
VIK OLLIVER

Patching hardware interrupts • maximise system control

Hardware interrupts differ
from software interrupts in
two important respects—
they can happen unexpect-
edly, and the hardware con-

cerned usually needs some form of finish-
ing process to clear the interrupt. The
simplest one we can deal with is the key-
board hardware interrupt, INT 9, which
we'll use in this example to catch the
CapsLock key.

The example program called BELAY-
CAP requires you to hit the CapsLock key
twice in rapid succession before it allows
the keystroke through to the BIOS and so
set the CapsLock on. This example pro-
gram will be useful if you have the habit of
inadvertently hitting the CapsLock key
then typing in capitals. It can also act as a
template for future programs that intercept
the keyboard.

As in last month's program, the first
thing the program does is to jump to the ini-
tialisation code at the end. Here, we patch
our code in to the keyboard hardware inter-
rupt and the software timer interrupt.
Another software timer interrupt is INT 8,
which the BIOS uses to generate the one we
are patching: INT 1CH. The reason we
don't patch INT 8 is that some programs
increase the PC timer frequency from the
standard 18.2 times per second so that they
can check their tasks more frequently. This
patched, faster clock is then divided down
in software, and is still passed on to INT
1CH at 18.2 times per second.

So, our timer routine is called on a regu-
lar basis. The timer routine checks to see if
we have counted to zero already and if we
have, passes control to whatever the old
timer routine was. If the count isn't zero, it
is decremented and checked again. If the
result is zero this time, the variable
`state_rtn' is set to its default value, before
control is passed to the original timer rou-
tine. The purpose of state_rtn' will
become apparent later, but the net effect is
that `state_rtn' is set to the default value
when the count expires. This is one way of
implementing a timer.

Back at the keyboard interrupt, the first
thing we do is save the AX and DS regis-
ters. These are needed to look into the
BIOS variable area.

From our BIOS variables list, we know
that the state of the CapsLock key is held in
bit 6 of byte 40:0017H. If this bit is already
set, then we know that CapsLock is already
active and that the user is trying to turn it

BELAYCAP: Program activated by keys

; BELAYCAP: Program which requires the CapsLock key to be hit
; twice to activate.

INCLUDE 	INTNOS.DEF

caps key equ58 	; Scan code for caps key

code SEGMENT public 'CODE'
ASSUME cs:coder ds:code 	; No data segment

org 100H

begin:
; Jump to init code

jigp 	init bit

; This is our diverted interrupt. It corrupts nothing.

diverted kbd int PROC far

ASSUME ds:nothing

push ds
push ax
mov 	ax,40H ; Check key flags in BIOS
mov 	ds, ax

; Test if caps active.
test byte ptr ds:[17H],40H
jnz
	

dki_abort 	; Jump if active

; See what manner of key has been pressed.

in 	al, 60H ; Kbd data port
mov 	ah,a1 ; Keep original in AH
and
	a1,7FH ; Mask off top bit

; Was it our caps key?

cmP
	al,capsjcey

; Jump if not.
jnz
	

dki_abort

; It was a caps key. What should we do with it?

call
	

cs:[state_rtn]
; Jump if we pass it on

jc 	dki_abort
; Otherwise get rid of it

; We need to absorb this key. Reset the keyboard
; port, issue a non-specific End of Interrupt,
; and return.

in 	al, 61H ; This resets the keyboard
mov 	ah,a1 ; port so that the caps
or 	a1,80H ; lock keypress is lost.
out
	

61H, al
	

(continued)

PC Magazine June 1993 	 303

off. In this case, we must let the key codes
through whatever they are.

If the CapsLock isn't already on, then
we read data from the PC keyboard port
using the IN instruction. This command
looks at specific addresses to which hard-
ware is connected and comes in several
forms: IN AL,nn, IN AX,nn, IN* AL,DX,
IN AX,DX, INSB, and INSW As hardware
can sometimes be a little slow, IN instruc-
tions can take much longer than an equiva-
lent-sized read of a memory location.

The instruction 'IN AL,nn' reads the
byte value at hardware location (or input
port) nn into register AL. Note that this can
only be used for port addresses where nn is
less than 100H. IN AX,nn is similar, but
puts the value of the hardware port at
address nn in AL, and then reads nn+l into
AH. This instruction is used on processors
above the 8086 to do such things as read
data rapidly from a hard disk controller.

IN AL,DX and IN AX,DX do a similar
thing, but allow addresses in the range 0-
FFFFH to be used in DX. Most PC periph-
erals are at addresses of lower than 3FFH;
the keyboard port that we are interested in
is at 60H.

INSB and INSW are input port instruc-
tions allied to the string commands STOSB
and STOSW. They are used in exactly the
same way, but take their source from the
port address in DX. They don't exist on the
8088 and 8086 processors.

With the key scan code now read from
the keyboard into AL, we can set about see-
ing what to do with it. Key scan codes are
not ASCII, but are arbitrary numbers
assigned to the keys. A full list can be
found in good manuals, or you could write
a program to display them as an exercise.

Before checking the value, remove the
top bit. This is because the key scan code is
a 7-bit quantity, and the top bit is clear
when the key has just been pressed, and set
when the key has been released. If the scan
code isn't a CapsLock, we pass it on to the
BIOS. If it was a CapsLock key, we pass it
on to whatever routine `state_rtn' happens
to be pointing at.

It's possible to write some unnecessarily
complex code that does a different task
every time it's entered. Usually, it tests
which bit of it should be running, and after
many tests gets to the right piece. An easier
way is to make each routine store a pointer
(or an index) to the next routine that should
be executed. If the current routine has to
branch, then it just stores the pointer to the
bit it wants to branch to, and this will be
called next time round. This process is
called a state machine. Programmers and
hardware designers alike often find it help-
ful to draw out maps of the interconnected
states, much like flowcharts.

(continued)

xchg ah, al
out 	61H, al

mov 	al, 20H ; Non-specific end of
out 	20H,a1 ; interrupt command

xor 	al,al 	; Clear carry
imp
	short dki_pione

dki_abort:
stc

dki done:
PoP
	

ax

PoP
	

ds

; If carry is set here, we do not want to prevent
; the key from going to the BIOS routine.

jc 	dki_pass_on

; We have processed this key already. Return from
; interrupt

iret

dki_pass_on:
jimp 	cs:[orig kbd vec]

End of the diverted interrupt.
diverted kbd int ENDP

diverted timer_int PROC far
; Decrements our own tick count when the system
; calls it every 54ms (18.5 ticks is just about
; a second). When we hit zero, we reset the state machine.

; Is our tick count zero?

anP
	cs:[tick_pount],0

; Jump if it is already.
jz 	dti_skipjec

; If not, dec it again.
dec
	cs:[tick_count]

; Jump if still not zero
jnz
	

dti_skipplec

; We hit zero, Abandon any attempts to set caps.

mov
	cs:Estate_Ftnhoffset caps key wait

; Whatever happened, now do the original timer int.

dti_skipjec:
jmp 	cs:[orig timer vec]

diverted timer int ENDP

caps key wait 	PROC NEAR
; This routine waits for our first caps lock.
; It starts off our timer, and sets up the next routine.

(continued)

304 	 PC Magazine June 1993

(continued)

and
	

ah, 80H ; If top bit is set, key is coming up.

stc 	 ; Assume we pass on.
jnz ckw exit; So pass it on.

; Wait for caps key for just over 1/2 sec.

mov
mov
cic

ckw exit:
ret

cs:[state_Ftn],offset caps_rel wait
cs:[tick_pount],10

; Don't pass on key.

caps key wait 	ENDP

caps rel wait 	PROC NEAR
; Waits for the caps key to be released. We always
; absorb the key.

and 	ah,80H ; See if it is coming up.
jz 	crw exit; Jump if not coming up.

Prepare to pass on next key
mov 	cs:[state_rtn] ,offset caps_pass

crw exit:
cic 	 Don't pass on this key.
ret

caps_rel wait 	ENDP

caps_pass PROC NEAR
Passes on the next caps lock key and puts our
state machine back to the original state.

mov 	cs:[state_Ftn],offset caps key wait
stc 	; Pass on the key
ret

caps_pass ENDP

This is the original interrupt vector.
orig kbd vecdd
This is the original timer vector

orig timer vec 	dd

Used for our own timing routines
tick_count dw 	0

Keeps track of current caps subroutine
state_rtn dw 	offset caps key wait

init bit:

Our state machine is fairly simple: in the
initial state, it waits for a CapsLock down
scan code. If it gets an up code, this is
passed on. When it finds a down code it
sets the timer discussed above and invokes
state 2. State 2 waits until it sees a Cap-
sLock key coming up. When it does, it
switches the machine to state 3. The key
code is absorbed whether it is coming up or
going down.

State 3 passes on the next CapsLock key
code and resets the machine back to state 1.
Don't forget that while all this is going on,
the timer is ticking away. When it expires,
everything is set back to state 1 again.

After the state machine has been called,
the state of the carry flag is checked to see
if the key scan code should be absorbed or
not. Without going into too much detail of
the PC's internals, the collection of IN and
OUT instructions to 61H tell the keyboard
controller to forget it had a scan code.

OUT instructions are the reverse of the
IN instruction, and there are obvious simi-
larities. The OUT family consists of: OUT
nn,AL, OUT DX,AL, OUT DX,AX,
OUTSB and OUTSW. The same rules
apply to the values of nn and DX.

The final OUT 20H,AL tells the PC's
interrupt controller to cledr the interrupt,
and then we drop into popping AX and DS
off the stack. Finally, depending on the
state of the carry flag, we either pass on the
key to the original keyboard interrupt vec-
tor, or issue an IRET ourselves.

As the main purpose of writing short
interrupt handlers is to patch an existing
interrupt, readers may find the XLAT com-
mand useful. This takes the value in AL
together with the value in BX, and replaces
the value in AL with the byte at [BX+AL].
This is obviously just the job for look-up
tables' as you would use for replacing, say,
foreign characters when patching a printer
interrupt.

The value in AL is taken as an unsigned
value, so when AL is OFFH the byte at
[13X+OFFH] will be retrieved rather than
the byte at [BX-1].

For indexing into other segments, a
dummy parameter is used for no other pur-
pose than to give the assembler something
to relate a segment to. The instruction then
takes the form XLAT ES:[BX], where ES
can be any segment register. Some assem-
blers use the XLATB opcode when there's
no following dummy parameter.

Common Code
Throughout this series we've accumulated
a fair number of useful routines that are
common between different programs. It's
common assembler practice to separate
these out into include files. If you make
sure that you use the same constants

"Throwaway Code"
This is the bit that initialises the interrupt
patch. It must be at the end, as space is
reserved frog► the start of the program.

push cs 	; Get our data segment
(continued)

306 	 PC Magazine June 1993

(continued)

PoP ds
ASSUME ds :code

; Announce ourselves
may
	

dx,offset signmsg
may 	ah,9
int
	

21H

push es 	; Save our. PSP

; Read the original keyboard interrupt

mov 	ax,3500H+keybd hw int
int 21H

; Store the address returned in ES:BX

mov 	word ptr ds:[orig kbd vec],bx
mov 	word ptr ds:[orig kbd vec+2],es

; Patch the interrupt

mov 	ax,2500H+keybd hw int
; Put our routine address
in DS:DX

push cs
PoP
	

ds
mov
	

dx,offset cs:diverted kbd int
int
	

21H

; Read the original timer interrupt

mov ax,3500H+timezjnt
int 21H

Store the address returned in ES:BX

mov 	word ptr ds:[orig timer vec],bx
mov 	word ptr ds:[orig timer vec+2],es

; Patch the interrupt

mov 	ax,2500H+timer int
• Put our routine address
in DS:DX

push cs
PoP
	

ds
mov 	dx,offset cs : diverted timer int
int
	

21H

Polo
	es 	; Recover PSP

mov 	dx, offset cs:init bdt
mov 	c1, 4
shr 	dx, c1

Add one para of memory for rounding errors
For .EXE versions, add 11H to account for the PSP
inc dx

Terminate but stay resident
mov 	ax, 3100H
int
	

21H

signmsg
db
db
db

code ENDS

db 	13,10
"BELAYCAPS V1.0 -Requires Caps Lock to "
"be hit twice rapidly to activate."
13,10,"$"

END begin

Available as:BELCAP.ZIP in Productivity Library (#3), in PCMAGUK forum. To access GO ZNT:PCMAGUK

throughout all the code, there's less oppor-
tunity for confusion. By convention,
include files which define constants are
given the extension DEF, and ones defining
macros (more on these later) are given the
extension MAC. Our include file INT-
NOS.DEF looks like this:

; INTNOS.DEF -Common interrupt
; numbers
keybd hw int equ 	9
video int equ 	10H
disk int 	equ 	13H
timer int equ 	1CH
dos int 	 equ 	21H

We can add more interrupts as we go along.
To include these in our assembler code, we
use the line:

INCLUDE INTNOS.DEF

C programmers should note that the
include file name is generally not enclosed
in quotation marks.

Where the include files are stored is a
different matter. They can be kept in the
same directory as the other assembler files
(.ASM, .A86, or similar) but as they are
likely to be shared across several programs,
there's usually a way of defining a direc-
tory for include files. This varies for the
different assemblers, but under Microsoft's
MASM and Borland's TASM you would
use VIC:\INCLUDES' to use the
INCLUDE directory on drive C:.

Final thoughts
After this sixth tutorial, writing assembler
code should get easier. But there are bound
to be routines that are easier in assembler
and some that are best written in a high-
level language such as C. For instance, a
serial port interrupt handler is probably
best written in assembler, but the rest of the
code may not be machine specific. It's pos-
sible to write assembler code that inter-
faces with high-level languages in one of
several ways, but there are a few things that
you must establish either from the manual
that comes with the language, or from the
appropriate technical support department.

First, find out which registers are sup-
posed to be preserved. Some need to be,
and forgetting them is a common way of
fouling up a machine code interface. It
would also be nice to know the register
conditions on entry to your own code,
although if pressed you assume nothing.

Second, find out how you're expected to
return from your assembled code to the
main program. Some will demand a far
return, some a return from interrupt and
some a near return. Most likely, it will be a
far return, but check on it.

Finally, you need to know the format of
any data being passed to you, and the for-

308 	 PC Magazine June 1993

mat in which you are expected to pass it
back. This is fairly straightforward using C
and integer or long arithmetic, but with
BASIC, the format is much more compli-
cated and implementation specific.

Bear in mind that many compiled lan-
guages have 'model' options to determine
the number of segments that may be used to
keep code and data in. With 'C', small code
models usually require an ordinary RTE,
but large ones a REEF to return. Likewise,
small data models assume a fixed data seg-
ment, but large models assume data is 'far'
and supply a segment: offset pointer to it.

Some languages—notably Borland's
C—allow in-line code to be generated.
This is either done by specifying the values
of the bytes, or by writing assembler mixed
up with the high-level C language.

A more sophisticated and flexible way is
to assemble the language and assembler
code to OBJ files and to combine these
with a linker. Most compiled languages
come with example programs that are a
convenient template for producing your
own code with, often including such fea-
tures as automatically adjusting the return
instructions and parameter pointers as the
code changes from small to large models.

Parameters—far pointers, words or
whatever—tend to be passed on the stack.
Byte-sized parameters are usually con-

verted into an even number of bytes so that
the stack is always on an even boundary.
It's important to do this, or the processor
will have to access one word of memory
for the high bytes of the stack and one for
the low bytes. This slows down perfor-
mance noticeably.

Assuming that we have a series of
parameters passed on the stack, we use the
BP register (which automatically indexes
to the stack segment) to access them. First,
as when changing interrupt flags, BP itself
is pushed onto the stack. Assuming a far
return, our 'stack frame' will look some-
thing like this:

BP 	-> 	Original
value of BP

BP+2 -> 	Segment to
return to

BP+4 -> Address
within return segment

BP+6 -> Parameter

BP+8 -> Parameter

BP+10 -> 	Parameter
3

On exit, pop BP off the stack (after any
others we may have preserved), and return.
If the routine requires a near return, then

the BP+2 line will not exist, and every-
thing moves back 2 bytes—a good reason
to use the templates provided with the lan-
guage. If you disassemble compiled lan-
guages, you may find code like:

PUSH BP
MOV
	

BP, SP
SUB
	

SP,10

N!O►V 	SP,BP
POP BP
RET

This is preserving space on the stack for
use within the routine. The space can be
accessed as [BP-2],[BP-4] and so forth.
This is a convenient, if slow, method of
reserving memory provided you have suf-
ficient stack. Each invocation of the rou-
tine reserves space for its own local vari-
ables, so eliminating re-entry problems.

Next month, we'll take a look at struc-
tures and macros in assembler, and how
they help with stack frames. If you'd like to
try to write a program as an exercise, try
writing a screen saver that sets all the
screen attributes to black on black if no key
has been pressed for a while—restoring
them when the next key is pressed.

1

2

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5

