
FM
	

1 0 1 1 1 1 1 1 1 0 1 0 1 0 1
encoding _II

Fig A In FM encoding, each bit is represented either by a pulse and a silence (0) or
by two consecutive pulses (1)

MFM
encoding

1 	1

1 0 1 0 1 1 1 1 1 0 1 0 1

Fig B In the MFM encoding scheme, all pulses are separated by at least one
silence. Since the amount of data that can fit on a disk depends on the closeness
of successive pulses, MFM allows twice the data density of FM encoding

RLL encoding

The encoding scheme called run length
limited (RLL) is useful for squeezing the
largest possible amount of data onto a
hard disk drive. To understand how en-
coding schemes work, let's look at the
three most common ones used today:
frequency modulation (FM), used on
older floppy drives; modified frequency
modulation (MFM), used on current
floppy disk drives and many hard disk
drives; and 2,7 RLL (used on most RLL
hard disk drives).

Data on a magnetic disk is recorded as
a series of pulses and silences. In the
FM encoding scheme, each 1 or 0 is
represented by a pattern consisting of
pulses and silences. For example, a
pulse followed by a silence is a 0, while
two consecutive pulses is a 1. The pulse
that's always there is called the clock
pulse. Because there is a clock pulse in
every bit, it's easy for the controller to
keep pace with the data as it comes in (a
process known as 'clock extraction').

Fig A shows why this technique is
called FM. Twice as many pulses occur
per unit of time during a string of 1 s
than during a string of Os, and the
average (for an even mix of 1s and Os)
is 1.5 pulses per bit.

The constraint that determines how

much data you can get on a disk is
simple: there must be enough space be-
tween pulses so that they don't run
together. FM encoding always leaves
room for two pulses per bit, in case that
bit is a 1. Mc maximum number of bits
you can have, therefore, is always half
the maximum number of pulses you can

fit in. There is, however, a way to use
fewer pulses to represent the same data.
This is the idea behind MFM (see Fig B).

In MFM, the encoding rule is as fol-
lows: a 1 is represented by a silence
followed by a pulse, while a 0 is repre-
sented by one of two patterns: a pulse
followed by a si!e.nce if no pulse oc-

2,7 RLL
encoding

1 1 1 1 0 1 0 I 0 1 1 1 1 1 0 1 1

	n

Fig C Here's how a sample bit pattern is encoded in the 2,7 RLL scheme. Each
code group is 4 to 8 half-bits long and is encoded from a code group of 2 to 4 data
bits. The length of the pattern corresponds to the length of the original data, but the
pulses are guaranteed to maintain the required minimum and maximum spacings

Data bits
	

2,7 RLL encoding
to be
	

(0 = silence,
encoded
	

1 = pulse)

00
01
1 0 0
1 0 1
1 1 0 0
1 1 0 1
1 1 1

1 0 0 0
0 1 0 0
001000
100100
00001000
00100100
000100

curred at the end of the previous bit, or
by two silences If a pulse did occur at
the end of the previous bit.

The MFM scheme guarantees that
there will always be at least one silence
between pulses (so that they can be
packed more tightly without running
together), but no more than three (so
that a clock can still be recovered). This
pattern yields an average of 0.75 pulse
per bit (assuming that 50 per cent of
the Os are represented by each of the
two possible patterns), and it therefore
lets you pack the bits twice as closely
together. For this reason, when MFM
floppy disks first came out, they were
called double-density disks.

ST506 hard disk drives originally
used MFM encoding. Is there another
encoding scherte that could increase

the density still further? To answer this
question, let's review the schemes just
discussed in terms of run lengths, the
minimum and maximum numbers of
consecutive silences in each encoding
scheme.

FM allows a minimum run length of 0
(it's possible to have no silences be-
tween pulses) and a maximum run
length of 1 (there's always a clock
pulse after a silence). So, one way to
describe FM is as 0,1 run-length-limited
encoding, or 0,1 RLL for short.

Similarly, MFM always has at least
one silence between the pulses, but
more than three — making it 1,3 RLL.
It's the minimum run length that deter-
mines how tightly data can be packed
onto the disk, while the maximum run
length determines how accurate the

controller must be at timing when the
pulses come n (so that it can generate
a clock to go with the data).

The encoding scheme we know
simply as RLL is usually 2,7 RLL (see
Fig C and Table A). It uses a more com-
plex set of rules to determine the pulse
pattern for each bit based on the values
of the preceding bits, but the principle is
the same: there are fewer pulses, but
their precise positions convey more in-
formation about the original data pat-
tern.

Table A The 2,7 RLL scheme encodes
groups of 2 to 4 bits' into pulse pat-
terns. Note that there are always at
least two, and no more than seven,
silences between pulses regardless of
the combination of bits encoded

	Page 1
	Page 2

