firing up an assembler.
But in doing so, you tend to make
coding errors which themselves
produce new bugs. In any case it is all
too easy to forget to change dis-
placements in nearby instructions
which, while not directly involved in a
patch, may be affected by it.

The end result is that after you have
made a certain number of patches, the
program has become rather different
from the way it was when you started.

78 ELECTRONIGS Auslralia, August

bugs.

This can make it quite difficult when it
comes to tracking down the more sub-
tle logical bugs, which are generally still
in the program waiting to be dis-
covered. At this stage of the
proceedings it can be a big help if you
can use a disassembler to provide an
accurate mnemonic listing of the
program as it now stands.

Another important area of use for a
disassembler is when you acquire a
program in "'naked” machine language
form, without any accompanying
source listing or other descriptive
literature. It may run on your system,
but you want to see how it works in
order to make sure that you use it
properly. Or it won't run on your
systemn, perhaps because it was written
for a slightly different system and you
want to work out how to modify it so
that it will work on yours. Or you may
want to see how to provide it with ad-
ditional features, or how to adapt it to
perform a similar but different job . ..

The listing produced by a dis

dis-

»G |BRZ |B9E 1BED 3@

2652 DISASSEMELER VERSION 2
IE9E IFIBED BCTA, U I|BEL
IBAl 3FID4E BESTA,UN I1D4E
1BA4 0604 LODI,R2 24
1BAS @7FF LIDI.R3 FF
IBAB @FPA42 LODAJR3 x]1A42+
IBAB CF7All STRA,RJ 1alle
1BAE FAT78 BDRR.N 1BA8
|BE® 8705 LODI,R2 @5
I1BB2 @FFA42 LODA-R3 =*=1A42#
1BBS (G2 STRZ,R2

1BES C3 STRZ,RJ

IBBT 462F ANDI, R2 [
IBEB9 47F2 ANDI.R3 Fg
1BBB E6€C COMI,R2 ac
IBBD 1CICCY BCTA,Z ICC9

Fig. 1: A sample of the disassembler’s
output. Its calling format is also shown.

, 1979

assembler won’t give you all of the in-
formation in a good source listing, but
if you can’t get hold of a source listing
it's certainly the next best thing.

As those with 2650 microcomputer
systems are probably aware, a small dis-
assembler for 2650 code has been
available for quite a while now. One of
the pioneering software programs
produced by the 2650 Users’ Group, it
was written by lan Binnie. A modified
version of this program prepared by the
present author was made available to
EA readers on our 1978 Software
Record.

Helpful though this early dis-
assembler has been, it did have a
number of disadvantages. One
problem was that it didn’t disassemble
3uite a few of the single-byte and

ouble-byte instructions; another was
that it made errors in calculating the
absolute address referenced by forward
referencing relative indirect addressing
instructions. :

A further problem was that it didn’t
fully disassemble absolute addressing
instructions, and gave no indication of
indirect or indexed addressing modes,

Taken individually, none of these
shortcomings was all that serious. But
collectively they have tended to limit
the disassembler’s value.

While | was working on the 2650 mini
line assembiler, it occurred to me that it
should be possible to write a more
comprehensive disassembler which
could make use of the assembler’s
mnemonic lookup table. So as soon as
the assembler was completed, | set
about writing a new disassembler along
these lines. It took a while to write and
debug, but finally here it is!

As the foregoing suggests, the new
disassembler is meant to be used in
conjunction with the mini assembler.
This is because it shares the same
mnemonic lookup table, located from
X17CF—1A01. It also uses the same
RAM buffer area (X"1A02—1A54} for its
own line buffer and scratchpad area, to
save memory space, Needless o say this
doesn’t mean that you can’t use'the dis-
assembler by itself — all you need to do
in order to do this is load it in together
with the lookup table,

The disassembler itself is 726 bytes
long, occupying memory from X 1B00
to 1DD5 — so that it fits into memory
immediately above the assembler.

The starting address is 1B00, and
you call it Ey typing an extended
PIPBUG "GO"” command. In other
words you type an input GO command
which includes information for the dis-
assembler, telling it the memory range
you want it to work on, and whether or
not you want it to split the output
listing into pages of a certain size, with
headings.

The precise calling format required is
similar to that for the earlier dis-
assembler:

G1B00sAAAASBBBBsCCr

where "’s”" stands for a space and
stands for a carriage return. AAAA is
the start address (in hex) of the section
of program you want disassembled,
whiﬁs BBBB is the end address. These
are the only two essential parameters
required, and of course the end ad-
.dress should be greater (higher) than
the start address — otherwise the dis-
assembler will throw you out with a
peremptory 3",

The third parameter “CC"" is an op-
tional one used to specify the number
of lines per page, where a long listing is
to be produced. CC is a two-digit hex
number, so you can specify pages of up
to 255 lines each. Each page will be
given the title 2650 DISASSEMBLER
VERSION 2, and at the end of each
page the disassembler will pause to
allow you to advance the paper in a
printer, etc. You can then prompt it to
continue with the next page by hitting

- any key on the terminal keyboard.

If you omit the third parameter, or
give it a value of zero (00), the dis-
assembler assumes that you don’t want
pagination. Accordingly it will omit the
titles, and simply provide an unadorned
continuous listing. This mode of opera-
tion is very suitable for quick dis-
assembly of numerous short instruction
sequences, when you are
troubleshooting — you don’t have to
worry about typing in the third
parameter, and operation is faster and
more efficient because the dis-
assembler doesn’t have to provide a ti-
tle each time.

A hex listing of the disassembler is

iven in Fig. 2. This is complete part
%rom the mnemonic lookup table given
as part of the assembler.

" In operation, the disassembler will

rovide mnemonic translations of all
Eytes it finds in the designated memory
address range, providing they repre-
sent valid 2650 instruction codes. Bytes
which are not valid 2650 codes will be

rinted at the start of the appropriate
ine, but will not be translated. Natural-
ly encugh the disassembler has no way
of knowing whether the memory range
you specify contains a program, or data
— it is Up to you to look after that.

If you do make a mistake and set it
loose on some data, don't worry.
Nothing will be damaged. All that will
happen is that the disassembler will try
valiantly to make some sens¢ out of the
data, translating it into whatever

FYIT)
T

§:1-1"]
1Bl
1829
1B3@
1bag
1859
I1B6@
1B7@
1p8@
189G
I BA@
1 BB@
1BC@
1BD@
| BE@
1BF@
1Cag
1C19
1G22
1C36
1C48
1G58
1C66
1070
iC8@
1G98
ICAQ
{CB@
1Cce
LcDa
1CE®@
ICF@
1080
ipig
1p2e
1D302
1D&0Q
1D5@
| Ded
1078
1D82
LDed
1DA0
1DB2
LDC@

1DD2 29

Fig. 2: A full hex listing of the new disassembler, less its lookup table.

3F
g2
18
[5E]
3B
12
6B
BB
BF
55
FF
46
1C
3F
JF
8A
F7
22
18
1B
ED
3B
46
3F
ae
1¢
D3
c3
1B
17
iD
3a
85
3B
46
3B
g2
a7
98
17
FA
1C
$3
4aF
85

lc
50
28
E7
Fo
EF
cz
a8
i
E7
aF
oF
1c
1c
1D
IF
75
86
14
82
FT -
E8
cl
1D
8¢
IF
3F
oF
ED
44
2B
22
ae
62
44
25
84
o4
6C
24
78
)
a1
4E
a1

' CE
GE
BA
1A
F2
Fa
76
92
es
5]
78
co
E§
Fé
3A
o
[4:1
GE
45
55
44
1D
<L)
ar
cl
23
5@
1D
24
78
FS
aD
-]
28
17
@F
14
77
17
a7
45
2a
45
98
e

FF 1B

pseudo-program it may represent. The
odds are that some of the data numbers
won't even' correspond to valid 2650
opcodes, so the listing will probably
have a fair number of blanks in the
mnemonic columns.

The main thing to note is that if you
do force the disassembler to struggle
through some data and then into some
valid program coding in the one run, it
may well be thrown out of kilter for the
first few walid instructions after the
data. This is becuase at the end of the
data section it may be part-way through
the disassembly of a “fake’” multi-byte
instruction, causing it to regard the first
byte or two of the real instruction as the
rest of the fake instruction.

tf this happens the first few instruc-
tions after tﬁe data will be wrongly dis-
assembled, until the coding forces the
disassembler back into correct “phase”
with respect to the start and finish of
each instruction.

incidentally the same sort of
malfunction can occur if you have
made a mistake in the coding being dis-
assembled, so that the npcode of anin-
struction has accidentally been chang-
ed into that for an instruction of

ELECTRONICS Australla. August, 1979

different length, This will again throw
the disassemgler out of kilter, because
it wilf be misled into regarding opcode
bytes as operand bytes and vice-versa,

There is also a third way the dis-
assembler can be led astray: by giving it
the wrong memory range starting ad-
dress, when you call it. Need|ess to say
if you tell it to start in the middle of the
first instruction rather than the start, it
has no way of knowing. it will simply
press on, translating away as best it can.

fncidentally, the fact that the dis-
assembler can be led astray in these
ways does not mean that it is faulty.
There is no way in which any dis-
assembler can tell if the numbers it is
processing are instructions, or data —
after all, the only difference between
an instruction byte and a data byte is
the way the computer is told to inter-
pret them. Similarly where a dis-
assembler has to deal with variable
length instructions, there is no way it
can infallibly identify opcode bytes and
distinguish them from operand bytes —
they're all just numbers.

In other words, make sure that you
start the disassembler off on the right
foot when you call it. And if it should

79

AN IMPROVED 2650 DISASSEMBLER

become misled by some data you've
forgotten to tell it to bypass, or by an
opcode you have accidentally changed
into one for an instruction of a different
iength, put the blame where it really
lies. After all, it's only a dumb program

— you're supposed to be the intelligent -

one!

After it has finished disassembly of
the designated memory range, the dis-
assembler will return to PIPBUGC as
usual. Or, to be mure accurate, it will
return to PIPBUG when it finishes dis-
assembiy of the last instruction which
starts in the designated range. This
means that when you specify the end of
the range to be disassembled, you
don’t have to work out the very last
byte of the last instruction in the range.
Just specify the address of any byte in
the last instruction to be disassembled

the disassembler uses the same format
as the line assembler, showing the in-
dex register in the R/C field im-
mediateiy after the opcode mnemonic.
The other point is that for convenience
the disassembler places its indexing
symbols AFTER the operand address,
not before it.

A third point to note is that the R/C
mnemonic produced for the BDRR in-
struction is a condition code mpemanic
(N) rather than the more usual register
code mnemonic. This is a minor short-
coming of the disassembler, due to a
programming compromise. It also oc-
curs when BIRR instructions are dis-
assembled.

Apart from these three minor
differences, the listing produced by the
disassembler follows the standard 2650
instruction format.

*ROUTINE TO PROVIDE COMMENT ADDITION
*FACILITY FOR THE IMPROVED 2658

*DISASSEMBLER.
1DD6 3F@286 BSTA,UN @286
1DD9 E48D COMI.RA ap
1DDB 1C288A BCTA,Z aa8A
1DDE E4@9 COMI,R@Q @9
1DEE 18064 BCTR,Z IDE&
1DE2 BBA® ZBSR *@2020
1DE4 1B70 BCTR,UN 1DDé
IDE6 BBAS ZBSR *P925
1DES @70F LODI,R3 aF
tDEA 3F2351 BSTAs,UN 2361
1DED 1B67 BCTR., UN 10D6

Fig. 3 (above). An optional add-on
routine which lets you add comments
to the listing.

Fig. 4 (right): A further routine, call-
e5 separately, which will print out
ASCH message strings stored in
memory.

— the disassembler will automatically
finish the instruction before it bows
out,

This can save valuable time, because
often you're working from an earlier
listing for reference, and it's con-
venient to give the end of the range as
the address of the first byte in the last
instruction.

Like the assembler, the new dis-
assembler uses a number of utility sub-
routines from PIPBUG. In this case it
uses GNUM to fetch its input
parameters, CHIN and COUT to com-
municate via the terminal, and CRLF to
provide carriage return/line feeds.

As you can see from the sample
listing in Fig. 1 (which is actually part of
the disassembler itself), the basic listing
produced by the disassembler is 30
characters wide. This makes it suitable
for all normal terminais and printers,

Note two things about the dis-
assembler’s listing, as illustrated in Fig.
1, One is that for indexed instructions

80 ELECTRONICS Australia, August,

J«ROWE 17471979

ACCEPT CHAR VIA CHIN SR

TEST FOR CR

EXIT VIA CRLF IF FOUND

TEST FOR TAE (HT)

GO SET UP IF_ FOUND

NOT CR OR TAB: ECHO VIA COUT
& LOOP BACK

TAB: GIVE CRLF

SET R3 AS COUNTER

& USE AGAP SUBR FOR 15 SPACES
THEN LOOP BACK FOR GOMMENT

2652 DISASSEMBLER VERSION 2

As you can see it is quite a short
-routine, which fits into memory im-
mediately after the disassembler itself.
To patch it into the disassembler, all
you need to do is change the instruc-
tion beginning at address 1D97 from
1C00BA into 1C1DD6.

What the routine does is cause the
disassembler to pause after it has listed
each disassembled instruction. You can
then type in any comment you wish
from :Ke terminal keyboard.

If you end the comment by typing a
carriage return, the routine will return
to the disassembler via the CRLF sub-
routine and the next instruction will be
disassembled after the usual carriage
return and line feed. However if you
end by typing “TAB" instead of carriage
return, the routine witl remain in com-
ment mode and will provide a carriage
return, line feed and 15 spaces. This lets
you feed in a full line comment, of the
type used to label routines, etc. The
three comment lines at the top of Fig. 3
itself were added in this way.

You can provide line spaces between
parts of your listing by using the TAB
key, or using the LF key.

Together the disassembler and
supplementary routine provide a very
convenient means of making fully com-
mented source listing. As well as using
them to produce the listing shown in
Fig 3, | have already used them to
produce a full source listing of the dis-

*ROUTINE TO PRINT OUT ASCII MESSAGES

*STORED IN MEMORY.

J«ROWE APRIL 1979

*USES MESSAGE PRINTING SUBR IN MY

*IMPROVED DI SASSEMBLER.

*PIPBUG.

CALL BY GIDFJ AAAA,
*AAAA 1S START OF MESSAGE.

AL SO GNUM IN
VHERE
NOTE THAT

*MESSAGE MUST END WITH A NULL

IDF@ 7660 PPSU 60

{DF2 3F@2DB BSTA.UN g2pB
IDF5 3F1D3A BSTA, UN 1DBA
1DF8 9B22 ZBRR pe22

You may also have noticed from Fig.
1 that the basic listing produced by the
disassembler is not all that much
different from a full "*source” listing —
the only thing lacking is the comments.
This suggests that the disassembler
could be used to produce source
listings of any program stored in your
system’s memory, merely by modiz;ing
it so that you can add comments.

In fact i have produced a supplemen-
tary routine which can be added to the
basic disassembler to let you do just
that. The supplementary routine is
shown in Fig. 3 — as a full listing
produced when it was working with the
disassembler, so you can see the type of
listing it lets you produce.

1979

SET FLAG FOR MARK, INHIBIT INT.
FETCH MESSAGE START

& GO PRINT

THEN RETURN TO PIPBUG

assembtler itself.

For those who would like to analyse
the disassembler’s operation in detail,
copies of the full listing are available
from our Information Service for a fee
of $4.00, to cover photocopying and
postage.

Finally, there's one thing the dis-
assembler won’t do: print out ASCII
message sirings in memory, sO you ¢an
see what they say, But there’s an easy
way to get around this — use a separate
Iittre routine which makes use of the
disassembler’s message printing sub-
routine. The routine you need is shown
in Fig. 4 above. It occupies only 10
bytes, fitting in above the comment ad-
dition routine; you call it as shown. @

Adapter PCB for
300-baud PIPBUG mod

Here is an item which should be of special interest to those with
2650-based microcomputer systems using the PIPBUG monitor. It
is a small adapter board which lets PIPBUG operate at either 110 or
300 baud, without the need to cut or patch the main GPU board.

by ANTHONY HAGEN

11 Stewart Street, Hawthorne Qld 4171.

Like many other readers | built the
2650 Mini Computer of May 1978, After
using it for a while, | felt the need to
have PIPBUG run at 300 baud rather
than 110 baud, in order to dump and
load more rapidly. However | hadn't
worked out how to do this before Mr R,
W. Brown’s solution was published in
the February 1979 issue, in the “Circuit
and Design ldeas’” column. Mr Brown’s
idea was such a good one that I resobv-

ed to put it into practice, but | didn’t
like the idea of cutting the tracks on the
main CPU board.

To avoid having to do this, | desighed
a small adapter 'CB which uses the
same basic circuit as Mr Brown’s, but
with a few pin connections changed.
The idea is that the adapter PCB con-
nects via a cable and 24-pin DIL plug to
the main PPCB, plugging into the
original socket used for the PIPBUG
ROM; the-ROM then plugs into a
similar socket on the adapter PCB.

Details of the adapter PCB are shown

TO SWITCH
IN VDU

+5V

Al 1.7k
Al

AZ—NC

a3
A

AS

A8

AB

: 74LS20
1 THLS02
: TALBOO
: TALS388

EYTTORN

SWITCH
3000 IN VDU

CHIP
SELECT

below, along with the slightly modified
circuit. | mounted the PCB between the
main PCB and the end of the case, on
two small brackets, Apart from the 24-
way cable back to the original PIPBUG
ROM socket, the new PCB has only one
other connection: a wire to a 110/300
baud control switch.

For convenience | extended this con-
trol wire to a spare set of contacts on
the baud selector switch of my-Low
Cost VDU, by using a spare pin of the
DIN connectors.

The earthy side of the 20mA serial
output circuit serves as the return. This
makes the VDU switch control both the
VDU and the CPU baud rates together.
- My adapter worked immediately,
and surpassed all expectations. | hope
other readers will be able to use my

D2 b3 D+ diagram.

ELECTRONIGS Australla, August, 197¢

adapter layout with equal benefit. @

o)

00,

bt

A

J R

.
. e _:’ o

Here are tull details of the adapter board: the circuit,
the full-size PCB pattern and the board wiring

8o

Cassette Interface
runs Kansas City, 1200 baud

Microcomputer users looking for a flexible, high performance
cassette interface should find the E & M Electronics Cl-1 of special
interest. It will operate at the “Kansas City Standard" frequencies
for compatibility with other systems, but also allows storage and
retrieval of data at up to 1200 baud.

by JAMIESON ROWE

The easiest way of storing and
retrieving both data and programs with
small microcomputer systems is to use
magnetic tape, usually in compact
cassette form. Ordinary audio cassette
recorders can be used for the job,
providing a suitable interface is used to
convert Eetween the computer’s logic
levels and the audio frequencies handl-
ed by the recorder.

To date most cassette tape interfaces
used with hobby computers have used
the frequency-shift keying (FSK)
technique, and in particular the “Kan-
sas City Standard” method whereby a
digital 1 is recorded as a tone of 2400Hz
or 4800Hz and a digital 0 as a tone of
1200Hz or 2400Hz. The higher frequen-
cy in each case is for data at 300 baud,
while the lower trequencies are for
data at 110 baud.

While capable of quite reliable
operation at these lower data transfer
rates, the Kansas City Standard is not
really suitable for higher rates. The
problem is that as soon as your com-
puter grows beyond a modest size, and
you develop some useful programs, a
data rate of 300 baud becomes
irritatingly slow. Programs and data
seem to take ages to get into and out of
memory, and Jou long to be able to
dump and load at a higher rate — say
1200 baud, which is available on some
of the new packaged personal com-
puters.

Unfortunately until now, if you have
used an interface designed to work at
1200 baud or some other high data rate,
you have tended to lose the com-
patibility of the Kansas City Standard.
This can create problems, because hob-
byists often want to exchange data and
prOﬁrams with each other,

The CI-1 cassette interface from E &
M Electronics has been designed to get
around these problems, It is a dual-
mode interface, able to work in either
the Kansas City format or in a high-
speed nmode capable of handling data
at up to 1200 baud. At his rate the
highest audio frequency recorded on
the tape is BkHz, which should be
within the bandwidth of most cassette

recorders. .

So using the CI-1allows you to dump
and load most of the time at up to 1200
baud for faster system operation, while
still allowing you to generate and han-
dle materia? conforming to the Kansas
City Standard, when required.

The CI-1 is based on a phase-locked
loop (PLL) encoding and decoding
system, to provide tolerance to tape
recorder speed fluctuations. The PLL
and filter circuitry time constants are
switched to change between the Kansas
City and high speed modes of opera-
tion.

To make the interface compatible
with just about any system, its com-
puter and terminal ports can be wired

The Ci-1 interface as
assembled from a kit. As
supplied it doesn’t in-
clude a case or power
supply, just the basic
PCB assembly.

for either 20mA current loop or TTL
logic level interfacing.

Other features of the interface in-
clude a “data present” LED, to make it
easier to find the start of data records,
and CMOS switching to simplify the
mode wiring. The interface runs from a
single 5V supply, drawing only 90ma
maximum with current-loop inter-
facing (50ma with TTL interfacing).

The Ci-1 interface is available as both
an assembled and tested unit, ready for
ogeration, and as a do-it-yourself kit.
This is a little unusual, because PLL in-
terfaces are usually a little critical when
it comes to some of the key com-
ponents. To get around any possible
problems, E & M Electronics select and
match the critical components for each
kit, and supply them as a carefully iden-
tified set. They also offer a back-up ser-

vice, in case the kit builder should get
into trouble.

Ed Monsour, the engineer behind E
& M Electronics, sent me a sample CI-1
kit with the idea that | could find out at
first hand how it goes together and per-
forms.

Although the instructions supplied
with the kit are a little brief, they are
quite clear and i found no real difficulty
in putting it together. The only trouble
was a very minor one: connections to
the PCB are via pins and push-on con-
nectors, and PCB drilling tolerances
made the connectors a little hard to
push on properly. But they responded
with a little care and perseverance.

My only other minor gripe is that the
switches supplied with the kit have very
short toggle levers. Presumably this is to
prevent inadvertent operation, but
some users like myself may prefer to
have a longer toggle at least on the
record/play switcE. Still, this is easily
fixed.

After following the setting-up
procedure given in the instructions, the

completed Cl-1 worked very well. In
Kansas City mode it made recordings
which were fully compatible with my
existing interface, and vice-versa. And
in the high-speed mode it performed as
series of dumps and reloads at 1200
baud without an error.

In short, then, [found the Cl-1inter-
face an excellent performer, and can
recommend it to anyone seeking an in-
terface which offers high-speed opera-
tion with a compatibility option.

The quoted prices of $69.00 for the
assembled unit and $39.00 for the kit
(both plus 15% sales tax if applicable)
also seem very reasonable.

Further information on the Cl-1
cassette interface is available from E &
M Electronics Pty Ltd, 136 Marrickville
Road, Marrickville, NSW 2204.
Telephone (02) 51 5880.

ELECTRONICS Australla, August, 1979 91

Using the PIPLA/PIPBUG2
ROM in your 2650 system

After some delay, Signetics has released the 2656/CP1002 ROM
device containing its “PIPLA” line assembler program, together
with an improved version of the PIPBUG monitor. Here are details
on how the device can be used with our 2650 Mini Computer

system.

by JAMIESON ROWE

If you built up our popular 2650 Mini
Computer system, you’ll probably be
aware that there was provision for a
mysterious 40-pin IC, on the expansion
board described in the November 1978
issue. This was explained at the time as
simply “a possible future addition”,
and until now we haven’t been able to
clarify the situation any further.

Actually 1 did give a clue to the iden-
tity of the mysterious device in the
April 1979 issue, in the article describ-
ing a simple line assembler program for
2650 systems. As you may recall, I men-
tioned that the assembler was based on
PIPLA, a program developed by
Signetics in the USA to go into a
“special ROM device” along with a
modified and enhanced version of
PIPBUG.

But now the full story can be told.
The mysterious device in question is
the CP1002, a custom-programmed ver-
sion of Signetics’ 2656 ‘‘system memory
interface”” (SMI) device, and it is finally
available.

| first learned of the CP1002 back in
April 1978, during a visit to the Signetics
facility in California. In fact during the
visit, the Signetics people very kindly
gave me a pre-production sample of
the device, in the expectation that it
would be going into production short-

Shortly after my return, David
Edwards and | were planning the ex-
pansion board for the 2650 Mini Com-
puter, and in view of the likely release
of the CP1002 we decided to allow
space for it on the board. However
after this was done we were advised by
Philips that Signetics had struck unex-
pected trouble with the device, and its
release would be delayed. By this stage
it was too late to modify the PCB
pattern, so we were forced to gloss over
the matter.

Apparently Signetics struck more
trouble than they expected, because as

. the months wore on the CP1002 still
failed to appear. This was one of the

reasons that | finally decided to
describe a modified version of the
PIPLA line assembler, in the April 1979
issue.

Well, the problems must finally have
been solved, as the CP1002 is here at
last. So without further ado let’s see
what it contains, and how you can hook
it into your 2650 Mini Computer.

As mentioned above, the CP1002 is
actually a custom-programmed ver-
sion of the Signetics 2656 SMI device.
This is a mask programmed N-channel
MOS LS! device, in a 40-pin package,
and containing 2K bytes of ROM, a 128-
byte static RAM, a clock oscillator, an 8-
bit latch and 8 multi-purpose pins
which may be programmed to serve as
either 1/0 lines or memory block chip
enable outputs.

In the case of the CP1002 version, the
2K ROM contains two useful programs.
One is PIPBUG2, a modified and
enhanced version of the familiar
monitor program used in most small
2650 systems; the other is PIPLA, a small
line assembler.

PIPBUG2 is similar to the original
PIPBUG, but it offers some additional
features. One is that it will operate at
either 110 or 300 baud, as far as com-
munication with the terminal is con-
cerned. It is automatically synchronised
to whichever of these rates is required,
simply by sending in a “U” from the
terminal keyboard after the CPU has
been reset.

Another feature offered by PIPBUG2
is that it is cagable of dumping a
program in the binary format needed
to program PROMs on a Data 1/O
PROM programmer. And there is a
third feature: the ability to perform
hexadecimal addition.

The only drawback of PIPBUG2 is that
Signetics have made it quite different
from the original PIPBUG in terms of
subroutine calling addresses, etc. So if
you have a swag of programs which
make use of the subroutines in original
PIPBUG, you’ll have to modify them for

74 ELECTRONICS Australia October, 1979

use with PIPBUG2. It isn’t just a matter
of changing the subroutine calls, either
— some of the subroutines use.
different registers, and different
parameters.

As for PIPLA, the line assembler, this
is very similar to the line assembler I
described in the April 1979 issue. The .
only differences are as follows:

1. PIPLA gives no initial identifying
message.

2. PIPLA assumes an initial origin at
0C00, rather than 0440.

3. PIPLA has no facility to accept the
DATA directive.

4. PIPLA does not strip the address of
non-branching absolute address in-
struction to 13 bits, so that can make
errors when assembling programs
for pages other than page 0.

Of course a final difference is that
PIPLA is meant to go with PIPBUG2. It
uses subroutines from the latter, and
thus is dependant upon it.

What it boils down to is this. The
CP1002 provides you with PIPBUG2 and
PIPLA, resident in ROM so that they’re
always ready to go. And together the
two programs are a big improvement
over the original PIPBUG, which you
can consider them as replacing. But
whether you’ll want to replace your ex-
isting PIPBUG ROM witﬁ the CP1002
will probably depend upon how many
programs you have that use the original
PIPBUG subroutines. If you’ve got quite
a lot, you may not find the idea too at-
tractive.

For those who do want to use the
CP1002, it can be connected into the
2650 Mini Computer quite simply. The
details are shown in the diagrams. As
you can see, the main thing is to add a
40-pin DIL socket to the previously un-
used space on the expansion board
(78UP9). Most of the necessary connec-
tions are made by the PCB pattern,
already. All you have to do to get the
ROM section of the device in operation
is to run a wire from pin 22 of the 2650,
to supply the WRP signal to the
CP1002’s pin 17.

The CP1002 has its own internal
memory block decoding, so that it
automatically assumes the address
range 000-87F. The ROM occupies the
addresses 000-7FF, while the 128-byte
RAM occupies 800-87F.

What this means is that to prevent
bus conflict, no other memory devices
«an occupy the same memory range. As
you won’t need the original PIPBUG
ROM any more, this will free the bot-
tom 1K (address range 000-3FF).
However you’ll probably have to shift
some of the RAMs out of the range
from 400-7FF and 800-BFF, to higher
blocks. Depending upon your system
and the amount of RAM you have, this
may be simply a matter of changing
Bnks at the output of the 74L5138
decoder on the CPU board.

As you can see, the CP1002 also
provides for a crystal clock oscillator for
the 2650 CPU. So if you haven’t provid-
ed your 2650 with a crystal clock as yet,
this can now be done by adding a
4.000MHz crystal, three resistors and a
apacitor as shown. Space is already
provided for these components,
alongside the CP1002 socket on the ex-
pansion board.

The output of the clock oscillator
appears at pin 10 of the CP1002, and is
at TMHz ready to connect directly to
the clock input of the 2650 chip (pin
38). Needless to say you will have to
remove the existing 74LS123 clock os-
dillator chip, to prevent it loading down
the new clock signal. If you have used a
socket for the 7415123 this will simply
be a matter of unplugging the IC from
its socket. Otherwise you may have to
unsolder the IC and remove it that way,
although some may elect to simply cut
the PCB trace connecting its output pin
5 to pin 38 of the 2650.

In the CP1002 version of the 2656, the
eight ““multi-purpose’’ pins are
programmed as memory block select
and extended 1/0 address enable out-
puts. Although these are unlikely to be

+5V

TABLE 1: 2656/CP1002 SMI enable outputs
PIN LABEL FUNCTION ADDRESS M/10
34 X0 1/0 enable FF 0
35 X1 Mem. select 0CO00-0CFF 1
36 X2 Mem. select 0D00-0DFF 1
37 X3 Mem. select OE00-0EFF 1
9 X4 Mem. select OF00-OFFF or
1F00-1FFF 1
8 X5 1/0 enable 00-03 0
7 X6 1/0 enable 04-07 0
6 X7 1/0 enable FF 0

2656
CP1002

_CPU BOARD <
ADDRESS BUS

of much use in the 2650 Mini Computer
system, Table 1 shows the significance
of eight signals. Note that four of them
are memory chip enables for 256-byte
blocks, whire the other four are enable
signals for extended 1/0 addresses.

When you have wired in the CP1002
and checked it out, you’ll be ready to
turn on the system and try it out. As
with the original PIPBUG, PIPBUG2
starts at address 0000 and thus comes up
immediately due to the power-up
reset. But in this case it doesn’t print its
prompt asterisk (*) immediately; in-
stead it waits for you to key in a “U”
from the terminal, in either 110 or 300
baud. This tells it which of the two rates
you want, and it then locks onto that
rate and sends out the prompt
character to show that it’s ready for
business.

The commands for PIPBUG2 are the
same as for its predecessor, except for
the two extras. The format for the hex
addition command is

H sp AAAA sp BBBB cr
where H is the command character,

9
22k§§
11
L
1k3£
9 1MHz CLOCK
TO’ 2650
8 (PIN 38)
4MHzT—T1sok3;
12

10

17

16

15

14

2656-CP1002 PIPBUG 2/PIPLA ROM CONNECTIONS

= 1MHz CLOCK TO 2650
(SEE TEXT)

|--————————<WRP (FROM 2650 PIN 22)
l————————M/i0

S «A/W

o

I

PINS 6-9, 34-37: SEE TEXT

———¢ OPREQ

ABOVE: The wiring require
Computer expansion board, In order to use the
CP1002. The address, data and supply connections
are provided already by the PCB.

AAAA is one of the hex numbers to be
added, BBBB is the second number, sp
is a space and cr is a carriage return.
Leading zeroes are not necessary when
keying in the numbers.

Note that you can use this command
to perform a hex subtraction by usiniit
to tell you the 2's complement of the
subtrahend first, then adding that to
the diminuend. To get the 2's comple-
ment you first work out the 1’s comple-
ment yourself, simply by complemen-
ting alrbits individually. Then use the H
command to add 1 to this figure, which
will give you the 2’s complement. Final-
ly you then use the H command again
to add this to the second number.

The format for the PROM program-
ming dump command is ’
P sp A sp BBBB sp CCCC cr

where P is the command character, A is
a parameter specigfing the bits of each
byte to be dumped, BBBB is the starting

address in memory of the data to be
dumped, and CCCC is the number of
following words (i.e., one less than the
word capacity of the PROM to be

e i G

d on the 2650

i

Mini

LEFT: The schematic connections for the CP1002
ROM. No chip enable signal Is required, as It
contains its own address decoding. The crystal

osclliator Is optional.
ELECTRONICS Australia, October, 1979

75

CP1002 “PIPLA” ROM

loaded). As before sp means a space,
and cr means a carriage return.

The parameter A is used to specify
the dumping format. There are three
formats allowed; you can either dump
all 8 bits of each memory byte, only the
least significant 4 bits of each, or only
the most significant 4 bits. The three
modes correspond to the following
values for parameter A: '

0 — all 8 bits dumped

1 — only the least significant 4 bits

2 — only the most significant 4 bits

If options 1 or 2 are specified, the
four bits of data are right justified and
the upper four bits are dumped as
zeroes.

The remaining command functions
provided by PIPBUG2 are virtually
identical to those of the original
PIPBUG. Hence there is the “A” com-
mand to examine and alter memory,
the “L”” command to load from cassette
or paper tape, the ““D”” command to
dump to cassette or paper tape, the ““S”
command to see and set the registers,
the “B” command to set a breakpoint,
the “C”" command to clear a breakpoint
and the “G” command to transfer com-
mand to a user program. These are all
used in exactly the same manner as
those of the original PIPBUG.

As with the first version of PIPBUG,
there are a number of utility sub-
routines in PIPBUG2 which may be call-
ed by user programs. The most useful
of these are described in Table 2. Note
that as mentioned earlier, some of
these sub-routines are significantly
different from those in the original
PIPBUG when it comes to use of
registers, etc.

The PIPLA line assembler starts at hex
0400. As mentioned earlier it gives no
initial identifying message and assumes
a starting origin of 0C00 for the
program to be assembled. So when you
all it, the response is simply

0C00.

Apart from this, its operation is very
similar to that of the modified
assembler | described in the April 1979
ssue. You can change the origin as
desired with an ORG directive, store a
string of ASCII characters with an ASCI
directive, and return to PIPBUG2 with
an END directive. The only directive
not available is the DATA directive.

There is only one other point to
remember. The input buffer used by
PIPLA is only 24 characters long, com-
pared with the buffer of about 60
characters used by the modified
assembler. So you cannot have a long
string in an ASCI directive, nor can you
fit in comments after the operand field
of an instruction line. But you can still
have normal comment lines (identified
by an asterisk as the first character), as
long as they are shorter than 24
characters. 2

TABLE 2: User-accessible subroutines in PIPBUG2

LABEL FUNCTION CALLBY
CHIN Inputs a character to RO from ZBSR *0009
the serial terminal (BB 89)
CcouT Outputs a character from RO to ZBSR *0007
the serial terminal (BB 87)
BIN Reads two hex chars from the ZBSR *000D
terminal, forms byte in R1 (BB 8D)
BOUT Prints the byte in R1 as a two-digit hex ZBSR *000B
number (Data in RO is destroyed) (BB 8B)
LKUP Converts a hex char in RO into ZBSR 0026
a 4-bit number (returned in RO also) (BB 26)
GNUM Fetches a 4-digit number from ZBSR *000F
the input buffer, stores in R1 and R2 (BB 8F)
1
STRT Stores R1, R2 into 80D, 80E ZB(%E%‘{‘;
ZBSR 0017
INCRT Increments contents of 80D, 80E (BB 17)
. BSTA, UN 01A9
CRLF Sends CR, LF to terminal (3F 01 A9)
CHNG Converts the byte in RC into two BSTA, UN 028D
hex chars returned in R1, R2 (3F 028D)
. BSTA,.UN 0360
FORM Outputs 3 spaces to terminal (3F 03 60)
! . BSTA, UN 0364
GAP Output 50 spaces to terminal (3F 03 64)

ELECTRONICS Australia, October, 1979

7

Use your 2650 system
to generate random Morse!

Trying to learn Morse code? The best way is to have an obliging
“old timer” send you random groups of letters and numbers, so
that you don’t anticipate or "journalise”. For those lacking an
obliging friend here is the next best thing — a program which turns
your 2650 Mini Computer into a random Morse generator.

03A3°Change from 76 49 CP Cd to ¢4 9¢
FpCe -
ﬁ;AEochange from 76 4¢ C¢ C¢ to ¢4 99
F§ C

The program may also be modified to
generate five character groups of

One of the common errors of
beginners in copying Morse code is to
“journalise”, or write down the end of
a word before it has been sent!
Random code groups are an excellent
practice material to help combat this
tendency. Once you are able to copﬁ

random grog\ﬁ)& plai?‘ !anguage wdi gaap 1F 85 E7 44 B8 AB
seem easy. Also, with random code
there are many more chances to hear PA58 A0 F@ 68 D8 56 14
the letters which occur infrequently in 0448 8C 04 84 L4 E4 F4
plain language. §478 4A 8C 54 88 09 E5
The program described here was $48§ 25 3B 29 38 27 3B
originally written for my Central Data
2650 system, but the program as listed §498 38 1A D1 45 FE ES
has been modified to suit systems using fAAF LB 3B 14 746 44 L9
the Pipbug monitor program, like the §4B8 C@ 9 3 83 FA 7%
EA 2650 Mini Computer. §4CO D3 95 #1 E5 17 14
The program generates five- Y
character groups consisting of four g§aD8 D3 17 06 OFf 3t 92
letters and oge figure, egf ZF90B 8]LUY SAES# 4D 9E OF 19 11 12
etc, at speeds ranging from 3 to 25
words per minute. The starting speed is DAF# #A 24 3B 3C [28
selectable and the speed increases by 4504 3B 2E CB 13 C1 #D
one WPM gverg five dminutes. The #3518 A4 81 CB #2 1B 42
current speed is displayed on the VDU,]
Below 10WPM, the characters are sent ::;: ;: :: gg ;; :: :§
at a 10WPM rate but the spaces
between the characters are increased. g54d8 82 94 OF 45 19 (1
As writrt‘en, thef rogram generates a #556 &1 88 #7 E4 94 15
tone at the 2650 flag output. The tone
frequency used is ignored by a 110 #3568 14 3F 02 B4 1B 77
baud VDU and nothing is printed on #5706 £5 06 847 11 75 91
the screen during the morse output. | §569 91 A9 &6 77 #1 da
use a loudspeaker in series with a 1600 §596 FB &4 89 57 75 FF
ohm resistor, connected between the
output of the flag buffer and earth, as a §5AF 4D 24 4D #F 32 33
monitor. #5B¢ #A 6D 36 33 29 2B
The program rgnlay be changed to give $5C6 53 5S4 41 52 54 4%
a voltage suitable for controlling an
exlerndf oscillator by changing the 4508 4D 00 94 91 20 24
code at 04A3 from 76 to 74. $5E9 3% 1D #4 1D A7 §F
Some NOP’s are provided within the §5F8 86 3F 85 5D IF 44
program (o facilitate the use of any 486 B4 3B 57 D3 #3 u#
other output port. For instance, the use
bit § of output port D as the tone 6410 92 B4 3B 446 BF §5
outp_ut,éhefollowing code changes are 2620 85 48 E? 19 1D 49
required. 638 A7 82 84 79 94 92
ggfgochange from CP CP CP Cd to g4 99 8648 TF 85 69 #C 95 66
049D change from 74 40 Cj Cd 10 ¢4 §1 450 85 aC #4 8Y CC #5
Fp Cp §468 AB OC 85 58 C1 D1
§467¢ 65 3D 84 37 3F 45
At right is the full hex listing of the author’s ran- #4684 CD #5 48 E5 04 1A
dom Morse program. It starts at 0440, #6940 96 IF P2 4% 1F 84

86 ELECTRONICS Australia, December, 1979

by RICHARD ROGERS, VK7RO
4/4389 Huon Road, South Hobart 7000

mixed letters, figures and punctuation
by changing 04F8 from 18 26 4 1A 1o Cy
Cq g4 39.

My thanks 1o Ron Brown, VK7ZRQ,
for allowing me to test the program on
his systemn.

79 28
co 18
FC CE
i 15
25 23
84 1M
Co]
t7 5C
a2]
13 #5
13 15
#8 18
b4 CF
§i af
3B L8
3] 16
IF 75
£s 1B
i
I §1
#2 45
17 #A
45 44
24 35
13 py)
57 4l
t7 4
EC 14
ne £c
48 #5
tD a3
82 7D
cC bA
5C 5
01 cc
5D 85
A 14
14

48
3L
B4
2D
38
A$
74
a0
LD
8B
ce
94
#9
]
1B
4
73
25
#B
86
SA
A4
52
#4
3F
1D
e
{3
c3
5D
19
15
6B
Co
54
85
92

Ef
1C
B6
3k
9%
co
A9
64
44
oC
29
17
i
'T)
58
EA
94
97
79
77
77
AF
I
#0
A
E7
96
92
IF
oF
19
14
IF
84
Ir
#1
85

28
kg
7h
3k
8F
L]
17
17
8p
88
25
1A
A7
¢4
al
1B
k]
a4
1}
EY
LE
52
56
i1
45
3
ce
82
3F
k13
mn
5C
&7
g4
20
19
85

Bo
7C
94
3K
i1
74
"
14
B3
#h
45
1B
14
"
5D
IF
FB
(13
(14
1A
1y,
AE
37
#A
A
"
Co
c3
84
#5
"9
9
#5
3
15
§2
1B

40
39
51
19
38
18
38
#4
85
i
14
1E
43
L]
a8
81
a4
§2
EP
B3
JE
a#
20
12
47
38
74
12
83
CF
E7
F8
83
#D
B1
#D

ES

i}
74
E2
14
17
1B
FA
F8
Cy
15
14
26
4%
£
4E
Ag
3B
63
a4
18
6A
fA
45
24
53
#9
75
7h
5
48
1E
£t
§C
6B
85
48
14

94
78
32
oF
38
“hA
72
7E
§7
87
87
#4
1A
]
c1
SE
4
1
#4
L
i)
#0
20
37
S
E?
FF
3F
&8
§4
ge
83
£5
Cb
54
ES
84

74
ca
86
2F
3B
89
a4
a¢
64
a9
24
ca
11
29
64
77
BE
of
77
4C
&5
41
4B
4D
45
1E
ce
Bé
#2
IF
E?
85
cC
gC
cc
18
ac

The S-100 Bus & how to
Interface a 2650 to it

Most computer enthusiasts have heard about the S-100 bus
system, and that a wide variety of memory boards, floppy disc con-
trollers, video interfaces, speech synthesisers and other fancy
peripheral boards are made for it. But do you know how the S-100
bus works, and how it evolved? This article describes the basic $-
100 system and tells you how to provide your 2650 Mini Computer

with an S-100 interface.

hy JAMIESON ROWE

Back in January and February 1975,
the US magazine Popular Electronics
described a build-it-yourself
microcomputer project called the
“Altair 8800". Based on the 8080
microprocessor, which had not long
been released by Intel, the Altair had
been designed by MITS, Inc, a firm in
Albuquerque, New Mexico, In fact the
authors of the Popular Electranics ar-
ticles were two of the MITS engineers
responsible for the design: H. Edward
Roberts and William Yates. Foliowing
publication of the articles, MITS began
selling the Altair in both kit and fully
assembled form.

The Altair 8800 wasnt the first
microcomputer described for home
construction. The US magazine Radio-
Electronics had described a machine
called the ""Mark-8" in their July 1974
issue, while here at Electronics Australia
we had begun to describe our EDUC-8
design in t!ine following month. But in
the US in particular, the Altair became
very popular — so popular, in fact, that
it is generally regarded as having
launched the US hobby computer in-
dustry.

Altrwugh the original Altair design
used permanently wired multi-
conductor ribbon cable to inter-
connect the various printed circuit
boards (PCBs), MITS scon changed
over to a motherboard and plug-in PCB
syslem to permit more Convenient ex-
pansion. The plug-in PCB cards were
double sided and mated with 100-way
edge connector sockets having two

rows of 50 contacts spaced on 0,125in
(3.2mm) centres.

Not all of the 100 connections
provided by the sockets were actually
used for the Altair's interconnection
“bus” lines. In fact only about 60 were
used initially, the rest being left for
future expansion. Sixteen lines were
used for addresses, eight lines each for
data into and out of the processor, and
the remaining 28 lines for control
signals and power supply rails.

As the popularity of the Altair design
grew, other manufacturers hopped on
the bandwaggon with memory boards
and a variety of peripheral interface
boards, all designed to plug into the
Altair's 100-way sockets and hook up to
its interconnection bus. The “Alair
bus” thus became a de facto inter-
connection standard, followed fairly
closely by everyone who wanted 10
make plug-ins for the Altair.

Then alternative processor boards
and complete computers started 10
appear. These were obviously designed
to compete with the Allair computer,
but used the same nominal inter-
connection bus so that they could take
advantage of the variety of available
plug-ins 1o offer the same degree of ex-
pansion flexibility.

It was not practical for competing
computer manufacturers to continue
calling the de facto interconnection
standard the *'Altair bus”, so it became
known as the “$-100 bus".

At this stage it shouid be noted that
because the original Altair machine

used an 8080 processor, many of the
control signals on the Altair bus were
basically 8080 control signals. This pos-
ed no problems as far as the first few
competing machines were concerned,
as they too used rhe 8080 processor. So
far a while at least, the $-100 bus was
basically a “pure’ Aftair/8080 standard.

But as ime wore on, ather processors
started to appear, and many of these
were “later generation” processors
which neither required nor generated
all of the control signals used by the
8080. As a result, manufacturers of
these new processor boards were faced
with either making the new processors
“pretend’” to be an 8080, orcsnroducing
$-100 boards which ignored some of
the control signals which had been
used on the original Altair bus.

Predictably, some took one course
and some the other. As a result the
newly named 5-100 bus began to
diverge from the original “pure 8080"
Altair standard. The divergence grew
even more as those making memory
and peripheral plug-in boards began to
take advantage of some of the features
offered by the newer processors and
dedicated controller chips.

So what happened was that although
the $-100 bus system had become an
“industry standard”, its effectiveness as
a standard dropped significantly.
Whereas it had been possible to plug
virtually any board made for the Alair
bus into an Alair machine and get it
?oing almost immediately, people soon
ound that all boards made for the S-
100 system were by no means equal.
There could be all sorts of problems in
trying to combine 5-100 boards from
different manufacturers, and some $-
100 boards just couldn’t be made 10
work together at all — either because
of signal timing differences, or because
some boards needed signals that the
others didn't produce.

Nowadays, the $-100 bus system is
stilf regarded in the USA as one of the

L T R L T L I O N L I B

The 100-way edge connectar socket used by 5-100 plugins.
has two rows of 50 contacts, spaced on 3.2mm centres and

78 ELECTRONICS Austratia, January. 1980

LU L I I R N T R

numbered 1-50 on one side, 51-100 on the other (running in
the same direction). Courtesy Radio Despatch Service.

+ OV 1 51 O 4 PV 1MHr ZLOCK -5%
a3, LY
1%V
BT 20—+ 18 p orREG ang an rioe
“18Y $TO———e— =18V L heans » J 5
LS
21— L asy¥
" 150—-| I '-'ﬂrif (raLRae)
CLOCK 4AC o L2 _— . agsET
o £3| l . ’i
TROT 3 O '
REABY 770
FRELET 18
- 230
POA MO e
AUN M D L MLIMAWAIT
-3V
FINT 73 O (), 1 L “&
740478 uo ® ¥
via 4 Panars Pitara
'Ic oil - C|INTEED
ragare
PHLOA 20 Taven + -l-
PO
redise Ta0erh
BINTA $00~ (ol INTAEK TAGK
FROLD 740 (Ll
MWST HO- ?
POBIN T8O ?
AWl 77 D ?
BMEMR 470n ?
SINP WO (
OUT 450—
AxV1L9%8
S
o 410~
3 1O 4 La N
1
oIs r:o——{——&r\
OH 910>
oy 410 4 >
Or2 410— e
N
::‘s:g 4 VD— POR YoE
'_L B OtheR
X L L NUNNR ci¥aLE
0 SIGHALE IF
. L L REQUIRED
007 WO ar
)
aox wo (q_%n' :
oos ""—‘—E_"<|_ s g
004 2O <]— B4\ EXPANBION FIGED
oD1 1O 4 J\IL B DATA BUS i
ooz uo—E—l—q—'-—Efl———u
001 380- ? <} ré B whr
Q00 WO— <} oo s
] "W
i

AGTS 330 (: -4 =

AG14 HO- ? —<J AD14 Y

AD12 N30 ? <} a01x

AD1Z 320> ? _A<} AG12
011

AO11 BT O— J
AAYE zro’—_—g——q—'—————ﬁ-lﬂ‘ﬂ
<} ABS

ADS HO—
4 Nl
ADS 040 ABY
[~ EXPANSION
> AGRRAESY BUS
AG7 B30 <} AB?
abe B0 E \‘q---m—--um
ADZ 280 2 4/1 Ap%
Aoa mo- ¢ <~ o §-100 INTERFACE FOR 2650 MINI COMPUTER
4D2 210 ? Q—-A—ww—-—'“i -100 |
AD2 41 O— (<J AB?
ADY 8O- -4 .<‘l D1
ADB 790~ > <} L
own 30.0———_ il

The author’s suggested circuit for an interface to allow 5-100 boards (o be used

with the 2650 Mini Computer.

major buses used by the hobby and
small business computer industry. But it
is now only one such bus among many,
even in that country; quite a few of the
newer personal computers have used
other bus systems for expansion pur-
poses. And it has never been as popular
in other countries as it has been in the

USA, for a variety of reasons.

Why then would you want to provide
our 2650 Mini Computer with an 5-100
ﬁus interface ? Simply because there
are still alf sorts of interesting plug-ins
which are made for the nominal 5-100
bus. Big static and dynamic RAM
boards, PROM boards, bubble memory

ELECTRONICS Australla, January. 1980

boards, floppy disc controllers, speech
synthesisers, video boards, music
generators, and all sorts of fancy 1/0
{input/output} interfaces. If you want
to hook up your 2650 system to way-out
things like these, an 5-100 interface is
probably the best way to do it

Table 1 shows the 5-100 bus signals
that have nowadays become fairly stan-
dardised. The table shows the pin
number and the usual shorthand label

79

TABLE 1: THE MAIN $-100 BUS SIGNALS

Pin| Signel Explanation

1 +8v Unreguiated input to +5V regulators on plug-in cards.

2 | x18v Positive unregulated voitage supply.

a | xrDY External Ready — ANDed with PROY (pin 72) and connected to
READY on the B0B0O. if XRDY and/or PROY ara pulled low, the CPU
will entar @ Wait or memory cycle extand state untll both ara high.
XRDY Is otten used as a front panal control and cen aflow Singla step-
ping. PRDY is usually used to signal valid deta from alow memaory

4 VIO Vectored Interrupt 0 - A vectored inlarrupt system | usad whan
very fast multipie Interrupt responseé ts required and is implemanted
with &8 speciat circuit card

5 Vit Vectored Interrupt 1

6 | V2 Vectored Interrupt 2

7 v Vectored Intarrupt 3

8 vi4 Veciorad intterupt 4

g VIS Vectored Intarrupt 5

10 | Vi6 Vectored Interrupt 6

11 vI7 Vectored Interrupt 7

12 -

{3 -

14 —_ These pins not standardisad.

15 —

16 | —

17 -

18 [STAT DSB| Status Disable — A low on this [ina puts the status line buffers
SMEMRA, SINP, SMI. SOUT. SHLTA. SSTACK. SWO, send SINTA Into

. |a high impedance state.

19 | C/C DSB (Command/Contro! Disabie — A iow on this iine puts the com-
mand/control line buffers PHLOA, PSYNC, POBIN. PINTE, PWR. and
PWAIT into & high impedance stete.

20 | UNPROT | uUnprotect — A positive pulse resets ths Protect fipfiop on the
currantly addressed board so that it can accapt data. (Compere with
PROT. pin 70)

21 | SS Single Step — Used by front panel. A high disables input buffer whiie
penal drives bidirectionei data bus.

22 | ADD DSB | addresa Diseble — A iow on this iine puts the 18 address line buffars
into @ high impadence state

23 | DO D5B Data Qut Disabie — A Iow on this line puta the 8 processor dsts oul-
put line bufters into s high impedance stete.

24 | @2 Phase 2 clock — The master timing signal for the bus tn 8080-basad
systems. -

25 @1 Phese 1 ¢lock

26 | PHLDA Helt Acknowiedge — Procassar command/conirol output signal
which goes high foilowing a HOLD stgna!. it indicstes that tha dats
and eddrass buses heve gone to the high Impedanca stete end the
proceasor has entered the HOLD state sftsr completion of the current
machine cycle.

27 | PWAIT Wait — Command/control signal out which, when high,
acknowledges thet processor 1S In a Wait or extended memory cycle
state.

28 | PINTE Interrupt Enable — Commend/control signal out which indiceles
condition of interrupt Enabie fiipliop.

29 { A5 Address Bit 5

0 | A4 Addraess Bit 4

a1 | A3 Address Bit 3

32 A15 Addresas Bit t5

33 | A2 Address Bit 12

34 | A9 Address Bit 9

35 | OOt Data Out Bit t

a6 { DOO Data Cui Bit 0

a7 | A0 Address Bit 10

38 DO4 Data Out Bit 4

39 DOS Data Out Bit 5

40 [DO6 Data Out Bit 6

4t [Di2 Data In Bit 2

42 DI3 Data In Bit 2

43 | DI7 Cata In BIt 7

44 { SM1 8080 siatus output signat which, when high, indicatas that the current
bus cycie ‘s en op code fetch.

45 | Sour Status output signal which, when high, Indicates that the address but

contains the agddress of an output davice and the deta bus will contain
the output dala when PWR is active {Iow).

(Conlinued on next page)

for the signal concerned, together with
a brief explanation of the signal’s func-
tion. The information should be falrly
self evident, but a few supplementary
comments may help to make things
clearer.

Note first that no signals are specified
for pins 12-17 and pins 55-67 inciusive.
This does not si niﬁ that these pins do
not carry signals, or that they are ig-
nored by $-100 boards and systems,
Quite the contrary; in fact, many
current 5-100 systems do employ these
pins 1o catry quite important signais.
The problem is that use of the pins is
not sufficiently standardised to allow
each one to {)e given a fixed signai
allocation.

For example pin 13 is used in various
systems to carry interrupt request
(tRQ), phase 3 shift clock {CK3), stand-
by power (STDBY), pause status
(PAUSE) or memory bank 8 select.
Similarly pin 67 is used in various
systems to carry signais such as phan-
tom disable {PHANTOM), non-
maskable interrupt (NMi), refresh dis-
able (RFSHDSBL), memory disable
(MDSBL), refresh (RFSH), video sample
clock (SCLK) or address line 19 {A19).

S0 for some 5-100 boards, these pins
may carry signals which are essential for
correct operation. But because the
signals are not standardised, it is not
really feasibie to provide them in a
generalised 5-100 interface.

The next thing to note is that among
the standardised signals, there is a cet-
tain amount of dupiication and func-
tional overlapping. For example XRDY-
bar (pin 3) and PRDY-bar (pin 72) both
erform the same function, while PiNT-
Ear (pin 73) and ViQ-vi7 (pins 4-11)
overiap in their functions. These redun-
dancies are largely the resuit of the ad
hoc way in which the 5-100 bus was
developed.

It shouid aiso be noted that many of
the §-100 controi signals are basically
those used by an 8080 microprocessor.
As such these signals are often not par-
ticuiariy compatibie with either more
modern processors, or peripherals
designed lo Fo with them. it may be
either difficult to derive the 8080-type
signals from those actually generated,
or difficult to use them once derived
and fed aiong the bus, or both.

So, in providing an $-100 interface,
you are faced with the choice of either
making your processor “'pretend” to be
an B08D and using the standard 5-100
controi signals, or ignoring these
signals anr? using alternative control
signals on some of the unstandardised
bus pins.

The first approach wili tend to give
vou somewhat greater compatibility
with the wide range of availabie 5-100
plug-ins. But it may aiso involve ciumsy
interfacing iogic, and prevent you from
taking fu agvantage of the features
offered by a more modern processor.
The second approach may tend to be
more elegant and more powerful, but

ELECTRONICS Australia, January. 1980 81

tends to introduce hassles when you try
to use certain $-100 boards. The choice
is up to you.

Of course, some of the 5-100 control
signals are more important than others,
Some signais are only needed if you
pianto have a fancy front panei on your
system — a feature which is not as pop-
ular nowadaﬁs as it was. Others are only
used for things like a hardware-
impiemented single step facility, or
stack management hardware external
to the processor. If you dont want
these facifities, or don’t need them,
then the signais can be ignored.

Perhaps the remaining general point
that should be made a%oul the $-100
bus is that as you can see, it uses two 8-
bit data buses: one for data into the
processor, and the other for data out of
the processor. This is a carryover from
the original Ahair deslgn, and is again a
iittle cumsr by modern standards. In
general only one of the two buses is
ever in use at any instant, so it would be
more elegant and efficient to have a
single bidirectional bus.

But if you want to make your inter-
face compatible with maost of the 5-100
plug-ins, you have to provide for the
two separate data buses — clumsy
though they may be. Of course you can
always provide your own bidirectional
bus as well, using eight of the unstan-
dardised pins. Just make sure that the
pins you use aren’t needed by any of
your 5-100 plug-ins for special control
signals,

Well then, let’s get down to specifics.
What's involved in providing an S-100
interface for your 2650 Mini Computer
system?

Before going any further, | would like
to stress that the remainder of this arti-
cle consists basically of a ser of
suggestions, rather than the description
of an interface that has been built up
and tested. The circuit diagram given
has not been tested, as this would have
involved a considerable amount of time
and effort which could not really be
justified in view of the limited interest,
But it has been prepared from a careful
survey of 5-100 literature and reference
material, and | believe it 10 be fully
practical.

Basically if you want to provide your
2650 system with an S-100 interface
which provides each and every one of
the various standardised control
signals, it isn’t easy. But on the other
hand, some of the control signals turn
out to be unnecessary in a 2650-based
system, except in very rare cir-
cumstances.

The interface shown in the circuit
diagram provides only the main control
signals, but should be sultable for inter-
facing your 2650 system to most $-100
plug-ins,

Let's run through the circuit, startin
from the bottom and working upward,
First are the 16 address lines ADO-AD1S5,
buffered by a pair of 81LS95 or simllar
Tri-state octal buffers. The inputs for

48

47
48

49
50
51
52
53

54

55
56
57
58
59
60
61
62
63
64
65

67

69
70
71
72
73

74

75
78
77
78

79
80
a1
a2
83
84
85
a8
87

89
91
92
93
94
95
98
a7

98

99
100

8INP

SMEMR

SHLTA

Elock
GND

+8v
=16V
88w DSB

EXT CLR

t

PINT

PHOLD

PRESET
PSYNC

PWR

PDBIN

AD
Al
A2
A6
A7
AB
A13
Al4
Al
DO2
Do3
DO7
DI4
DIS
Di6
DIt
Di0
SINTA

SWO
SSTACK

POC
GND

Status output signal which, when high, Indicates that the address bus
éontains the address of an input device and tha input data should ba
placed on tha data bus when PDBIN ia active.

Mamory Read — Status output signal which, when high, Indicates
that the data bua wlii be used to read mamory data.

Halt Acknowiedge — Status output signst which, when high,
acknowledges that a HALT Instruction has been axecuted.

Phase 2 clock Invertad

Signa! snd powar ground

Same as pin 1

Negative unregulated voltaga supply

Senss Switch Disabla — A low disables the data input butfers so tha
input from the sense switchas may be astrobed onto the bidirectional
data bus.

External Clear — A iow Clears I/0O devices.

-

rThase pins not standardised.

o

Mamory Write — A high indicates that tha currant daia on the Data
Out Bua Is to ba written Into the memaory location currantly on the ad-
dress bus,

8tatus of protect Hipflop {low for protect).

Protect — A poaitive pulse sets tha protect flipflop.

Run — A high Indicataa that ths Run/Stop lipfiop 1s sat to RUN.
Raady — See pin 3.

Intarrupt Request — A iow causes the processcr to Mcogniss an In-
terrupt request at the end of the current instruction or while haited. if
the CPU I8 in the Hold state or If the interrupt Enable fiipliop s reset,
it will not honour the raquest.

Hold — A low requests the processor to enter tha Hold siate. it altows
an axternal davice 1o gain control of the addrass &nd data buses as
800n as the currant machina cycle Is compietad.

Raaet — A iow causes the contants of tha pregram counter to be
clearad and the instruction register !s gt 10 0.

8ync — The command/coritro! signal out which, whan high, identifies
tha beginning of an 8080 machine cycle.

Writa — The command/control signa! cut which, whan low. signifies
the prasence of valid dsta on the Data Out bus.

Data Bus In — The command/control signal out which, whan high,
requesgts date on the Di bus ifrom the addressed mamory or 1/0,
Address Bit 0

Address Bit.1

Addrass Bit 2

Address Bit 8

Address Bt 7

Addraas Bit 8

Addrass Bit 13

Address Bit14

Address Bit 11

Data OQut 8Bit 2

Dsta Out Bit 3

Data Qut Bit 7

Date in Bit 4

Data In Bit 8

Data in Bit &

Data in Bit 1

Data in Bi1 0

Interrupt Acknowledge — Tha stetus output signai which, when high,
identifies the Instruction feich cycie(s) that immediately follow an
acceptad Interrupt requsest presented on PINT.

Write/Output — The stalus output signasl identifying a bus cycle
which, when low, transfers data trom processor 10 memory or I/0.
Stack — Statua output signal which indicates, when high, that the ad-
dress bus holds tha pushdown stack address from the Stack Pointar
and that a stack operation will occur on the currant cycle.

Power On Clear — QGeneratad by PRESET or power on. Used to resst
CPU and I/0 devices.

Signai and power grounc

ELECTRONICS Auatraiia, January, 1680 83

84

ELECTRONICS Australla, January, 1980

the buffers are taken from the address
lines (already buffered) on the 2650
Mini Computer’s expansion board. —

Nate that the 5-100 bus requires 16
address lines, whereas the 2650 system
only has 15 lines available (AD0-AD14).
The input of the 16th buffer is therefore
tied permanently 1o ground.

One enable input of each of the
B1L595 address buffer devices is con-
nected to a gate. This allows the buffers
to be disabled, and the 5-100 address
lines to be floated in a high impedance
state, either in response to the
ADD DSB-bar signal (pin 22) or when
the processor is halted. Other 5-100
boards are thus able to take control of
the address lines, for things like DMA
{direct memary access) data transfers.

Moving upward, we find two mare
811595 octal buffers, the first used to
buffer the 5-100 data out lines DOO-
DQ7, and the second to buffer the S-
100 data input lines DI0-DI7. As with
the address buffers, the data cut buffers
are controlled by another gate, so they
can be disabled either in response to
the DO DS8-bar signal {pin 23) or when
the processor is halted.

In addition, both the DO and DI
buffers are controlled separately by two
of the outputs of an 825103 device. This
is a programmable gate array, which
Signetics and Philips are making
available pre-programmed with the
logic functions necessary to generate
eight key $-100 contral signals from the
existing 2650 control signals OPREQ, R-
bar/w, M/10-bar and WRP.

As you can see, besides the two data

- buffer contral signals the device also

produces the $-100 signals SOUT (pin
45), SINP [(pin 46), SMEMR (pin 47),
PWR-bar (pin 77), PDBIN (pin 78) and
MWRT (pin 68). So it really takes some
of the hassles out of making the 2650
"pretend’” to be an 8080!

The preprogrammed version of the
825103 is coded with the suffix CK1179,
and is available from your normal parts
supplier on order from Philips In-
dustries. It should cost you less than
$10, including tax.

The programming chart for the
825103/CK1179 is shown in Table 2, for
the benefit of those who want to
analyse the logic functions involved in
producing the 5-100 signals. Note that
device inputs 14, 15 and IF are not used,
and can be left unconnected; similari
the ninth device output F8 is not used.
Note also that inputs 16 to IE inclusive
are all effectively programmed to act as
active-high enagle inputs, so that they
must all be taken to logic high level for
any output to be enabled.

What this means is that these inputs
may effectively be used 1o disable the
$-100 interface, whenever the
processor is dealing with the memory
and 1/0Q ports provided in the original
2650 system. This is done simply by con-
necting active-low enable signals from
the existing 2650 system to some of the
825103 enable inputs, as shown. The
remaining enable inputs are simply tied

TABLE 2: 825103/CK1170 PROGRAMMING: CHART

INPUT VARIABLES

(T I E N SO TN " S | B |
H H — —- = — H
H T — — — — H
— H L — — ~— H
— L L = =~ ~— H
- L H -~ — — H
H H — H —~— — H
H L — — — — H
H H H — -~ — H

!
]
|
|

]TxxTTxIrIT 5
T TXXITIrITIII

] TITIIIIII &
| ITITIXIIIXT &
| TXTrrxrrxxrzx

lrTxxrxxrrx &
| TXTXTXIITIII g

OUTPUT FUNCTIONS

IE IF | OUTPUT POLARITY NAME
T - Fo L. DOensble
H - F1 L Dianable
H o — F2 H SOUT
H - F3 H SINP
H = F4 H SMEMR
H = F5 L PWR
M = F6 H PDBIN
H — F? H MWRAT
- - F8 - -

10 = OPREQ: 11 = B/w; 12 « M/TO; 13 = WRP; 16—1E = enable inputs (active high}

high via pullup resistors.

S0 if you have already provided your
2650 system with 7k of RAM, in addition
to the 1k PIPBUG ROM, and this
memory is ail in pgge 0, you obviously
won't want any 5-100 boards to respond
when this part of memory space is be-
ing addressed. This is achieved quite
simpir by connecting the PAGE 0-bar
enable signal (from the 7415138
decoder on the expansion board) to say
input 16 of the 825103, as shown.

Similarly if you have already im-
plemented the {our 2650 non-extended
i/O ports, you can disable the 5-100 in-
terface whenever these are being ad-
dressed simply by connecting the C-bar
and D-bar signals (again from the
7415138 on the expansion board) to in-
puts 17 and i8.

Inputs 19-iE inclusive are still
available, and may be used to disable
the S$-100 interface for any other
memory blocks or 1/0 addresses you
may have already implemented. All you
need to do is derive an active-low
signal from each enable signal, and
connect these to the spare inputs. Since
there are six available inputs (apart
from those used for PAGE 0-bar, C-bar
and D-bar), this should provide enough
flexibitity for almost any situation.

Moving further up the circuit
diagram, we find the circuitry for the
remaining 5-100 control signals.

The XRDY-bar and READY-bar signal
lines are connected via a NAND gate
to the OPACK-bar input of the 2650

rocessor, to allow memory cycles to
Ee extended for slow memaory. Note
that the 2650 does not enter a wait state
when this is done, uniike the 8080; in
fact the 2650’s ""wait’’ state corresponds
to the B080 "hold” state. However, the
function of the two 5-100 “ready” lines
should be unaffected, as these are
basically used for memory cycle exten-
sion,

Don’t forget that in the original 2650
Mini Computer, the OPACK-bar input
of the 2650 (pin 36) was permanently
earthed. So the copper track of the PC
board will have to be cut, to disconnect
this earth and aliow the pin to be con-
trolled. As the copper track concerned
made other earth connections, a wire

link will heed to be added to maintain
these connections.

A fiipflop Is used in the interrupt
logic, as the INTREQ-bar input of the
2650 must be heid low until it Is
acknowledged by a high on the
iINTACK output, A ﬁnk {L4) is shown, to
allow you to select whether the PiNT-
bar or V10 inputs from the $-100 bus are
used to set the flipflop and initiate in-
terrupts. As may be seen the flipflop Is
reset by either INTACK golng high, or
the reset signal. The latter ensures that
the flipflop is always in the reset state
when power is applied to the system.

The dashed gate shown in the reset
circuitry is actually the 74LS38 gate
originally used as an inverter in the
reset line of the 2650 Mini Computer.
The second input (pin 4), which was
originally tied to logic high, is now used
to accept the S-100 PRESET-bar signal

(pin 75). This allows $-100 plug-ins to

reset the systern if necessary.

Links L1, L2 and L3 are shown 10 in-
dicate that you have a choice in
deciding which signals to feed out on
the 5-180 clock lines #1 (pin 25), @2
{pin 24) and CLOCK-bar {pin 49). As the
2650 does not use the two-phase clock
system of the 8080, the choice of signals
fed an these lines will depend upan the
requirements of the 5-100 plugins you
want to use.

1f the Flug-ins basically only use the
@2 signal as a data strobe, for example
{(this is fairly common), you will
probably find that the buffered OPREQ
{("BOPREQ'") signal wili be most
suitable. On the other hand one or
other of the 5-100 clock signa! may be
used as a source of synchronised high-
frequency signals (say by a video inter-
face board, as a dot shirt ciock and In-
put to the timebase divider), in which
case the TMHz master clock signal may
be more appropriate. Or you may need
to provide both BOPREQ and the
1MHz clock, on different lines, for use
by different boards. it will depend
upon the S-100 boards you are using.

The only remaining paint to note
about the interface circuit concerns the
power supply rails. By convention, §$-
100 plug-in boards have their own 5V

regulators, and are supplied with an

unregutated (or only pre-regulated) in-
put of 8V DC. So the main supp!y ratl of
the 5-100 bus is the +8V line connected
to pins 1 and 51, and referred to the
ground pins 50 and 100.

The +16V and -16V rails shown on
pins 2 and 52 are secondary supply rails,
used rather less frequently by plug-ins
requiring higher voltage for op amps,
D-to-A converters and so on. These
boards generally have their own 12V
regulators, working from the un-
regulated 16V lines.

If you don’t plan to use plug-ins
which require the higher rails, you can
forget the +16V and -16V power
supplies. Al you will need is an 8V
power supply, capable of supplying the
current. needs of your $-100 plugin
boards. Needless to say, the ground
reference of the 8V supp(y will need to
be connecled to the ground side of the
ex[stinﬁ 2650 system power supply.

Finally, a few suggestions about the
physical side of your 5-100 interface.

I would suggest that you don‘t try to
design your own interface and mother-
board. There are a number of good §-
100 motherboards already available, at
quite reasonable copst. Similarly there
are quite a few 5+100 'development
boards”, complete with gold-plated
double sided edge connector pads, and
designed specifically 10 allow you to
wire up custom plug-ins,

As both these items are readily
available, it seems to me that the easiest
way 1o build your $-100 interface is to
wire it up on one of the development
boards, with one or more lengths of
rainbow ribbon cable to connect the
board into your existing 2650 system,
The $5-100 connections can be made
directly to the appropriate edge con-
nector pads, so that the interface board
can then be plugged into a standard S-
100 motherboard.

This way, you won't have to design or
etch any custom PC boards; you'll be
using readily-available standard boards.
The interface will simply become
another $-100 plug-in, which happens
to have an ““‘umbilical cord”’ back into
your 2650 system. You also have the op-
tion of using a standard S5-100 power
supply, case and card cage if you wish.

ELECTRONICS Australla, January, 1980 as

Improving the 2650
mini Line Assembler

If you have used the 2650 Mini Assembler described in the April
1979 issue, you'll know it is a little inflexible when you want to cor-
rect typing errors. Here are two smalil modifications which make it
very much easier and faster to use.

by A. M. KOLLOSCHE

Higginbotham AvenuB. Armidalp NSW 2350

After using the 2650 Mini Assembler
for a while, I became a little irritated by
its lack of any facility to let you correct
Mminor typing errors as soon as you
notice them, before the end of the line.
As you'll know if you've used the
assembler, you have to finish the line
and either reset the original to step
back and re-type the line {assuming the
assembler doesn’t throw you out), or
restart the assembler and also reset the
origin (if it has thrown you out). In both
cases the lack of flexibility is quite in-
convenient, as well as being tedious
and time consuming.

To get around these problems | have
developed two modifications for the

EU[routine. Its effect is to let you step
ack along the line input buifer, using
"delere’” (rubout) characters. So if you
spot a typing error before you have
finished a line, you can step back to it
and then type the rest of the line again
before typing a carriage return.
Actuarl the modified routine is
arranged to echo ‘‘backspace’
characters to the terminal, instead of
the incoming “delete’” characters, so if
your terminal can perform the
backspace function it will step the cur-
sor back to show you where you are go-

ing. With terminals which don’t per-
form backspacing you'll have to count
back yourself, but this is usually no
problem.

A disassembler listing of the modified
input routine is shown below. Itis one
byte longer than the existing routine,
ending at X"1AFF instead of TAFE,

The second maodification is a little
more elaborate. It involves an ad-
ditional error handling routine, a
modified starting sequence and a cou-
ple of subroutines, together with
changes to all the error throwout ad-
dresses.

The idea of this modification is that
instead of throwing you right back to
PIPBUG when it finds an error, the
assernbler now prints a curt '? FRROR”
message, and reprints the address of
the fine concerned so you can re-type it
correctly.

The disassembler listing for this
maodification is also shown below. !
think you'll find it worthwhile. .

«*MODDIFICATION FOR IMPROYED ERRDR HAVDLING

assembler, which make it considerably 159E P2 &e *LOAD & STORE SUBR
faster and more convenient to use. 1548 @DA4BD LODA,RI 848D
The first modification is to the line in- ISA3 @EB4QE LODA,RZ B4BE
1SA5 €976 STRR,R1 159E
*MODIFIED LINE INPUT ROUTINE 15A8 CATS STRRsR2 159F
1SAA 17 RETE ., UN
1ACD 2780 LBDI,R3 B0 *LOAD ADDR SUBR
1ACF E73C COMILR3 3C 1548 0971 LODR,R1 I59E
1ADt ICISB® 8CTA, T 15P@ 15AD BA70 LODR.R2 I59F
1AD4 372734 BSTA,N 8236 1T 1T EEESJE‘:ROR HANDLING ROUTINE
h " F NG X
i:g; g;‘;; g‘é'\;;‘ig 7 I5BE 75FF cPsL FF
’ 1AE6
\Apa 21 LB D7 RS 15B2 74BF CPSU eF
_ 15B4 8583 LODILRI @3
tanc 1871 BCTR, Z LACF : 15B6 BDTSC3 LODASR] 15C3#
LADE B478 LODI,RE @3 430 BEGINS MERE 1589 BEAS 2BSR e
1AER B3AJ ZBSR *0.722 PRINT BACKSPACE 1558 Fe79 EDRR. P L5 B
LASZ ATE1 SUBI.RI @I DECREMENT BUFF ®TR 580 BEAS ZBSR +3825
taE4a LRB6S BCTR, U\ 1ACF & LNIP BaCK 1SBF 38&a BSTR, U 15AE
L AES 8503 LbDI,RI @3 15C1 IF168C BCTA.UN 168C
1AES ED7AGY CO™As P 18C9 # *ERROR MESSAGE
LAES 13¢9 BCTR,Z LAFS I5Ca 524F52 ROR
IAED F979 BHRR, P | AES 15C7 S24a528 RE
LAEF CF7482 STRALRI 1A32# 15CA 203F H
1AF2 BRaAB 7BSR *2026
1AF4 D359 EIRR,UN 1AGF *MDDIFI1ED START SEQUENCE
1AF6 CFBa29 STRAsR3 8429 166C 3DFB BSTR.UN wI1SFE
1AF9 €D@a2A STRA, Rl 2424 168E 3F t5A@ BSTA,UN 1548 53 TO NEY SUBR
1AFC €708 LODI,RZ BA 1611 1I8DC BSTR,UN % 1SEF
LAFE 9BAS ZBRR LR 1613 az LODZ,R2
1614 €l STRZ, 31
ABOVE: A disassembler listing of the modified :gif’, g?gi Egg?‘g; *;2”
line input routine, which lets you step back to 1619 3FA2B4 ESTA:UN 2584
correct typing errors. 161C 3BDRA BSTR.UN ®15F1

RIGHT: A similar listing of the modifications to.
allow you to re-type lines that are thrown out by
the assembler. It now types "?ERROR" and

repeats the address.

MAODIFY THE ERRCR

THROWOUT ADDRESS TO X'1%8¢

AT THE FDLLDYING LOCATIONS:
162F-3@ 16BA-BB 1724-05 1745--46
t78e-81 1A93-94 1ADZ2-D13

76 ELECTRONICS Austraila, February, 1880

“Trace” routine helps
debug 2650 programs

When you're trying to debug a tricky program in assembly
language, a breakpoint isn't always the answer — you can general-
ly only call it once. Here is a “trace” routine for 2650 systems which
can be rather more heipful. You can calil it any number of times,
and each time it is called it prints out the contents of all processor

registers.

by JAMIESON ROWE

Like most small microcomputer
systems, the 2650 Mini Computer
Erovides only one debug aid: a pair of

reakpoints, which are software im-
plemented by the PIPBUG monitor
Erogram. These can be quite handy,

ut there are many occasions when
they just don't help enough.

For a start, each Ereakpoint can only
be used once. When it is executed
once, PIPBUG replaces it with the
original instruction. $0 you can't use
the breakpoints to track down bugs
which are inside loops, for example —
the breakpoint disappears first time you
go around the loop!

The other main drawback is that the
breakpoint “runtime” routine simply
saves the processor register contents in
RAM, and then transfers control back
to the PIPBUG command loop. So if
you actually want to examine the
registers, you then have to use the

Most of these disadvantages can be
avoided by using the "trace” routine
described in this article. It was
developed some months ago for this
very purpose, and since then it has
helped me considerably in tracking
down elusive bugs.

Basically it consists of a subroutine
which may be called any number of
times, by temporarily patching ap-
propriate BSTA or BSTR instructions
into the program you are trying 1o
debug. Wﬁen it is called, it first saves
the contents of all of the 2650 registers.
Then it prints them all out on the ter-
minal, to provide a "snapshot” of the
current processor status. Then it
restores all of the registers again, and
does a return.

#DIAGNOSTIC "“TRACE™
*2658 S5YSTEMS.

Before it prints out the register con-
tents, it prints three spaces. This is to
prevent canfusion if the program you
are testing already involves printing.
After the spaces it prints the registers in
the same order that they are provided
by PIPBUG: RO, R1, R2,R3,R1, R2", R¥,
PSU and PSL. Finally it prints a carriage
return and line feed, so that each
“snapshot” is on a different line.

A full source listing of the trace
routine is shown helow, together with a
sample of its operation. As listed the
routine is located from 0440 to 0495, but
it may be relocatéd anywhere in page 0
without changes. Note that it stores the
processor registers in locations 0400-
0408 — ie, the same locations used by
PIPBUG for this purpose,

The sample tracing shown below was
produced by patching a call into the
author’s Disassembler program, at the
end of the PRINT MESSAGF subroutine
{1D9C). The code at 1D9IC was changed
to 1839, to branch tc 1DD6 where a
patch of 3F0440, 1F1D%4 was located. As
you can see this gives a “snapshot”
after each character is printed from the
line buffer. @

ROUTINE FOR

J«ROWE MARCH 1979

PIPBUG ""see and set the registers” (S) %ﬁf’.g ?gm‘% 2;23‘ Re Baae :A‘;EU%
command. This can be very tedious and Bans CCO4RT STRALR® 24@7
time consuming when you have to use R4aT 7668 PPSU 60 FORCE TO MARK, INHIBIT INT.
the breakpoints aver and over. Ba49 13 SPSL SAVE PSL
P44A GCE4RB STRA,RE 8408
Paap 7710 PPSL 18 FORCE TO BANK |
*G 18P 1B@AZ 1822 @a4F CDRads STRAsR1 P4R4 SAVE BANK | REGS
! PEIANZEACAIIRRPE2BA @452 GE@4BS STRA, R2 pags
B BOIAA2CIBF420QEI80 8455 CF@4@6 STRA;R3 @486
[4 PRIAP222BA3PORERED @458 7519 CPSL 19 FORCE TO BANK G, CLR C & WC
8 @B1AG2032F3ARBERSR 24SA CDE42 | STRA;Rl @481 SAVE BANK @ REGS
zameznaeezeam:gaﬂ RIGHT: A full listing of the @45D CE@4@2 g;‘gn,az gugg
7 BOlAG2G5PR3TAGERED . . 2468 CFoad3 A»R3 4g
5 2elanzecanicparzsg |(4Ce routine, complete with iy Soiade Dol G50 priwt 3 seaces
& @@laca@TemledpEase Comments so that you can gaee arrr LODILR3 FF SET R3 AS INDEX
P 0adlaPzesee3egdEsse see how it works. Pa6s 699 LDDI.RE @9 & R2 AS COUNTER
A0 1AD2A5BZ2000ER5 @ Ba6A BFR40E LODA,R3 4d@+ FETCH SAVED REG
O01AB2ZACE20PIERS D B46D C1 5TRZ,R1 MOVE TO R!
201AZ2PE0R20RRE280 . Gu6E 3FE269 BSTA,UN @269 PRINT VIA BOUT SUBR
antaazeceazperE28a LEFT: Asample ofthe routine ga7) rar7 BDRR. N 46A LOOP BACK TIL DONE ©
A212200002008E282 | pperation. Here it was 473 3FeeaA B5TA,UN @@8A THEN GIVE CRLF
o7 1AU2CEARABERERSE 54 p o he into {he 2476 @Dp4@! LODA,R1 @4@1 RESTORE ALL REGS
P BALAD2AFARSARAE2SD Lt @479 GEA4R2 LOCA.R2 Q42
P UB1A@212005ARAE23Q 1sassenoler program, S0 puac arases LOCA;RI @463
5 ezlag2liags3eeceag that a ‘snapshot” of the gz47F 7714 PPSL 10
U EALAG2t2pe55@A@ER8e processor registers is printed @as1 epzapa LODA, BRI @44
BBLAREEI20288CER32 fter each characier from the @484 ZEP4ES LgDA.Sg gag:
PAlAB2tadA2ARECERSE oS e 48T Bre4ast LODA, 4
e0laez 1sepzeaoEzse isdssembler’s line buffer. GL8A BCOACT LODARE QaR7
PRLIAR2t6PP2BABEREA a48D 92 LPSU
@ZlAG2IT7AC2COQERER PABE @CBA4CE LODA,RA 2428
PEIAA2IBRA2PERAELE D g491 93 LPSL
6 BelAR2192P36ARE2EM 2492 ACR48E LODA,R& @4@C
¢ OP1AR2 LAA@3RACE28R na9s 17 RETCs UN & RETURN
84 ELECTRONICS Austrelis, February, 1980

Micro Basic Programs
for 2650 systems

Temperature Conversion, Radio Log

Here are two short programs written in "Micro Basic” — the cut-
down version of BASIC developed for small 2650 computer
systems by reader Alan Peek. One program converts temperatures
from one scale to another, while the other is a program to manage

a radio amateur’s contact log.

Fcllowing our review of Alan Peek's
“Micro Basic” for small 2650 microcom-
puter systems, published in the April
1979 issue, it would seem that quite a
few readers have obtained Mr Peek’'s
interpreter and have been working
with it. Already two readers have sent
in programs they have developed, and
as they seem likely to interest readers
we are publishing details here.

The first program came from Mr Syd
Brooks, of 6 Edgar Street, Ferntree Gul-
ly Victoria 3156. It is a simple little
program which can convert between
the Celsius, Fahrenheit, Kelvin and
Rankin temperature scales. Mr Brooks
has provided it with a little humour, to
add to the interest, along with some
checks and reprompts in the event of

P"PROGRAM TO CALCULATE"

P

P"WILL YOU GIVE C,K,F OR R?
TA:17@,A:75,A:67,A:82 Gl<
P“PRESS + OR =" AB TB=43
TB=245 L1l#=X G2>
Ga<

P'"WHAT 1S TEMP"
120 TA=7¢ Ga4>

11 TA=82 G4>

12 TA=67 G4>

13 TA=75 Ga>

14 LE4692+=R,R=E

WRICUAD WM —

I1E LEX%=E

L1=X G3>

an invalid entry when the program is
being used.

The complete listing of the program
is shown in Fig. 1, with a sample of
operation in Fig. 2. As you can see, it is
fairly self-explanatory.

Gl
PROGRAM TO CALCULATE
DEGREES C.K,F OR R GIVEN ONE

WILL YOU GIVE C,K.F OR R? F
PRESS + OR -+

WHAT 1S TEMP?2]2
F=212 R=672

C=180 K=373

WILL YOU GIVE C,K,F OR R?

P"DEGREES CsKsF OR R GIVEN ONE"

LYY

Fig. 1, at left is the

full listing of temp-
erature conversion
program while Fig. 2
above is a sample of
its operation.

15 LE46@~3F,F32~-5%9/=C,C273+=K,E=PR G3>»

16 LE273+=K,K=E

17 LE273~3C,C9%5/32+=F, F460+=aR, E=zK
18 TX<@ P"THAT'S IMPOSSIBLE STILL!" G3>

19 TC<4@s P"THAT'S COLDI" G2>
2@ TC>1999 P"GUESS™ G3

21 P

22 PUC2"C," K="H,
23 563

24 3A=C,F,K OR R

" F='"F,' R="R

B=SIGN E=TEMP$

25 $C=CELS!US F=FAHRENHEIT K=KELVIN §

26 $SR=RANKIN &
27 E

The second program came from Mr
Horst Leykam, of 165 Victor Street, Dee
Why NSW 2099. Mr Leykam is a radio
amateur, with the call sign VK2BHF, and
explains that he wrote the program in
an effort to produce a more elegant
and effective way of maintaining and
referencing his contact log.

What this program does is maintain a
log of contacts, with each contact
represented by callsign, the name of
the operator contacted, the date and
the readability/signal strength details. It
allows you to add to the log “file” when
each contact is made, and then to have
an automatic search made for previous
contacts with the same callsign. This lets
you ‘‘refresh” your memory regarding
the name of the operator, and the
prﬁvious times that you exchanged
calls.

A file can be expanded until it fills
the allocated memory buffer space (hex
1000—1FFF, or decimal 4096—8191). As
each entry is made to a file, the
program tells you how many bytes of
memory are left — in decimal. This
allows you to save a file at any time on
cassette tape, using the normal PIPBUG
dump command, and then re-load it
into the buffer later using the L com-
mand.

The program can search for either
the first file entry matching the
supplied data (typically the callsign), or
for all matching entries. It alsc allows
you to alter an existing file entry,
providing the change will fit into the
same space. This allows you to correct a
previous mistake, wheniitis discovered.

A full listing of the program is shown
in Fig. 3, with a sample of its operation
shown in Fig. 4. When the program
starts up, it immediately asks you for a
command. You have five options,

.each command being represented by a

single digit (1-5) terminated by a
carriage return.

1 — Is to enter a new file. Each line
should be delimited by a space and an
asterisk.

2 — Is to accept a data entry (say the
callsign), and search through the
current file for a match. The first line
found to contain the data will be
printed out.

ELECTRONICS Australia, February, 1980 87

P"ENTER COMMAND"™ P G35
AB TZ=819¢ G33
MB>Z 1Z TB:13 Gl<

PYENTER DATA" P
La@7e=C

AD

MD>C 1C TD:13 Gl<¢
1@ P"SEARCHING' S44
11 P

12 L4Q96=2

13 L4970=C TZ=Q G334
14 MB<Z MD<C

15 TB:D 12 TD:13 G2«
16 TD=13 G2>

VAL WM e

17 32 1C G3<

18 €z

19 MB<Z

20 TB:42 (Z Gl<

21 12

22 MB<Z

23 0b 1Z TB:42 Gl<
24 TF=2 G1

25 TF=3 L4070=C P Gl2«<
26 TF=4 P"TYPE NEW LINE"
27 2z

28 ME<Z TB:42 Gl<

29 1Z MBE<Z TB=42 G2>
3@ AB MB>Z Gl<

31 P"LIWE FULL"

32 Gl

33 P"MEMORY FULL" G!
34 PEND OF FILE="Z G|
35 L42=K MK>4095 IF

36 TF=1 G2

37 TF=2 G6

38 TF=3 G6

39 TF=4 G6

LA@96=Z P“ENTER NEW FILE" S4a

P'"MEMORY LEFT="8190t2-,"BYTES" LZ=@Q G4«

tz P

4@ TF=S5S LO=Z P"ADD TO FILE" P"BYTES LEFT="8190tZ- P G3

41 MB<Z

42 TB:38 1Z Gl<
43 LZ=@ G!

44 P CALLSIGN

NAME DATE

Gl
ENTER COMMAND
?5
ADD TO FILE
BYTES LEFT=3%39
VK2XYZ FRED 23/ 3789
MEMORY LEFT=3985 BYTES
ENTER COMMAND
73
ENTER DATA
VKaxyz
SEARCHING

CALLSIGN NAME DATE

172789
237 3/89

FRED
FRED

VKaxyYZ
VK2XYZ

END OF FILE=4285
ENTER COMMAND

?

3 — This is like command 2, except that
the program will print out all lines in
the current file containing the data.

4 — Is to allow altering an existing line
in the file. Note that the new line must
be the same length as the oriPinal.
5 — Is to add to the current file. Each
new line should be delimited by a
space and an asterisk as before.

RST" P R
Fig. 3 above is the
full listing of the
amateur log
594 x program while HF.
4, at left, is a sample
of its operation.
RST
599
594 *

if the file in memory is to be saved on
cassette, the last character in the file
should be an ampersand (&). This is
required by the alternative start-up
routine, in order to set up the end of
file pointer when the file is re-loaded
into memory. When a file has been re-
loaded from cassette, start the program
at'line 41 instead of line 1, to ensure

that the end of file pointer is set up
properly. Otherwise it will be ignored.

Note that searching a full 4K byte file
can take up to four minutes. This is
mainly because the Micro Basic inter-
preter is rather slow in operation —
although Mr Leykam notes that his
program may well be capable of im-
provement (it was his first program-
ming effort).

Finally, a note regarding Micro Basic
itself for the benefit of those who may
not have seen the earlier story. Micro
Basic is a tiny version of BASIC, written
by Alan Peek for small 2650 microcom-
puter systems. The editor/interpreter
for Micro Basic squeezes into a mere
1.6K bytes of memory, so that it can
even run in systerns with only 4K of
RAM (aIthougK Mr Leykam’s program
will require a system with 7K of RAM).

As you may r\ave deduced from the
program listings in this article, Micro
Basic achieves this remarkable
economy by the use of single-character
commands, reverse Polish notation and
an efficient way of packing the source
program into memory. lts unorthodox
approach takes a bit of getting used to,
but the ability to program rapidly even
in small systems maies it well worth
persevering.

A cassette of the Micro Basic
editor/interpreterlin PIPBUG format)
complete with instructions and a full
source listing is available from Alan
Peek at 10 Gale Street, Woolwich NSW
2110, 2

ELECTRONICS Australia, February, 1980 89

‘Execute’ Program for
the 2650 minicomputer

Newcomers to computing often wonder just what some of the
jargon used means. This article is meant as a remedy to this situa-
tion, and attempts to explain with a practical example just what is

meant by the term “execute".
by LUDI KRAUS

One of the most often used but most
little understood terms bandied about
by computer proponents, both
professional and amateur alike is “ex-
ecute’”, The newcomer to computing,
on hearing the expression “let’s ex-
ecute the program”’, could be forgiven
for thinking that this means “let’s kill
the program”.

in fact, the dictionary definition of
execute does encompass the meaning
“to carry out capital punishment”, ie to
kill, but inciudes a host of other
meanings as well. Thus we can speak of
executing orders, plans or functions,
meaning to carry out these duties or
acts, or of executing a document such
as a will.

in deed, the kiil implication is the last
meaning listed in my dictionary and is
definitely not the meaning intended by
our overheard programmer.

If we turn from a dictionary to a

lossary of terms, as usuaily can be
Found at the rear of elementary
programming manuals, we come across
an alternative definition, such as the
one given below:

EXECUTE -~ to fully perform a
specific operation, such as would be ac-
complished by an instruction or a
program.

Our newcommer could now draw
the correct conclusion that when we
talk of “executing a program”, what we
really mean is running, or, to be
specific, letting the computer run a
program.

But,” wails our beginner, "how do
you run or execute, to use the jargon, a
program?” Well, this requires a special
purpose program, rather similar in con-
cept to an assembler or an interpreter,

for the benefit of newcomers con-
fused by those last two large words, an
assembler is used to assemble
programs, while an interpreter is used
to interpret programs. Similarly, we will
uyse an executioner 1o execute
programs, (Enlightening isn’t it?).

The program listing included with
this article is a fully optioned ex-
ecutioner, intended for use with 2650
computer systems. It will operate with

both machine level languages, and with
higher level language, such as Basic or
Pascal. It is completely relocatable and
is intended to reside in the topmost
portion of the user RAM.

The program can also be used in
ROM, although in this case its full ad-
vantages cannot be reaped. This is
because it uses a unique form of error
detection and correction, which in-
volves a special section of the program,
which modifies itself.

This special section, however, before
it runs, tirst checks to see if it is ROM-
resident. if it is, it neatly bypasses itself.

The error correction carries out a
series of CRC (cydlic reduncy check)
tests, incorporating Hamming code and
BCC (binary condition code) tests,
These checks and tests enable it to cor-
rect any possible errors in the
remainder of the program.

This meant, in Ect, that it was only
necessary to debug the first section of
the program, as the second section
automatically debugged itself. This sav-
ed valuable time and meant that this ar-
ticle could be published one month
earlier than anticipated.

In order 1o use the program with
your system, first load the program you
wish to execute into the area of RAM it

13AF 7640 PPSU 40
1381 7518 CPSL 18
1383 0422 LODI{,.RO 22
1385 24A5 EORI,RO A5
1387 DO RRL,RO

1388 €801 STRR,RO 1388
13BA 1B73 BCTR,UN 13AF
13BC 6850 1ORR,R0O 138E
13BE 50 RRR,RO

13BF 0A82 LODR ,R2 *13C3
13C1 92 LPSU

13C2 4A62 ANDR ,R2 13A6
13C4 0 LODZR1

13C5 32 REDC,R2

13C6 7A7A 8SNR,N 13C2
13C8 62 IORZ,R2

13C9 0900 LODR.R1 13CB
13CB 3r0208B BSIA,UN 02D8
13CE 3B23 BSTR,UN 13F3
13D0 086A LODR,RO 138C

96 ELECTRONICS Australia, April, 1980

normally uses. If you have a ROM
based system, this step is not necessary.

Next, load in the execute program.
You can do this using either the A com-
mand of Pipbug, the hex input routines
published in the March 1979 issue or
the mini assembler published in the
April 1979 issue. The program is 73
bytes long, and should be placed at the
top of your memory.

If you have the 2650 Mini Computer
with only 4k of RAM, start at address
X"13AF. if you have implemented the 8k
RAM expansion, your starting address
should be X'1FAF if you have memory
only in page 0, or X2FAT if you have
used the CPU RAM in page 1.

To run the EXECUTE program, simply
!Lpe G 13AF XXXX CR, where XXXX is
the HEX hex address of the first byte or
location of the program to be ex-
ecuted. Control wiil return to Pipbug
when the execution is complete. Please
note that this may take some time, es-
pecially if your program includes a
number of absclute and relative ad-
dressed indexed instructions.

A disassembly listing of the program
has been included with this articie, as
an aid to those who do not have access
to a disassembler. Unfortunately, no
comments could be provided with the
listing as that would give the game
away. However, with the aid of the 2650
Microprocessor manual, novices
should be able to work cut the way in
which the program operates.

(Editor's Note: Users are warned that
this program does “‘execute’” in the
worst sense of the word.)

1302 180E BCTR,Z 13E2
1304 50 RRR,RO

13D5 50 RRR,RO

1306 50 RRR,RO

1307 3F02B4 BSTA,UN 0284
13DA 0875 LODR,RO 13D1
13DC D800 BIRR,Z 13DE
130E €87 STRR,RO 13D1
13EQ 1B6E BCTR,UN 1300
13£2 04C0 LODILRO Co
134 CCO040D STRA,RD 040D
13E7 3B02 BSTR,UN 13EB
13E9 1879 BCTR,UN 13E4
13EB 0978 LODR R1 13E5
13ED 0A77 LODR,R2 13E6
13EF DAQ2 BIRR,N 13F3
13F1 D900 BIRR,P 13F3
13F3 C970 STRR,R1 13E5
13F5 CAGF STRR,R2 13E6
13F7 17 RETC,UN o]

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	265.pdf
	Page 1
	Page 2
	Page 3
	Page 4

