
*WO

' . • • • • 	•

from
GAMMATRON

"DATUM"
the true starting point

COMPUTER KIT
for $97.00 (inc S.T.).

Postage and handling $3.00
when assembled kit.

READY TO USE

Developed by the S.A. Institute of Technology as a teaching aid for those who wish to learn
about microprocessors at minimal cost. The kit uses a MC6802 microprocessor which is
complete and ready to assemble with full instructions. Power source is either a reg. 5V Supply
or 6V lantern battery provided by the user.
Kit includes P.C. board, all IC's and components, pre-programmed 2716 ROM, key pad.

Send SAE for further information or
send money order, cheque, Bankcard and we will post haste a kit.

------------ ONE. MINIM

For Bankcard users:

Bankcard No. 	

Expiry date 	

Name 	 Signature 	

Available only from

GAMMATRON
ELECTRONIC SYSTEMS MANUFACTURERS

UNIT 1, WEEN RD, POORAKA, SA 5095
PHONE: (08) 262 6555

126 	ELECTRONICS Australia, March, 1982

DATUM is a low-cost trainer for learning about microprocessors.

a®Nring nnffRige, veM mrw©Gpap@@wo-13%

DATUM: new low-cost
microprocessor trainer

Do you want to learn about microprocessors from the ground up? Have you been
following our series on "How to Program in Machine Language" but have no
system to test out the concepts you've learnt? Or do you know a bit and are
looking for a low-cost dedicated microprocessor system for experiments or for use
in a control application? If your answer to any of these questions is "yes" then this
is the project for you. Designed initially for teaching microprocessor concepts to
students of Electronic Engineering, DATUM is a complete self-contained
microprocessor system with everything needed to get you started.

This project got its start when staff at
the School of Electronic Engineering at
the South Australian Institute of
Technology noticed that students with
their own microprocessor system at
home performed much better than
those who had to rely on the limited
number of evaluation kits used in the
laboratories.

It was obvious that to give every stu-
dent the same opportunity a low cost
microprocessor trainer was required, so
the staff set to work. The result was
DATUM (Digital Aid for Teaching yoU
Microprocessors), an inexpensive, easy
to use microprocessor kit based on the
Motorola MC6802 processor.

The design and development of
DATUM was a co-operative effort, with
many of the staff of the School of Elec-

tronic Engineering contributing, and a
South Australian company, Gammatron,
undertaking the production of the
printed circuit board and kits for the pro-
ject. Software for the Monitor program
was written by Mr P. D. O'Neill of the
Institute.

One of the most important design deci-
sions for the DATUM project was that it
had to be a completely self-contained
system. A simple keypad on the board
provides the means of inputting instruc-
tions and data, while output is displayed
on seven segment LED displays.

Those readers who have followed our
series on "Machine Language Programm-
ing for the 6800" will be in their element
here, for the only way to program
DATUM is by machine lanaguage and
the "instruction set" of the 6802 is iden-

tical to that of the 6800. Both processors
are relatively simple but very versatile,
and quite powerful enough for many ad-
vanced applications.

There are only two differences bet-
ween the 6800 and 6802 processors. The
6802 has an on-chip dock generator,
needing only an external crystal. More
importantly, the MC6802 has 128 bytes
of Random Access Memory on the chip,
32 bytes of which can be placed in a low
power "stand-by" mode to preserve im-
portant data when the rest of the system
is off. This is one reason why we chose
the 6802 for use in our Car Computer
project.

In fact the Car Computer is a good il-
lustration of what is possible with a small
system such as this. Besides its use as a
learning aid, DATUM can be put to use

40 RESET

39 EXTAL

38 XTAL

37 E

36 RE

35 VCC STANDBY

34 RIW

33 DO

32 Di

31 D2

30 D3

29 D4

28 D5

27 D6

26 D7

25 Al5

24 A14

23 A13

22 v 2 As1s2

21

VSS 1

HALT 2

MR 3

IRO 4

NMI 6

 5

 6

BA 7 ■1

VCC a
AO 9

Al 10

A211

A3 12 d

A413

AS 14

A6 15

A7 16 VJ

A8 17

A9 la
A10 19

A11 20

Fig 1

Fig. 1: Pin-outs of the MC6802.

b
b

fh

86 	ELECTRONICS Australia, November, 1982

PIA 2

SECOND
PERIPHERAL
INTERFACE

ADAPTER

CONTROL LINES

ADDRESS LINES
(15 ONLY) MICROPROCESSO

MC8802

DATA LINES (B

741S0014

1K OF
RANDOM
ACCESS
MEMORY

ASYNCHRONOUS
COMUNICATIONS

INTERFACE
ADAPTER

LED

+ 5V

2K OF
READ ONLY

MEMORY
(MONITOR,

LOGIC TESTER

44-PIN SOCKET

f ig. 	Block diagram of the fully expanded DATUM system.

KEY PAO

PIA 1

PERIPHERAL
INTERFACE
ADAPTER

DATA

7•SEGMENT DISPLAY

CRYSTAL

UJ

A commercially available keypad
provides hexadecimal inputs while six
individual pushbuttons are used for
control functions. Six switches provide
the best balance between flexibility and
cost. Key functions provided are:

as a controller around the home (or the
factory), or expanded into a larger com-
puter system. Bus signals are brought out
to a 44-way edge connector on one end
of the board for this purpose and there is
provision on the board for additional In-
put/Output, with a PIA for parallel I/O
and an ACIA (Asynchronous Com-
munications Interface Adapter) for serial
communication. -

The double-sided DATUM printed cir-
cuit board measures 228mm x 127mm
and is silk-screened with component
locations (although not component
values). The manual we received had the
component values hand-written after the
parts list, although it is hoped that this
will be corrected in final versions.

The design of a minimum
microprocessor system

The heart (or is that the brain?) of any
microprocessor system is of course the
processor chip itself. Pin connections for
the MC6802 are shown in Fig. 1. The
processor has 16 address lines, and is

thus capable of addressing 276 or 65,536
separate memory locations.

64K of memory is far more than we
need, so the first decision made in the
design of DATUM was to decode blocks
of memory, rather than individual
locations. This simplifies the circuitry
required and reduces costs, at a
negligible penalty — maximum memory
expansion. This is 12K bytes in 4K
increments.

A minimal system will require both
Read Only Memory for permanent
storage of an operating program, and
RAM (Random Access Memory) for user
programs. Static RAM is used since it
avoids the complications of refreshing
dynamic RAM (see our articles on the
Super-80 for details of a dynamic RAM
system).

Because we will be entering programs
by hand it is unlikely that they will
exceed about a hundred instructions.
Around 2(X) bytes of RAM would be
sufficient, but the most readily available
and cost effective memory for our
purposes is the 2114 static RAM chip.

This chip is organised as 1K locations,
each of four bits, so just two packages
will give us 1024 8-bit memory locations.

The ROM package of DATUM holds
the Monitor program — a collection of
routines which assist the user in
communicating with the microprocessor
system. Software is provided which
scans the keypad, drives the LED displays
and accepts input from the user.
Depending on this input other routines
are activated which allow the contents
of memory to be inspected and
changed, the internal registers of the
6802 to be displayed and the user's
programs carried out.

The Monitor program of DATUM is 1K
bytes long, and a complete listing of the
source code is included in with the
instruction manual supplied with the kit.
Since the 2716 EPROM is a 2K device
other programs which the user wishes to
store permanently can be programmed
into the unoccupied addresses. An
EPROM programmer suitable for this
purpose was described in our January
1982 issue.

Since DATUM is programmed in
assembly language, hexadecimal output
was decided on. Each 16-bit address
location and 8-bit data byte are
considered as combinations of four bits,
with each combination represented by
one of 16 hexadecimal characters, the
numbers from 0 to 9 and letters from A
to F. A complete description of the
hexadecimal numbering system is given
in Part One of "How to Program in
Machine Language Language", EA March,
1982.

In hexadecimal, 16-bits are considered
as four groups of four, and 8-bit data
consists of two groups of four. Six
displays are therefore required, four to
display the address and two to display
the data stored at that address.

(11=1111111.■14,1

HARDWARE SPECIFICATIONS
Processor: Motorola MC6802.
Clock: /MHz.
RAM: 1K x 8 on board, expandable to 12K externally, plus 128 bytes on chip.
ROM: 2K (Monitor program occupies 1K).
Display: Seven segment LED readouts (6).
input: Hexadecimal keypad and six function select buttons.
Output: Two PIA lines, optional extra PIA, ACIA
Power requirements: Regulated +5V or 6V battery at 400mA.
Programming: Hexadecimal machine code.

ELECTRONICS Australia, November, 1982 	87

Circuit diagram of the full DATUM system, less the keyboard and display section shown in Fig. 6.

1. RESET (RS). Initialises all devices and
causes the system to jump to the
beginning of the Monitor control
program.
2. ESCAPE (E). Lets us exit one control
function ready for the next control
sequence.
3. MEMORY (M). Allows memory
contents to be displayed and modified.
4. GO (G). Provides a "start' instruction
so programs can be run.

5. REGISTERS (5). Lets us display the
contents of the internal registers of the
6802 microprocessor.
6. SINGLE STEP (R). Assists in "debugging"
programs by allowing us to step through
a program one instruction at a time.
7. INCREMENT/DECREMENT. Lets us
inspect memory contents, stepping the
address in either direction.

While all these functions were
considered essential, some will be used

less frequently than others. It is thus
possible to share some switches, with
functions which are used less often
requiring two key presses, the first being
the "second function" (2F) key. Other
keys such as Reset and Escape must
operate directly and cannot be shared.
Fig. 3 shows how the seven functions
can be accommodated on six switches.

So far we have described a minimum
microprocessor system, with a

ELECTRONICS Australia, November, 1982 	 89

RS c RESET
E : ESCAPE

2f ::SECOND FUNCTION
AMR 'AMORY AND REGISTER DISPLAY
GiS : GO (START) AND SINGLE ST.
UV : INCREMENT OR DECREMENT

Flo. 3

Fig. 3: Alternate key func-
tions are activated by press-
ing the 2F key then the func-
tion key required.

Fig. 4: Data, address and

RESET

control lines of the MC6802
microprocessor used by the
DATUM system.

+5V 	

•C
Cr X

E

VMA

ESCAPE IRO

Rrw

AO

+ 5V 6802
I ADDRESS LINES

A14

AST

f

DO

DATA LINES

7

Fig. 4 4MHz

soan-iES,„

INFERIORITY.,,
COMPLEX.

HOW IT WORKS DATUM microcomputer
hexadecimal keypad for input, LED
displays for output, a processor and
memory. Two additional features have
been included on the DATUM board.
First, since the system is to be self-
contained a simple logic probe has been
included on the board so that signals can
be monitored. Secondly, provision has
been made to expand DATUM when
required.

The 44-pin edge connector, visible in
photographs of the board, brings out the
data, address and control lines for
connection to other equipment. In
addition there is space on the board for
a second PIA (Peripheral Interface
Adapter) which provides 20 parallel
Input/Output lines and an ACIA,
providing a serial interface. With the
addition of 12V level translators this chip
provides an RS-232C channel for
connection to terminals and printers.

With these additions DATUM can
become more than a learning aid,
finding a host of control and
communications functions in real
applications.

Fig. 2 summarises the design decisions
taken so far and presents a block
diagram of the minimum DATUM
system.

How it works
Like most microprocessors the

MC6802 is "bus" oriented. A common
parallel signal path consisting of data,
address and control lines connects the
main components of the system. Again
in the interests of simplicity, not all the
control lines of the MC6802 are used in
the DATUM design.

The RAM Enable (RE) line is tied to +5V
to enable the 128 bytes of on-chip
memory. The Memory Ready (MR) line is
also tied high. Its normal function is to
allow the processor to wait for slow
memory devices which are not used in
DATUM. "Standby" applies power to the
first 32 bytes of the internal memory so
that in the event of a power failure this
memory can be powered from an
emergency supply.

HALT is not used, as we don't want to
stop the processor at any time so this
line is also tied to +5V. Since HALT is not
used, the Bus Available (BA) line which
indicates that the processor has halted is
not used and can be left open. The
remaining control lines are used as
follows:

RESET resets the MC6802. A pull-up
resistor holds this line high until the
Reset pushbutton is operated. NMI, the
Non-Maskable Interrupt, is also pulled
high and connected to a pushbutton, in
this case the "Escape" function. IRQ is the
interrupt request line, allowing
processing to be suspended and the

processor directed to perform another
program.

VMA indicates that a "Valid memory
address" is available on the address bus,
while the R/W line indicates whether a
memory operation is a read or a write
command. The Enable (E) line is the
clock signal for the DATUM system. This
clock signal is ANDed with VMA and
used to initialise all the units on the bus.
The frequency of E is a quarter of the
crystal clock frequency, so the 4MHz
crystal of DATUM provides a system
clock of 1MHz.

Fig. 4 summarises the outputs of the
MC6802 microprocessor and the lines
used in the DATUM bus system. Pull up
resistors have been added to the RESET
and NMI lines since these must be held
high for the processor to operate
correctly.

Address decoding
As previously mentioned, not all

address lines are decoded by the
DATUM circuit. Address line 15 is
ignored while A14, A13 and Al2 are
decoded by a 74LS138 1-of-8 decoder to
select individual 4K blocks of memory.
The remaining 12 address lines (from AO
to All) provide a 4K (4096 bytes)
addressing capacity. Memory in DATUM
is thus divided into eight blocks, each of
4K, for a total addressing capacity of 32K
bytes.

I he next question is how to allocate
the available memory locations. Three
constraints are set by the internal
organisation of the MC6802 chip:
1. The internal 128 bytes of RAM must
be the first 128 memory locations.
2. After a Reset the last processor reads
the last two locations in memory (FFFE
and FFFF hex) to find the address of the

program to be run.
3. After an Interrupt Request (IRQ) the
processor reads address locations FFF8
and FFF9 hex to determine the address
of the program to jump to.

These last two constraints suggest that
the Monitor EPROM should be placed at
the top of the "memory map" to
permanently store Reset and IRQ
pointers at the correct locations. The
PIA, ACIA and RAM locations are then
allocated in a convenient order as shown
in Fig. 5. Note that the PIA and ACIA
each occupy an entire 4K block of
memory, even though each PIA has only
four registers which can be accessed,
and the ACIA has only two.
Because of the limited address

decoding, each of these registers will be
repeated in the memory map 1024
times, but this is not important as long as
we are consistent in our programs. Since
the amount of memory (RAM or ROM)
on the DATUM board is less than 4K, the
same memory locations are also
repeated throughout the memory map.
For example the 2K EPROM is addressed

90 	ELECTRONICS Australia, November, 1982

Fig. 5: DATUM memory
map shows allocation
of ROM, RAM and
peripheral adapters.

REGISTER

DATA REG A AND DATA
DIRECTION REG A

6001 CONTROL REG A
6002 DATA REG B AND DATA

DIRECTION REG B
6003 CONTROL REG B

ADDRESS IN
HEXADECIMAL

KEYBOARD AND DISPLAY DATUM microcomputer

4 x TIL313 2 x TIL313

PIA 1
0 	6821

o

3

MC1413

L. 	 KEYBOARD

Fig. 6: Circuit diagram of the keyboard and display section of DATUM.

from 7000 (hex) to 77FF and is then
duplicated from 7800 to 7FFF hex.
Similarly the 1K of RAM is repeated four
times, beginning at address location
1000 hex.

This repetition does not matter and
any of the appropriate redundant
addresses can be used, although a lot of
trouble and confusion will be avoided by
consistently using the same address
locations.

Note that if we ignore the 16th bit of
the address bus, 7FFF in hex is the same
as FFFF, so the two constraints on
EPROM addressing are satisfied even
though DATUM has only a 32K
addressing capability.

are int t puo the
Keyboard and display

Fig. 6 shows the method of interfacing
the keypad and the six displays to the
microprocessor. Port B of PIA1 is
programmed for output, and four lines,
DBO to DB3, drive a 7442 1-of-10
decoder. Six of the outputs of the 7442
sequentially ground the cathode of each
seven segment display while the

remaining four lines
rows of the keypad.
A closed key is detected by

programming Port A of PIA1 for input
and scanning the columns of the keypad
through PAO to PA4. With the four rows
of the keypad each driven low in turn a
closed key will cause one of the five
column lines to go low. The particular
key pressed will be at the interesection

of the row which is currently low and the
column line which is read as low.

For driving the display Port A of PIA1 is
programmed for output and seven of the
lines (PAO to PA6) are fed to an inverting
buffer to select one of the segments of
each seven segment display. All the
identical segments of the six displays are
connected in parallel and the display
illuminated is determined by which

92 	ELECTRONICS Australia, November, 1982

(a)

KEYPAD LINE 0

KEYPAD LINE'

KEYPAD LINE 2

KEYPAD LINE 3

LHS 7-SEGMENT DISPLAY

DISPLAYS MOVING
LEFT TO RIGHT

RHS 7-SEGMENT DISPLAY

FUNCTION

Fig``

Fig. 7: Organisation of display and keyboard_ Display segments are
driven by Port A of PIA 1, with cathodes selected by decoder outputs.

LOG C PROBE —610—

Component overlay of the DATUM board. PIA2 and ACIA are optional additions.

DC voi, IN
o

ACIA

22

DATUM
itIFCNQPHOTA ,SOft

Ft FF, Cfattt:

Cb

RAM

2114

CPU 	CD

C4

cathode is selected by the outputs of the
7442. The segment driving lines of Port A
go low to select a segment, causing the
output of the MC1413 inverter to go
high and allow the 15012 resistor to +5V
to supply current to the LED segment.

Fig. 7 shows the organisation of the
keypad and display circuitry and the way
in which each output line is decoded.
With this information it is possible to
program DATUM to illuminate any
segments of the display for a quasi-
alphanumeric messages or to monitor a
particular key of the keypad.

Note that pins DA7 and DB7 of the
PIA1 are not used for the keypad or
display and are brought out to pins on
the board for experimental purposes.
More details of the Peripheral Interface
Adapter chip can be found in "How to
Program in Machine Language", in EA,
August 1982.

Logic probe
One element of the 74LS00 NAND

package on the DATUM board drives a
LED which serves as a power-on
indicator and a simple logic probe for
checking wiring and the operation of
programs using the PIA outputs.

A pull-up resistor ensures that the LED
will be on when there is no input to the
probe, indicating that power is available
to the circuit. This has the unfortunate
side effect that if the logic probe input is
applied to a pin which is in fact open
circuit the LED will be lit, indicating a
high state. Despite this drawback the
probe is still useful. If for instance, the
input of the probe is connected to pin 37
of the microprocessor (the clock output)
the LED will be lit if the oscillator is
functioning but its intensity will be less
than when the probe input is connected
to +5V.

The final system
Page 89 shows the circuit diagram for

the complete DATUM system, excluding
the keyboard and display sections
shown in Fig. 6. Fig. 8 shows the connec-
tions for the 44-pin edge connector
while the printed circuit board overlay is
shown at right.

Power to DATUM can be provided
either via the edge connector or via pins
on the PCB (labelled DC volts in). Power
can be supplied from a regulated 5V
source or by a 6V lantern battery.
Current consumption is around 400mA.

If a battery is used power can only be
connected to the pins on the circuit
board labelled 0 and +6V which is
connected via a series diode. The diode
prevents the power being applied with
the reverse polarity and drops the 6V to
approximately 5.4V. Under no
circumstances should 6V and 5V
supplies be used at the same time as the
diode will be destroyed.

Assembling the DATUM kit
Start construction with the keypad. The

kit provides a nut and bolt to fix the
keypad to the board. When soldering
the connecting pins of the keypad be
wary of applying excessive heat, or else
internal solder joints could melt and
create an open circuit. Mount the six
pushbutton switches then the resistors
and capacitors.
Make sure that the electrolytic

capacitors are correctly oriented as
shown on the PCB overlay.

Mount the diode. LED and the seven-

segment displays, again observing the
polarity of each part. The 4MHz quartz
crystal and the socket for the EPROM
should be installed next. We also
installed sockets for the microprocessor
and the PIA1, although these are not
provided in the kit.

Install the ICs, starting with the smaller
packages, and making sure that pin 1 of
each chip aligns with the 1 printed on
the board. Before mounting the ICs,
apply power to the circuit and check for
the presence of 5V on the appropriate
supply pins.

ELECTRONICS Australia, November, 1982 	93

PIN NUMBER
COMMENCING

FROM TOP
UPPER (ICI SIDE OF PCB UNDER SIDE OF PCB

+ 5V

{ *x w=

RX CLOCK

TX CLOCK

Frig

TX DATA

DCD

CIS

RESET

AO

Al

A2

A3

A4

A5

Ab

Al

AB

AS

Al 0

Al 1

OV AND COMMON

ADDRESS BLOCK 3000

ADDRESS BLOCK 2000

ADDRESS BLOCK 1000

R/W

VMA

DO

0 1

D2

D3

D4

05

D6

D7

AC1A
LINES
(NOT
USED,

2

3

4

5

6

9

10

11

12

13

14

15

16

17

1B

19

20

21

22

DATUM kit provides PCB
and all components for a
minimal system. Full instruc-
tions are included,

Fib. 8: Connections for
44-pin expansion interface of
DATUM. The third article in
this series will cover
applications,

CONSTRUCT ON DATUM microcomputer

Install EPROM, PIA1 and micro-
processor. Finally stick the rubber pads
on the underside of the board to keep it
clear of the bench.

The manual' that comes with the
DATUM kit provides a fairly complete
description of the circuitry from a
technical point of view and step-by-step
assembly instructions. A simple trouble-
shooting guide is also provided which
proved unnecessary in our case. The
only problem we had was with the
placement of capacitor C6, which is
parallel to and directly opposite C7. An
inviting pair of holes to the left are
through-the-board connections, not for
component installation.

We also found that it was necessary to
cut the plastic supports off the bottom of
the pushbutton switches supplied so that
they would mount flush on the board.
This makes it slightly difficult to mount
the switches neatly and some care is
required.

The PCB is not solder masked, and
some of the tracks are closely spaced. A
soldering iron with a small tip is essential
here.

The manual provides an example of
test procedures, including reading the
contents of the EPROM and a simple
program to test the RAM. If everything
checks out OK you're on your way. Our
next article will provide some software
for the system and article number three
will provide suggestions for applications.

Assembled or kit form DATUMs are
available from Gammatron, Weens
Road, Pooraka, 5095. Printed circuit
boards, key pads and monitors are also
available separately. Next month we
shall look at software aspects, including
the monitor routines.

ELECTRONICS Australia, November, 1982 	95

ACCUMULATOR A

ACCUMULATOR B

INDEX REGISTER

PROGRAM COUNTER

STACK POINTER

CONDITION CODE REGISTER (CCR)

Fig. 	shows the
programming
model of the 6802
microprocessor.
These are internal
registers accessible
by the user.

a@ang ..tREIR3MEIA@TOpil@@®@M

DATUM: programming
and monitor software

Last month we covered the design and construction of DATUM,
a low-cost microcomputer designed to teach the basics of
microprocessor systems. This article covers some of the
software aspects, including the on-board Monitor routines and
some sample programs.

First of all have a look at Fig. 1. This is a
"programming model" of the MC6802
microprocessor, showing the internal
registers of the chip which are available
to the programmer. These registers are
storage locations which are operated on
by the various instructions of the
microprocessor.

As shown in Fig. 1 the MC6802 has two
8-bit accumulators, A and B, shown at
the top of the diagram The accumulators
(abbreviated ACC) have instructions
associated with them which can perform
basic arithmetic and logical operations.
All instructions that operate on an ac-
cumulator can be used on either ACC A
of ACC B, except for one, Decimal Ad-
just Accumulator, used in converting
binary to BCD. This instruction operates
only on ACC A.

Next is the index register (IX). This
register is 16-bits long and is usually used

ACC A

ACC B

	

CARRY (FROM BIT 3) 	

	

INTERRUPT. 	

	

NEGATIVE 	

to store a 16-bit address which "points"
to an item of interest, such as a memory
location or an output port.

The Program Counter (PC) keeps track
of the address of the current instruction,
and is incremented automatically when
the next instruction is required.

The Stack Pointer (SP) is also a 16-bit
register, and stores the address of an
area of memory defined by the user as a
"stack". The stack is used by the pro-
cessor as a temporary storage area to
save the address to be returned to after
executing a subroutine, or to save the
contents of all registers (except the stack
pointer) when an interrupt is
encountered.

The stack pointer is set by the DATUM
Monitor program to address 007F when
the Reset key is pressed. The area of
memory with addresses from 0000 to
007F is located on the MC6802 chip

itself, and is used by the Monitor for tem-
porary storage.

Besides its use in automatically saving
subroutine return addresses, and register
contents at an interrupt, the stack can be
accessed by the programmer with "Push"
and "Pull" instruction. These instructions
must be used carefully to ensure that the
stack is not disorganised. A common
cause of "crashing" programs is incorrect
use of the stack. If, for example, a data
byte is left on top of the stack when the
processor is expecting to find a
subroutine return address, the program
will be off into the never-never.

The final register shown in Fig. 1 is the
Condition Code Register (CCR). This
register indicates the state of the
machine after it has executed an instruc-
tion. The state of each bit or a logical
combination of bits in this register are us-
ed to determine the operation of condi-
tional instructions. There are six separate
conditions which will be indicated after
every instruction;
H: Half Carry (a carry bit from bit . 3 to bit
4 of a binary number)
I: Interrupt mask. Determines whether
the processor will respond to a maskable
interrupt
N: Indicates a negative number in two's
complement binary
Z: Indicates a zero byte.
V: Overflow. Result is too large to be
represented in 8 bit two's complement
binary
C: Carry (a carry bit from bit 7 of a binary
number)

Although a standard 8 bit register is us-
ed for condition codes, bits 6 and 7 are
permanently set to "1" and can be
ignored.

For more detailed discussion of 6802

92 	ELECTRONICS Australia, December, 1982

YES IS IT `M'?
(MEMEXIVI)

WAS IT
A VALID

COMMAND?
GO TO THE
COMMAND
ROUTINE

GET A 16 BIT
HEXADECIMAL. 	(7137)

ADDRESS (HEXPAD)

LOOK FOR A
COMMAND KEY

(DISKEY)
(715E)

Fig. 2

Fig. 2 is a flowchart of the command pro-
cessor program, responsible for
refreshing the LED display, scanning the
keypad and verifying the user's input.

Fig. 3 is a more detailed flowchart of .the
command routine, showing the actual
names and addresses of the individual
cc rr mand routines in the DATUM
Monitor ROM:.

00 TO THE
COMMAND .

ROUTINE

IS IT
'2ND 'FUNCTION'?

(SECOND)

registers and programming, refer to our
series of four articles on "How to Pro-
gram in Machine Language", which
began in EA, March 1982. The "M6800
Microprocessor Applications Manual",
published by Motorola Inc is also a
useful reference source.

What is a Monitor program?
A Monitor program is a collection of

short programs that assist the user when
communicating with the microprocessor
system. The routines in the Monitor are
directly related to the hardware of
DATUM, and are called into action by
the user's keypad input via a routine call-
ed the "command processor". This
routine performs a number of tasks;
• Refreshing the display
• Scanning the keypad
• Checking the validity of the user's
input
• Transferring to control to function
routines when required.

Fig. 2 shows a simplifed version of the
command processor program. After the
machine has been reset it outputs a pro-
mpt "—" in the leftmost display digit. The
keypad is scanned, the display refreshed
and if no key has been pressed the
MC6802 will continue to refresh the
display and check the keypad.

When a key is struck a test is carried
out to determine whether or riot the key
was valid. If the key was not valid the
program returns to the display refresh
routine without changing the display or
the contents of any memory locations in
the user area of the system. If however,
the key was valid and, for example, it
was a hexadecimal digit, the display
would then show that digit. This is a sim-
ple example of multi-tasking, where a
number of jobs are being carried out in
sequence by the processor. To the user
however, it looks as though this happens
instantaneously.

If the key pressed was one of the com-
mand keys and it is valid then the
MC6802 will start to execute a program
that corresponds to that command.

An important function of the Monitor
and probably the one most frequently
overlooked is that of base conversion.
The microprocessor has only one
language, that of binary numbers.
Humans have difficulty when dealing
with such numbers so the hexadecimal
number system (base 16) is used instead.
There are at least two reasons why base
16 is most frequently used in computing:
(1) Conversion between base 2 and
base 16 is mathematically a simple
matter.
(2) People can easily remember
numbers written in hexadecimal.

Another important feature of a
Monitor are functions that allow the user
to examine and change the contents of
given memory locations so that pro-
grams can be stored. Equally important

is a "go" command, which allows the
user's programs to be executed. Finally
there should be some debugging aids
that allow the programmer to trace
through a program and so determine if
the computation being performed is as
intended.

Fig. 3 shows a flowchart similar to that
of Fig. 2, with the difference that the ac-
tual names and addresses of the routines
in the DATUM Monitor are also shown.
Briefly, these routines operate as
follows; shown with the name of "label",
first, and the hexadecimal starting ad-
dress shown in parentheses;

DISKEY (7155): 	This subroutine
refreshes the display
and then scans the
keypad.

GOTO (7166): 	This routine causes a
jump out of the
Monitor to the user's
program.

HEXPAD (7137): This subroutine
allows the user input
a 4-digit hexadecimal
number.

MEMEXM (7169): This is the memory
examine and change
routine.

SECOND (716F): This routine toggles
the second function
flag.

SSTEP (7174): 	This is the single step
or trace routine

Monitor commands
of DATUM

This section describes the operation of
each Monitor command in detail. Fig. 4
shows the layout of the keypad and
display of DATUM and should be refer-
red to as an aid to understanding how to
"drive" the machine.

First of all we should consider the
operation of the memory display and
change function. This is one of the most
important functions of the Monitor as
without it programs cannot be loaded in-
to the memory of DATUM. To display
the contents of a given memory location
all the user need do is to enter the ad-
dress of the required memory location
using the keypad and press the M/R key.
The data digits (the two right-hand digits)
of the display will then show the con-
tents of that location. If the user wants to
change the contents of the displayed
location two new hexadecimal digits can
now be entered from the keypad.

When entering new data into memory
or just inspecting the current contents of
a number of locations the I/D key is used
to increment the displayed address.
Some of the less obvious features of the
memory function are that the user can
input any number of hexadecimal digits,
however only the two digits on the
display just prior to the user pressing
either the I/O or RESET or the ESCAPE
key will be stored. If the Second Function

ELECTRONICS Australia, December, 1982 	93

2F

E
HEXADECIMAL

KEYPAD

ADDRESS

Fig. 4

Fig. 4: layout of the DATUM function
keys.

••■■■•■••

•■••••■••

ER

G
S

•

DATA

DATUM programming 	 MONITOR SOFTWARE

key is pressed once only before using
the IID key, the address will be
decremented each time the I/D key is us-
ed. There are three ways of escaping
from this decrement mode. The first is to
use the 2nd function key once again,
returning to the increment mode
without exiting from the memory func-
tion. The other two ways are by using
the RESET or the ESCAPE keys, which do

,cause an exit from the memory function.

When the contents of a memory loca-
tion are changed the data display
changes with every key stroke (every half
byte, or "nibble"). If only one nibble is
changed the contents of the memory
location will then be the new high order
nibble and the old low order nibble.

Once a program has been stored in
memory the next Monitor command re-
quired is one that tells the machine to
set the program counter to the start ad-
dress of the user's program and to begin
to execute it. The G/S key provides this
function. Pressing this key after entering
the four digit start address will cause the
program to begin to execute from that
address. However, the user may find that
the first few attempts at writing software
may not always produce results that are
expected. The type of unpredictable
results can vary from a value not being
calculated correctly to a "crash" where
all of the memory in which the program
had been stored is over-written. If the
unit does "crash" as just described then
the prompt may not return when the
ESCAPE key is pressed. In this case a
master RESET is needed.

Obviously some debugging functions
are also required. A trace or single step
mode is one such tool. The single stepp-
ing mode is entered by keying in the
start address of the program, pressing
the 2nd function key and then the G/S
key. The display will now show the start

address and the opcode of the first in-
struction of the program. Now if the I/D
key is pressed the address will be that of
the next instruction and the data display
will show the opcode of that instruction.
In this mode none of the data bytes
associated with these instructions are
ever displayed. With this function pro-
grams can be checked one step at a time
for correct operation.

When executing a program in this man-
ner it is useful to inspect the contents of
the registers, which can be done with
the M/R key. In this case there is no need
to press the 2nd function key before the
M/R key because the 2nd function is
already engaged in the single step mode.

For example, if the program shown in
Fig. 5 is entered and run, examination of
the registers will show the sum in Acc A,
and the second addend in Acc B, where
they were placed by the program. This il-
lustrates an important point — the Store
operation does not change the data in
the source register, it merely copies it to
the destination.

When the register display mode is
entered the first register to be shown will
be the condition code register. If the I/D
key is then pressed a number of times
the remainder of the registers will be
displayed. Table 1 shows the order in
which the registers are displayed,
together with the actual display on
DATUM. The two righthand displays are

(CC) 	XX--CC
(ACC B XX--Ab
(ACC A) XX--AA
(IX) 	XXXX Id
(PC) 	XXXX PC
(SP) 	XXXX SP

Table 1: Order in which registers are
displayed by the M/R function.

the register indentification, 'X' is the con-
tents of a register and "—" is a blank
display.

When the user has incremented the
register display through to the stack
pointer, pressing the I/D key once again
will cause the condition codes to be
displayed again. If the user wants to exit
from the register display mode but con-
tinue single stepping, then the G/S key
should be used. On returning to the
single step mode the step just before
entering the register display will be
shown.

Now that the operation of the single
step function has been described, we
should next look at how it works so that
the user can gain the full benefit from
this function. As a piece of software it is
the most complex section of the
monitor. The function is performed by
software only, there being no special
hardware added to DATUM to perform
the interrupt. It operates in the following
manner:
(1) The opcode to be executed is check-
ed to determine the number of byts in
the instruction. If it is a branch or a jump
instruction the destination address is
determined.
(2) The single step program now knows
where the target program will go to
next, so the instruction in that location is
stored away in the scratch pad memory
and a software interrupt (SWI) is entered
in its place. The opcode of this instruc-
tion is "3F".
(3) The instruction is executed and then
the processor will reach the software in-
terrupt which will cause the processor to
resume execution of the single step
program.

(4) Finally the software interrupt is
replaced by theinstruction opcode that
was stored away. The above process is
then repeated for the next instruction.

94 	ELECTRONICS Australia, December, 1982

START LDA A
LDA B
ABA
STA A
SWI

SUM1 	LOAD ACC A WITH THE FIRST VALUE
SUMS 	LOAD ACC B WITH THE SECOND

ADD THE TWO ACCS. TOGETHER
SUMS 	SAVE THE RESULT

STOP

START
LOOP1
LOOP2

INCDIS
STORIT

JSR 	PROMPT
LDX
JSR 	DISPLY
DEX
BNE LOOP2
LDA A DISBUF
CMP A #$FF
BNE 	INCDIS
DEC A
BRA 	STORIT
INC A
STA A DISBUF
BRA 	LOOP1

DATUM p EXAMPLES ramming 	
It should be noted that this type of

single step will only work in a read/write
memory. In fact if the operator tries to
use this command to trace through the
DATUM monitor EPROM the prompt will
return to the display.

Some attention must be given to the
subject of breakpoints. A breakpoint is
another debugging tool, an instruction
that is placed into the user's program to
terminate the program when it is ex-
ecuted. By using this function programs
that have long execution times such as
those using delay loops can be executed
at full speed till the breakpoint is reach-
ed. Due to the small number of function
keys on DATUM is was decided that a
breakpoint function could not be incor-
porated. However, the user can still have
this if the following steps are taken.

Determine where in the program a
breakpoint is needed (this at first may be
only a guess) and change the opcode of
of the selected instruction to a "3F" for a
software interrupt (SWI) (note down the
original opcode for future reference). Run
the program in the normal way and if it is
correct and there are no very long delays
in the program the displays should im-
mediately light up with the address of
the SWI and "3F" in the data display.

If the display does not return in
reasonable time it can be assumed that
the program has crashed and that the
SWI should be placed closer to the start
of the algorithm.

When SWI is being displayed the user
can pres5 the 2nd function and then the
M/R key to display the register contents
at this point of the program.

Having finished with this particular
breakpoint the operator must replace
the SWI opcode with the original code
used in the program.

When attempting to use the register
display function it should be noted that
DATUM will only display registers after a
SWI has been executed by the pro-
cessor. This has been done deliberately
so that only valid register contents are
displayed.

Finally there is a base conversion
package which is located in the monitor
EPROM. There are three routines which
allow the user to convert from hex-
adecimal to binary, octal, or decimal. In
each case when these routines are runn-
ing the prompt is moved to the second
display from the right and every time a
new hexadecimal value is keyed in on
the right=hand side the result is displayed
on the four left-hand side digits. To run
these routines, key in relevant address
and press the G/S key. The program ad-
dress are hex 7500 for hexadecimal to
binary, 7503 for hexadecimal to decimal,
and 7506 for hexadecimal to octal.

1010 B6 10 00
1013 F6 10 01
1016 lB
1017 B7 10 02
101A 3F

1000 BD 71 07
1003 CE 00 10
1006 BD 71 DD
1009 09
100A 26 FA
100C 96 10
100E 81 FF
1010 26 03
1012 4A
1013 20 01
1015 4C
1016 97 10
1018 20 E9

**
**
*

Programs for DATUM
This subject will be covered in more

detail in the next article, however, by
way of introduction a few programs will
be presented.

The first is a very simple program to
add two hexadecimal numbers together
and has been included to demonstrate
the operation of the single step mode.
The program listing in Fig. 5 should be
placed in memory starting at location
1010 (hex) with the two numbers to be
added placed in locations 1000 and
1001. Values that will be used for this ex-
ample are 10 and 20 respectively. Once
these values and the program have been
placed in memory the user should begin
the single step mode at location 1010. At
this point the display will show the ad-
dress 1010 and the contents of the loca-
tion (data) equal to B6. If the I/D key is
pressed four times the opcodes of the in-
structions and the corresponding ad-
dresses will be displayed as in Table 2.

Now that the program has been ex-
ecuted the user can check location 1002
to see if the correct value, 30, has been
stored. If the user wants to display the
registers while in the single step mode

HEX ADDRESS
	

DATA
1010
	

B6
1013
	

F6
1016
	

1B
1017
	

B7
101A
	

3F

Table 2: Addresses and data for the

addition program shown in Fig. 5.

CLEAR DISPLAY AND OUTPUT A PROMPT
SET DELAY TIME
GO TO THE DISPLAY ROUTINE
DECREMENT THE X REG
IS X REG ZERO?
LOAD ACC A WITH DISBUF CONTENTS
IS IT A BLANK?
IF NOT BLANK GO TO INCDIS
BLANK, DECREMENT FOR A PROMPT
SKIP INCREMENT
PROMPT, INCREMENT FOR A BLANK
STORE NEW DISPLAY VALUE
BRANCH TO DISPLAY/DELAY LOOP

then the method described above
should be used.

The next program, listed in Fig. 6,
lashes the prompt segment on the
display. This program uses two
subroutines that reside in the Monitor.
The first, "SPROMPT" is located at 7107
and it has the function of clearing the
display then placing the prompt
character in the display buffer. The se-
cond is called "DISPLAY" and is the
display multiplex subroutine.

The flash rate may be varied by altering
the value loaded into the index register
at the beginning of LOOP1, that is, the
16-bit number in memory locations 1004
and 1005. Currently it is 0010, but if it is
reduced the flash rate will increase. The
final listing, Fig. 7, is that of a 12 hour
clock. When running, this program pro-
mpts the user with a lower case "t" and
waits till the time has be.en entered. If a
non-decimal number is entered or an in-
valid digit is keyed in, then the incorrect
digit will be set to zero. The program re-
quires inputs of hours and minutes only,
as the seconds are automatically set to
zero. If the hours figure is less that 9 then
a leading zero must be entered in the
tens of hours digit.

Fig. 5: A short program to add two numbers together. The first four digits are address
locations at which the corresponding op codes and data are entered.

IF DISBUF = FE THEN A PROMPT IS DISPLAYED
IF DISBUF = FF THEN THE DISPLAY IS BLANK

END

Fig. 6: A program to flash the prompt on the LED display, showing the use of the
Monitor routines SPROMPT and DISPLAY.

The clock program is shown overleaf.
The first four digits are addresses, follow-
ed by the op codes and data to be
entered.

In the next article more programs and
applications will be presented, including
games and control applications for the
hobbyist.

ELECTRONICS Australia, December, 982 	97

E
L

E
C

T
R

O
N

IC
S

 A
u

stralia
, D

e
c

e
m

b
e
r,

1044. 8633
10•1 t CE001B

PD7-1D?
104C:
104D-8D7I1.D

1. 051 4A

I SO

CI

MAIN TIME DISPLAY ROUTINE

LDAA 	#5 1
LDX 	#2"7
jSR 	XTIMLP.
PSHA
jSR. 	C' (SPLAY
PULA
DECA
BNE 	CLCDIS1

SET DELAY LOOP, ACCA
II 	 II " 	, X REG

JUMP TO x RFG DELAY
SAVE ACCA
REFRESH THE DISPLAY
GET ACCA DELAY VALUE
DECREMET ACCA
IS ACCA ZERO?

1054 CE0030
2D3P

1059 .8D33
105P. 8D35
105D•8D?F
105F• 8D31
1061 8103
1063 2704
1065. 2D27
106-e. 200A
1069. E600
106P 27P":-.1
1061) 6F00
106F 8601
1071 A701

LDX
BSR
BSR
BSR
BSR
BSR
CMPA
EE.O

TENRET 	BSR
BRA

TENTST 	LDAB
BEI)
CLR
LDAA
STAR

#TEMPMEM+5
BUMPTM
BUMPT9
BUMPT5
BIJMPT9
BUMPTS
#3
TENTST
BIJMPT9
DISTM
0,X
TENRET
0,X
#1
1,X

POINT TO UNITS OF SECONDS

CHECK UNITS OF SECONDS
CHECK TENS OF SECONDS
CHECK UNITS OF MINUTES
CHECK TENS OF MINUTES
CHECK FOR 12 O'CLOCK

CHECK UNITS OF HOURS

**
	

TIME DISPLAY ROUTINE

DATUM microcomputer: 1 2 hour clock program
TIME SE1TING Fe.OUTINE

1000 860E
1002 9710
1004 PD7137

CE0016

*
CLOCK LDAA

Si AA
.3SR
LDX

#$OE
DISBUF
HEXP14D
#INPUTST

PROMPT WITH n

WAIT FOR TIME INPUT
POINT INPUT STORE 	-

100A 19-.19 CLR XOFFS.1-4X CLEAR TENS AND UNITS
100f: 6F 1A CLR XOFFS45,X OF SECONDS
100E Ar,00 COPYTM LDAA 0,X COPY INPUT TO CURRENT
1010 S-IAA XOFFS,X TIME STORAGE
1012 E1 (NX
1013 8C001A CPX # I NPUTST+4
1016 26F6 BNE COPYTM
1018 8D26 BSR MISCLR
101A 8109 CMPA #9 CHECK INPUT FOR A VALID
101C 8D1E BSR I NTEST TIME 	IF MINUTES ARE NOT
101E 8105 CMPA #5 VALID SET TO ZERO, 	IF HOURS
1020 8D1A BSR INTEST ARE NOT VALID SET TO
1022 8109 CMPA #9 1 O'CLOCK
1024 8D16 BSR I NTES1
1026 2748 BEI) DISTM
1028 8101 CMPA #1
102A 2608 BNE SET100
102C A601 LDAA 1,X
102E 8102 CMPA #2
1030 2202 BHI SE110A
1032 203F BRA DISTM
1034 6F15 SET100 CLR XOFF5, X
1036 6F16 CLR XOFFS+104
1038 6C16 INC XOFFS+104
103A 2037 BRA DISTM

[1 rEd-....1 • IR

tr: 1: II: I:
ii :r

0 I*:

1073 C0010 Disrm LDX #DISE:UF 	 POINT TO DISBUF
1076 	A61B.• DIStM1 LDAA- TEMPMEM-DISBUF,X READ CURRENT TIME
10/ 	BO'?27D jSR BINnEG 	 GET . SEVEN SEG DATA
113, 	I ST AA 0,X . 	 S1ORE 	IT IN DISBUF
107D INX INC POINTER
1071- .8C016 CRX #DISBUF+6 	IS IT END OF BUFFER?.
1081 26F3 BNE DISTM1
108:3• ?DO1...13 4ST TEMPMEM 	 IS FIRST LOCATION ZERO?
1086 2604 BNE DISTM2
1088 8FF LDAP #$FF 	 REMOVE LEADING ZERO
102A 9710 S TAA DISBUF
108(: 20B6 1151112 BRA CLCDISO 	 RETURN

** CHECK AND INCREMENT TIME

108E. 8109 BUMPT9 CMPA #9
1090 2002 BRA BUMPTM
1092 8105 BUMPT5 CMPA #5
1094 2309 8UMPTM BLS NO INC
1096 6F01 CLR 1,X CLEAR "UNITS"

1098 A600
109A 4C

BUMPTS LDAA
INCA

0,X GET "TENS"
INCREMENT "TENS"

1098 A700 STAR 0,X
1091) 09 DEX DECREMENT POINTER
109E 39 RTS RETURN
109F 31 NOINC INS RESTORE STACK POINTER
lope 31 INS
10A1 20D0 BRA DISTM GO TO DISTM

1:111F.:i.E., I"

Repeated from last issue, this photo shows the completed DATUM microprocessor
board. Construction and Monitor software have been covered in previous articles.

86 	ELECTRONICS Australia, January, 1983

DATUM: games an
sof are design
DATUM, a "Digital Aid for Teaching you Microprocessors", is
a single board microprocessor trainer based on the MC6802
processor. Construction and programming have been covered in
previous articles. This final instalment provides more
programming details, including three useful examples to show
what can be done.

Although called a minimal
microprocessor system, DATUM is ac
tually quite powerful, with applications
limited only by the user's imagination
and programming abilities. Skill in pro-
gramming comes with experience, but
to get things started this article has a few
examples. They have been written as
games, but lend themselves readily to
more practical applications.

Before examining the programs
however, we should point out that many
useful routines have already been writ-
ten and incorporated in the DATUM
monitor. Time delays, character display
and keyboard scanning routines are
available to be incorporated as
subroutines in your own programs.

Table 1 provides the names and star-
ting addresses of useful subroutines in
the DATUM monitor and comments on

their use. There is a penalty for using
them, however — single stepping
through ROM routines is not possible. A
single-step jump to a monitor routine
simply brings up a prompt and halts ex-
ecution. In some cases this can be over-
come by copying the monitor routine in-
to RAM, with appropriate address
changes.

An alternative method of debugging
programs which incorporate monitor
routines is to single step up to the point
of the jump to the monitor subroutine,
reset and then recommence single step-
ping at the instruction' following the
subroutine call. We can, after all, assume
that the monitor subroutine itself is
correct.

When writing programs it is good prac-
tice to finish with a software interrupt in-
struction (3F). Should there be an error in

Fig. 1 (a) shows the flowchart for a
simple decision-maker program loop.

START

LOAD IN 'YES'

DELAY

LOAD IN 'NO'

DELAY

Fig. 1 	 (b)

Fig. 1(b) shows a more complex
approach to the same problem which is
more flexible, allowing the use of

common subroutines.

Program listing Decision maker

0010 DISBUF EQU 	 $10 DISPLAY BUFFER MEMORY
71DD DISPLY EQU 	 $71DD DISPLAY REFRESH
7177 MPXK EQU 	 $7177 KEYBOARD SCAN
71D2 TIMLP EQU 	 $71D2 10MS TIME DELAY

1000 ORG 	 $1000

SET UP TO DISPLAY 'YES'

1000 CE 00 10 YESSET LDX 	 #DISBUF POINT TO DISBUF
1003 86 48 LDA 	A 	#$48 LOAD ACC A WITH A 'Y'
1005 A7 00 STA 	A 	0,X PUT IT IN THE 1ST DIGIT
1007 86 06 LDA 	A 	#6 LOAD ACC A WITH AN 'E'
1009 A7 01 STA 	A 	1,X PUT IT IN THE 2ND DIGIT
100B 86 42 LDA 	A 	#$42 LOAD ACC A WITH AN 'S'
100D A7 02 STA 	A 	2,X PUT IT IN THE 3RD DIGIT
100F 86 7F LDA 	A 	#$71 LOAD ACC A WITH A

BLANK
1011 A7 03 STA 	A 	3,X
1013 A7 04 STA 	A 	4,X
1015 A7 05 STA 	A 	5,X
1017 BD 71 D2 JSR 	 TIMLP WAIT FOR 10 MS

HAS A KEY BEEN PRESSED?

101A BD 71 77 JSR 	 MPXK SCAN KEYBOARD
101D 26 19 BNE 	 OUTPUT

SET UP DISPLAY FOR 'NO'

101F CE 00 10 LDX 	 #DISBUF POINT TO DISBUF
1022 86 3A LDA 	A 	#$3A LOAD ACC A WITH AN 'N'
1024 A7 00 STA 	A 	0,X PUT IT IN THE 1ST DIGIT
1026 86 01 LDA 	A 	#1 LOAD ACC A WITH AN '0'
1028 A7 01 STA 	A 	1,X PUT IT IN THE 2ND DIGIT
102A 86 7F LDA 	A 	#$71 LOAD ACC A WITH A

BLANK
102C A7 02 STA 	A 	2,X
102E BD 71 D2 JSR 	 TIMLP WAIT FOR 10 MS

HAS A KEY BEEN PRESSED?

1031 BD 71 77 JSR 	 MPXK SCAN KEYBOARD
1034 26 02 BNE 	 OUTPUT
1036 20 C8 BRA 	 YESSET SET UP FOR 'YES' AGAIN

OUTPUT THE DECISION AND FREEZE THE DISPLAY

1038 86 80 OUTPUT LDA 	A 	#$80 SET DISPLAY FREEZE TIME

103A B7 10 48 STA 	A 	TEMP SAVE IT

103D BD 71 DD OUT1 J. 	 DISPLY REFRESH THE DISPLAY

1040 7A 10 48 DEC 	 TEMP
1043 26 F8 BNE 	 OUT1 IS IT FINISHED?

1045 20 B9 BRA 	 YESSET STAR AGAIN

1047 3F SWI

1048 TEMP RMB 	 1 FREEZE TIME

END

The first five lines of this listing are information only. The program code starts
at address 1000 and each line contains two or three bytes of code which are
loaded into successive addresses. The program ends at address 1047, with
location 1048 used as temporary storage.

the program then this instruction may
stop the program running into higher
memory locations and overwriting your
program. With these remarks out of the
way we can discuss the example
programs.

A decision maker
This simple decision maker program

consists of a loop that is interrupted by
depressing any of the hex keys. The
flowchart of Fig. 1(a) shows that the pro-
gram consists of two decisions,
represented by the diamond boxes.
Depending on the exact time a key is
depressed, the answer is either "yes" or
"no". Fig. 1(b) shows a more complex ap-
proach which has a number of advan-
tages. By loading in the word to be
displayed before a decision has to be
made, a common display subroutine can
be used. The program could be organis-
ed so that the delay and decision blocks
can be shared, but since these are
subroutines within the monitor that we
will call upon there is little point in doing
this.

By introducing delay blocks we can
weight the "yes-no" decisions depending
on the relative length of each delay. In
this program we will make them equal to
give a 50:50 chance for the answers to
be "yes" or "no". Finally, both flow
diagrams can readily be extended to
become higher order decision makers,
with other words like "stop", "danger"
being displayed.

The next question is how the flow chart
of Fig. 1(b) is converted into an actual
program. Each box represents a small
program, or "module" which must be
written. We will consider each function
in turn.

Firstly we have to load the display
register with hex numbers that provide
the appropriate characters for our
message when they are decoded by the
display drivers. From the monitor listing
(supplied with DATUM kits) it can be
seen that a range of characters is
available in a "Display look-up table" at
lines 77A0 to 77C1.

Also from the monitor listing we can
see that memory locations 0010 to 0015
are the six display register locations.
Whatever is loaded into memory loca-
tion 0010 is displayed on the first seven
segment display, with the contents of
memory location 0011 displayed as the
second digit and so on (all addresses are
in hexadecimal).

Loading of the word "no" is performed
in the same way except that only the first
three digits have to be changed, since
the last three are already blanked.

To display the word "yes" we must
load location 0010 with 48, the hex code
for "y", location 0011 with 06 ("E"), and
location 0012 with 42 ("S"). Locations
0013 to 0015 are loaded with hex 7F,
which is the code for a blank. The first

part of the decision maker program in
listing 1 uses the index register to ad-
dress the display registers one by one.

A short time delay is required by the
second module of the program, and this
can be most easily achieved by using the
timing subroutines in the monitor. A
jump to TIMLP at address 71D2 will pro-
vide a 10ms delay. Larger delays can be
generated by using additional loops to
call TIMLP as many times as required.
Alternatively by using another timing
subroutine XTIMLP at memory location
71D7, we can provide a delay equal to 8
multiplied by the value in the X register,
in microseconds.

Testing whether or not a key has been
depressed can be done by using the
monitor subroutine MPXK at address

7177. At the end of this subroutine a
non-zero number is loaded into ac-
cumulator B if a key has been pressed
while the value of the key is in ac-
cumulator A.

In this case we are not interested in the
particular key, but simply whether or not
a key has been depressed. Thus, if ac-
cumulator B has zero contents, no key
has been depressed and we must con-
tinue on in the loop. However, if the
contents of accumulator B are non-zero,
a key has been depressed and the ap-
propriate "decision" must be displayed.
Listing 1 thus shows a jump to test if a
key has been depressed (to location
101A) and the subsequent statements to
test whether the contents of ac-
cumulator B are zero or not.

ELECTRONICS Australia, January, 1983 	87

DATUM: Flowchart for Program 2

Fig. 2

	J

DECREMENT
CONTENTS
LOC. 1112

(START

SET DISPLAY TO
READ 'INPUT'

CLEAR 1110, 1111

SET INDEX
REG 1100

STORE IN LOC. 1113

INCREMENT
LOC.1110

ALARM-
SEND OUT PIA DB7

DISPLAY

The final box in the flow diagram is for
displaying the characters already set up
in the display buffers. Again a monitor
subroutine can be employed, namely
DISPLAY (71DD). This particular routine
only displays a character for a few
milliseconds so a small loop is introduc-
ed to hold the display for a longer
period. Since DISPLAY makes use of both
the A and B accumulators, the display
counter is stored in memory location
1060. In the program given in listing 1
the value fed in is 80, providing a display
for about 21/2 seconds. Although not
previously mentioned, a further advan-

tage of flow diagram (lb) is that when
the display is terminated the decision
maker is immediately ready for another
decision.

Combination lock
The second program may be con-

sidered as a guessing game but it also
provides the basis for a combination lock
system. An N-bit code are stored in the
memory and when the user keys in the
correct- code the lock is energised and
allowed to be open. In this example N is
set equal to 8 but the value can readily

be changed. If someone tries to break
the code they are allowed three at-
tempts before an alarm operates. Out-
puts to the lock and alarm are through
the PIA data lines DA7 and DB7 respec-
tively at the top of the board. Values on
these lines can be confirmed using the
logic probe. Fig. 2 shows the flow
diagram for the program.

The majority of the programming
routines have been discussed previously,
with the exception of outputting a signal
to the PIA. The eight digits of the correct
combination are stored in memory loc-
ations 1100 to 1107 by the operator
before the program is run. The number
of errors in entering the combination is
stored in location 1110, the number of
times the keys are pressed per try in
1111 and the number of attempts to in-
put the correct code is stored in location
1112.

Because the key input subroutine
makes use of the index register, the con-
tents of this register must be saved prior
to calling the input subroutine. Memory
locations 1113 and 1114 are used for this
purpose. Listing 2 shows the complete
program.

The PIA may be divided into two near-
ly identical halves, A and B. Each has
three registers, the control register, the
data direction register ("0" = input a
signal; "1" = output a signal) and the ac-
tual data register. Only two address lines
are used for each half of the PIA, the
data direction and data registers sharing
one address. The addresses used in
DATUM for the display PIA are given in
Table 2. To decide between the two
registers that have a common address,
bit 2 of the control register is employed.
A zero in bit 2 allows the data direction
register to be addressed while a 1 ad-
dresses the data register. Thus the se-
quence in setting up the A half of the PIA
for outputting a signal is as follows:

• Set up the control register (address
6001) with a 0 in bit 2 position.

• Next set the data direction register
(address 6000) to all l's for output of
data.

• Readdress the control register now
putting a 1 in bit 2 position so that the
data register will now be address at
6000.

• Finally, send the data out.
This sequence is used twice in the pro-

gram, once to open the lock if the cor-
rect code is fed in and the second time
to initiate the alarm signal. Notice that
after sending information to the PIA the
program jumps back to hold this instruc-
tion. If this is not done the monitor
returns the display PIA to its normal role
and the output immediately 'goes high
again.

Should you wish to develop this pro-
gram further for use as a safe lock or
something similar, then the hex key pad

88 	ELECTRONICS Australia, January, 1983

STORE DIGIT
1ST LOCATION

COMPUTE M + 1

Flowchart for Program 3

CONTINUE

COMPUTE
NEW N = N-P

DISPLAY

KEY
PRESSED?

COMPUTE A =
INTEGER (N -1/M +1)

KEY
PRESSED?

COMPUTE
R = N-A(M+1)-1

STORE DIGIT
2ND LOCATION

KEY
PRESSED?

COMPUTE
NEW N = N-R

STORE DIGIT
6TH LOCATION

DISPLAY

KEY
PRESSED?

DISPLAY "CLOT"
(END GAME)

DISPLAY "ER"
(ERROR)

can be removed from DATUM and
mounted remotely. The system should
be organised so that power must be ap-
plied to undo the lock while removing
the power will sound the alarm. Thus the
system is secure should power to
DATUM fail.

Pick up sticks
The final program is a game you may

have played when younger. There is a
pile of match sticks and the two players
are allowed to remove in turn a number
of matches (for example any number
between 1 and 10), each player trying to
force the other to pick up the last match.
This simple game can be expressed in
mathematical form and so this program,
among other things, is to illustrate how
DATUM can be programmed to perform
simple arithmetic.

The easiest way to understand the win-
ning strategy is to start from the end of
the game and work backwards. If the
maximum number of sticks that can be
picked up by either player is M, then we
wish to force things so that on our last
move we leave a single match. Thus on
our next to last move we leave (M + 1) +
1 matches, and on our third to last move
2(M + 1) + 1.

Starting with N matches in the pile for
our turn, we must therefore leave

L = A (M + 1) + 1
matches, where A is the largest positive
integer and is given by

A = integer RN-1)/(M+1)]

Thus for any move the player should
remove

R = N — A (M + 1) — 1

A problem occurs if the operator
knows this strategy and also applies it.
When this happens R equals zero and a
check for this must be made. In this case
DATUM subtracts one match stick in the
hope that it was by chance that this situa-
tion arose and on the next time around
he will win.

To set up the game on DATUM the
operator feeds in N, a two-digit number,
being the number of matches in the pile
and M, and a single digit number, the
maximum number of matches a player
can pick up per turn. The operator is
given the privilege of having first go and
so they feed in P, the number of matches
they wish to remove. The program
checks the value to see they are not
cheating. In fact, "DATUM" takes a rather
sadistic attitude in this program. If he
wins he calls the operator a CLOT and if
he loses he says the operator has
cheated.

Fig. 3 presents one flow diagram for
the game Pick Up Sticks and listing 3,
shows the program. The only difficult
programming steps in the flow diagram
are the compute stages. Division is
achieved by multiple subtraction and

multiplication by successive additions.
The program as written has a number of
defects and it is suggested that as an ex-
ercise you may try and make some
changes. Firstly, the arithmetic is all done
in hexadecimal and while this will pro-
vide practice for working out branch off-
sets, it would be more convenient to do
this with decimal figures.

In addition to testing the input to
restrict values from 0 to 9, decimal

arithmetic requires the use of the
Decimal Adjust instruction to allow for
overflow. This instruction only works in
conjunction with the three addition in-
structions ABA, ADD and ADC, so for
decimal subtraction the values must be
converted to two's complement and
then added.

The program as written does make use
of FOUR additional monitor subroutines

Text continues on P95

ELECTRONICS Australia, January, 1983 	91

DATUM: listing 2 	Combination lock

E
L

E
C

T
R

O
N

IC
S

 A
u

s
tralia
,
 Ja

n
u

a
r y

, 1
9
8
3

7107 BLANK EQU $7107 CLEAR THE DISPLAY
0010 DISBUF EQU $10 DISPLAY BUFFER MEMORY
71DD DISPLAY EQU $71DD REFRESH THE DISPLAY
7177 MPXK EQU $7177 KEYBOARD SCAN

* * PIA ADDRESSES

6000 PIAAD EQU $6000 A SIDE DATA/DDR
6001 PIAAC EQU $6001 A SIDE CONTROL
6002 PIABD EQU $6002 B SIDE DATA/DDR
6003 PIABC EQU $6003 B SIDE CONTROL

1000 ORG $1000

1000 86 03 START LDA 	A 3 SET THE NUMBER OF

1002 B7 11 OA STA 	A NUMTRY TRIES TO 3

DISPLAY THE WORD INPUT

1005 BD 71 07 INPUT JSR BLANK

1008 CE 00 10 LDX #DISBUF POINT TO DISBUF

100B 86 1F LDA 	A #$1F 'I'

100D A7 00 STA 	A 0,X
100F 86 91 LDA 	A #$91 'N'

1011 A7 01 STA 	A 1,X

1013 86 14 LDA 	A #$14 'P'

1015 A7 02 STA 	A 2,X

1017 86 09 LDA 	A #9 'U'

1019 A7 03 STA 	A 3,X

101B 86 OE LDA 	A #$E 7'

101D A7 04 STA 	A 4,X

101F 7F 11 08 CLR ERRCNT CLEAR ERROR COUNT

1022 7F 11 09 CLR KEYCNT CLEAR KEY COUNT

1025
1027
102A
102D
1030

86
B7
BD
7A
26

80
11
71
11
F8

OB
DD
OB

DISOUT

DISPLAY THE WORD 'INPUT'

LDA 	A 	 #$80
STA 	A 	 XTEMP
JSR 	 DISPLAY
DEC 	 XTEMP
BNE 	 DISOUT

SET DISPLAY TIME
SAVE IT
REFRESH THE DISPLAY
DECREMENT DISPLAY TIME
IS IT FINISHED?

GET THE COMBINATION

1032 CE 11 00 LDX #COMBIN POINT TO COMBINATION
1035 FF 11 OB STX XTEMPT SAVE THE POINTER
1038 BD 71 77 GETKEY JSR MPXK SCAN KEYBOARD
103B 27 FB BEQ GETKEY HAS A KEY BEEN PRESSED?
103D FE 11 OB LDX XTEMPT POINT TO COMB. STORE
1040 Al 00 CMP 	A 0,X
1042 27 03 BEQ MISERR WAS IT AN ERROR?
1044 7C 11 08 INC ERRCNT YES
1047 08 MISERR INX NO, GO TO

NEXT DIGIT
1048 FF 11 OB STX XTEMP SAVE POINTER
104B 7C 11 09 INC KEYCNT

CHECK KEY COUNT

1041 (6 08 11)/1 	11 011

1050 Fl 11 09 CMP 	B KEYCNT WAS THAT THE LAST.KEY?
1053 26 E3 BNE GETKEY
1055 7D 11 08 TST ERRCNT IS ERROR COUNT ZERO (MAX)
1058 26 12 BNE TRIES

105A 4F

COMBINATION IS OK, OPEN LOCK

CLR 	A SET PIAAD TO DDR

105B B7 60 01 STA 	A PIAAC

105E 43 COM 	A SET DDR FOR ALL OUTPUTS

105F B7 60 00 STA 	A PIAAD

1062 B7 60 01 STA 	A PIAAC RESET PIAAD TO DATA

1065 86 47 LDA 	A #$47

1067 B7 60 00 STA 	A PIAAD SET PA7 TO '0'

106A 20 FE OPEN BRA OPEN STAY OPEN

TEST NUMBER OF TRIES

106C 7A 11 OA TRIES DEC NUMTRY
106F 7D 11 OA TST NUMTRY
1072 26 91 BNE INPUT IF NOT ZERO TRY AGAIN

SET ALARM

1074 4F CLR 	A SET PIABD TO DDR
1075 B7 60 03 STA 	A PIABC
1078 43 COM 	A SET DDR FOR ALL OUTPUTS
1079 B7 60 02 STA 	A PIABD
107C B7 60 03 STA 	A PIABC RESET PIABD TO DATA
107F 86 60 LDA 	A #$60
1081 B7 60 02 STA 	A PIABD SET PB7 TO '0'
1C34 20 FE ALARM BRA ALARM

TEMPORARY STORAGE

1100 ORG $1100

1100 COMBIN RMB 8 THE COMBINATION SHOULD
BE STORED HERE

1008 ERRCNT RMB 1 ERROR COUNT

1109 KEYCNT RMB 1 KEY COUNT
110A NUMTRY RMB 1 NUMBER OF TRIES

110B XTEMP RMB 2 TEMP STORE

This program can be used as a guessing game or as the basis for a security lock
system. An 8-bit code is stored in memory before the program is run. The user has
three chances to enter the correct code before an alarm connected to PIA1 bit DB7 is
activated. All programs shown are entered in memory beginning at location 1000
(hex). Code before this address are "equates" which define the location of routines

and storm(used by the program, and should not he tintvred.

DATUM: listing 3 	Pick up sticks

E
LEC

TR
O

N
IC

S
 A

ustralia,
 January, 19

8
3

722D
7107
724D

715E

0010
71DD
726E

BINSEG
BLANK
BYTE

DISKEY

DISBUF
DISPLAY
TWODIG
„

EQU
EQU
EQU

EQU

EQU
EQU
EQU

$727D
$7107
$724D

$715E

$10
$71DD
$726E

'BIN7SEG' ON DATUM
CLEAR THE DISPLAY
FORM A BYTE FROM 2 NIB-
BLES
REFRESH DISPLAY AND

SCAN THE KEYBOARD
DISPLAY BUFFER
REFRESH THE DISPLAY

** SET UP THE DISPLAY

1000
*

ORG $1000

1000 BD 71 07 START JSR BLANK CLEAR THE DISPLAY
1003 CE 00 10 LDX #DISBUF POINT TO DISBUF
1006 86 7E LDA A #$7E ,_,

1008 A7 01 STA A 1,X
100A A7 05

*
STA A 5,X

* * GET AN INPUT

*

100C BD 71 5E JSR DISKEY
100F B7 12 00 STA A TEMP1
1012 BD 72 7D JSR BINSEG
1015 97 10 STA A DISBUF
1017 BD 71 5E JSR DISKEY
101A B7 12 01 STA A TEMP2
101D BD 72 7D JSR BINSEG
1020 97 11 STA A DISBUF+1
1022 CE 12 00 LDX #TEMP1 POINT TO TEMP1
1025 BD 72 4D JSR BYTE FORM A BYTE
1028 B7 12 00 STA A TEMPI
102B BD 71 5E JSR DISKEY
102E B7 12 02 STA A TEMP3
1031 BD 72 7D JSR BINSEG
1034 97 15 STA A DISBUF+5
1036 BD 71 5E AGAIN JSR DISKEY
1039 B7 12 03 STA A TEMP4
103C 27 08 BEQ PZERO
103E 7C 12 02 INC TEMP3 M=M+
1041 B1 12 02 CMP A TEMP3 P=(M?
1044 2B 18 BMI NEWN
1046 CE 00 10 PZERO LDX #DISBUF
1049 86 06 LDA A #6 'E'
104B 97 12 STA A DISBUF+2
104D 86 15 LDA A #$15 'R'
104F 97 13 STA A DISBUF+3
1051 8D 61 BSR DISOUT
1053 CE 00 10 LDX #DISBUF POINT OF DISBUF
1056 86 7F LDA A #$7F
1058 A7 02 STA A 2.X
105A A7 03 STA A 3,X
105C 20 D8 BRA AGAIN
105E B6 12 00 NEWN LDA A TEMPI N
1061 BO 12 03 SUB A TEMP4 N-P
1064 B7 12 00 STA A TEMPI SAVE NEW N
1067 BD 72 6E JSR TWODIG
106A D7 10 STA B DISBUF MSN
106C 97 11 STA A DISBUF+1 LSN

106E 8D 44 BSR DISOUT

AM.

1070 B6 12 00 LDA 	A TEMP1 N
1073 4A DEC 	A
1074 27 3C BEQ CHEAT

CALCULATE NEW VALUES

1076 7F 12 05 CLR TEMP6 A
1079 7C 12 02 INC TEMP3 M=M+1
107C 7C 12 05 INCA INC TEMP6 A=A+1
107F BO 12 02 SUB 	B TEMP3 (N-1)-(M+1)
1082 2E F8 BGT INCA
1084 7A 12 05 DEC TEMP6 A=A-1
1087 5F CLR 	B
1088 FB 12 02 ADDM1 ADD 	B TEMP3 +(M+1)
108B 7A 12 05 DEC TEMP6 A=A-1
108E 26 F8 BNE ADDM1
1090 B6 12 00 LDA 	A TEMP1 N
1093 10 SBA N-A(M+1)
1094 16 TAB
1095 5A DEC 	B R=N-A(M+1)-1
1096 26 02 BNE MISSET R=0?
1098 C6 01 LDA 	B #1 SET R=1
109A B6 12 00 MISSET LDA 	A TEMPI N
109D 10 SBA N=N-R
 109E B7 12 00 N

STA 	A TEMP1
10A1 BD 72 6E JSR TWODIG

D7 10 STA 	B DISBUF
10A6 97 11 STA 	A DISBUF+1
10A8 B6 12 00 LDA 	A TEMPI
10AB 81 01 CMP 	A #1 N=1?
10AD 27 04 BEQ CLOT
10AF 7E 10 36 JMP AGAIN
10B2 3F CHEAT SW1
10B3 3F CLOT SW1

* * DISOUT, DISPLAY ROUTINE WITH TIME-OUT

*

10B4 86 80 DISOUT LDA 	A #$80
10B6 B7 12 04 STA 	A TEMP5 SET DISPLAY TIME
10B9 BD 71 DD DISOU1 JSR DISPLY
10BC 7A 12 04 DEC TEMP5
10BF 26 F8 BNE DISOU1
10C1 39 RTS

*. TEMP STORE

1200 TEMP1 RMB 1
1201 TEMP2 RMB 1
1202 TEMP3 RMB 1
1203 TEMP4 RMB 1
1204 TEMP5 RMB 1
1205 TEMP6 RMB 1

This program simulates the game of "Pick up sticks" or "Matches". The winner is the
player (either DATUM or the operator) who forces the opponent take the last object.

Table 1: DATUM Monitor routines

NAME 	START 	COMMENTS
LOCATION

SPROMPT 7107

DISKEY 	715E

MPXK 	7177

TIMLP 	71D2

XTIMLP 	71D7

DISPLAY 	71 DD

BYTE 	724D

TWODIG 	726E

BIN7SEG 	727D

ADBX 	734C

SBBX 	7364

Puts a "PROMPT" in the left-most digit and
blanks the rest.
Refreshes the display then scans the
keyboard. If no key was pressed then the
routine loops back to display refresh routine.
Tests whether a key has been depressed.
Acc B = 0 if no key depressed else # 0. Acc
A has value of key. Index Reg is used.
Gives a 10ms delay and does not change
Acc A, Acc B or Index Reg.
Time delay depends on the Index Reg. Delay
= Index Reg contents x8p,S.
Displays for 10msec contents of display
locations 0010-0015. Index Reg used.
Takes two nibbles in successive memory
locations (indexed) and combines to form a
byte. MSN in location 00 and LSN location
01. Index Register must be set before enter-
ing subroutine. Result in Acc.
Takes byte in Acc A and splits into 2 nibbles
MSN in Acc B, LSN in Acc A Index Register.
Converts a hex value in Acc A, into a seg-
ment code. This result is in Acc A, the
original hex value being lost. Index Reg is left
unchanged.
Adds the contents of Acc B to the Index Reg
and the result is in the Index Reg on exit from
the routine.
Is similar to ADBX but subtracts Acc B from
the Index Register.

Table 2: Addresses of PIA 1 (hex).

6000 Data register A and Data Direction register A
6001 Control register A
6002 Data register B and Data Direction register B
6003 Control register B

Table 1 shows
Monitor routines
which can be used
with any program.
Table 2 has the
addresses of PIA 1
of DATUM.

namely DISKEY, BYTE, TWODIG and
BINTSEG. The function of each of these is
explained in Table 1. Please note that
MSN stands for most significant nibble
and LSN for least significant nibble.

Concluding remarks
The above three programs illustrate

some of the many applications of
DATUM, and we hope that you have en-
joyed studying and using them. The ap-
plications and usefulness of DATUM can
be extended by adding the other two in-
tegrated circuits (the ACIA and PIA2),
but even more, by adding the matching
extension board. This board can be ex-
panded according to user needs, and
provides for memory to be increased up
to 12k bytes (RAM and/or EPROM),
analog to digital and digital to analog
conversion, cassette interface and use
with a terminal.

DATUM was originated by Malcolm
Haskard, Senior Lecturer at the School of
Electronic Engineering of The South

Australian Institute of Technology, who
designed the circuit and wrote the
documentation. John Duval, a technician
with the School was responsible for the
artwork, including the printed circuit pat-
terns used by Gammatron to produce
the boards. As mentioned in the first arti-
cle, Peter O'Neill, a masters degree stu-
dent, wrote the DATUM monitor
program.

Complete kits and instructions for
building the DATUM microprocessor
board are available from Gammatron,
Unit 1, Weens Rd, Pooraka, SA, 5095.
Phone (08) 262 6555.

Correction
The connection diagram for the

DATUM expansion interface, Fig. 8,
published in November 1982, is partially
incorrect. On the upper side of the
board, starting from pin 11, the address
lines are in the sequence AO, Al, A2,
A3, A7, A4, A8, A5, A9, A6, A10, and
All (on pin 22).

ELECTRONICS Australia, January, 1983 	95

DATUM : THE COMPUTER KIT
(AS FEATURED IN ELECTRONICS AUSTRALIA, NOV., 82, DEC., 82 AND JAN., 83 ARTICLES)

DATUM is a minimum cost, self contained microcomputer
kit designed by the South Australian Institute of
Technology to assist in the teaching of the basics of micro-
processor systems. The DATUM, microcomputer is widely
used as a process controller in a vast range of applications.

Current users include: Department of Defence; Telecom;
Department of Aviation and various Technical Colleges etc.

The DATUM microcomputer incorporates:
DATUM Computer Kit • • . $119.00
Additional PIA . . . • • • . . . • . • . $4.80
Additional ACIA . . . • . . . • • • . . $4.80

DATUM Extension Kit (Basic) . . $119.00
(Including cassette interface, memory expansion and line buffers)

Options: A to D Conversion $21.00
D to A Conversion $29.00
RS232C Terminal $24.00

Manuals "Working with DATUM "Book 1 $13.00 (No S. T.)
Book 2 (Available September)

All prices include S.T., post and packing charge $5.00
Send money order, cheque, Bankcard authority, and we will post haste a kit.

DATUM is available exclusively from Gammatron Pty. Ltd.
Office: — Unit 1, Ween Road, Pooraka 5095

Postal:— P.O. Box 62, Ingle Farm, S.A. 5098

ASK ABOUT OUR LARGE RANGE OF COMPONENTS
AT COMPETITIVE PRICES. WE ARE OPEN 7 DAYS A

WEEK

130 	ELECTRONICS Australia, September, 1983

Send SAE for
further information.

AN% BANK

VISA

DATUM
The true starting point

COMPUTER KIT
$9900 (ex. S.T.) P. & P. $5
Over 1,000 users can't be wrong

Developed by S.A. Institute of Technology to introduce students to the versatility of microprocesso# systems. Featured in EA articles
November, December, '82 and January '83.
The DATUM range now includes: DATUM EXTENSION with memory exp. and cassette interface, RS232, A/D, D/A. DATUM programming
manual, DATUM applications manual. EPROM PROGRAMMER.

Available exclusively from GAMMATRON PTY. LTD.
UNIT 1 WEEN RD., POORAKA, S.A. 5095

POSTAL: P.O. BOX 62, INGLE FARM, S.A. 5098
welcome 	 TELEPHONE: (08) 262 6555

88 	ELECTRONICS Australia_ November, 1984

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22

