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Patching hardware interrupts • maximise system control 

Hardware interrupts differ 
from software interrupts in 
two important respects—
they can happen unexpect-
edly, and the hardware con-

cerned usually needs some form of finish-
ing process to clear the interrupt. The 
simplest one we can deal with is the key-
board hardware interrupt, INT 9, which 
we'll use in this example to catch the 
CapsLock key. 

The example program called BELAY-
CAP requires you to hit the CapsLock key 
twice in rapid succession before it allows 
the keystroke through to the BIOS and so 
set the CapsLock on. This example pro-
gram will be useful if you have the habit of 
inadvertently hitting the CapsLock key 
then typing in capitals. It can also act as a 
template for future programs that intercept 
the keyboard. 

As in last month's program, the first 
thing the program does is to jump to the ini-
tialisation code at the end. Here, we patch 
our code in to the keyboard hardware inter-
rupt and the software timer interrupt. 
Another software timer interrupt is INT 8, 
which the BIOS uses to generate the one we 
are patching: INT 1CH. The reason we 
don't patch INT 8 is that some programs 
increase the PC timer frequency from the 
standard 18.2 times per second so that they 
can check their tasks more frequently. This 
patched, faster clock is then divided down 
in software, and is still passed on to INT 
1CH at 18.2 times per second. 

So, our timer routine is called on a regu-
lar basis. The timer routine checks to see if 
we have counted to zero already and if we 
have, passes control to whatever the old 
timer routine was. If the count isn't zero, it 
is decremented and checked again. If the 
result is zero this time, the variable 
`state_rtn' is set to its default value, before 
control is passed to the original timer rou-
tine. The purpose of state_rtn' will 
become apparent later, but the net effect is 
that `state_rtn' is set to the default value 
when the count expires. This is one way of 
implementing a timer. 

Back at the keyboard interrupt, the first 
thing we do is save the AX and DS regis-
ters. These are needed to look into the 
BIOS variable area. 

From our BIOS variables list, we know 
that the state of the CapsLock key is held in 
bit 6 of byte 40:0017H. If this bit is already 
set, then we know that CapsLock is already 
active and that the user is trying to turn it 

BELAYCAP: Program activated by keys 

; BELAYCAP: Program which requires the CapsLock key to be hit 
; twice to activate. 

INCLUDE 	INTNOS.DEF 

caps key equ58 	; Scan code for caps key 

code SEGMENT public 'CODE' 
ASSUME cs:coder ds:code 	; No data segment 

org 100H 

begin: 
; Jump to init code 

jigp 	init bit 

; This is our diverted interrupt. It corrupts nothing. 

diverted kbd int PROC far 

ASSUME ds:nothing 

push ds 
push ax 
mov 	ax,40H ; Check key flags in BIOS 
mov 	ds, ax 

; Test if caps active. 
test byte ptr ds:[17H],40H 
jnz 
	

dki_abort 	; Jump if active 

; See what manner of key has been pressed. 

in 	al, 60H ; Kbd data port 
mov 	ah,a1 ; Keep original in AH 
and 
	a1,7FH ; Mask off top bit 

; Was it our caps key? 

cmP 
	al,capsjcey 

; Jump if not. 
jnz 
	

dki_abort 

; It was a caps key. What should we do with it? 

call 
	

cs:[state_rtn] 
; Jump if we pass it on 

jc 	dki_abort 
; Otherwise get rid of it 

; We need to absorb this key. Reset the keyboard 
; port, issue a non-specific End of Interrupt, 
; and return. 

in 	al, 61H ; This resets the keyboard 
mov 	ah,a1 ; port so that the caps 
or 	a1,80H ; lock keypress is lost. 
out 
	

61H, al 
	

(continued) 

PC Magazine June 1993 	 303 



off. In this case, we must let the key codes 
through whatever they are. 

If the CapsLock isn't already on, then 
we read data from the PC keyboard port 
using the IN instruction. This command 
looks at specific addresses to which hard-
ware is connected and comes in several 
forms: IN AL,nn, IN AX,nn, IN* AL,DX, 
IN AX,DX, INSB, and INSW As hardware 
can sometimes be a little slow, IN instruc-
tions can take much longer than an equiva-
lent-sized read of a memory location. 

The instruction 'IN AL,nn' reads the 
byte value at hardware location (or input 
port) nn into register AL. Note that this can 
only be used for port addresses where nn is 
less than 100H. IN AX,nn is similar, but 
puts the value of the hardware port at 
address nn in AL, and then reads nn+l into 
AH. This instruction is used on processors 
above the 8086 to do such things as read 
data rapidly from a hard disk controller. 

IN AL,DX and IN AX,DX do a similar 
thing, but allow addresses in the range 0-
FFFFH to be used in DX. Most PC periph-
erals are at addresses of lower than 3FFH; 
the keyboard port that we are interested in 
is at 60H. 

INSB and INSW are input port instruc-
tions allied to the string commands STOSB 
and STOSW. They are used in exactly the 
same way, but take their source from the 
port address in DX. They don't exist on the 
8088 and 8086 processors. 

With the key scan code now read from 
the keyboard into AL, we can set about see-
ing what to do with it. Key scan codes are 
not ASCII, but are arbitrary numbers 
assigned to the keys. A full list can be 
found in good manuals, or you could write 
a program to display them as an exercise. 

Before checking the value, remove the 
top bit. This is because the key scan code is 
a 7-bit quantity, and the top bit is clear 
when the key has just been pressed, and set 
when the key has been released. If the scan 
code isn't a CapsLock, we pass it on to the 
BIOS. If it was a CapsLock key, we pass it 
on to whatever routine `state_rtn' happens 
to be pointing at. 

It's possible to write some unnecessarily 
complex code that does a different task 
every time it's entered. Usually, it tests 
which bit of it should be running, and after 
many tests gets to the right piece. An easier 
way is to make each routine store a pointer 
(or an index) to the next routine that should 
be executed. If the current routine has to 
branch, then it just stores the pointer to the 
bit it wants to branch to, and this will be 
called next time round. This process is 
called a state machine. Programmers and 
hardware designers alike often find it help-
ful to draw out maps of the interconnected 
states, much like flowcharts. 

(continued) 

xchg ah, al 
out 	61H, al 

mov 	al, 20H ; Non-specific end of 
out 	20H,a1 ; interrupt command 

xor 	al,al 	; Clear carry 
imp 
	short dki_pione 

dki_abort: 
stc 

dki done: 
PoP 
	

ax 

PoP 
	

ds 

; If carry is set here, we do not want to prevent 
; the key from going to the BIOS routine. 

jc 	dki_pass_on 

; We have processed this key already. Return from 
; interrupt 

iret 

dki_pass_on: 
jimp 	cs:[orig kbd vec] 

End of the diverted interrupt. 
diverted kbd int ENDP 

diverted timer_int PROC far 
; Decrements our own tick count when the system 
; calls it every 54ms (18.5 ticks is just about 
; a second). When we hit zero, we reset the state machine. 

; Is our tick count zero? 

anP 
	cs:[tick_pount],0 

; Jump if it is already. 
jz 	dti_skipjec 

; If not, dec it again. 
dec 
	cs:[tick_count] 

; Jump if still not zero 
jnz 
	

dti_skipplec 

; We hit zero, Abandon any attempts to set caps. 

mov 
	cs:Estate_Ftnhoffset caps key wait 

; Whatever happened, now do the original timer int. 

dti_skipjec: 
jmp 	cs:[orig timer vec] 

diverted timer int ENDP 

caps key wait 	PROC NEAR 
; This routine waits for our first caps lock. 
; It starts off our timer, and sets up the next routine. 

(continued) 
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(continued) 

and 
	

ah, 80H ; If top bit is set, key is coming up. 

stc 	 ; Assume we pass on. 
jnz ckw exit; So pass it on. 

; Wait for caps key for just over 1/2 sec. 

mov 
mov 
cic 

ckw exit: 
ret 

cs:[state_Ftn],offset caps_rel wait 
cs:[tick_pount],10 

; Don't pass on key. 

caps key wait 	ENDP 

caps rel wait 	PROC NEAR 
; Waits for the caps key to be released. We always 
; absorb the key. 

and 	ah,80H ; See if it is coming up. 
jz 	crw exit; Jump if not coming up. 

Prepare to pass on next key 
mov 	cs:[state_rtn] ,offset caps_pass 

crw exit: 
cic 	 Don't pass on this key. 
ret 

caps_rel wait 	ENDP 

caps_pass PROC NEAR 
Passes on the next caps lock key and puts our 
state machine back to the original state. 

mov 	cs:[state_Ftn],offset caps key wait 
stc 	; Pass on the key 
ret 

caps_pass ENDP 

This is the original interrupt vector. 
orig kbd vecdd 
This is the original timer vector 

orig timer vec 	dd 

Used for our own timing routines 
tick_count dw 	0 

Keeps track of current caps subroutine 
state_rtn dw 	offset caps key wait 

init bit: 

Our state machine is fairly simple: in the 
initial state, it waits for a CapsLock down 
scan code. If it gets an up code, this is 
passed on. When it finds a down code it 
sets the timer discussed above and invokes 
state 2. State 2 waits until it sees a Cap-
sLock key coming up. When it does, it 
switches the machine to state 3. The key 
code is absorbed whether it is coming up or 
going down. 

State 3 passes on the next CapsLock key 
code and resets the machine back to state 1. 
Don't forget that while all this is going on, 
the timer is ticking away. When it expires, 
everything is set back to state 1 again. 

After the state machine has been called, 
the state of the carry flag is checked to see 
if the key scan code should be absorbed or 
not. Without going into too much detail of 
the PC's internals, the collection of IN and 
OUT instructions to 61H tell the keyboard 
controller to forget it had a scan code. 

OUT instructions are the reverse of the 
IN instruction, and there are obvious simi-
larities. The OUT family consists of: OUT 
nn,AL, OUT DX,AL, OUT DX,AX, 
OUTSB and OUTSW. The same rules 
apply to the values of nn and DX. 

The final OUT 20H,AL tells the PC's 
interrupt controller to cledr the interrupt, 
and then we drop into popping AX and DS 
off the stack. Finally, depending on the 
state of the carry flag, we either pass on the 
key to the original keyboard interrupt vec-
tor, or issue an IRET ourselves. 

As the main purpose of writing short 
interrupt handlers is to patch an existing 
interrupt, readers may find the XLAT com-
mand useful. This takes the value in AL 
together with the value in BX, and replaces 
the value in AL with the byte at [BX+AL]. 
This is obviously just the job for look-up 
tables' as you would use for replacing, say, 
foreign characters when patching a printer 
interrupt. 

The value in AL is taken as an unsigned 
value, so when AL is OFFH the byte at 
[13X+OFFH] will be retrieved rather than 
the byte at [BX-1]. 

For indexing into other segments, a 
dummy parameter is used for no other pur-
pose than to give the assembler something 
to relate a segment to. The instruction then 
takes the form XLAT ES:[BX], where ES 
can be any segment register. Some assem-
blers use the XLATB opcode when there's 
no following dummy parameter. 

Common Code 
Throughout this series we've accumulated 
a fair number of useful routines that are 
common between different programs. It's 
common assembler practice to separate 
these out into include files. If you make 
sure that you use the same constants 

"Throwaway Code" 
This is the bit that initialises the interrupt 
patch. It must be at the end, as space is 
reserved frog►  the start of the program. 

 

push cs 	; Get our data segment 
(continued) 
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(continued) 

PoP ds 
ASSUME ds :code 

; Announce ourselves 
may 
	

dx,offset signmsg 
may 	ah,9 
int 
	

21H 

push es 	; Save our. PSP 

; Read the original keyboard interrupt 

mov 	ax,3500H+keybd hw int 
int 21H 

; Store the address returned in ES:BX 

mov 	word ptr ds:[orig kbd vec],bx 
mov 	word ptr ds:[orig kbd vec+2],es 

; Patch the interrupt 

mov 	ax,2500H+keybd hw int 
; Put our routine address 
in DS:DX 

push cs 
PoP 
	

ds 
mov 
	

dx,offset cs:diverted kbd int 
int 
	

21H 

; Read the original timer interrupt 

mov ax,3500H+timezjnt 
int 21H 

Store the address returned in ES:BX 

mov 	word ptr ds:[orig timer vec],bx 
mov 	word ptr ds:[orig timer vec+2],es 

; Patch the interrupt 

mov 	ax,2500H+timer int 
• Put our routine address 
in DS:DX 

push cs 
PoP 
	

ds 
mov 	dx,offset cs : diverted timer int 
int 
	

21H 

Polo 
	es 	; Recover PSP 

mov 	dx, offset cs:init bdt 
mov 	c1, 4 
shr 	dx, c1 

Add one para of memory for rounding errors 
For .EXE versions, add 11H to account for the PSP 
inc dx 

Terminate but stay resident 
mov 	ax, 3100H 
int 
	

21H 

signmsg 
db 
db 
db 

code ENDS 

db 	13,10 
"BELAYCAPS V1.0 -Requires Caps Lock to " 
"be hit twice rapidly to activate." 
13,10,"$" 

END begin 

Available as:BELCAP.ZIP in Productivity Library (#3), in PCMAGUK forum. To access GO ZNT:PCMAGUK 

throughout all the code, there's less oppor-
tunity for confusion. By convention, 
include files which define constants are 
given the extension DEF, and ones defining 
macros (more on these later) are given the 
extension MAC. Our include file INT-
NOS.DEF looks like this: 

; INTNOS.DEF -Common interrupt 
; numbers 
keybd hw int equ 	9 
video int equ 	10H 
disk int 	equ 	13H 
timer int equ 	1CH 
dos int 	 equ 	21H 

We can add more interrupts as we go along. 
To include these in our assembler code, we 
use the line: 

INCLUDE INTNOS.DEF 

C programmers should note that the 
include file name is generally not enclosed 
in quotation marks. 

Where the include files are stored is a 
different matter. They can be kept in the 
same directory as the other assembler files 
(.ASM, .A86, or similar) but as they are 
likely to be shared across several programs, 
there's usually a way of defining a direc-
tory for include files. This varies for the 
different assemblers, but under Microsoft's 
MASM and Borland's TASM you would 
use VIC:\INCLUDES' to use the 
INCLUDE directory on drive C:. 

Final thoughts 
After this sixth tutorial, writing assembler 
code should get easier. But there are bound 
to be routines that are easier in assembler 
and some that are best written in a high-
level language such as C. For instance, a 
serial port interrupt handler is probably 
best written in assembler, but the rest of the 
code may not be machine specific. It's pos-
sible to write assembler code that inter-
faces with high-level languages in one of 
several ways, but there are a few things that 
you must establish either from the manual 
that comes with the language, or from the 
appropriate technical support department. 

First, find out which registers are sup-
posed to be preserved. Some need to be, 
and forgetting them is a common way of 
fouling up a machine code interface. It 
would also be nice to know the register 
conditions on entry to your own code, 
although if pressed you assume nothing. 

Second, find out how you're expected to 
return from your assembled code to the 
main program. Some will demand a far 
return, some a return from interrupt and 
some a near return. Most likely, it will be a 
far return, but check on it. 

Finally, you need to know the format of 
any data being passed to you, and the for- 
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mat in which you are expected to pass it 
back. This is fairly straightforward using C 
and integer or long arithmetic, but with 
BASIC, the format is much more compli-
cated and implementation specific. 

Bear in mind that many compiled lan-
guages have 'model' options to determine 
the number of segments that may be used to 
keep code and data in. With 'C', small code 
models usually require an ordinary RTE, 
but large ones a REEF to return. Likewise, 
small data models assume a fixed data seg-
ment, but large models assume data is 'far' 
and supply a segment: offset pointer to it. 

Some languages—notably Borland's 
C—allow in-line code to be generated. 
This is either done by specifying the values 
of the bytes, or by writing assembler mixed 
up with the high-level C language. 

A more sophisticated and flexible way is 
to assemble the language and assembler 
code to OBJ files and to combine these 
with a linker. Most compiled languages 
come with example programs that are a 
convenient template for producing your 
own code with, often including such fea-
tures as automatically adjusting the return 
instructions and parameter pointers as the 
code changes from small to large models. 

Parameters—far pointers, words or 
whatever—tend to be passed on the stack. 
Byte-sized parameters are usually con- 

verted into an even number of bytes so that 
the stack is always on an even boundary. 
It's important to do this, or the processor 
will have to access one word of memory 
for the high bytes of the stack and one for 
the low bytes. This slows down perfor-
mance noticeably. 

Assuming that we have a series of 
parameters passed on the stack, we use the 
BP register (which automatically indexes 
to the stack segment) to access them. First, 
as when changing interrupt flags, BP itself 
is pushed onto the stack. Assuming a far 
return, our 'stack frame' will look some-
thing like this: 

BP 	-> 	Original 
value of BP 

BP+2 -> 	Segment to 
return to 

BP+4 -> Address 
within return segment 

BP+6 -> Parameter 

BP+8 -> Parameter 

BP+10 -> 	Parameter 
3 

On exit, pop BP off the stack (after any 
others we may have preserved), and return. 
If the routine requires a near return, then  

the BP+2 line will not exist, and every-
thing moves back 2 bytes—a good reason 
to use the templates provided with the lan-
guage. If you disassemble compiled lan-
guages, you may find code like: 

PUSH BP 
MOV 
	

BP, SP 
SUB 
	

SP,10 

N!O►V 	SP,BP 
POP BP 
RET 

This is preserving space on the stack for 
use within the routine. The space can be 
accessed as [BP-2],[BP-4] and so forth. 
This is a convenient, if slow, method of 
reserving memory provided you have suf-
ficient stack. Each invocation of the rou-
tine reserves space for its own local vari-
ables, so eliminating re-entry problems. 

Next month, we'll take a look at struc-
tures and macros in assembler, and how 
they help with stack frames. If you'd like to 
try to write a program as an exercise, try 
writing a screen saver that sets all the 
screen attributes to black on black if no key 
has been pressed for a while—restoring 
them when the next key is pressed. 

1 
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