
1.80
$2.40Nz

Issue no10.

mr 	 i

}fir
L. 	.1r 	z 	i
i' 	

41 	0 	I

1. ill) .4.
4 	tr 	z 1X I

I ',Ig 1' 	< 0 a , it 	 CL Ci. II
`a 0 	 X 	I

LOGIC PROBE
ROULED
COUNTER MODULE • ONE SHOT

	

Toillaa111,11%. 	
, 	fe, 	...,..., 	_........ 	_. 	,,,,..

4.... 	 _,....,,, .-,....._
_,r-... 	,---, a ei

---,,

0 00 00 	00 Fa.

re I
0 0

TALKING
ELECTRONICS
COMPUTER

87.30
Including all parts & PC board.
Post & Pack $4.50

A single-board Z80-based computer with enormous potential. You can
provide controlling and sequencing of up to 8 different devices.
The whole circuit is accessible for expansion and adding control lines,
making this the most universal programmable project on the market for
under $100.

PC Board $19.00 (post $2.50)

2716 - TEC-1 Programmed EPROM $12•00(Post $1.50)

Kit of Parts (including EPROM)08•30 (Post $2.50

All Parts & PC Board $87.30 (Post $4.50)
You will also need a 6v lantern battery (from your local
hardware shop) or a 2155 transformer ($5.90) and a
power lead or a 9v AC or DC Plug Pack rated at 500mA
($14.50)

Complete TEC-1 with transformer $93.20 (Post $5.50)

Complete TEC-1 with Plug Pack $101.80 (Post 5.50)

BECTROIIICS 	
35 Rosewarne Ave Cheltenham 3192 584 2386

One of the main features of the
TEC-1 will be to teach
programming in Machine
Code to create your own VIDEO
GAMES. The potential for TEC-1 is

enormous. Games boards will
be available for, the complete
range of SPACE and adventure
programs.

-by John Hardy
PC layout: Ken Stone.

Parts: $b8.30
PC board: $19.00

-ADD-AND-BIT-CALL-DEC-EX-IN-INC-JP-LD-NEG-NOP-OR-OUT-POP-PUSH-RES-RET-RIAIST-SIIC-SET-SLA-SRL-SUB-XOR

TEC
TALKING
ELECTRONICS
COMPUTER

If you think TALKING ELEC-
TRONICS Magazine is a good place
to start learning about electronics,
you will find our TEC-1 computer
absolutely fantastic.

We have spent many hours looking
into the type of computers on the
market and also computer kits.

Nothing has come up to the
capabilities of the unit we are about
to describe. And more important, you
will learn the facts and operations of
programming from ground level. We
will assume you know nothing and
thus place special attention to
covering the meaning of every term
and feature as it comes up.

The only requests we make are the
following:

You must have already constructed
at least 6 projects from Talking Elec-
tronics or equivalent magazines and
it would be nice for you to have built
the DIG I CHASER and say a couple of
equally difficult projects such as the
LOTTO SELECTOR and CLOCK.

This means you will be accustomed
to soldering fine connections and
know how to prevent making bridges
between lands.

Fortunately the computer board has a
solder resist mask and this means
only the individual solder lands are
exposed and they are already pre-
tinned for easy soldering.

However some of the lands are close
to one-another and a small low-
wattage soldering iron is required for
the project.

We have built 4 final designs and they
all work perfectly. On one board we
accidently created a solder bridge
and this needed a little trouble-
shooting, but we finally found it. So,
for this reason, each kit includes a
length of de-solder wick to mop up
the surplus solder.

If you don't have a small soldering
iron, fine solder and desolder wick,
they will have to be obtained before
constructing the kit.

BUYING THE KIT

One thing you may not be aware of, is
the need for one special chip.

Every computer requires a specially
programmed chip so that it will start
up and execute the correct
operations. This chip can be likened
to the BOSS in a work establishment.
The chip we are referring to is the
2716 EPROM. You can buy it quite
cheaply at any electronics store but
unfortunately it is BLANK. And
obviously it won't do a thing if you put
it into a computer. To be of any use
you will have to program it or write a
program for it yourself.

Obviously this is way out of the
question and so you have to buy one
which is pre-programmed, from us.

For this service you have to pay a
programmer's fee. A lot of time has

cont. P 60....

ADD-ANIII-BIT-CALL-DEC-EX-IN-INC-JP-LD-NEG-NOP-OR-OUT-POP-PUSH-RES-RET-RIAST-SBC-SET-SITSRL-SUB-XOR-

TALKING ELECTRONICS No. 10 57

11.

'461010...
AFe:10',

„

-ADD-AND-BIT-CALL-DEC-EX-IN-INC-JP-LD-NEG-NOP-OR-OUT- POP-PUSH-RES-RET-RL-RST-SBC-SET-SLA-SRL-SUB-XOR-

TEC•1 IS A SINGLE-BOARD COMPUTER

AN OVERVIEW:
The TEC-1 is a single-board
computer with readouts in the form of
7-segment displays. The complete
unit is shown in the photograph. It
contains its own on-board regulated
power supply which needs only an
AC input for the computer to be fully
operational.

The key pad is constructed from
individual switches inscribed with
hexadecimal numbers 0 to F and 4
switches labelled AD for address,
GO, + for incrementing the address
and — for decrementing the address.

The computer will play a number of
games as well as present the
alphabet and all this is contained in
the 2716 EPROM which is directly
above the speaker. The TEC-1 can
also be connected to 8 output
devices and they can be turned on
and off in any combination as
determined by the program you write.
This program is stored in the 6116
RAM and any information in this chip
is lost when the computer is turned
off.

The reset button above the empty
expansion port socket will reset the
computer to the first address location
(0800) and by pushing the GO button
TWICE, any program you have
entered into the computer, will run.

The computer contains 2k of RAM
and this is programmed in machine
code. Machine Code is very memory
efficient and has a fast execution
rate, making it possible to create
high-speed programmes for video
games and multi-function controlling.

Extra memory can be added via the
expansion port and this is added to a
daughter board directly above the
main board via a dip header plugging
into the expansion port socket. This
will increase the capabilities of the
computer to 12k plus 2k of memory-
mapped in/out ports.

The speaker has two functions. It
gives an audible beep every time a
key is is pressed and becomes the
output when music or tones are being
played.

All the names of the chips are written
on the overlay of the board and in
simple terms they provide the
following functions:

8212 - drives each digit for the
display via buffer transistors.
8212 - drives the segments A - G and
the decimal points for the display.
2716 - EPROM (Erasable Pro-
grammable Read-Only Memory).
This has been programmed by John
Hardy and contains the brains of the
TEC-1.

6116 - The RAM (Random Access
Memory) into which you put your
own program. The Z80 also uses it
during the operation of some of the
programs.
Z80 - The heart of the computer.
4049 - The oscillator or CLOCK for
the TEC-1.
74LS138 - selects between ROM
(2716) and RAM (6116).
74LS138 - Selects between key-
board and display.
The photograph has been illuminated
from the rear to show the tracks on
the underside of the board. Normally
these tracks are hardly visible as they
are hidden under the solder mask.
Notice how neat everything is
presented. You can credit the superb
layout to Ken Stone who recognises
the importance of making a project
look appealing. Note especially the
few resistors and capacitors required
for a fully digital project.

The 20k cermet pot has been
specially chosen as it has a cover
which is connected to the wiper
contact so that the pot can be turned
with your fingers. This controls the
speed of the operation of the
computer and you will be using this
control quite a lot.

The output pitch of the notes will vary
according to the setting of the speed
control as will the difficulty of the

-ADD-AND-BIT-CALL-DEC-EX-IN-INC-JP-LO-NEG-NOP-OR-OUT-POP-PUSH-RES-RET-RL-RST-SBC-SET-SIA-SRL7SUB7X0R-

58 TALKING ELECTRONICS No. 10

280 --,
-10K-

wv4y PEED

40i; CLOCK

	

Z80 	'SELECT' CHIP

	

I 	 74LS138

e.'

SELECT' CHIP
I 	(

_ .

DRIVERS
DISPLAY

-
Q 7 t7

BC547

fio TALKING ELECTRONICS COMPUTER RESET

T loon TEC-1 = 2716'
100,71'
	

O

82121
	 8212

THE FUNCTION OF EACH CHIP

1N4662 x 4

-141-

...12 sae

D, D, D 	D,

6C547 x 6

KEYBOARD
ENCODER

ir.soo2 .3
-r

REGULATOR I] 	
100n

22'mfd

-ADD-AND-BIT-CALL-DEC-EX-IN-INC-JP-LD-NEG-NOP-OR-OUT- POP-PUSH-RES-RET-RL-RST-SBC-SET-SLA-SRL-SUB-X0R-
games and the scrolling of the screen
when the letter sequence is
addressed.

All chips are mounted in sockets for a
mumber of reasons:
1. It looks professional.
2. It makes construction easy,
3. It makes testing and replacement
easy, and
4. You can test other chips in the
sockets.

The 100n capacitors are miniature
solid dielectric types, about the size
of a match-head, and they are
specially suited to removing any
spikes generated by the chips or from
the power supply.

The TEC-1 will operate from a 6v
battery such as a 509 lantern battery
or from the mains via a transformer.
The 7805 regulator keeps the
operating voltage at 5v which is
absolutely necessary for the chips we
are using.

The battery back-up arrangement
means you can have a battery sitting
beside the computer in case the
power fails or if you wish to change
the computer from one room to
another. When the battery back-up is
operating the complete TEC-1 is
operating as it is not posssible to
power-down the Z80 without it
affecting the contents of the RAM.

There are two empty IC sockets as
well as a number of rows of holes on
the board. These are for later
expansion and not used at this stage.

The RESET key can be positioned
near the display is desired. It is
connected via 2 jumper leads to this
lower position.

Finally you will be pleased to know
the TEC-1 doesn't need any TV
monitors, additional keyboards or
bulky power supplies. It is self-
contained on the single PC board.

chips and a bank of latches. Each
6116 will provide 2k of RAM and this
is one of the add-ons which will be
described in the next issue.

Each of the chips on the daughter
board is selected by a line from the
74LS138 (near the clock oscillator).
It is known as an address decoder
and the first decoded output selects
the EPROM. The second output
selects the on-board 6116, the third
selects the expansion port socket. If
a duaghter board is used, the first
chip on the board is selected and so
on until 7 lines are used. 5 individual
wires must be taken to the daughter
board to provide this selection
feature. They are taken from the 5
unused holes near the 74LS138.

To give an indication of the amount of
memory you may require, here is a
simple guide:

Each 6116 will accept 2048 bytes of
information. A normal program
contains between 1 and 4 bytes of
data per instruction and this means
one 6116 will accept about 600
instructions! To hand-assemble a
program of this length wuld take
months. We have only 3/4 filled the
2716 and you will be amazed at the
capabilities of its contents.

So you can see, 2k will be quite
adequate for most purposes.

The main use for the expansion is
when the microcomputer is
colecting and storing its own data for
later retrieval. In this mode the
computer can use up an enormous
amount of memory, very quickly.

Take an example of a music
sequencer. 2k of memory will last
about 10 to 20 seconds. Or an echo
unit. This will last less than 1 second!

BATTERY BACK-UP

To use battery back-up, diode A must
be installed. Connect the battery via a
switch so that you can move from one
location to another. Switch the
battery OFF when the computer is
using the mains power.

MARKING THE KEY-TOPS

The key tops can be lettered using
LETTRASET. 16pt letters and
numbers are used for 0 F and 12pt
letters for the AD and GO keys.
A coat of nail varnish will stop the
lettering from wearing away.

THE EXPANSION PORT

The expansion port socket can be
used in two different ways.

1. It can be used to increase the on-
board memory of the computer to 4k
RAM by inserting a 6116 RAM
with IC socket, directly into the
vacant space.

2. Alternatively, the expansion port
can be used to increase the memory
on steps of 2k by adding a daughter
board above the main computer
board. This will take a row of 5, 6116

TEC-1 is a complete microcomputer on a single
PC board.

The function of each chip will become clearer
after reading the text.

The most important concept is to understand
how each chip is controlled by the Z80.

The above diagram shows where the ROM,
RAM, Z80 etc are postioned on the board along
with the other chips and devices.

-ADD-AND-BIT-CALL-DEC-EX-IN-INC-JP-LD-NEG-NOP-OR-OUT- POP-PUSH-RES-RET-RL-RST-SBC-SET-SLA-SRL-SUB-X0R-

TALKING ELECTRONICS No. 10 59

DD-AND-BIT-CALL-DEC-EX-111-INC-JP-1.0-NEG-NOP-OR-OUT- POP-PUSH-RES-RET-RL-RST-SBC-SET-SLA-SRL-SUB-XOR-
been spent to get a set of instructions
into the 2716 EPROM and each is
individually filled from a master and
verified, before it is added to a kit.
This takes time and royalties are due
to the designer, like the sale of a book
or record. This accounts for its high
cost.

We have called the EPROM a 2716
but actually it is a 2716-MON-1
EPROM, indicating it contains a
program.

This is the only expensive chip. All
the others have been chosen for their
low price and availability. This is the
way we approached the design of the
computer. We looked at the price of
each component and arranged the
design around the low priced items.

The only components special to the
TEC-1 are the EPROM and the
printed circuit board. All the other
components can be purchased at
major electronics shops. The only
advantage with buying a kit is the
saving in time and frustration.

It would be very rare indeed for you to
be able to buy all the components at
one electronics shop. And so you will
have to spend time and money in the
hope of saving money.

In addition, there are a couple of
pitfalls for the inexperienced. For
instance, 4049 chips made by
Fairchild should be avoided. They do
not work in our situation. Also the
push buttons should be the type
suggested as one of the links inside
the switch is used to create the
wiring for the matrix.

The price structure for each kit is
broken up as follows:

1. The Printed Circuit Board.
2. The 2716 MON-1 EPROM.
3. The kit of components.

The only other parts you will need to
purchase are a 2155 transformer and
power lead or a 9v DC plug pack rated
at 500mA. You can, of course, use a
lantern battery. This will be sufficient
to operate the computer for about 5
to 8 hours, but will prove to be a very
expensive way of running the TEC-1.

WHAT THE COMPUTER
WILL DO

When you are going to spend a lot of
money on a project and a consider-
able number of hours in its assembly,
it's nice to know what the project will
do.

Here is a summary of the first stage of
the capabilities of the computer.
Apart from the obvious experience
gained in assembling a computer, the
TEC-1 will make you aware of the
chip-types required to create a
complete system.

You execute some simple programs
which use pre-programmed infor-
mation from the EPROM and display
it on the screen. If we take the letter
program for instance, you create a
single static letter,then add another
letter and enable them to run across
the display. Finally you create your
own words and sentences which can
be made to pass across the display at
a rate determined by the setting of the
SPEED control.

But most important you learn some of
the instructions necessary to write
your own programmes.

You also learn to increment and
decrement the memory address to
look at the contents of each location
and possibly alter it if required.

You carry out the same procedure
with a set of tones and these can be
combined to produce a tune. You can
also access two tunes in the ROM
and this will give you an indication of
what can be achieved. Your own tune
can be added to the end of the

PRICES:

Here are the prices for the TEC-1.

Depending on how much you already
have in stock and how you intend to
construct the project, so the price
will vary. Don't spoil the ship for a
ha'penneth o' tar. Use only the best
components.

Complete kits are available at our
larger outlets and the PC board will
be available with pre-programmed
EPROM from some of the other
outlets. As a back-up service, the
complete kit will also be available

RUNNING WORD DISPLAY and
create a wide variety of possibilities.

There are also three games in the
EPROM and these can be played in-
between the educational pro-
gramming.

The first game is N I M. Everyone knows
this game as 23 matches. The address
location for this game is 03E0 and the
computer starts with 23 on the display.
The object of the game is to try and
leave the computer with last match.
You can take 1, 2 or 3 matches during
your turn. Believe me, it isn't easy.

The second game is LU NA LANDER. Its
address is 0490. The numbers on the
screen represent velocity and height.
You are required to land on the surface
of the moon at zero velocity without
running out of fuel. The full details of
this game are on the last page of this
article.

The third game is INVADERS. A
number is set up on the left hand end of
the display and invaders approach from
the right. See the article on how to
exterminate them on P 74.
Difficulty is set by the speed control and
your score apprears at the end of your
turn.

This is only the beginning. In the next
issue we will expand the TEC-1 and
interface it with the outside world.

through the magazine as listed on the
kit pages. Remember, the board is
double screened and solder masked
to give a classy finish to the project. If
you have never made your own PC
boards before, don't start with this
board. The work involved in making a
board of this complexity is enormous
and the result will be nothing like the
cover photo.

The only two outlays you have to
accept are the PC board and the pre-
programmed EPROM. All the rest
can be obtained from your local
supplier.

PC Board $19.00 (post $2.50)
2716 - MON - I Programmed EPROM $12.00(Post $1.50)
Kit of Parts (including EPROM)08•30 (Post $2.50
All Parts & PC Board $87.30 (Post $4.50)
You will also need a 6v lantern battery (from your local
hardware shop) or a 2155 transformer ($5.90) and a
power lead or a 9v AC or DC Plug Pack rated at 500mA
($14.50)

Complete TECNI with transformer $93.20 (Post $5.50)
Complete TEC-1 with Plug Pack $101.80 (Post 5.50)

-ADD-AND-BIT-CALL-DEC-EX-IN-INC-JP-LD-NEG-NOP-OR-OUT-'POP-PUSH-RES-REFRURST-SBC-SET-SLA-SRL-SUB-X0R-

60 TALKING ELECTRONICS No. 10

• •42

41 KEYBOARE

DISPLAY

a..

ROM

•

•

zirlp f;•. •:,;:(1;:•4.1.•

• ..*.st

!.1%

toN, 	•• • 46.

:41 	
i•••1 t... 	t .44

r?'
A.N.'4:4•1

Pe.

	

i .
• 	 r... 	 41.0 	• 410..‘

	

..)•:.,Fiat ..‘;‘ .10 ,t• .14%; 	 .A1 .0 P•2:4,4:04• .U0/. 	...Pres.: 011.,

V•Snsi • t•Oit 	'et. A•••••4,

TEC-1 BLOCK DIAGRAM

This simplified BLOCK DIAGRAM
shows how each of the chips are
inter-connected.

The Z80 Central Processing Unit is
the overseer of the whole system and
it selects which device it wishes to
access via one of the 74LS138
decoder chips. Each will select one-
of-eight output lines. These decoder
chips are not fully utilized in this
project and this leaves room for
further expansion.

If we take the key-board as an
example, we see it passes its
information to the Z80 via the DATA
BUS.

This bus consists of 8 lines and
carries binary information. This will
allow any number from zero to 255 to
be sent.

The ADDRESS BUS is a 16 line path
which is only a one-way street.
Information only emerges from the
Z80 on this bus. The Data bus is a
two-way street of 8 lines. Infor-
mation can be passed into the Z80 on
this path as well as emerge from it.

Each block in the diagram represents
a chip and the only two chips missing
are the display drivers.

OUR BORDER
Z80 computer terms have been
added to the top and bottom of
the pages, for this project.
Some of the more common
instructions are contained in
this string.
Here are the meanings of these
terms:
ADD Add the contents of a CPU
register to the accumulator.

AND This is a logical AND operation
in which two binary numbers are
compared. If the first digit in each
number is a 1, the answer is a 1. If

only one number is 1, the answer is 0.
If both numbers are 0, the answer is
zero.

BIT This is an instruction to test the
status of a bit in a register.

CALL This is a call instruction which
will be executed if a particular con-
dition is satisfied. If the condition is
not satisfied, then the call instruction
is ignored and the program execution
continues.

DEC This is an instruction to decre-
ment the value of a CPU register by
one.

EX This is an exchange command.
The contents of any register can be
exchanged with any others.

IN Input to a CPU register from an
input port.

INC The increments the value of a
CPU register by one.

JP This is a jump instruction.

LD This is a load instruction.

NEG This instruction negates the
contents of the accumulator. The
result is the same as subtracting the
contents from zero.

NOP This is the NO OPERATION
instruction.

OR This is a logic instruction which
compares two numbers. If either of
the first digits is a 1, the answer is a 1.
The same applies to the second and
third digits. etc.

OUT An output instruction from a
specified CPU register.

POP This is an instruction to POP
from the stack into a register pair.

PUSH This is an instruction to PUSH
an index register onto the stack.

RES This is an instruction to clear the
status of a single bit in a CPU register
to the logic zero state.

RET This is a conditional return
instruction.

RL This rotates the contents of a CPU
register to the left through the carry
bit.

RST A restart subroutine directive

SBC A double subtraction instruction

SET Sets the status of a single bit in a
CPU register to the logic ONE state.

SLA This instruction shifts the
contents of a memory location to the
left

SRL This shifts the contents of a CPU
register to the right

SUB This instruction subtracts the
contents of a CPU register from the
accumulator

XOR This is a logic instruction which
compares each bit of two numbers
and gives an answer of 1 if either bit is
one. But if both are 1, the answer is
zero.

-ADD-AND-BIT-CALL-DEC-EX-IN-INC-JP-LD-NEG-NOP-OR-OUT- POP-PUSH-RES-RET-RL-RST-SBC-SET-SLA-SRL-SUB-X0F1

-ADD-AN D-BIT-CALL-DEC-EX-IN-INC-JP-LD-NEG-NOP-OR-OUT- POP-PUSH-FIES-RET-RL-RST-SBC-SET-SLA-SRL-SUB-X0R-

TALKING ELECTRONICS No. 10 61

ADD-AND-BIT-CALL-DEC-EX-IN-INC-JP-LD-NEG-NOP-OR-OUT- POP- PUSH-RES-RET-RIAST-SBC-SET-SLA-SRL-SUB-XOR-

LOOKING INTO THE TEC-1

There are two chips in our computer
which provide the major amount of
processing.

To make it easy to understand, we
will call them the BOSS and
WORKER. The boss is the 2716
which is the specially programmed
Read Only Memory (ROM) and
contains all the information to get the
computer started and keep it
operating.

The worker is the Z80. It is the arms
and legs to which all instructions are
sent and it provides the ability
(muscles) to carry out the requests of
the ROM.

The Z80 can also be thought of as an
octopus, extending out its tentacles
to all parts of the computer to keep
everything in very strict control.

These two chips are the most
Important items in the computer and
it will almost run without any other
devices. But you would not be able to
push any buttons or see the results of
the operations. So we need more
chips.

The first of these are the display
chips. Because each has only 8
outputs, we need two. The display is
multiplexed (see issue 2. P.5.) and
this type of design uses the least
amount of wiring and the least
number of input leads. For a 6 digit
display with decimal points, we
require 8 inputs for the segment drive
and 6 inputs for the digit drive. One
8212 is used for each of these with
the digits being driven via driver
transistors.

This leaves two spare outputs and
one of these is used to drive the
speaker via a buffer transistor (Q7).

The Z80 (the microprocessor) is
constantly feeding information into
the display via the pair of 8212's.
When you understand the operation
of multiplexing a display you know it
is constantly being scanned to create
the figures.

To prove this feature, turn the speed
control down to minimum and shake
the board. You will be able to detect
the strobing of the display.

The keyboard is also an interesting
feature. It is also being constantly
scanned by the 74c923 (the chip near
the speaker), waiting for one of the
keys to be pressed.

The scanning commences at the first
row, which is the bottom row and it
reads from each of the columns to see
if any of the buttons have been
pressed. Next it progresses to the
second bottom row and again checks
the columns. If a button is detected,
it sends a debounced signal to the
Z80 and interrupts it. The Z80 drops
whatever it is doing and accepts a 5
bit binary number from the 74c923,
which corresponds to the key being
pressed. An example of a 5-bit binary
number is 10011 and the following
table gives the value for each key on
the pad.

KEY Binary No.

0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

GO
AD

00000
00001
00010
00011
00100
00101
00110
00111
01000
01001
01010
01011
01100
01101
01110
01111
10000
10001
10010
10011

The 2716 ROM tells the Z80 how to
interpret the 5-bit binary instruction
and what to do with it.

This means we could change the
position of all the keys, re-program,
the 2716 and the system will be
operational again. In other words it is
a SOFTWARE programmed set of
instructions.

The 74LS138 below the
EXPANSION PORT selects between
the keyboard and display. Take this
example: Button 5 is pressed. The
Z80 has all its attention directed to
scanning the display via the pair of
8212's. The 74LS138 is allowing the
8212's to function and at the same
time prevents an output from the
74c923 to be passed to the Z80.

When button 5 is pressed, the
74c923 sends and interupt signal to
the Z80. The Z80 stops scanning the
display, requests the 74LS138 to
shut down the display and open up
the information from the 74c923
from the keyboard. Once the key-
board is read, the Z80 reverts to
scanning the display.

This happens so fast that you cannot
see the display flicker. The blanking
you may see on your model is the
result of the time taken to beep the
speaker. The longer the beep, the
longer the displays are blanked.

The RAM is like a black board. It
holds temporary information which is
being constantly modified by the
microprocessor. When the power is
switched off the contents of the 6116
is lost.

The 2716 has a set of instructions
which allows the user to access the
RAM. Without these instructions
you would never be able to get into its
memory.

The 74LS138 near the speed control
selects between the ROM and the
RAM and also any extra memory
added to the expansion port.

The 4049 is simply an oscillator or
clock which produces clock pulses
for the Z80.

Because the Z80 is a dynamic device,
its registers need to be constantly'
cycled to retain their contents. There
is a minimum clock rate for this and if
the rate is reduced, the computer will
crash.

SUMMARY OF EACH CHIP

8212 - Display driver. One chip
supplies 8 lines to the segments

and the other drives the digits via a
driver transistor.

2716 - ROM. The central library of
the computer. It tells the

computer how to operate.

74c923 - Keyboard control device
which interfaces the keyboard
with the Z80 chip.

6116 - RAM. Temporary storage for
data and instructions. Storage for

your own programmes.

74LS138 - Selects the display or key-
board as required by the Z80 chip.

Z80 - The core of the computer.
Contains all the necessary logic
for executing programmes and
manipulating numeric data.

4049 - Wired as an oscillator and fed
to the Z80 to determine the

operating speed of the system.

74LS138 - Selects between the ROM
and RAM as instructed by the Z80.

-ADD-AND-BIT-CALL-DEC-EX-1N-INC-JP-LD-NEG-NOP-OR-OUT- POP-PUSH-RES-RET:RIAST-113C-SET-SLA-SRL-SUB-X0R-

62 TALKING ELECTRONICS No. 10

THE Z80 SERIES

The Z80 series (without an 'A' after
the 80) was the first to be developed
and has a maximum operating speed
of 2.5MHz. The Z80A series operates
at 4MHz.

The CTC (Counter/Timer Circuit).
This chip features 4 programmable 8-
bit counter/timers each of which has
an 8-bit prescaler. Each channel will
operate in either counter or timer
mode.

CONTROL

CPU
CONTROL 1

Gni
NUB

CONTROL

Ao

Z80 CPU.,
Ao

•

The DART (Dual Asynchronous
Receiver/Transmitter). This chip

ADDIMEAS
OUR provides low-cost asynchronous

serial communication. It has two
channels and a full modem control
interface.

The Z80 series of chips have com-
pletely different operations from each
other and the letters on the chip are
VERY important.

104' T
A•ONESS ALM

SAUDIS C
CO

CPU CON ROI
NDI 	is

OU AU 5

INSINUCtION
DECODE'

at TS EA

1.10, C•U
TIMING

I

•D P SS
N •C IC AD

IL AAERS

"11
LAO -a.

USTIROLAI O.T.

It's difficult to realize, but the Z80 is
classified as a "dumb worker". It may
be dumb but it is very quick. It is
capable of carrying out instructions
at the rate of about 10,000 to 200,000

I 114,T
OATS WIZ

DATA BUS
tATIAF CI

DATA
OUR

II
• DEC-EX-IN-INC-JP-1.D.NEG.NOP-OR-OUT• POP-PUSH-RES-RET-RHIST-S80-SET-SIA-SRL-SUB-X0R-

csaft-e- THE
Z80 CPU

The heart of the TEC-1 is a Z80 CPU.
This is the largest chip on the board,
having 40 pins, and is the central item
around which all the other chips
operate. The 40 pins are all used to
advantage as they are needed to send
and receive data as well as send out
address locations. On top of this, 8
pins are required for controlling the
functions of the Z80.

If we consider the Z90 to be a worker,
the BOSS will have to be the 2716
EPROM.

When the computer is first turned on.
the Z90 has just enough intelligence
to output an address to the EPROM
to locate the CPU's first instruction.
The EP ROM returns this instruction
via the DATA BUS and the two start
communicating. The EPROM tells
the Z80 what to do, how to do it and
where it must be put. In less than a
second, the startup procedure has
been completed and the whole
system comse alive with the START
ADDRESS appearing on the display.

For the moment, the Z90 is the chip
we wish to investigate.

Most of its pins are ADDRESS and
DATA lines. Eight of these are
grouped together to become the
DATA BUS and 16 are grouped
together to become the ADDRESS
BUS.

The Z80 uses the ADDRESS BUS to
locate the data it wants. This may be
in the ROM (the 2716) or in the RAM
(6116). It uses the ROM/RAM select
chip 74LS138 in this process. Or the
information may be from the key-
board. In this case it uses the display/
keyboard select chip, another
74LS138.

The Z80 can only do one thing at a
time and it is only because the system
is operating at between 250kHz and
2MHz (as determined by the speed
control) that you think everything is
happening at once.

There is a whole family of Z80 chips
and you must be careful to read the
letters which follow the Z80 name, to
identify the actual function of the
chip.

Z80 LOGIC FUNCTIONS

Z80 PIN OUTS
The Z80 microprocessor is the
central element of a microprocessor
(computer) and is called CPU. This
stands for Central Processing Unit.

Five other chips provide support for
the CPU in complex computer
systems. We have not used any of
these in our simple system but it is
handy to know of their existence.

They are: The PIO (Parallel Input/
Output). This can be wired to inter-
face peripheral devices such as
printers and extra keyboards etc.

The DMA (Direct Memory Access).
This controller provides dual port
data operations.

The SIO (Serial Input/Output). This
controller offers two channels. It is
capable of operating in a variety of
programmable modes for both
synchronous and asynchronous
communication.

Z80 CPU BLOCK DIAGRAM

operations per second. depending on
the type of instruction. Each of these
takes a particular number of cycles to
execute and these features are
contained inside the Z90 architecture
and cannot be altered.

Each operation for the Z80 has a
machine code instruction such as 1 E.
06, OE, 85, E6 dd, 06, E9, 8. 81, ED
47. 00 etc and these will be
discussed in a later article. For the
moment, we want the computer to
seem a reality.

-AD D:W078TT-CAII-M:EFININC-JP-1.0-8 EG-NOP-OR-OUT- POP-PUSH-RES-R ET-R1.-RST-S BC-S ET-S tA-S RIAU 840 R-

TALKING ELECTRONICS No. 10 63

tour For(
KCI eolito OvEs,viEw OF THE

TEC -
currvr Pear

(LED P..0-AT)

-ADD-AND-81T-CALL-DEC-EX-IN-INC-JP-LO-NEG-NOP-OR-OUT:POP-PUSH-RES-RET-RIAIST-SOC-SET-SLA-SRUSUO-XOR.

One area which can be explained via
a simple comparison is the bank of
registers. These perform most of the
operations in the Z80.

They are given the names B, C, D, E,
H and L. with an accumulator register
A. These registers can ba likened to a
car space in a parking lot. Each
register represents one car space.
The car represents one WORD of
information and this work consists of
8 bits or one BYTE. A bit is a signal on
a single line which can be either
HIGH or LOW and 8 lines enter the
Z80 in the form of a DATA BUS.

This data bus is the same as the road
into a parking lot and the car is one
word. The 8 bits are 8 seats and aach
car can have up to 8 people.
Depending on where they sit and the
number of people, the size of the byte
is determined. We can say that byte
and word are the same for our system
as the Z80 is an 8-bit microprocessor.
If it were a 16-bit microprocessor, a
word would be 16 bits.

Normally the car parks in space A
(register A) and this is also called the
accumulator register as the answer
for any addition instruction, for
instance. will appear in register A.

Tha car can represent a number from
00 to 255 and the register will accept
any of these numbers. This is all the
register will hold. . just one number
from zero to 255.

There is one important fact that we
have omitted to mention. Before the
byte can be put into register A we
must send an instruction to the Z80
so that it will know where the number
is to ba put.

This instruction happens to be 3E for
register A. If you wanted to load
register B, the operation code would
be 06 and to load register C it would
be OE. These codes are called
"MACHINE CODES" or MACHINE
CODE LANGUAGE and they are
interpreted by the Z80 to perform one
of over 245 different shuffling or
arithmetic operations.

If you want to add a number to the
number above, it will have to be firstly
loaded into register B, then the two
registers can be added. This will teke
a number of operations with the
result always appearing in register A.

You can transfer the contents of
register A to tha RAM (6116) via a
further instruction so thet the result
is not lost when the next number is
sant to register A. Otherwise the
previous contents of register A are
written over.

The Z80 contains an equivalent bank
of emergency registers which can be

accessed via a spacial instruction.
These are called A'(A-prime) B',
D', E', 	H', and V. It also contains a
number of 16-bit registers (like a
space for car and trailer) and
numerous building blocks which are
needed to keep the Z80 operating.
These can be likened to the workers
needed to keep a parking lot neat and
with a smooth flow of traffic.

There are lots and lots of sections
inside the Z80 chip and most of them
are very difficult to explain in simple
terms.

-ADD-ANO-BIT-CALL-DEC-EX-IN-INC-JP-LO-NE6-NOP-DR-OUT•POP-PUSH-RES-RET-11L-IIST-SBC-SET-SLA-SRUSUB-XDR.

64 TALKING ELECTRONICS No. io

-ADD-AND-BIT-CALL-DEC-EX-IN-INC-JP-LD-NEG-NOP-OR-OUT- POP-PUSH-RES-RET-RL-RST-SBC-SET-SIA-SRL-SUB-X0R-

CONSTRUCTING THE
TEC•i

the identification notch at one end of
the socket. These should cover the
dot so that when the chips are
inserted, the notch on the chip aligns
with the dot on the board.

Constructing the TEC-1 is no more
complex than building any of the
cover-projects in Talking Electronics
. . it only takes longer.

The most important aspect of this
project is N EATN ESS. We have gone
to a lot of trouble to create a printed
circuit board that looks really neat,
with a layout that is very pleasing.
Don't upset the aesthetics of the
board with poor-quality layout or
incorrect components. If you intend
to buy the components individually at
your local electronics store, look at
the photos in this article for the type
of components we have used, and
purchase the same styles.

Don't use anything old or dirty and
make sure the tinned copper wire for
the jumpers is CLEAN, thick and
absolutely straight. We will tell you
how to do this in the notes.

The TEC-1 is not designed to be fitted
into a case. It is too beautiful to hide.
Like all our projects, it is designed to
be viewed. This keeps you alert to the
construction, contents and arrange-
ment of the chips and components.
You must constantly remind yourself
of the name of each chip and its
function. It's an indoctrination
process which can only be of benefit
in the long term.

Before commencing construction we
suggest you get everything organised
on the workbench.

We can't stress strongly enough, the
need for a good soldering iron.

We have a range of soldering irons in
our assembly area including: a
10watt, 12v pencil iron, a 15watt
240v Micron, a 60watt Constant
Temperature Scope iron and a Weller
Soldering Station. We also have a
plummer's soldering iron and two
instant-heat solderings as well as a
miniature instant-heat iron. Which
one would you choose?

If you chose an instant-heat iron, we
don't want to know you. They will lift
the lands off the board and create
more problems than you can imagine.
Also construction time will be con-
siderably longer as you have to wait
for them to heat up for every con-
nection. Our choice is the 10watt
12v type. It it light-weight, and
enables you to produce a speedy
connection. This is important when
constructing a large project like this.

Other important tools and aids are:
fine solder, sharp side cutters, and a
pair of long-nosed pliers. You will
also need a soldering-iron stand and a
solder tray to accept the dead solder
left on the iron after making each joint.

Get everything ready on a clean part
of the workbench and have all the
components available for insertion.

The first part of construction is the
most laborious. It is the fitting of the
55 links. You must take great care
when fitting these links as they must
be absolutely straight, with their
ends bent to a sharp 90°. The whole
link must touch the board.

Start at one end of the board. Cut a
length of copper wire about 10cm
long, which will be sufficient for
about 5 links. With a pair of pliers at
each end of the length of wire, pull
the two pliers apart until the bends
and kinks are removed and the wire is
perfectly straight. Now you can use
the wire. Bend one end with the
pliers and insert it into one hole in the
board. Solder this end and snip the
excess wire from the joint.

Feed the other end down an
appropriate hole and pull it through
with the pliers until the link becomes
straight. Keep this part pressed
against the board while soldering it.
Cut the surplus from the connnection
and inspect the first addition to the
board. Continue with each link as you
come to it and take your time. It will
take the best part of an hour and no
link should be loose enough to touch
any other, even if it is pushed slightly.

The next components to add to the
board are the resistors. There are 15
of these and they should also touch
the board. Check the value of each
resistor before inserting it. They are
hard to remove if you make a mistake.

Next are the IC sockets. The reason
for inserting them at this stage will be
quite obvious. As each socket is
inserted, it becomes the highest
component on the board and this
means the board can be turned over
and the socket will rest on the
workbench while the pins are being
soldered.

You almost cannot make a mistake
with these sockets as the number of
pins corresponds to the holes in the
board. The only point to remember is

Next add the 6 FND 500 displays.
Once again the board can be turned
over and rested on the display to keep
it pressed against the display while
the pins are being soldered.

The next order of insertion is not
critical and would consist of inserting
the power diodes, 2 LEDs, 7 100n

cont. P. 68

PARTS LIST
1 - 100R
1 - 330R
8 - 1k
1 - 2k2
5 - 10k

1 - 20k cermet

1 - 100pf
7 - 100n 100v
1 - 1mf 16v
1 - 2200mfd 25v

4 - 1N 4002 diodes

7 - BC 547 transistors

1 - 5mm red LED
1 - 5mm green LED
6 - FND 500 or 560 displays
1 - 7805 regulator

2 - 8212
1 - 2716 TEC-1 Monitor
1 - 6116
1 - 74c923
2 - 74LS138
1 - Z80 CPU
1 - 4049 NOT Fairchild)

3 - 16 pin IC sockets
1 - 20 pin IC socket
4 - 24 pin IC sockets
1 - 40 pin IC socket

21 - PC mount push switches

1 - 8R speaker
1 - heat fin for 7805
4 - rubber feet
5 - nuts and bolts
60cm tinned copper wire
3m fine solder
10cm desolder wick

Substitutes:
2200mfd electrolytic can be replaced
by 1000mfd in the TEC-1.
Rubber feet can be stick on feet.

-ADD-AND-BIT-CALL-DEC-EX-IN-INC-JP-LD-NEG-NOP-OR-OUT- POP-PUSH-RES-RET-RL-RST-SBC-SET-SLA-SRL-SUB-X0R-
1111111111,

	.11 	

TALKING ELECTRONICS No. 10 5

+5V
A

-ADD-AND-BIT-CALL-DEC-EX-IN-IN IOP-OR-OUT-POP-PUSH-RES-RET-RL-RST

The TEC-1 circuit looks very simple
and, in fact, it is very simple.

This is because many of the chips in a
computer circuit are connected to a
parallel wiring system called a BUS.
There are 2 main buses in a computer
and they are called ADDRESS and
DATA.

Normally the ADDRESS bus is 16
lines wide but our computer is only a
baby design. We have used 11 lines in
the address bus with line 12, 13 and
14 going to a decoder chip to select
between display, keyboard, memory
and expansion.

The data bus is like a highway with
data passing to and from the Z80 and
the other chips. The data line will
carry a binary number between
00000000 and 11111111, which is 0
- 255.

The 8212's are latches which drive
the displays. One controls the
segments a to g and the decimal
points while the other drives the
digits via a set of buffer transistors.

Data and program are stored in the
memory whch comprises the 2716
EPROM and 6116 RAM.

The Z80 addresses a particular
location in the memory by sending a
binary number down the address bus.

It determines the condition of
SENDING or RECEIVING by the
state of the 13/W line (pin 22). When
this line is LOW, the Z80 is sending
data to the RAM and when HIGH, it is
receiving data from the memory.

Data is sent or received via the data
bus and only one data transfer can
occur at a time.

When the reset button is pressed, the
computer sets the condition for initial
data entry. These include entering
(or loading) the address pointer to
0800, setting the dots on the data
displays, setting the stack to the
highest point in the 6116 RAM and
calling a routine to produce the two-
tone 'ready' beep.

The Z80 then goes into a scan routine
to display 0800. This information is

HOW THE CIRCUIT WORKS

74C923
KEYBOARD
ENCODER

OUT, 	
D7

6

7 +
BM

10 GND

©BC 547

I

*la 19
	2

4
11 22

20
D5 	17 	18

D6

	

D5 	
41a

158212
 16 b4-

4iaio 	9 D3
pz_
D1

14 1211
8

9 	5 1

OE X

—
PORTPORT

4___8D2 LATCH
D 1 	

7
5

4 12 3
24 1

1DS1
AD 3 7 B F

GO 2 6 A E

1 5 9 D

0 4 8 C +

r2

A +5V

[B•
FND500

IN
D7

D4
	12,ig 8212 1!,
D 8 LATCH 7
D1 .6 	5
DQ...4

2 2 1
 3

Pr
15 17 19

16 18 14 13 DA FND500
•

OUT 	
D7,21 	11 22
D6 19 	20
D5u7 	18

A +5V

20

BC 547

T

15

PORT

POWER SUPPLY

The 7805 regulator is included on the PC board. When
using a 2155 transformer to power the TEC-1, use the
7.5v tapping. This will produce about 9.5v DC into the
regulator which is ideal to gain full voltage and current
from the power supply without overheating the regulator.

The TEC-1 will accommodate a DC Plug Pack. Use a 9v

TT-FT.() 	
type capable of delivering 500mA.

The five 100n capacitors on the output line are spike
suppression capacitors. They are placed near each of the
chips to prevent noise from one chip upsetting the funtion
of the computer. We suggest low-impedance mono-
block types for this application.

411FARFVT-ALL-DfC-EX7IN-INC-JP-LD-NEG POP-PUSa-RES-RIT-RL-11 T- B -SE -SLA-SRL-SUB-X0R-

IA TALKING ELECTRONICS No. 10

+5v

4x1N4002
25v

2200u

POWER SUPPLY

2716

EPROM

ADDIMFMMalEtcrilt- WM-P.M-NM-NOP-OR-OUT- POP-PUSH-RES-RET-RL-(0R-

TO 2ND RAM4 	

+5V

All
Al2 	B

111.3

C

G2A

N
>-

r4
1

1513

l&---1+

2
3 	6G1
74 LS138
45 8

ADDRESS BUS

2
3

19

+5V

	4nor
18

CE +51/

R

19
22
23

A10

A8

1 A7
A6
A5I

6116 I 	
22 	 11

24

21

16 ANT 	10K 	 TO 2ND
RAM/PORT

Z80

CPU

2
3
4

20 20

	

24_ WAIT 1 10K 1 	

25 BUSRO t 	

	

10K 	

A
A3
A2
Al
AO

Vpp

0 •

0

6
7
8

	

A 6 	RAM
7

	

8 	 12
17 15 13 10

16 14 11 9 ks

12
17 15 13 10

16 14 11

OE

GND

_D2
D6
D5.

N MI 110-1 20K

DATA BUS

IS) M cq,
CI CI CI CI

0 Lc, iziNco

3
Q2
_DU
_DS

13
10
9
7
8

12
15
14 20

9

26 RESET

(9,11) 1 4049

• 3-0S‹
8 100p 	

+5V

RST
7100n

2K2

DRQ

SPEED

taken from the highest bytes in the
RAM, which have been deposited in
the set-up routine.

The Z80 will continue to scan the
displays until it is interrupted by the
74c923, via the inverter of the 4049
chip. This is a Non Maskable
Interrupt line. The Z80 immediately
branches to a routine at 0066H which
inputsthe binary code of the key
being pressed and stores it in a
register in the Z80.

It firstly checks if the key is a function
key or a numeric key 0 - F. It does this
by checking bit '4' of the 5-bit binary
number. Bit 4 is the 1 in: 10000. The
first bit is called bit 'zero'.

If the display is in the address mode,
the function key will simply put it into
the data mode. This is indicated by
the dots moving to the data displays.

If the computer is in the data mode, a
function key will perform the function
intended. A + will increment the
address pointer , a — will decrease
the address pointer AD will set is to
the address mode and GO will
execute the program starting at the
address shown in the display.

If a numeric key is pressed, the data
displays are cleared and the digit is
shiftedin from the right. A second key
will produce a 2-digit number.

When the + key is pressed when the
displays are in the data mode, the
address will increment.

While this seems a simple operation,
an enormous amount of data is
flowing from the Z80/ROM/RAM
combination. The address pointer,
which is temporarily stored in RAM,
is loaded into the Z80 HL register
(two 8-bit registers connected to
become a 16 bit register). This
register increments by instruction 23
(inc HL) and HL is then stored back
into the same location in RAM.

The display is then changed to reflect
its new address and contents of RAM
(in data displays). The Z80 then
reverts to its scan routine waiting for
another key to be pressed. All this
happens in a few milliseconds!

The 74LS138's are simple DEVICE
SELECTING chips. The have 3 binary
input lines and this enables them to
select any one of 8 devices. These
can be ROM, RAM, keyboard,

display, speaker, or external chips,
even additional memory or video
displays.

The speaker is simply an amplified
version of a 'BIT'. A BIT is a HIGH or
LOW state and constant rapid
changing from HIGH to LOW will
produce a tone.

The quality of the sound can be
altered by the ratio of the H IGH to the
LOW. White noise is a result of
random bit production. Correct
programming enables the production
of music and sound effects.

The power supply is a simple 7805
voltage regulator arrangement.
Provided the input voltage is only
about 3v above the output voltage,
the regulator will not need a large
heat-fin. The 2200mfd electrolytic
can be replaced with a 1000mfd
electrolytic as the computer
consumes only about 500mA.

The speed of the TEC-1 is controlled
by the 4049 clock oscillator. This is
only a simple 2-inverter oscillator
which can be adjusted via a speed
control to vary the speed of the
information passing the displays. A
crystal controlled clock can be added
at a later stage.

-ADD-AND-BIT-CALL-DEC-EX-114-INC-JP-LD-NEG-NOP-OR-OUT- POP-PUSH-RES-RET-RL-RS'T-SBC-SET-S1A-SRL-SUB-XOR-

TALKING ELECTRONICS No. 10 67

•

7101FANnilrall-DEC-EX-IN-INC-JP-1.1)-NEG-RIOP-OR-OUT- POP-PUSH-RES-11ET-RL-RST-SBC-SET-SLA-SRL-SUB-X0R-

capacitors, 7 transistors, 1- 100pf
capacitor, 20k cermet pot and 1 -
lmfd electrolytic.
Attach the flag heat-sink to the 7805
and insert the regulator into the holes
nearest the 2200mfd electrolytic.

The other 7805 powers the
expansion board and will be covered
at a later stage. Insert the 2200mfd
electrolytic and solder the leads.

T C

The underside of the TEC-1 showing
the layout of the copper tracks.

The keyboard switches are
individually inserted and soldered as
shown on the overlay. The flat on the
switch runs across the bottom of the
switch so that the jumper link inside
the switch completes the wiring of
the matrix.

Attach the speaker to the board via a
piece of double-sided sticky tape and
connect the voice coil to the circuit
via short lengths of tinned copper
wire.

Four rubber feet are attached to the
board with nuts and bolts to prevent
the underside of the board from
scuffing the workbench.

The final, and most important items
to add, are the IC's. These are pushed
into the sockets so that pin 1 on each
chip is facing towards the display.
The 74c923 faces towards the left
and you double check each chip
before AND after it is inserted. If the
rows of pins are too wide, they can be
pressed closer by pressing the edge
of the chip on the PC board and then
the pins will be easier to insert into
the socket.

Connect an AC supply to the board
and the TEC-1 is ready for operation.

You can use either a 2155 trans-
former or a 9v plug pack capable of
delivering 500mA. In either case the
incoming voltage should not be more
than 8v to 9v to prevent the regulator
getting too hot.

Switch on the power and note the
display lights up with 0800. This is
the first available address and
indicates the computer is ready for
action.

If you are well-versed in Machine
Code language, you can begin
immediately with preparing your own
programmes. You will find the TEC-1
is very versatile in its applications
and will allow a wide variety of
expansions to be accommodated.

Treat the computer as a basis for
experimenting and learning. Later we
will provide add-ons for a crystal
oscillator, output displays for games,

and control devices for up to 8
different items at the same time.

We will also welcome any pro-
grammes you write for the computer
and it doesn't matter what subject
they are witten about.

The tape interface to be added in the
next article will allow you to save
programmes and re-use them later.

If you are new to programming, you
will appreciate the introduction
presented on P. 71. It starts at the
beginning and shows you how to key
a short program and activate a
readout in the form of a visual display
as well as a musical score.

Three games on P. 74 will intrigue
everyone. The level of skill can be
adjusted by turning the speed
control. This increases the rate of
operation of the whole computer.

The are also other programmes in the
EPROM and these will be discussed
in the next article.

	

••,,,,..0: 	• ,,,,,,,,,,,,,,,,,,,..,,,,,,,,,,,,..• 	. :.:.y. •

.........f.:.........?,',,,,,,,,,,,,,,,,,,•:-.
''''' ** . ' 	 ,,,, ,:,., ,..,,,,,,,,,,,.. ,

.,Z.,,,,,,,,,,,,,, ,,,,,,,,,,,,,,,,,,,,
,,4'''' ' 	...,.... ••• ..4,....., ftrAW.,02M,,,,AMM.,;:,....,:, .,,,,,,,.x..0'

..,,f.,•N•Z•%,,,,,.'.'.'Ir,),'''.:,''',',;. .. . ,..
'''''rr'''''''''.‹<:''''' ..

.. ... ::;„.,...,,,:,7,r,,:,<....;;..
. 5,..,57.. , 	W,Xr..7.7:T ". 	':'" ' ' "'

,.......r.. . , 	 , ,,,:'

At

.',:.

If you are having trouble getting the
TEC-1 to operate, see the article on
P. 70. It will solve most of the simple
construction faults.

We all wish you the best with your
new acquisition.

Don't under-estimate the capabilities
of the TEC-1. It is a very powerful
machine.

An enlargement of the Key-board section showing the soldering.

-

-ADD-AND-BIT-CALL-DEC-EX-IN-INC-JP-LD-NEG-NOP-OR-OUT- POP-PUSH-RES-RET-RL-RST-SBC-SET-SLA-SRL-SUB-X0R-

be TALKING ELECTRONICS No. 10

IF THE TEC-1
DOESN'T WORK:

If you are faced with the situation where
the TEC-1 fails to operate properly, or if it
doesn't work at all. . don't worry. This
will be a blessing in disguise.

You learn a lot more about electronics
and computers by fixing the TEC-1, than
just building and running it.

As requested in the introduction to this
project, you should already have a certain
amount of background in building
projects. This is when all these skills will
come together.

The first point to remember with the TEC-
1 is this: The TEC-1 SHOULD operate
perfectly the first time it is turned on.
This is because it is built with NEW
components which are first-quality items
and the PC board has been thoroughly
checked. If you are unfortunate enogh to
produce a dud, you must firstly realise
that there is a 99% possibility that the
fault is in the construction.

You should go over the entire project
again, checking every component, con-
nection and the value of each part. The
best way to do this is to ask someone
ELSE to do the checking. This is because
you cannot check your own work. Most
of the projects that come to us for repair
are simple faults, overlooked by the con-
structor. Faults like 1k instead of 1 M,
22k instead of 3k3 etc. This type of fault
can very easily creep in. This is because
humans think positively. Most con-
structors are CERTAIN all the values are
correct! How could they make a simple
mistake like THAT?

After passing the TEC-1 over to a
government checker (anyone impartial)
you can begin the TEST procedure. This
will need test equipment.

This is where the LOGIC PROBE will
come in handy. That's why we presented
it in this issue. You will find it invaluable,
as most of the lines on a computer are
PULSE lines and these are constantly
changing accoding to the clock rate or as
requested by the Z80.

The first test is a RESISTANCE TEST.

To carry this out successfully, you should
remove all the chips. This is to prevent
any false readings.

We will be looking for solder bridges
between one or more of the pins. These
can be very difficult to see as they are
sometimes as fine as a human hair or
even merely a microscopic splash of
solder.

That's why you must never tap the
soldering iron on or near the board, as
excess solder will fly off the tip and land

on some unknown part of the board. This
will cause a bridge which will take hours
to locate. You must only tap the iron in a
solder tray and this must be done after
every joint to prevent dropping solder and
creating a problem, like now.

Set the multimeter to LOW OHMS
RANGE. Make sure you adjust the ohms
control so that the needle travels to the
far right hand end of the scale to indicate
very LOW resistances.

When all the chips are removed, most of
the wiring on the underside of the board
consists of individual conductors and this
means almost no adjoining pins are
connected. This makes it ideal for testing
via a resistance measurement.

The first place to check is the RAM/ROM
section where each of the pins has a
conductor running between them. Turn
the board over and measure the
resistance between each solder con-
nection. The multimeter needle should
not move at all. If all the readings are
HIGH . progress to the Z80, and then each
of the other chips. If the pointer deflects
at any stage, trace through the wiring to
see if a resistor or push button is in the
path. You will also get some low readings
when testing near the display. So don't
treat these as faults.

.11110. 411111.. .4111111. asse. .11111116 anew .111b.

USE THE LOGIC PROBE
AS DESCRIBED IN THE
FIRST PROJECT, TO
TEST THE TEC-i.
11. 	 .411110..01111.0.

Another very important check you can
make is the continuity of all the printed
wiring on the underside of the board.
Sometimes one of these tracks can
become eaten away in the etching
process, resulting in a break.

Place one of the probes on one end of a
conductor and visually trace it through to
the end. Place the other probe at this
point and prove that it is conducting. You
can also make sure the jumpers are
connecting by checking the ends of each
run.

If all these checks fail to locate any
problem, you will have to carry out tests
with the computer operating. This will
mean replacing the chips and connecting
the power.

Start by placing the probe on pin 6 of the
Z80. This is the clock input pin and
without any signal here, the whole
computer will not operate. The three
LEDs on our LOGIC PROBE will illumin-
ate and you will hear a frequency from the
mini speaker in the probe. As you adjust
the speed control, the sound will change
pitch, If the 3 LEDs don't flash, change
the 4049. Some chips are very critical in
this circuit and others don't work at all. If
a chip fails to oscillate, you can reduce
the 10k to 2k2 and this will give you a
broader range. Some chips may tend to
drop out at the low end. You should buy a
CD 4049 as soon as possible.

Once you have a clock pulse entering the
Z80, you can check some of the other
sections of the computer.

The computer can be placed in a WAIT
situation by tying pin 24 to earth. This pin
is connected to the 10k which is the
closest to the reset switch. It has an
empty hole to which you can solder a test
wire and use a jumper lead to create the
wait situation. Press RESET and probe
pin 15. If it is LOW, everything is OK. If it
is not LOW, you may have a dry joint or
short-circuit on pins 1 - 6 of the 74LS138.
While the computer is in the WAIT
condition, test the operation of the key-
board by probing pin 15 of the 4049. This
is the output of the 74C923 key-board
encoder, after it has passed through an
inverter to the non-maskable interrupt of
the Z80.

This output line is normally H IGH and
goes LOW when a key is pressed. The
only other pin of the 74C923 which can
be checked in a simple manner is pin 7. It
is normally LOW and goes HIGH for the
duration a key is pressed.

The 74C138 select chip below the
expansion port selects between the key-
board and the two 8212 driver chips.
When in the wait mode, pins 13, 14 and
15 are H IGH. Under running conditions,
pin 15 pulses LOW when a key is pressed.

The two display driver chips, (8212) are
difficult to test under static conditions as
the display is multiplexed.

When in the wait mode, one of the
displays may illuminate and you will be
able to detect the H IGH's entering the
8212's.

The advantage of the sockets becomes
apparent when you have to remove or
change any of the chips.

If the computer still fails to operate
correctly, try replacing the set of chips.
This will only be feasible if you know
someone with a TEC-1. Within your own
board you can exchange the two 8212's
and 74LS138's. Don't forget, the 2716
must be programmed. A blank one will
not get the computer started.

Make sure no pins are bent under the
sockets or broken off at the chip. Be sure
the chips are around the correct way and
most of all, make sure the chips are in the
correct positions.

If all this fails, write to us. We have a
repair service available. If sending the
project by post, pack the board between
two thick pieces of foam or stiff card-
board. Use a large jiffy bag and mark it
fragile. Certify the parcel in case anything
is damaged. This way it will get to us in
one piece. We will have a look at your
project and let you know what it will cost
to fix. Usually it doesn't cost much and
this will take a load of your mind.

I hope it never gets to this stage, but at
least you know the service is available.

-ADD-AND-BIT-CALL-DEC-EX-IN-INC-JP-LD-NEG-NOP-OR-OU - POP-PUSH-RES-RET-RL-RST-SBC ET-SLA-SRL-SUB-XOR-

-ADD-AND-BIT-CALL-DEC-Ex-IN-INC-JP-LD-NEG-NOP-OR-OUT- POP-PUSH-RES-RET-RL-RST-SBC-SET-SLA-SRL-SUB-X0R-

70 TALKING ELECTRONICS No. 10

-ADD-AND-BIT-tAMDEC-EX-IN-INC-JP4D-NEG.NOP-OR-011T- POP-PUSH-RES-RET-RL-RST-SBC-SET-SLA-SRS.-SUB-COR-

EXPERIMENTS
FOR THE TEC-I

The computer should now be fully
assembled and ready to go. All you
have to do is learn how to operate it.

The following set of experiments will
give you the experience necessary to
recall some of its routines and
produce a simple sequence of your
own.

To introduce you to the TEC-1 we
have programmed a welcome
message into the EPROM. This can
be located at 02D1.

To call up this program, press the
following sequence of keys:

RESET, D, 1, + 0, 2 ADdress, 0, 2 7,
0, GO, GO.

Adjust the speed control and see
what John has written. If that's not a
clever way of personalizing a piece of
equipment!!

If you don't know what to do,
don't worry. Follow through
these experiments and come
back to the WELCOME mesage
later.

Now to the learning section:

Experiment 1.

AIM:To examine the increment of
the address.

Apparatus:TEC-1.

Procedure: Turn the TEC-1 on and
look at the address display. The
address is the first four digits. When
the TEC-1 is turned on, the first
available address is 0800. This can
be incremented by pressing the '+'
key and the address will increase to
the next available location. Carry out
this procedure by pressing the '+' key
and watch the display: 01, 02, 03, 04,
05, 06, 07, 08, 09. The next location
is OA and this is where the computer
departs from the reading you would
expect. The TEC-1 is programmed in
Hexadecimal in which 4 binary lines
are grouped together to form a hex
number. In this way we can write
binary numbers from 0000 to 1111
and this means we can go higher than
9 as nine is only 1001 in binary. The
next hex number is A, then B, C, D, E,
and finally F. The following table
shows the binary equivalent for 0 - F.

Decimal: Hex: Binary:

o
I

0
1

0000
0001

2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
10 A 1010
II B 1011
12 C 1100
13 D 1101
14 E 1110
Is F 1111

A comparison between decimal numbers
(based on the power 10) hexadecimal
numbers (based on the power 16) and
binary numbers (based on the power 2).
The data for TEC-1 is entered in hex on the
key-board. Examples of hex are: 3F, 4C,
5B, FE, C4, DD,
The max hex for 2 digits is FF and this
corresponds to 255.

Press the + and watch the display
increment,
Press the — key and watch the
display decrement.

Experiment 2
ST1MYING HEX

Aim:To study hex notation and
count in Hex.

Equipment: TEC-1.

Theory: Each byte of data for a
program must be given an address.
The computer automatically ad-
vances one address location on
pressing the + key. However we
must be able to read and write hex
values to be able to prepare a
program.

Procedure: Study the Hex notation
in expt 1. and answer the following
set of problems:
Use the TEC-1 to verify your
answers.
Problem 1: A program starts at 0800.
What are the next 21 addresses?

0801 * 	0804 * *
0808 * 080A * * 	*

* 0811 * * * 0815.
To verify your answer, press RESET
then keep pressing + + + + + etc.
Don't worry about the values in the
data displays.

Problem 2: A program starts at 0A00.
Complete the following set of
addresses:
0A00 	* * * * 0A06
* * * 0A0B * * *
• * 	 0Al2.
To locate address 0A00: Press
RESET, press AD (the dots will
appear on the address displays
indicating the address can be
changed).

Press 0, A, 0, 0. Press +. This
becomes the first address location.
Press + + + + + etc to increment the
display.

Problem 3: A program of 50 addresses
finishes at 091E. What are the
previous 35 addresses?
091E * 091C * * * *
* * 	etc to 08Fb.

Problem 4: (a) Add 4 address locations
to 0209.

(b) Add 8 address locations to
1FFF.

(c) Add 4 address locations to
OBFD.

(d) Decrement the address 7
locations from 0800.

Work out all the above answers on
paper before checking with the TEC-1

ANS: 4(a) 020D, (b) 2007 (c) OCO1 (d) 07F9

Experiment 3:

CREATING A BEEP

AIM:To create a tone or beep on the
TEC-1.

Theory: The 2716 has been •pre-
programmed with a loop to give a
pulse to the speaker. Depending on
the speed of the system, the tone of
the pulse will be varied.

Procedure: We can address the
beginning of this routine by pressing
the following keys:
RESET, ADdress, 0, 1, 8, E, GO, GO.

You will hear two beeps, and by
turning the speed control down, they
will become separated. The first beep
is the one you have programmed. In
the next experiment you will will
change the frequency of the beep.

Notes:
When the TEC-1 is reset, the decimal
points appear in the DATA readouts.
This indicates the data can be
changed by pressing the keys 0 - F.

By pressing the ADdress key, the
dots will appear in the ADDRESS
readouts. This can now be changes
by pressing the keys 0 - F.

-ADD-AND-BIT-GALL-DEC-EX-IN-INC-JP-LD-NEG-NOP-OR-OUT- POP-PUSII-RES-RETALAST-SBC-SET-SLA-SRL-SUB4014-
TALKING ELECTRONICS No. 10 71

ADD-AND-BIT-CALL-DEC-EX-IN-INC-JP-LD-NEG-NOP-OR-OUT- POP-PUSH-RES-RET-RIAST-SBC-SET-SLA-SRL-SUB-X0R

Experiment 4:

Creating a Tone or Note.

AIM: To create a tone.

Theory: It is possible to produce a
tone from the speaker which is the
result of a routine in the EPROM.

Procedure: To create a single note
or tone, press the following:

RESET, 2 + 8 + 1 ADdress, 1, B, 0,
GO, GO.

Only the first note to be heard in the
speaker is the product of our pro-
gramming. The other beep or beeps
come from other routines.

The number I in the routine above
selects the particular note. It can
have one of 24 different values and
thus we can create different effects
as shown in a later experiment.

AIM: To create a single note with a
period of silence.

The instruction for silence is 00.

Run the following program:

2+8+0,3+00+00+00+00+0,3
+ 00 + 00 ADdress 1, B, 0, GO, GO.

You will notice that pressing 00 is the
same as pressing 0. The DATA entry
is self-adjusting. Thus 03 is the same
as 3 on the data display.
Turn the TEC-1 off between experi-
ments so that the 6116 RAM has its
contents destroyed. Otherwise some
of the previous programs will come
through the speaker.

To create a scale:

Program this sequence:

2+8+1 +2+3+4+5+6+7+8
+9 +A+B+C+D+E+F+10+
11 +12 +13 +14+15+16 +17 +
18 + 0 + 0 + 0 + 0 Address 1, B,.0,
GO, GO.

The speaker will produce the scale,
then silence.
To hear the sequence again: Press
RESET, ADdress, 1, B, 0, GO, GO.

AIM: To produce a repeat function.

The note, notes or sequence can be
repeated by adding the instruction 1 E
to the end of the list.

Try this routine:

2 +8+1 +2+3+4+5+6+5+4
+3+2+1+ 1,E Address 1, B, 0, Go,
Go.

To produce a repeat function with a
pause or silence, try this routine:

2+8+1 + 2 + 3 +4+5+0+0+0
+0+5+4+3+2+1 + 1,EAddress
1, B, 0, GO, GO.

Experiment s:

To Create A Tune.

By using the note table on P.73, any
tune or melody can be produced. Try
this sequence, then write your own
tune.
2 +8+ 0A+ 08+ 06 + 08+ 0A+OF
+OA + 0D+ OF+ 06 + 06 + 0A+ 00
+ 06 + 0D+ 0A+ 00+12 +16 +14
+12 +01+11 +12+ OF+ 0D+OD
+ 0D+ OA+ 12 + OF+ 0D+ 0A+ 08
+06 + 08+ 0A+06 + 06+ 00+1,E,
Address 1, B, 0, GO, GO.

Question: How do you recall this
sequence?

SOUNDS AND TUNES

The TEC-1 has a number of musical
routines programmed into the 2716
EPROM.

These are accessible via the key-
board. The first of these is an Irish
Jig. This is called by the sequence:

RESET, E, F, GO,

With all tunes the pitch of the notes is
dependent upon the speed of the
computer. This is determined by the
speed control.

You can experiment with adjusting
the 20k cermet for each of these
tunes, to get different effects.

In order to access some of the other
tunes, you will need to follow this key
sequence:

RESET 3 0+ 5 address 1 B 0 GO, GO.

Experiment 6:
Creating g a Running Letter

AIM: To produce a running A.

Procedure: Press the following
sequence of keys:

RESET, 2 + 8 + 1 +0+0+0+ 1,E
Address Z 7, 0, GO, GO.

The letter A is being shifted one place
to the left by the routine at 0270.

The letter can be made to travel the
full length of the display by adding
further zeros to the program.

Press this sequence of keys:

RESET 2 +8+1 +0+0+0+0+0
+ 0 + 1,E address 2, 7, 0, GO, GO.

To produce a running sentence:

Press this sequence of keys:

RESET 2 +8+07 +0E+0E+04+0
+9+04+05+01 +1A+ 0+ 0 +0
+0 + 0 +1,E address 2,7, 0, GO, GO.

Experiment 7:
Combining Words

With A Tune

AIM: To combine a tune and running
words in one sequence.

Procedure: The programme we will
be writing in this experiment consists
of a set of instructions and included in
this are two CALL statements (call
1B0 and call 270) followed by a
PITCH table and a LETTER table.

The result of your programming will
be a short tune followed by three
letters running across the screen and
this will be repeated.

We will firstly describe the program
for experiment 7 in WORDS. Refer to
the program below to see what we
are talking about.

The program starts at 0800 and in the
first two bytes (800 will accept a byte
of data and 801 will accept a byte of
data) we will store the address of the
pitch table (which starts at 0900) .
Later the computer will store the
letter table and this will be repeated
over and over again as the program
contains a jump or repeat instruction.

First of all we will discuss each
instruction at each address so that
you will be able to understand the

willkeying program you 	be 	into the
TEC-1.

At address 802 the instruction 3E
tells the accumulator to load the
immediate byte, which is 00.
This takes up address 802 and 803.

At address 804 the instruction 32
tells the computer to load the
contents of the accumulator into the
address given by the following two
bytes. The lowest byte is always

-ADD-AND-BIT-CALL-DEC-EX-IN-INC-JP-LD-NEG-NOP-OR-OUT

P U -RES-RET- 	 XOR

72 TALKING ELECTRONICS No. io

G#
A
A#
B
C
C#
D
D#
E
F
F#
G
G#
A
A#
B
C
C#
D
D#
E
F
F#

01
02
03
04
05
06
07
08
09
OA
OB
OC
OD
OE
OF
10
11
12
13
14
15
16
17
18

goo 	Push + + to get 802.

1102 LD A 00
804 LD Ski. 00),
1107 LD 	09
801_ LD_0101), A
80C CALL 1BO
SOT LD A_, OA
811 LD POI), A
1114 CALL 270
817 JP 802

3E 00
32 00 08
3e 09
32 01 08
CD BO 01
3E OA
32 01 08
CD 70 02
C3 02 08

ADD-AND-BIT - ALL-DEC-EX-IN-INC-JP-LD-NEG-NOP7OR-OUT-POP-PUSH-RES-RET-111.-RST-SBC-SET-SLA-SEL-SUB-X0R

presented first, then the highest-
order byte. Thus 00 is loaded first
then 08.

The next available address is 807.

The instruction 3E tells the
accumulator to load with the
immediate byte which is 09.

At address 809 the instruction 32
tells the computer to load the
contents of the accumulator into the
address given by the following two
bytes.

Address 80C. This is a CALL
instruction which calls the routine
located at 180. This is the address of
the music programme.

At 80F the instruction is to load the
accumulator with the contents of the
immediate byte which contains OA.
This OA is the most significant byte of
the address for the letter table. As
800 already contains the byte 00 (the
least significant byte of the address
for the letter table) we do not have to
load it again.

At address 811 the instruction is to
load the address 801 with the
contents of the accumulator (800 is
already loaded correctly).

At address 814, the instruction is to
call the letter printing routine located
at 270. This routine contains an
instruction to look at location 800
and 801 and see where the look-up
table is located. In our case it is at
0A00.

The final address 817 is an
instruction to JUMP to address 802.
This is used as a repeat function.

THE PROGRAM:

The first column is the address of
the memory location In RAM.

The centre column is the assembly
language In mnemonics.

The third column is the Machine
Code listing.

PITCH TABLE:

0900:

01
00
01
00
02
03
04
05
04
05
1F - means to return to

line LD A, OA.

LETTER TABLE:

0A00:

01
02
03
00
00
00
00
00
00
1F - means to return to

line JP 802.

To run the program: Press: Reset, +,
+ ,GO, GO.

This is how the sequence should be
keyed:
Press RESET to get the first location.
Press: 00 + 09 + 3E + 00 + 32 + 00 +
08+3E+09+32+01 +08+CD+
B0+01 +3E+0A+32+01+08+
CD + 70 + 02 + C3 + 02 + 08
ADdress 0900+01 +00+01 +00+
02+03+ 04+05+04+ 05+1F
ADdress 0A00 + 01 +02+03+00
+00+00+00+00+00+ 1F
RESET + + GO,

You now have enough information to
be able to produce your own
sequence. Try a longer note
sequence and a longer sentence. You
have the availability of including 255
in each table.

The next issue of TE will show how to
write a program to display ONE
segment of any particular digit, then
two segments, so that you can create
your own characters.

This is the beginning to writing
programmes for video games and you
will be shown how to prepare the
internal structure of a simple moving
target game.

We will also introduce some
expansion and interface projects. So,
be prepared.

Use the following table to create your
own tunes.

NOTE TABLE

mammiammeml
Repeat 1E
Return 1F

Use this table to create your own
words:

LETTER TABLE

00
A O1
B 02
C 03
D 04
E 05
F 06
G 07
H 08
I 09
J OA
K OB
L
M

OC

N OD
O OE
P OF
Q 10
R 11
S 12
T 13
U 14
V 15
W
X
Y 16
Z 17

18
• 19
! 1A

.........i........

Repeat 1E
Return 1F

.........mm.....6

-ADD-AND-BIT-CALL-DEC-EX-IN-INC-JP-LD-NEG-NOP-OR-OUT- POP-PUSH-RES-RET-RL-RST-SBC-SET-SIA-SRL-SUB-X0R-

TALKING ELECTRONICS No. i0 73

-ADD-AND-BIT-CALL-DEC-EX-IN-INC-JP4D-NEG-NOP-OR-OUT-POP-PUSH-RES-RET-RL-RST-SBC-SET-SLA-SRL-SUB-X0R-
I
Key sequence: AD, 3, E, 0, GO,GO.

When the game ends, press any key to restart.
	NIM

You are playing against the computer in a battle of wits. The computer
has an obvious advantage.

There are 23 matches and you take turns in removing 1, 2, or 3 matches.
The object of the game is to make the computer take the last match.

At each turn you can only take 1, 2, or 3. The computer lets you go first.
The number of matches is displayed on the last two digits of the display.
When you press a button, say 3, this will be displayed as Y 3. This
indicates you took 3 matches. Then it will display I 3. This will mean the
computer took 3 matches.

It is now waiting for your next move. Be careful, the computer is smart.
It is waiting for you to make your first mistake. It will then take
immediate advantage of it.

If you are playing a purely random game, you will find yourself holding
the last match every time. The computer will let you knowtoo! Read the
message it displays!

The computer is a pretty bad loser but be thankful it doesn't self-
destruct in disgust!

If you are playing a careful well-calculated game, you can WIN. So, try
your skill and see the winning message.

MCKCT

41011 "--

	

1 	1

C

j 	I 	Li] L4, 	

cco 4,

,F.A

JOJ

? (7)

LUNA LAID EK
Key sequence: AD, 4, 9, 0, GO, GO.

Set speed control to your level of skill (strength of gravity). When
the game ends, press any key to restart.

You are in a luna module, orbiting some 50 kilometres above the luna
surface. You have 20 litres of astro fuel left and you have to land your
spacecraft without denting either the moon or the craft

Gravity is constantly pulling you down and you can only slow your
descent by blasting with your retro rockets.

Your height is indicated by the first two digits and this starts at 50.
Watch yourself descend without blasting your retros and as you fall. you
will descend faster and faster • until you HIT!

Press any key to restart (except reset) To blast for a short time, press:
+. This may slow you a bit and to slow yourself down more. press +
several times. If you over-do this command, you will slow down to zero
velocity and even start going U P! Never move upwards as this is a waste
of fuel.

Every time you blast, your fuel goes down by ONE LITRE Once your fuel
runs out, you can't fire any more and you start falling towards the luna
surface.

• ••• • 	•:::•:•••.••••
So. use your fuel wisely to survive!

S
Key sequence: AD. 3, 2, 0, GO. GO.

Set speed control to your level of skill. When the game
ends, press any key to restart.

The object of INVADERS is very simple. You shoot anything
that moves! Your position is represented by the number on
the left. The invaders appear from the right. They shift across
the display and if they touch you - "POW". The game ends
and the score is shown on the screen.

You can't stop the invaders advancing but you can defend
yourself by blowing them up. The fire button is button 0 but
you can only destroy those invaders which have the same
number as your space-gun.

To change your number to match the first invader, press the +
button. You can only increase your number and not reduce it.
By using the + and fire keys you will be able to keep the
invaders at bay. To improve your skill, advance the speed
control. You can also destroy those behind the front invader
by matching the numbers.
Try your fire power, you'll find it most absorbing.

-ADD-AND-BIT-CALL-DEC-EX-IN-INC-JP4D-NEG-NOP-OR-OUT-Pt-

74 TALKING ELECTRONICS No. io

ROW Y1

ROW Y2

ROW Y3

ROW Y4

ROW Y5

OSC

KBM

COL X4

COL X1

GN

+5V

GND

CLOCK

D OUT A

D OUT B

D OU1 C

D OUT D

D OUT E

OUT EN

DATA
AVAILABLE
CCL X1

-j CUL X2

INSTRUCTIO
DECODER

CPU
TIMING

8 SYSTEMS/ 5 CPU
ASS CPU CONTROL
CONTROL INPUTS
OUTPUTS

1041T
ADDRESS BIS

20—KEY ENCODER Z80C1311 BLOCK DIAGRAM

A0

Al

A2

G2A

G2B

G1

07

GND

1 — 8 DECODER
LATCH
	

2k x 8 BIT EPROM 4) 2k x 8 BIT RAM

SOURCE: SGS DATA BOOKS.

Al 	

PAREO 	 A2 	►

IORO 	 A3 	

FTE 	 A4 	
WR 	 A5 	► 	 A, C 1 	 40

A6 	 Al2 E 2 	 39

RFSH 	 A7 	ADDRESS 	 A13 C 3 	 38

As 	BUS 	 A14 E 4 	 37

HALT 	 Ag 	► 	 A15 E 5 	 3

WAIT Z80 Aig,-..-44. Al
	

CLK E 6

	

04 E 7 	

35

34

Al2 	r 	 03 E a 	 33

INT 	 A 1 3 	 D5 Z
9 Z80 32

NMI 	CPU A14 	► 	 06 E 10 	 31

At y-----4. 	 + 5 V C 11 	 30

RESET 	 D2 Z
12 CPU 29
,

Dg 	. 	 D7 ,..., 13 	 28

SUSREO 	 D1L. '-'.... 	 D5 C 14 	 27

BUSACK 	 02 	 Di L 15 	 26

D, 	DATA 	 INT E 18 	 25

CLK 	 04 	► 	BUS 	 NMI E 17 	24
, 5 V 	 05 '4. 	P 	 HALT E 18 	 23

OND 	 D. .04-0. 	 MREQ Z 19 	 22
D7--.41---41. 	 1090 E 20 	 21

HEX INVERTER

SYSTEM
CONTROL

CPU
CONTROL

CPU
BUS

CONTROL

74C923 Z80 LOGIC FUNCTIONS Z80 PIN OUTS

DESIGNED and PUBLISHED by COLIN MITCHELL at 35 Rosewarne Ave., CHELTFNHAM, VICTORIA, 3192 (03) 584 2386

A8

A9

Vpp

oT

A10

07

D6

D5

D4

D3

Al

AOE

DO Zo

D1 E
D2 E:

74LS138

SHEET 10
8212
	

2716
	

6116

Vcc

00

a 	
a 	

01

02

03

04

05

06

memimmaftenumumma

11110 .0°—.—C\D

01

PC ARTWORK

1— 	6 6 06 	° 1±1 11.0.04E fceaij

W-leeFirowe 4-

4_1 +4

TE BLACKJACK

	.ma 	

TEC-1

d•—= I.

	a

•
• KS 13;

00 TEC-1 00

;•%

A-iria-py
Thli6/4 4e.

1 	

•
8x8 0 DISPLAY 01

O90409000
06000
060•0
°roe°

oso•0

06060

06060

011 MC
0 12n N•

• jS
••-1 	

m -
)c C7 	I

1 n-47K—

Li
506

f
27p

47p
1.

22n
0

N-116-1-
It?-0

J
O

H
N

 H
A

R
D

Y
 /

 K
E

N
 S

T
O

N
E

cc

0
0
0

0

71-
i

W

i

0

0

0
0

0
0

0
0

1-1

CO

U)

F—
W
0 a , . ,. ,
LU 000
CC 	i Tr

-IF
a

0

v
c

fc? 111
T T

LU

co
LU

C

0
CD

03

,1

a 5,

0 ZLZ9

0 	 simumeei
1

N 0 ZLZ8 0 	g
, co X 0 :f f 5., c, 0 	A II.-- 	.c,

E 	g 1
T ?

--I4-- 0 	z cv

Nt t
6

908/1=3 —114"-- ---->i t-
--4+— 	tv 	i-

+ iiiiii. 1=908/.)11...... 1E,0
69

11111.111.111111111.11

.11111111111111111111111111PM

CO

c̀:̀,13 11,111114111FH

2 'Add-on? for the irlEc.1
*8x8 DISPLAY
*RELAY DRIVER BOARD

TEC-1
PART IT

TALKING
ELECTRONICS
COMPUTER

—by John Hardy
PC layout: Ken Stone.

Parts: $68.30
PC board: $19.00

it 8 x 8 Matrix
* Relay Board

This is the second instalment of a
continuing series on the fabulous TEC-1.
If you have been waiting to see the 'add-
ons, here are the first two. This instal-
inant describes an 8x8 matrix which is
effectively a WINDOW ON A VDU, and a
RELAY BOARD which contains a set of 8
relays so that the TEC- 1 will access the
outside world.

You can operate globes or motors via the
relays or drive them directly via the set of
transistors included on the board.

The 8x8 matrix is multiplexed and driven
by its own set of latches. In the ultimate
you will be able to get incredible move-
ment, but in the elementary stage its

illumination and shift patterns.

Now that you have got this far,
read on..

The introduction of the TEC-1 in the
previous issue caused quite a lot of
interest from a new group of
hobbyists. Was this due to the colour
cover or the presentation of a cheap
computer? Who knows?

In any case, we are pleased it took
their attention. Everyone will benefit
with the increased sales it produced.

We noted the number of orders
increased dramatically with many
coming from names and places not
on our mailing list or files.

My TEC-1 vvorked first

off. It
went

together

very easily and the solder

mask helped

greatly.

I am novv waiting

eagerly for the

next installrnent. Steven
Trusctt,

2287

When the TEC-1 was introduced
in ____ __

issue 10, my son and I agreed it
should be a good place to learn
about computers. We built the kit
and it worked straight away. We
were quite impressed by the quality

of the PC board andthe technical

details in issue 10.
We are now in the process of

making a case for the TEC-1 and are
in complete agreement that the

computer should Bouch
exposed so

that we keep in

"operations-. We will be fitting a
hinged perspex cover to keep out
dust etc. The only problem is the

. heatsink on the 7805. We have
decided to mount the regulator
under the board, near one corner
and run three lines to th

thenropriate

lands. Everything will
	

be neat,

firm and tamper-proof.
Martin Hulsman,

7310.

•
. . in the expansion port on the rEc-7 /

would mount one of those /C sockets with a little /ever
0/7 it. They are expensive but make it

easier to remove the expansion ,olugs.

Raymond Green

The requests for TEC-1 outstripped
the availability of kits and we soon
realized the small markets in
Australia had to be by-passed in
preference to direct importing.

Sales are still peaking but I think
many readers are still waiting for the
full range of "add-ons" before
launching into purchasing a kit. Let's
hope some of your answers will be
answered when you see the extent of
the projects in this issue. And this is
only just the beginning.

We have already designed more than
9 different expansions for the TEC-1
and this will take it into the field of a
fully-fledged demonstrator.

Within the first week we received 5
letters from constructors who had
the TEC-1 operating from the instant
of switch-on.

Although extremely simple, the TEC-
1 works very well. Some of its
features are novel while others are a
little outdated. The speed control is a
novelty while the 8212's have been
around for years and are now getting
towards the end of production. We
found this out as they are now quite

. . .cont. P. 14.

TALKING ELECTRONICS No. i i 11

"YOUR RE DEAD' FUNERAL DIRGE

RESET 00+09+3E+00+32+
00+08+3E+09+32+01 +08
+ CD-+B0+ 01 + 3E+0A+ 32
+01 + 08+CD+ 70 + 02 +C3 +
02 + 08.

ADDRESS 0900 + 03 + 00 + 03 +
00+03+03+00+06+00+05
+ 05+00+03+00+02+03+
00+ 1F

ADDRESS 0A00 +16 + OE +14
+ 11 +05+00+04+05+01+
04# 1A+ 1A + 00+ 00 + 00+ 00

Ait\+ 00 + 1 F.
1 'ESET + + GO GO.

12 TALKING ELECTRONICS No. II

- by A. Hellier,
Hamilton, 2303

RESET 00+09+3E+00+32+
00+08+3E+09+32+01 +08
+CD+80+ 01 +3E+OA + 32+
01 + 08 + CD + 70 + 02 + C3 +
02 + 08.

ADDRESS: 0900 +11 + OD + OF
+08+00+00+00+00+08+
OF + 11 + OD + 00 + 00 + 00 +
00+ 11 + OF + OD + 08 + 00 +
00 + 00 + 00 + 08 + OF + 11+
00+ 00+ 00+ 00+00+0D+
00 + 00 + 00 + 00 + OD + 00 +
00 + 00 + 00 + OD + 00 + 00 +
00 + 00 OD + 1F.

ADDRESS 0A00 + 02 + 09 + 07
+ 00+ 02 + 05+0D+ 00+ 00+
00 + 00 + 00 + 00 + 00 + 1F.

RESET + + GO GO.

WINNERS CALL

RESET + 02 + 08 + 06 + OA + OD
+ 12 +12 +12 + OD + OD + OD
+ OA + OD + OA +06+00+06
+OA +OD+ 12 +12+12+06+
06 + 06 +0D+0D+0D+ 00 +
00 + 1E.

ADDRESS 0180 GO GO.

STACK DEMONSTRATION
PROGRAM:

Some constructors have been very
inquisitive. They found locations at
the high end of RAM which they
could not remove! (This is because the
TEC-1 was replacing them again).ThiS was
quite puzzling as we know anything
in RAM can be removed and written
over.

But this area is special and is called
the STACK area.

When a PUSH instruction is
executed by the Z80, the contents of
the location are loaded into this area.
The stack starts at OF FO for MON-
1A EPROMS and OFDO for MON-1B
EPROMS. It advances downwards,
towards the LOW addresses in the
6116.

Each time a POP (or PULL) instruction
is executed, the last item to put onto
the stack is removed and the stack
gets smaller. 	Otherwise it gets
bigger and bigger.

If a program contains too many
PUSH instructions, the stack will
grow and eventually hit the program.
This will make the computer CRASH!

The simple program below pushes
reister pair (they must be in pairs)
AF

a
 into the stack and completely fills

the RAM.

Try the program and watch the
computer C RAS H.

ii AA BB
D5
C3 03 08

RESET, GO.

Increment the address and prove the
6116 is completely filled with AA,
BB, AA, BB etc.

Change AA, BB to CC, DD and repeat.
Check the RAM and read its contents.

800
802
804
807
808
809
80A
80D
80F
811
81;
815
816
818
81A
81D
81E
821
824
826
829
828
82D
82F
831
832

THE PROGRAM

CHUcK
1)

MGRO

LD A,00
OUT(i),A

START LD DE,o0
DELAY DEC DE

LD A,D
OR E
JP NZ Delay
LD A,E3
OUT (2),A
LD A,08
OUT (1),A

LOOP I HALT
AND OF
CP OC
JP Z,Right
OR A
JP Z,Left
JP Loop I

RIGHT LD A,01
JP Finish
LD A,20
OUT (1),A

- 	LEFT LD A,20
FINISH OUT (2),A

HALT
JP Start

;E oo
D3 01
11 oo oo
113
7A
83
C2 07 08
3E E3
D3 02
3E 08
D3 01
76
E6 OF
FE OC
CA 24 08
87
CA 29 08
C3 15 08
3E 01
C3 28 08
3E 20
D3 01
3E 28
D; 02
76
C; 00 08

EL
OAD sekTo

QUICK DRAW is a reaction game for
two players.

To start the game, press RESET, GO.

After a DELAY, as determined by the
delay routine at 804, the letter G
will appear on the screen. The first
player to press his button will be
detected by the computer and
result in the figure 1 appearing on
thea ppropriate end of the display.

Player 1 uses the + button and
player 2 uses the 'C' button.

Any button can be pressed to reset
the game.

The first instruction is to load the accumulator
with zero and output this to port 1 to prevent odd
segments lighting up when the game is reset.

At address 804, the register pair DE is loaded with
the value 00, 00. Surprisingly, this creates the
longest delay as the first operation in the delay
routine is to decrease the lower byte (register E) by
one. This immediately removes the value of zero
from the pair and when D is loaded into the
accumulator, and the logical OR operation
performed, the answer will only be zero when both
the accumulator and register E are completely
zero.

If one or both are not zero, the program will jump
to instruction 807 whereupon register pair DE will
be decremented by ONE. This loop wilt be cycled
256 x 256 times and each time will occupy quite a
number of machine cycles.

This results in the letter G (for GO) taking a few
seconds to appear on the screen. This creates the
same effect as the delay circuit in the Quick Draw
project described in issue 5.

When the register pair becomes zero, the program
is advanced one address and the accumulator is
loaded with the value E3. The value E3 will
produce the letter G on the screen and the location
of this letter is determined by loading the
accumulator with 8 and outputting it to port 1.

The computer is now HALTED and waits for an
input instruction. If any of the keys are pressed,
the 74c923 will activate the NON-MARSKABLE
INTERRUPT line and present data to the Z80
according to the value of the key.

If key C is pressed, the value 1010 is placed in the
accumulator. This is then logically ANDed with
the value F (1111) and the result appears in the
accumulator.

When a number 0-F is ANDed with 1111, the
answer will be exactly the same as the number
itself. In actual fact, this AND OF operation is not
required for the jump right command and you can
ignore it.

After the AND OF operation, the number we are
looking for is 1010 (for a jump RIGHT). The
answer is compared with OC and the Z80 does
this by effectively performing a subtraction
operation in which the value C is subtracted from
the contents of the accumulator.

If the answer is zero, the computer is instructed to
jump to address 824. If the answer is not zero, a
logical OR operation is performed with the
accumulator as the operator and also the operand.

Since the accumuator is zero, the answer will be
zero. Thus the program will advance via a jump
instruction, to 829. If neither of the conditions are
met, the CPU will jump to 815 and wait fora key to
be pressed.

If the processor advances to location 824, the
accumulator will be loaded with the value 1 and
told to jump to address 82B. This value 1 is
outputed to Port 1 and sets one of the latches
ready to display the far right-hand digit.

At address 82D, the accumulator is loaded with
28 so that the segments 'a' and 'b' will illuminate
when the value 28 (not twenty eight but two,
eight) is outputed to Port 2.

Finally the processor is told to HALT at address
831.

On the other hand, if the program advances to
81 E, the processor is told to jump to address 829
where the accumulator is loaded with 20 so that
the far left-hand display will be activated when
port 2 is given the value 20.

The program can be re-started by pressing ANY
key, and the accumulator is loaded with zero at
800 so that odd characters do not appear on the
screen.

Here are 6 simple experiments which can be
performed on this program to better understand
how it operates:

1. Load address 801, 2, 3 and 4 with 00 and play
the game a few times. Notice how odd figures
appear on the screen. Replace the correct
program values and continue:
2. At address 812, load the value 10, or 04 or OF
and note the different effects.
3. At address 816 and 817, insert 00 00. What
effect does this have?
4. At address 819, insert OD or OE or OF. What is
the result?
5. At address 829, load the value 10 and see the
result.
6. Finally, insert the value 01 at location 806. Try
the value 06, OA BB or FF. What effect do they
have?

TALKING ELECTRONICS No. i i 13

The 	introduction -, of the -- TEC-1 is
primarily, intended , to unlock three
areas of microprocessor design. These
are:

1. To teach Machine Code programming.
2. To teach the art of creating Video
Games and,

3. To access the real world.

MACHINE CODE programming is the
skill of telling a microprocessor what
to do by writing directly into a memory
bank. The memory can either be a
tempory storage (RAM) or permanent
storage ROM. The main difference
between these two is ROM will retain
its memory when the power is turned
off whereas RAM will lose its contents.

ee,

• We can use this feature to write into
RAM and then erase the program by
turning off the power. Alternatively we

gri can simply write over the old program.
• Both ROM and RAM are used in the TEC-

1.

PROGRAMMING STARTS
HERE:

By now you will have completed the
first 7 experiments and possibly tried
some additional programming of your
own.

But just in case you did not absorb all
the facts, we will go through some of
the experiments again to make sure
everything is understood.

Just before we start, key the
following:
Reset, two, +, eight, +, two, +, five,
+, fourteen, + four, +, sixteen, +, 1A,
+, zero, +, zero, +, zero, + zero, +,
zero, +, 1E, A Ddress 2, 7, 0, GO, GO.

DO YOU AGREE?

You should remember a few simple
programs like this, to impress your
friends.

The Z80 instruction-set has 8 special

We traced the fault by removing the The Z80 has the capability of accepting 	restart instructions which are single-

74c923 and checking pins 8, 9, 11, 	over 700 instructions, some of which 	byte instructions. By keying in one of

12 and 1, 2 3, 4, 5 with an ohm- are 2-byte. These take the form of a two • the following: C7, CF, D7, DF, E7, EF, ,
meter. The short between pins 2 and 	digit number which is written in hexa- 	F7, or FF the computer will go to

9 showed key 6 to be at fault and that 	decimal form. The first large table in 	address location 00 or 08, 10, 18, 20,

was when we noticed it! 	 this installment shows how to write 	28, 30, 38 and will receive infor
any of these numbers and explains how ii„:: mation to go to the beginning of the 2

Another TEC-1 came in with a very 	we arrive at C2 or E5 or 07 as a value in 'illii tunes and 3 games.:
faulty + button and a broken PC line 	this instruction set. 	 ,... ,:::;

under one of the 7-segment displays. 	 ..,.::
A typical

:, The 2 tunes are accessed by EF and
F7

Two computers had shorts between "load theaccumulatorr (register M 0 Z80 to go to location 28 in the

xiii:,
. Push Reset, EF, GO. EF tells the

accumulator

tracks around the memory section ::, with the following value . . ." Once you iiii:, EPROM. At this address is an in-
where the tracks are very close to one 	remember some of these instructions 11:.11 struction 21 which tells the Z80 to
another. 	 ' you will see why we have concentrated :•:'•'i load register pair HL with the

on Machine Code Programming. 	 contents of another location which is

But possibly the worst effort came in 	 the beginning of the song table.

the post last week. The 74c923 	Instructions such as 76 for HALT, C9 for ki,:::
socket had been made up with a 14 	RETURN and C2 for JUMP NOT ZERO are iki F7 directs the Z80 to go to location
pin and an 8 pin so that 2 pins 	quite easy to remember. The meaning Iiiiii 30 and this address directs the Z80 to
projected too far. The chip has been 	of JUMP NOT ZERO needs a little -::' another song table.
inserted so that pin 2 connected with 	explanation. After C2 you must insert 2
pin 1 on the circuit. The other fault r= bytes because the computer will 	We do not use C7, E7 or FF but the

was a jumper missing near the first 	interpret whatever is placed as the 	other 3: CF, D7 and DF select the

8212. Both of these faults showed 	next two bytes as an address location. 	commencement of the three games.

lack of inspection. When they were 	For example, 20 08 will tell the
repaired, the computer worked 	processor to jump to 0820. The 	Try them.

perfectly. z instruction C2 also infers that if the
program IS ZERO, the processor will 	

When the computer is turned on, or

proceed to the next instruction. 	
the reset button pressed, the first

Finally a constructor arrived with a 	 available address is 0800.

TEC-1 under his arm. It gave an 	Machine Code is the only approach for
occasional displa of odd segments :-.:.1 video game development. It produces 	This means the address locations

and a beep from
y
the speaker when . the fast-moving games as seen in theti,

from zero to 0800 have been

switched on. The trouble was traced 	latest coin-in-the-slot machines. Any 	allocated to the 2716 EPROM and

to a faulty Z80! 	 of the games on cassette are 	most of this has been filled with start-

: theoretically possible with the TEC-1. 	up instructions and games. This

Apart from the above cases, the TEC- , Mind you, we will not be advancing to 	includes a music table and letter

1 seems to offer a high degree of ! the complexity of colour or the swirling 	
table which are user accessible and a

success. 	 A action of VENUS, 	but in a 	
number table which is only computer

t, developmental way you will have the 	accessible.

If you have any problems with your .:11: opportunity to program sections of a 	
Actually the MON-1 EPROM has

unit, let us know. We want to present :iia video game and watch the result. 	% ::::!:
7 .::.i. 	. 	.l 	s. 	. 	been filled from zero to 05A7,;:: 0::lig 	i:;:f. miiimit:::3liiimii fliitimte 	 and wethem in the next issue, under FAULT . ,: .m:.: ,i,. 	. 	. :A.. 	..m.., 	,:

will now look at how many locations
FINDING. 	 this represents.

14 TALKING ELECTRONICS No. 11

difficult to obtain. The other chip on
short-supply is the 74c923 as it is
only made by one manufacturer.

The FND 500 or FND 560 displays
are no longer in production by Fair-
child (as they have ceased to produce
OPTO devices) however other
suppliers have produced identical
replacements.

Apart from this, the TEC-1 is straight-
forward.

Out of the first 300 kits we had
reports from only 6 readers who had
trouble in getting the computer to
work.

Paul had incorrectly placed the -six-
button in the keyboard so that the flat
was 90° out of position. The TEC-1
came on at address 0800 but the
keyboard did not operate.

The 74c923 detected key 6 as being
pressed due to the wiring of the
contacts and the NMI being
activated.

07FF

2k
EPROM

0000

1FFF

2k
6116
RAM

1800
37FF

3000

2k
6116
RAM

0800
2.iFF

2000
3FFF

2k
6116

3800

This is the EXPANSION PORT

OFFF 	17FF

1000
2FFF

2800

LEARNING HEX

We know the TEC-1 is programmed
in hexadecimal. This means the
locations commence at 0000 and
increase: 0001, 0002, 3, 4, 5, 6, 7, 8,
9, A, B; C, D, E, F, 10, 11, 12, 13, 14,
15, 16, 17, 18, 19, 1A, 1B, 1C, 1D,
1 E, 1 F, 20, 21, 22, 23, 24, 25, 26, 27,
28, 29, 2A, 2B, 2C, 2D, 2E, 2F, 30,
31, 32, 33, 34, 35, 36, 37, 38, 39, 3A,
3B, 3C 	9D, 9E, 9F, A0, Al, A2,
A3, A4, A5, A6, A7, A8, A9, AA, AB,
AC, AD, AE, AF, BO, B1, B2, B3, etc
up to 00F2, 00F3,00F4,00F5,00F6,
00F7, 00F8, F9, FA, FB, FC, FD,
00FE, 00FF.

If you fill in all the blanks between
0000 and DOFF, you will find there are
16 lots of 16 addresses. This is equal
to 256 locations.

So, between 0000 and OOFF there are
2.56 address locations.

The next location 0100 (it is best to
say oh, one oh, oh as the location is
not really one hundred). Between
0100 and 01FF there are another 256
locations.
Between 0200 and 02FF there are
another 256 locations.
0300 - 03F F = 256 locations
0400 - 04FF = 256 locations
0500 - 05A7 there are ??? locations.

Let's work it out. The number of
locations in A7 is: A x 16 + 7
= 10 x 16 + 7 = 167.

The total number of address
locations which have been pro-
grammed into the EPROM is:
5 x 256 + 167
= 1447.

We emphasise this aspect of hex
numbering as it is often glossed over.
Values such as 5A7 do not give us
any indication of the value they
represent.

To program 1447 address locations
would take the best part of an after-
noon as it is important to check and
double-check the data at each
address before running a programme.
It only takes one fault in the program
to upset its running with the result
that hours of work will be ruined.

So, 5A7 is quite a large number and it
nearly fills the EPROM. In fact there
are only about 600 locations left.

The main reason for locating the
beginning of the user-available
section at 0800 will become obvious
in a moment.

The second and most important
reason for having the first user-
available location at 0800 is the value
it represents.

The EPROM is a 2k byte IC and this
means it is capable of storing 2048
addresses. Each address will accept
a number as high as 11111111 in
binary, which is 255. We casually say
it is a 2k EPROM but it is actually a
2k48 EPROM.

The value 2048 is equal to 0000 to
	 . Let's work it out.

Divide 2048 by 256 and you will
obtain the number of "groups" of
locations. This comes to 8. So, 2048
is equal to 0000 to 0800 Or more
accurately 0000 to 007FF. Every
0800 in hex represents 2048
locations. The next 2k starts at 0800
to 1000 or more accurately 0800 to
OFFF.

The Memory Expansion Board, to be
presented in a future article will
contain

1
1R 	chips. These are

labelledon the diagram and
accesse as own.

The hexadecimal start and finish for
each "2k" of RAM on the TEC-1 is
shown in the diagram above. The Z80
will access 64k of memory (65,536
bytes) or 32 chips such as 6116 or the
N-MOS version 58725 by Mitsubishi.
On the TEC-1, the two top address
lines have not been decoded and thus
the TEC will only address 16k of
memory.

Between 05A7 and 07FF, the
EPROM has been left blank for
additional routines which will appear
as MON 1A and MON 1B etc.

It is always wise to leave empty
pockets between one program and
the next in case a program needs to
be extended. These empty locations
can be filled at a later date with the
aid of an EPROM BURNER.

Other locations in the EPROM have
also been left blank. The most
important of these is the "first
hundred bytes". Within this section
are 8 one-byte subroutine call
locations such as 00, 08, 10, 18
where we can place a brief program
(up to 7-8 bytes long). We can write a
jump or call instruction and maybe a
return instruction so that the main
program needs ONLY a single byte
instruction. (Normally a CALL
requires 3 bytes).

You have already keyed a number of
instructions and you will be starting
to remember what they stand for. 3E.,
for instance, means "Load
accumulator A with the following
byte". The accumulator is one of the
registers in the Z80 and there is
nothing magic or complex about it.

It is merely a set of 8 flip flops which
can be set HIGH or LOW to reflect the
number which has been entered.

The reason why register A is so often
used in programmes lies in its special
feature. It is the accumulator register
and this means all logic operations
(such as AND, OR ADDITION and
SUBTRACTION) will be performed
using it.

'HE ALL. Fvfkfose NIFT`r
TEC-1....

TALKING ELECTRONICS No. its

Experiment 7 combines a number of
interesting features such as CALL
and JUMP and we will explain what
these do.

The program looks fairly simple, but
this very deceptive. if you were
required to program all the infor-
mation to produce a running letter
program, It would be like being asked
to buy a bottle of lemonade but firstly
manufacture and print the dollar note
required to buy the bottle of fizzy.
Obviously this would be an enormous
task so we use AIDS to make the task
easier.

comprising byte-pairs. One of which
is the pitch value and the other time-
value. It continues using each byte at
0900 until either a IF or I.E is
recognised. With IF the computer
goes to line *OF in the main program
and carries out a similar procedure
for the Letter Table.

After the letters have scrolled across
the screen, the computer returns to
the main program (location 817) and
this instructs the Z 80 to jump to line
802.

WHAT YOU HAVE LEARNT FROM
EXPERIMENTS 1.7: .

1. The lint available address Is 0000.
2.The dots ea the display indicate when
the address OR the data cam he changed.
3.incrementing the display memos to
increase the address value.
4.Docrementing the display 11188118 to
decrease the address Mutton.
5. The TEC-7 ig programmed in MACHINE
CODE.
B. The key pad is a HEX PAD as it contains
the numbers 0.9 and letters A.F.
7. The values 00 to FF represent the
numbers ZERO to 255:

HERE IS THE COMPLETE TABLE:

In our case we use John Hardy's
letter writing routine and his running
or shift routine and put them together
to get our sentences.

We will go through the program in the
same way as carried out by the Z80:

By pressing the reset button, 	+,
the computer will start at location
802. The small amount of operating
brains inside the Z80 will instruct it to
look at location 802 in the 6116
RAM. It will find the instruction 3E
and this will tell it to load the
accumulator with 00. This is one way
of removing the initial 'rubbish' in a
register or accumulator A.

The next instruction 32 means load
the contents of accumulator A (which
is 00) into the address Which follows,
which is 0800. This means we have
removed any rubbish data and loaded
it with 00.

At address location 807, 'A' will be
loaded with.09. The previous value,
00 will be written over but it has
already done its job of being loaded
into location 0800.

At location 809, the Z80 is told to
load the value 09 into address 801.

All we have done to date is simply
load the first available address with
00 and the second with 09. We could
have Aone this manually but the
routine calls for the contents of 800
and 801 to be altered between two
different values: 0900 and 0A00 and
so the computer has to do the job.

The next instruction is a CALL
instruction. The Z80 is asked to look
at the address 180 in the EPROM.
What it will find there is quite
considerable.

Firstly it loads register pair DE with
the contents of 800 and 801. At these
locations it finds the address 0900.
Next it takes the first byte at 0900
and plays the note corresponding to
this value. This requires another table

OUR COMPLETE HEX TABLE
o

-..

00 n
o
a
5
<

c
o

u
C

i
w

u
_

o
s
-

cvm
stm

o
n

alo
A

c
o

u
C

i
um

e
l-

nice
t

Lo
w

n
in

to
c
tm

u
O

lu
u
.Q

.-
N

ri
erin

co
n

g9
co

m
m

cr)cn
c
n

o
m

en
c
isie

t<
4

<
<

<
a
d

at
a
4

4
4

<
<

c
ciro

ca
ta

gocom
c o

m
a

l
C

oM
a

lm
m

m
c..)

c.,0
0
0
0

0
v

*-
0,1

cI
v

io
w

N
cocn

Q
i-

N
en

,g
to

w
n

eo
rn

e
‘-

N
m

v
to

co
N

co
co

o
l-

N
m

et
io

%
N

cocn
o

.-
N

in
v
in

to
n

g
p

o
s

ul o
w

 in
 i
n

 i
n

 go
. co

 co
 ea

 co
 to

 to
 to

 so
 co 	

r-•

n
 to co

 co co
 co co

 co 03
 co

 co
 co

 co co
 c
e
 m

 cr)
 m

1 01 51 33 101 65 201 C9
2 02 52 34 102 66 202 CA
3 03 53 35 103 67 203 CB
4 04 54 36 104 68 204 CC
5 05 55 37 105 69 205 CD
6 06 56 38 106 6A 206 CE
7 07 57 39 107 68 207 CF
8 08 58 3A 108 6C 208 DO
9 09 69 3B 109 6D 209 D1
10 OA 60 3C 110 6E 210 02
11 OB 61 3D 111 6F 211 D3
12 OC 62 3E 112 70 212 D4
13 OD 63 3F 113 71 213 D5
14 OE 64 40 114 72 214 D6
15 OF 65 41 115 73 215 D7
16 10 66 42 116 74 216 D8
17 11 67 43 117 75 217 D9
18 12 68 44 118 76 218 DA
19 13 69 45 119 77 219 DB
20 14 70 46 120 78 220 DC
21 16 71 47 121 79 221 DD
22 16 72 48 122 7A 222 DE
23 17 73 49 123 7B 223 OF
24 18 74 4A 124 7C 224 EO
25 19 76 4B 125 7D 225 El
26 1A 76 4C 126.7E 226 E2
27 18 77 4D 127 7F 227 E3
28 1C 78 4E 128 SO 228 E4
29 1D 79 4F 129 81 229 E5
30 1E 80 50 130 82 230 E6
31 1F 81 51 131 83 231 	E7
32 20 82 52 132 84 232 Ell
33 21 83 53 133 85 233 E9
34 22 84 54 134 86 234 EA
35 23 85 55 135 87 235 EB
36 24 86 56 136 88 236 EC
37 26 87 57 137 89 237 ED
38 26 88 58 138 8A 238 EE
39 27 89 59 139 8B 239 EF
40 28 90 5A 140 8C 240 FO
41 29 91 5B 141 EID 241 	Fl
42 2A 92 5C 142 8E 242 F2
43 2B 93 5D 143 8F 243 F3
44 2C 94 5E 144 90 244 F4
46 2D 95 5F 145 91 245 F5
46 2E 96 60 146 92 246 F6
47 2F 97 61 147 93 247 F7
48 30 98 62 148 94 248 F8
49 31 99 63 149 95 249 F9
50 .32 10064 150 96 250 FA

251 FB
252 FC
253 FD
254 FE
265 FF

, -4----il a

16 TALKING ELECTRONICS No. ii

01

02 	Ulf b a

4
40 • c 20

,..clp
%Pio

80

20 10 08 04 02 01

•=1,1011,0

MOVING ON. . . .
What is the next thing you would like
to do?
How about turn on one segment of
the display?

Key in this program:

RESET
311 01
D3 01

D3
3E 0021

176
RESET, GO.

This is what you have done:
Reset 3E+ 1 + D3 + 1 + 3E + 1 +D3
+ 2 + 76,Reset, GO.

The top LED in the first display lights
up. We say the first display as it is the
lowest priority digit.

In English, this is what you have
done: Load register A with the value
1. Output this to port 1. Load register
A with the value 1 and output it to
port 2. Halt.

This is how the program is written:

LD 	ell 	toe 3E 01
OUT OA $02 D3 01 LD A es $04 a
OUT42),A Hb D3 02
HAL 	800 76

We can read the value of each
location by pressing RESET and then
stepping through the program by
pressing:+++++++++++++

We can alter the position of the LED
which is to be lit, by altering the value
of locations 801 and 805.

The whole program does not have to
be re-typed. Any location can be
altered as follows:

Either press Reset and + or — — — —
to get address 801.
Change 801 to 08
Press RESET, GO.

Note the LED has moved to the 4th
display.

Try the values: 02, 10, 04, Er 20.

You have accessed each display.
Return to the first display by
changing the value at 801 to:
Increment to 805 and change the
value 01 to: 02, 04, 08, 10, 20, 40 and
finally 80.

Are you impressed? You have
accessed each of the segments

including the decimal point. You have
become master of the display. With a
little more instruction you can
illuminate more than one LED in the
display. But first let's see what you
have learnt.

The displays are accessed'as follows:

The value of each display is twice
the previous and they increase
from RIGHT to LEFT.

Port 1 is the cathode port. A 'HIGH'
or 'ONE' in the appropriate bit 5 - 0
activates cathode 5 or 4 or 3 or 2 or 1
or 0.

This is how it works: The numbers
20, 10; 8, 4, 2, 1, are converted to
binary and the computer sees them
as:

0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

The last line in the table is easy to
read. It is 1. The second lowest line is
2, then the next line has the value 4,
then 8. The first and second lines are
a little more difficult to explain
because they are not 16 and 32.
That's the binary number but we are
interested in the value we have to
punch into the hex keyboard. The
answer will be covered in a moment.
For the present, we will look into the
concept of converting binary
numbers into HEX numbers.

Firstly we will give you the answers.
Each segment on a display has the
following values. The top LED
(segment A) is lit with a value 1. The
decimal point needs a value 10, the
centre LED (segment G) needs the
value 4 and so on.

What do you think the following
program will produce?

3E 01
D3 es
3E 20
D3 Os
76

Try it. Start at 0800. Enter the
program, press reset, GO.

We can illuminate more than one
segment at a time and more than one
display at a time by changing two
locations as shown in the following
examples:

Try each of these examples and see a
pattern of addition appearing.

At location 805, insert

(a) 3

(c)) 1
9
9

(d) 34
(e) 62
(t)
(9) D
(h) F

The letters A, D and F will be quite a
surprise. They also produce a reading
on the display and it is obvious they
have a value. Their values will be
covered in the section CONVERTING
BINARY TO HEX and HEX TO
BINARY.

Back to the display.

More than one display can be
illuminated at a time by inserting a
different value at location 801. Keep
say "62" at location 805 and insert
the following at 801:

(a) 9
(b) 27

ITi-1 IN /OUT 13oARD.. , .

TALKING ELECTRONICS No. 11 17

Man! DRIVE'
CIIP

PORT 2.
SEOMENT PORT

This is equal to 2

This Is the first output
line and is celled BIT

PORT 1 CATHODE PORT.

CATHODE DRIVER
CIIIP

11

11•1•111L

(c) 31
(d) 10
(e) A
(f) 3B
(g) 2F

This is as far as we can go with blind
experimenting. We must cover some
of the background theory on hex
numbers to understand what we are
doing.

In experiment (d) above, we turned on
the fifth display thus:

To do this we must switch the
appropriate display transistor ON.
(Don't worry about the segment
drivers at th s stage).

In the TEC-1 the displays are
connected to the 8212's as follows:

The display we wish to illuminate is in
the fifth output line and its binary
number is: 00010000. The keyboard
is in hex so to convert this to a hex
number we have to break it into two
groups of four:

	

0 0 0 1 	0000

	

This represents 1 	This represents 0

The answer is 10.

This is not called ten. It is called one,
zero or one, oh. Here are some more
examples:

1. To iluminate the first, third, and
fifth digits, this is the procedure:

The high lines from the 8212 will be:

0 0 1 0 1 0 1 0

break this into 2 groups of four:

0 0 1 0 	1 0 1 0

The answer is 2A.

OK, you don't understand how we get
A. Look at the table on P 71 of issue
10. The hex number for 1010 is A.

Try these: Write the hex number for:

(a) 1100 =
(b) 1001 =
(c) 1101 =
(d) 1111 =

2. To illuminate the first, second and
third displays, the HIGHs must
appear in the following places:

0 0 1 1 1 0 0 0

0 0 1 1 	1 0 0 0

3 	 8

Answer: 38 (in hex)

3. To illuminate all the displays:

0 0 1 1 1 1 1 1

0 0 1 1 1 1 1 1

3

4. To bip the speaker:

1 0 0 0.0 0 0 0

8 	 0

5. To click the speaker and turn on
displays: one, two, three and four:

1 0 1 1 1 1 0 0

1 0 1 1 	1 1 0 0

B 	 C

Answer: BC

6. To access the vacant cathode:

Answer: 40. You will notice NOTHING!

Example 3 above shows that the max
hex value to illuminate ALL THE
DISPLAYS is 3F. Remember this.

This is the program we are using:

This value determines
which displa•dsi are lit
and is called CATKODE
ACCESSING.

Max 3F 41
Max FF

This MAW determines
the SOOMWOU which ere
lit end is tatted SEG-
MENT ACCESSING.

The program has two variables: lines
1 and 3, For line 1, the maximum
value is 31 (this is 64 different
possibilities) and line 3 has a maxi-
mum of FF (this is a maximum of 256
possibilities). These are independent
variables and either can be changed
at any time to any value in the range
as specified above. The result is
thousands of different combinations.

Here are some of the possibilities and
how they are obtained:

If line 1 has the value 1, we will be
accessing this display: (line 3 can be any
value from 00 to FF).

I 	I

This is equal to A
0 1 0 0 0 0 0 0

0 1 0 0 0000

WAKING UP THE 4 0
FIFTH DISPLAY

3E 01

1)3 602
76

IS TALKING ELECTRONICS No. it

31 37 will access:
The value 31 011 will access this
display: 	I

!pp.! .111.1••

If we program 31 02 into the first
line, the following display will be
accessed: I

CATHODE ACCESS values. Thus 02
plus 04 will access:

SI 06

a 32 will access:

:10•11!
3E 05

• ...kif
. 	.

3E 06 	' K
' 	gl'

3! 05 .74 &kw.

45m6e

31 of

.p

irmi5
SE Ii

xa O

The value 3! 04 will access this
display:

1111•••••..

Cart you see why?

The computer converts 08 to binary
and it becomes 1000.
The "one" or "HIGH" corresponds to
the display in the diagram above

311 20

corresponds to this display:

F

SEGMENT ACCESS

Line 3 of the program determines the
letter, number or pattern which will
appear in the display(s). We will take
the simple case of the lowest priority
display being accessed (line 1 will be
3E 01) and we will produce Borne
interesting patterns, numbers and
letters in (or on) the display.

Here are some of the results of
changing the data in line 3:

;:trkxx
'e7

3E 04

&xi

„i 1.1••••

Note: 20 is the Hex number and is
obtained by separating 20 into 2 0. .

2 I 0
0010 0000

This gives 0010 0000 as the binary
equivalent and shows the HIGH is bit
5 and.this will illuminate the first digit
on the display. (Note:The first output line 1
bit 0).

[The actual combination of segments
which will be illuminated will depend
on line 3 of the program and this will
be explained in a moment.

More than one display can be turned
on at the same time by adding

3E 21
:

eM:4::
311 a ;If *

:ssoi*:

:•:•:•K::

• • %XS 14 AU I X D IS PLIV WIRD—

3E 01

X p

31t 02 it:;:*: x

3E 03 .).:54

TALKING ELECTRONICS No. 11 It

yomimirr

Now key in this program:
Reset 3E+01 +03+01 +3E+04
+ D3 + 02 + 76 Reset. Go.
The result is: when this line Is HIGH. segmenta' a luminetes

1' illuminates
'if illuminates

illuminates

So far, so good.

11•••••••11

3E AO

3E Es LI!.:1"

3E FFBro

Here is an equally interesting pro-
gram to automatically increment the
SEGMENT ACCESS value. The
result will be to produce every
combination possible on the display.
Wet& the results carefully and see if
you can predict the next segment to
appear.

At address 0800, type the following
program:
(And the DELAY ROUTINE at OA00)

LD A,01
OUT MIA
LD
LD A

RAO
vE

OUT
I 	

(1),A
NC N

CALL Moo
JP oio6

oAos

This Is the
DELAY

ROUTINE

By reducing the DELAY TIME. the
display will cycle at a faster rate. Try
the value 06, A0, CO, 10 and 02 for
the value A02 and determine which
value is the most suitable.

SUMMARY

This is the program you have been
entering into the TEC-1 to illuminate
the segments. The two variables are
located et 801 and 805.

500 3E 04
502 113 01
$04 3E II
Sob 763 02
Soil 7

The data at address 801 can range
from 01 to 3F and it determines the
combination of digits which will be
illuminated.

The data at address 805 can range
from 01 to FF and it determines the
combination of segments which are
illuminated.

Expt S:
ONE SEGM

ILLUMINATING
ENT

Aim: To illuminate one segment on
the display .

Theory: To master the display you
must be able to access (locate) any
segment.
The TEC-1 display has 6 digits and
each has 8 light emitting diodes. This
produces 6x8 = 48 locations.

The aim of this experiment is to
illuminate one of these segments.

Key the following:

Reset 3E +10 + D3 + 01 + 3E + 04
+ D3 + 02 + 76 Reset Go.

The display will show one centre
segment in the 5th display thus:

The only difference between the two
programs is the byte at 801.
You are now going to make a
discovery yourself:
This is how to do it:

Press Reset.
Press + to 805. Change the data
(now showing 04) to 01.
Press Reset, Go.
The segment 'a' illuminates thus:

Press RESET. Press + + to get
address location 805.
Change data to 08.
Press RESET, GO.
Only- segment b illuminates thus:

1

Press RESET. Press + + to 805.
Change data to OF.
Press RESET, GO.
Four segments illuminate thus:

Let's see how this comes about.

The seven-segment display is
labelled a-g and the decimal point h.
Each segment is illuminated via a
binary number sent from the Z80 to
the 8212 latches.

You can see we have activated the 4
lowest value lines and thiS has
produced a rectangle made up of
segments a, b, f and g.

Now look at how we programmed a,
b, f and g.
The numbers we used were 1, 2, 4,
and 8.
Can you see the connection?
it's binary.

The computer converts our keyboard
number to a binary number thus:

a= 1
b = 10
c = 100
d = 1000

The next segment in the series is
10000, which is 16 in binary terms.

So. let's see what happens when we
put 16 into the program at 801.

Soo
	

3E DI
002 D301
004
	

06 OS
006 7$
So7 D3 02

04
SoB CD 00 OA
SOB C3 06 08

Aoo it FF IF
A03 IB
A04 7B
Ails Bs
A06 Ci 13 OA
Aso go

XO TALKING ELECTRONICS No. li

(a) 32 =
(b) 14 =
(c) 49 =
(d) 88 =
(e) A4 =

10. lie, to 1 	

(0 C3 =
(g) DD =
(h) Fl =
(i) FE =

cont. P.26.

10'

Key this sequence:

RESET 3E+ 16+ D3+02 +3E+10
+ D3 + 01 + 76 RESET GO.

Has something gone wrong? We get
this result:

The one fact we have omitted is the
TEC-1 is programmed in hexa-
decimal numbers. This means 16
should be typed as 10 (one, oh or one
zero) since the computer counts: 1,2.
3,4,5,6,7,8,9,A, B,C,D,E,F.10. Thus
10 is equal to 10000 in binary.

Put 10 into the program thus:

RESET 3E +10+ D3+02 + 3E+10
+ 03 + 01 + 76. RESET GO.

You will find the decimal point will
illuminate thus:

•
	a

Now add the value of segments a, b, f
and g to the value of the decimal
point:

This is done by adding 1 + 08 + 02 +
04 +'10 to get 1F.

Place this value in the program:

RESET 3E + 1F+D3+02+3E+ 10
+ D3 + 01 + 76 RESET GO.

Success.

We have just added five Hex
numbers.

Let us illuminate the next segment in
the series. It will have the binary
value 100000.
This is equivalent to 32 in binary, but
the binary value is not important. It is
the hexadecimal value we are
interested in. What is 100000 in
Hex?
Break the value into 10 0000 so that
the four last numbers form a group.
The value 10 is 2 in binary and 0000 is
zero. Thus the hex value is 2 0 = 20.

Place 20 in the program. Segment 'c'
will illuminate.

To combine segment c with a, b. f.
and g, we add* their Hex values
together: 20 + 01 + 08 + 02 + 04 •
=2F

Insert 2F into the program.
Press RESET. GO.

The result is a figure NINE:

You can now see that each number
and letter in the display is produced
by a set of H IGHs on the appropriate
lines.

To access the next segment in the
series, we must place a HIGH on the
7th line: 0 1 0 0 0 0 0 0. This is 40 in
Hex terms and will result in segment
'e' iluminating. When the 8th line is
HIGH, segment 'd' will be illuminated.

To illuminate ALL the segments on
the display (including the decimal
point) we must add the following
values: 1 + 2 +4+ 8 +10+ 20+40
+ 80. This is eqial to FF
(1+2+4+8+=F)(10+20+40+80=F0)

Program FF into the sequence at
location 801. The result is:

If you programmed our SEGMENT
ACCESS routine on P 20 and
watched the display carefully, you
will have been amazed at the number
of recognisable letters and numbers
which can be created on a simple 7-
segment display.

Our requirement at this stage is to be
able to produce some, if not all, of the
characters using the information we
have learnt in experiment 8.

These are the facts we need:

1. Segment values:
a = 01
b = 08
c = 20
d = 80
e =40
f = 02
g = 04
h= 10

2. The value of each segment is
added in hex form when we need to
illuminate two or more segments.

11181181111011111111111.8181181111=21111118111111111118

Answers to questions in col 3.

1. 2=Cd, 3=Ad, 4=2E, 5=A7, 6
= E 7, 7 = 29, 8 = EF, 9 = 2F.

Example: To produce the number
ONE on a display we must acces
segments b and c. This requires the
value 28 (in HEX) to be inserted into
the following program at location
805:

800 3E 01
802 D3 01
804IE 28
806 D3 02
808 76

QUESTION: What would result if 28
were placed at location 801 instead
of 805?

Answer: The first and third displays
would illuminate with segments "a".

This means you must take care to
present the data to the correct output
port. In fact every program must be
ABSOLUTELY CORRECT as the
computer will not be able to correct
any of your mistakes.

PROBLEMS:

1. What Hex value must be inserted
into the program above to produce
the following numbers:

2 =Cd
3 =
4 =
5 =
6 =
7 =
8 =
9 =

2. Work out the value to illuminate
these letters:

A
b =
C
d =
E =
F =

3. Draw the result of entering these
Hex numbers into the program:

L
•‘

1 = 28

2.A=6F, b=E6, C=C3, d=EC, E
=C7, F = 47. 	 AND 5PEecti

TALKING ELECTRONICS No. II 21

0.0.00000.000.0.0.0...0.00.000000.0.0
0 	 . 0 . 8x8 MATRIX . 0 0 0 0 aaimaninamemaassontaNamasaaaakm 	1 anana5111111Naniannamema•an 0

	

0 • 	 •
• 0

0 • • BC 547 	a
0 •

a
w e

0 a Of Of 0
O

a
* a

s 0
O a

	

E 	 •
d

O
II
• A

O a 	 a 0
O

a
• BC 547 	a

El 0
0 • II el

E
O a

	

a 	 64 x5mm : 0

O al

a

	

a 	
lk x

	

1J _ 	 n1 	16 	9 i! 	

•
MI
• 0

a

	

0 • 	 LEDs a 0
0 •

	

7i_S273 	ii ---0 ST4 	 ST 3 	III
O III 	 20 	 20 74LS273 II—.

or 74LS374 	 w
0 a

	

a 	
or 74LS374

O a
• _N- 	8 3 4 7 1 7 0 	

1
8 3

or 7411377 	1 10 ,--ii_
•
a

a
a 0

o

1.--, 1 	Of 74LS377 	1

	

0 • 	 a 0

	

a 	 a 0 • 1 	 5

	

ir 	 0 0 • 2 	 a
a a ■

0 a 	
s
N

	

a 	4 	 III
O le 	 la 0

	

II 	5 	 • •
W
• •

 9 	 •
• 7 	 a

	

a 	 a
11111111111111•1111111111111111111111411111111111111BIBIIQUNNMEEMENEStillarn11111.11111111111111•11111.1111

A% This is our first "add-on" for the TEC- If you have seen the advertising signs
le" 1. It is an array of 64 LEDs arranged in composed of thousands of LEDs or

'
a matrix of 8 LEDs by 8 LEDs. 	globes on which moving letters and
Actually it has almost the same characters are displayed, you will be

O number of LEDs as the display on the interested to know the same effect
® TEC but in this design the LEDs are can be produced with this project.

arranged in ROWS to create a very
0 interesting display. 	 Modules of the 8x8 display can be

placed side-by-side to create a long
0 The whole concept of the 8 x 8 matrix display. The PC board is designed to

WINDOW ON A VIDEO SCREEN. continuous display.

0 Each LED represents one pixel and
30 cm hook-up wire, 12 colours.
30cm tinned copper wire

At this stage it is not out intention to

15cm - Heat-shrink tubing

- scale, a full-size VDU screen is only

• 0000000000000000000000000000000000 0 0
22 TALKING ELECTRONICS No. ii

0 This may be only a small fraction of 	 0 0 the area of video screen but it is the
of LEDs. it is necessary to introduce

0 is to produce the equivalent of a be cut so that the pattern runs as a

this will enable us to produce
0 characters, letters and movement 	 0
0 equal to S pixels by 8 pixels.

0

requires a slightly different driving
circuit. To achieve a readable

o

best place to start. If you can produce 	 0
O effects and movement on a small 	 0

an enlargement of our 'window'. 	 0

promote the extended display as it

brightness with more than 8 columns

blocks of columns which are
latched or even latching for each
column. This will enable each
LED to be turned on to full brightness
and produce a bright display.

2 - matrix pins
2 - matrix connectors

1 - 24 pin DIP HEADER

1 - 8x8 DISPLAY PC BOARD

PARTS LIST

8 - 1k Kwa-tt

8 - BC 547 transistors

2 - 74LS273 or
2 - 74LS374 or
2 - 74LS377

64 - 5mm red LEDs

0
0
0
0
0

0
0

0
0
0
0
0

le

0
0

0
0

0

0

0

0

0

0

0

0

0

0

0
0

0
0

0
17E,

A full-size view of the display showing the neatness of the rows of
LEDs. This is necessary if you want the best effect when the
display is operating.

0
0
0

resistor. Place the LED and resistor in
a series circuit connected to the
battery and check the degee of
illumination. The cathode lead will be
the one nearest the negative terminal
of the battery. There are no other
sure-fire methods of determining this
as some LEDs have their long lead cut
differently to the accepted practice.

We have seen some LEDs with the
outline (inside the LED) around the
opposite way to the general rule. So,
it can be quite confusing. You must
test each LED or at least a sample
from the batch.

Next you must be certain which way
they are to be inserted in the PC
board. A mistake will take a very long
time to rectify. The cathode lead is

nearest to the row of transistors. A
When soldering the LEDs to the w
board, you must take special care 0
to keep them all the same height and Alb
perpendicular to the board. The *iv
neatness of the dispay will depend 0
entirely on how well you position the
LEDs.

0
At first you may think one lead of the
LEDs is not connected to the circuit.
But this is where we have had to 0
improvise. Multiplexing requires one Ak
line of conductors to travel north- 11,
south and the matching line to travel 0
east-west. This would normally
require a double-sided PC board, but0
since they are very expensive and
difficult to solder, we have opted for
the cheaper approach.

0
a

0
0
0

+00000000000000000 0000000000000000
0 In our design, the LEDs are multi-

plexed and this means they are being
turned on for one-eighth of the time
during one cycle. The result is a dull
display but one which can be read
under normal lighting conditions.

We are presenting this project

0 slightly ahead of time so that it will be
ready when needed.

There are a number of MACHINE
CODE instructions which can only be
investigated on a display format and
this project is a necessary part to
understanding the Z80.

The greatest visual impact for this
type of display revolves around pro-
grammed lighting and effects such as
COCA-COLA signs and some of the
background effects at discos and TV
shows.

Most of the dazzling effects behind
singers and dancers on TV have some
form of micro-processor controlled
lighting. The effects that can be
produced are limitless.

0 We have chosen LEDs in our design
O for cheapness and simplicity but they

could quite easily be replaced with
-0 miniature 6v or 12v globes. The only
O extra components would be the

addition of one extra transistor in
Cl each line as an emitter follower. This

will enable the extra current to be

O supplied to the globes.

0
Our 8x8 display is most effective

V when flashing blocks of LEDs (or
O globes) and having them jump from

one position to another. In addition,
bands of LEDs can be made to pass

O
	across or up the screen . These

effects are very effective and very
O simple to produce.

C) But first you must understand the
• Machine Code instructions involved

and how to include them in a
V program. This will be our endevour in
• the latter part of the course in this

issue and the time is right to prepare
O the display project so that it can be
• plugged into the TEC-1 when the

time comes.
0
• Believe me. you will be most
• impressed with the results.

• CONSTRUCTION

Before starting any of the con-
struction, it is absolutely essential
that you know which lead of the light
emitting diode is the cathode. There
is only one guaranteed way of
determining this. You need a 3v to 6v
battery and a 100 ohm or 220ohm

0
0
0

0

0

0
0
0

0
ID000000000000000000000000000000000000

TALKING ELECTRONICS No. it 23

O
O
O
O
0

O
O
O
O
O
O
O
O
O

0
O
O

O

O
O
0

0

O

O
O
O
O
O
O

O
O

O
O
O
O
O
O
O
O

O

O
0

O
O
O
O
O

0
O
0
0

O
O
O
O
O
O

O
O

O

It is suggested that heat-shrink
tubing be placed over each lead
before soldering to the Dip Plug.
When all the leads are attached, the
sleeving is slid over each terminal so
that the conductor is strengthened.

This will prevent fine wiskers of wire
shorting from one pin to the other and
creating havoc.

MATRIX PINS IS SOCKETS
These are the cheapest and best way
of connecting a single line to a printed
circuit board.

Leads can be soldered to the
terminals to create a low-cost
adaptor.

DIP HEADER
A DIP HEADER is a plug which has
thin pins similar to the pins on an IC,
on the underside. On the top are cup-
shape (or "r shape) terminals to
which you can make a solder
connection.

DIP HEADER 8x8 MATRIX

12
r
	Nag

9 0
10 1
11 2
13 3
14 4
15 5
16 0
17 7
24 Pos

O
O
0
0
O

0
O
0A

0
O
O
O

O

0

O
O
O
0
0
O
O
O
O
O
O
O

0
0

0

O

Solder the 64 LEDs into position as
well as the 8 transistors and their 1k
base resistors.

The east-west conductors are
created with tinned copper wire
running along the ends of the LED
leads and this connects to the
collector of the driver transitor via the
PC circuit. The only lead which has to

Diagram showing how the 'COMMON'
line is Created en the underside of the
beard. Both leads of each LED are
soldered to the PC board. But only the
ANODE lead Is cut short. The CATHODE
leads are either joined with a length of
tinned copper wire which runs below
the board, or each lead is bent over and
soldered to the next lead to produce a
rigid conductor which runs at right-
angles to the, copper tracks on the
beard.

be cut short is the anode lead, to
prevent it touching the tinned copper
wire.

The lower part of the board contains a
BUS from which the 8 lines for each
chip are taken. The code letter P on
this BUS stands for positive and the
N stands for negative. The other lines
are numbered 0 to 7 and this co-
incides with the data lines on the
latches.

The two output latches can be:
74LS347, or 74LS377 or 74LS273 or
a combination of any two. The
information on the overlay shows
which jumper link must be included
for the type of latch you choose.

Eighteen jumper links connect
between the data bus and the latches
to complete the assembly. The only
wiring left is the connecting wires
between the DIP HEADER plug and
the PC board. This plug is designed
to fit into the expansion port socket
on the TEC-1.

The 10 lines from the bus on the
display board connect to the DIP plug
and the two spare lines connect to
the chip select outputs near the
74LS138 (near the keyboard
encoder). These lines are for ports 3
and 4. Solder two matrix pins to these
output holes and use a matrix-pin
connector soldered to the hook-up
wire to connect to these pins.

MATRIX
PIN

I 1 I I I I I

ray.

7 I. II I I I I I IlibHf

Connecting the 0x8 DISPLAY to the DIP HEADER & select lines. Use
Matrix pins and sockets for these two select lines so that the

vau- vispio,1 oper.t„....zootop,„10, .400-
1111W.m.W1011".-- „,agaie

display can be detached.

0 0 0 0 0 0 0 0 0 0, 0 o 0 0 0 0
24 TALKING ELECTRONICS No. ii

	a
a

	a
	a

	a

	

000

0 00

O*0

000

000

00 00

000

0 \O

STROBE Y

111 LATCH

L 	

d
L

9
5
1•

0
3

1
 O

N
,

TEC -1
64 x 5mm LEDS

02
1=

—in--- En

'11111 	X
c7co

au

0

r-
CO
CO

4,
ti 0

P
7

6
5
4
3
2

1
0

N

P
7

6
5

4
3

2
1

0
N

0

KS 0

0

• 0

CO

ti

0
0
0
0
0
0
0

STROBE X

LATCH

1 8x8 DISPLAY

	

"to
0

0 00 00 0 0 0 0 0 0 0 0 0

To make sure all the LEDs are
extinguished when they are not being
accessed, change the program above
to:

3E 00
D_3 e3
3E oo
D3 04
76

To check the data and chip select
lines, insert this program:

3E 04
D3 03
3E 02
D3 04
76

GO
es Ret

8x8 	„ DISPLAY 0 I

TEC-1 0 i KS •

0
o The 8x8 display is now ready for

O
testing and we will give 3 simple

O LEDs. This will check their
programs to test the operation of the

O illumination, their OFF response and
the correct wiring of the data lines

O and chip select lines.
0
O To check the brightness of the LEDs,

O
insert this program at BOO:

O 3E FF
D3 03 0 	 3E FF

0
	

D3 04
76 0 	

GO
Reset 0

0

0

O Replace any dull LEDs.

0
0

O I

0
0

0

O 0 0 0

0

0
O 0 0 0 0 0 0 0 	0
O 0 0 0 0 0 0 0
	

0
O 0 0 0 0 0 0 0
	

0
O 0 0 0 0 0 0 0
	

0
O 0 0 0 0 0 0 0 	0
O 0 0 0 0 0 0 0 	0
Oo•oo000 0
O0000000
	0

0
The LED which will illuminate Is 0
shown in the diagram. If any other 0
LED• illuminates, check the select
tines. 	 0

O
Now go back to experimenting with 0
the display on the TEC-1. When you ,_,
get to p.30, you will be able to use the L'
64 LED display to create some 0
startling effects. 	 0

0

+g 0
0

14 0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

0

0

0

0

0
0

0

0

0

0

0

0

0

0

0

0

00 	 0
0

O The PC layout and overlay for the 8x8 Matrix. All LEDs face one direction and must be soldered
as explained in the text. Apart from the jumpers connecting the BUS line, ONE link is required

O fpr each of the latch chips and this must -be placed according to the type of chip you use.
O
00000000000000000000000000000000000000 00000

TALKING ELECTRONICS No. 11 25

The Program:

at 0100:

CB 09.runs segment .4—
CB 08 runs segment

LD AA'
OUT

2),A LD
LD A.B
OUT (13A
CALI. uELAT
RLC OO

P LOOP

at at 0A00:

SOO a et
SOS D3 02
10.1 06 SI
SO6 '71I
SO7 D3 01
.09 CD 00 OA
SOC CB 00
SOE C3 06 011

....from P. 21.

ILLUMINATING
TWO OR MORE DIGITS

More than one display can be
illuminated at the same time and this
is achieved by changing the value at
801 in the program above.

Example: To fill the six displays with
the letter A we program the following:

3E 3F
D3 01
3E 6F
D3 02
76

Problems:

4, Fill the six displays with the
following:
(a) 1's
(b) 5's
(c) b's
(d) Es

5. Place a 'C' at each end of the
display.

6. Fill the first and last two displays
with the value '8'.

7. Fill only the address displays with
4's.

8. Illuminate only segments a and d
on the six displays.

TEC-1 AS A PROGRAMMABLE
LOGIC DEVICE

- by Jobe Hardy

The truly unique thing about com-
puters is not that they can preform
arithmetic in a twinkling of an eye but
it is the way they can be used to
simulate any digital (and almost any
analog) circuit under the sun.

The microprocessor (Z80) can be
likened to a bag of AND and OR
gates, a thousand flip flops and tens
of thousands of inverters.

You have an 8-bit data bus which
means that you can simulate an 8
input NAND (with the aid of a
program) and you can output 8 bits of
data on this bus.

You are not simply restricted to 8 of
this and 8 of that. You can output 16.
32, 64, or even 1024 bits, as long as
you break it up into 8-bit groups.

By systematically dealing with 'bits',
you can perform a multitude of digital
functions.

The TEC-1 is first and foremost a
binary computer. While superficially
it appears that the computer operates
on hexadecimal numbers (9B, 3E, 2C
etc..) deep in the heart of the corn-
outer binary numbers are the norm.

The problem with binary numbers is
their unfamiliarity to humans.
Imagine if you wrote a program in
binary and made a mistake. It would
be very difficult to spot. Take the
following example. Can you see the
difference between the two?

01011010
	

01011010
10110101
	

10110101
11001111
	

11001111
10110101
	

10110111
11101011
	

11101011

It is possible to check for binary
errors but they don't show up easily.
Hexadecimal is a short-hand way of
representing binary. It is based on
breaking up an 8-bit binary number
into two 4-bit numbers and con-
verting these into two hexadecimal
digits.

Comparing the two sets of numbers
above, the difference is quickly
spotted when they are converted to
hex values as shown below;

5A 	5A
B5 	85
CF 	CF
85 	B7
ER 	EB

Hex was therefore chosen for use in
the TEC-1 but we must never forget
that ALL DIGITAL COMPUTERS
WORK IN BINARY.

When dealing with computer
problems, we should always visualize
the inner registers as holding 'bits'
and that the computer performs
B I NARY operations. We then convert
to Hex after this. While this might
seem awkward, the conversion
between Hex and binary can be done
quite quickly after a little practice.

- Jahn.

CREATING MOVEMENT!

All the programs up to now have been
static.

We will now create some life and
movement!

This will introduce a SHIFT or
ROTATE function into the program.
The rotate function we have selected
is located at 80C in the program
which follows. This is a two-byte
instruction and tells the Z80 to
rotate a HIGH bit left circular through
the B register. You will understand
what we mean by this statement in a
few minutes.

This shift operation will take 8
DELAY PERIODS to complete one
cycle and will include toggling or
clicking the speaker.

RUNNING SEGMENT 'a' ACROSS THE SCREEN

0A00 11 FF FF
1B
7B
82
C2 03 OA
C9

This is what the program is saying
and instructing the Z80 to do:

The first instruction is to load register
A with the value 1.

This is then passed to the SEGMENT
PORT latch and this value remains
fixed for the whole program.

The remainder of the program
concerns port 1, the CATHODE
PORT and as the different cathode
are accessed, the effect is to run a
pattern across the screen.

The next instruction is to load
register B with the value 1. This value
is then loaded into register A via the
instruction. 78. The reason for this
will be explained in a moment.

The contents of A are now outputted
to port 1 with the result that segment
'a' on the lowest priority display will
be lit.

We now call a DELAY ROUTINE so
that this display will be illuminated
for about half a second.

The HIGH bit in register B is then
shifted RIGHT. This is performed
within register B by the Z80. The
program is then incremented to the
next instruction and this tells the Z80
to Jump to address 806.

The output of the DELAY ROUTINE
appears in register A and when this
value is zero, the delay routine
returns to address 80C.

This means we must use another
register to provide our shift routine
and in this case we have chosen
register B.

26 TALKING ELECTRONICS No. 22

This is REGISTER B.

Bit 7 	 Bitel

/Pi itv v416141

toS,
AwD mclvwDRY exehNsKIN • • •

Quite a number of variations can be
produced with this program by
changing the data at some of the
locations. These can be carried out
after the main program has been
entered.

The main program starts at 800 and
the delay routine is located at 0A00.

Now try these variations:

1. To run the segm_ent left-to-right,
change location sea from 00 to 011.

2. To increase the SPEED of the
display: Change A02 from FF to OF
or 06.

3. To run segments 'a' and 'd' across
the screen: Change location 801
from 01 to 81.

4. To run the number 7 across the
screen, change location 801 to se.

5. To run the letter A across the
screen, change location 801 to 6F.

The program we have investigated
introduced the ROTATE REGISTER El
LEFT instruction CB 00 and ROTATE
REGISTER B RIG HT instruction CB 08.

RAC B = CB 02
RLC B = ROTATE LEFT CIRCULAR
REGISTER B.

The diagram shows register B as 8
boxes. These can be considered as
flip flops. The lowest value flip flop is
at the right hand end of the row and is
labelled Bit zero (Bit 0). This is the
Least Significant Bit (LSB).

The Most Significant Bit (MSB) is
called Bit 7.

The instruction RLC B has a Machine
Code instruction CB 00 and this
causes the most significant bit to
emerge from the register and enter it
again to become the least significant
bit. In this process it does not pass
through the CARRY bit but does set
the C flag to the original status of the
register's most significant bit.

In other words, if the bit in question is
a HIGH, the C flag becomes HIGH, if
the bit is LOW, the C flag goes LOW.

RLC B = CB oo
RRC B = ROTATE RIGHT CIRCULAR
REGISTER B.

This instruction is a reversal of the
path shown above. The C flag, how-
ever, is altered as above. The ONLY
difference between the two
instructions is the direction of
rotation.

The point to remember in these
Machine Code operations is RLC and
RRC can be performed on registers A,
B, C, D, E, H and/or L and are 8-stage
shift operations.

In the next program, on P.28, the
instruction which will produce a shift
operation across the screen is the
instruction RRA or RLA.

After each shift is performed, the
contents of the 'A' register must be
'hidden' or SAVED to prevent it being
destroyed.

To do this we must load the contents
of register A into another register
before calling the DELAY ROUTINE.
We could load it into B, C, D or even E
register and load it back again when
required.

However this will tie up one more of
our valuable registers and a better
solution is to call upon 2 interesting
instructions which load the contents
of A into an area of RAM in the 6116
chip.

The code word for saving the
contents of a register is called PUSH
and recalling it is POP.

The PUSH instruction will take the
contents of register A to an area
called the STACK.

This area is located in the 6116 RAM
at address OFFO. (This is only 16
bytes from the end of this chip's
memory and is usually considered to
be the unused end of the RAM.)

The highest 16 bytes are used as a
scratch-pad area.

The PUSH and POP instructions are
similar to stacking plates or trays in a
pile. Trays are "pushed" or piled onto
the top of the stack and are "popped"
or removed from the top.

In the computer the area called the
STACK is filled DOWNWARDS. This
is an ideal wayof using the top part of
the RAM and it can be increased in
size until it meets the program.

Thus we start with address OFFO and
work downwards thus: OFEF, OFEE,
OFED etc. To keep track of the last
address, the Z80 has a register called
SP. This is the STACK POINTER
register and always points to the byte
with the lowest address.

OFFF

Stack °FF°

6116
RAM

AIL 	

0800
The STACK starts at OFFO and heads
DOWNWARDS In the 6116 RAM. The
data in the EPROM decides this and
is OFEO when using MON-111
EPROMS.

The Z80 has two instructions for
operating on the stack. These are
PUSH and POP (or Pull). Both
instructions require a register PAIR
(such as HL. AF. BC, DE) to be
specified as the SOURCE for PUSH
and the DESTINATION for POP.

We PUSH new bytes onto the stack
and POP bytes off the top.

The Z80 processes this operation
TWO BYTES AT A TIME and results
in a new byte on the top of the stack
with either operation.

The top byte has the lowest address
and the memory is filled downwards.
The STACK POINT register decreases
with a PUSH instruction and
increases with a POP instruction.

Bytes are entered onto the stack,
HIGH byte first, then LOW byte. The
bytes are removed LOW byte first,
then HIGH byte.

In the next program we will
investigate the PUSH and POP
instructions.

TALKING ELECTRONICS No. it 27

THIS IS RESISTER A

Bit? 	 Bit 0

To run the 	segment from
Left-to-Right: 	 To create a FLASHING

SEGMENT

at 800:

LD A,04
OUT

A
 (2,A

LD ,01
)

OUTAR (I),A
A

Push AF
CALL DELAY
POP AF
JP 1106

1100 3E 04
802 	D3 02
804 	3E 01
806 	D3 01
808 IF
809 F3
SoA CD 00 09
SOD Ft
NE C3 06 oil

at 0900:
ii FF 06
111
711
B2
C2 03 09
C9

Using the program above, change the
address location 808 to 17. This is
the machine code instruction for
rotating the accumulator left. (R LA),
through the carry.

Machine codes covered:

RRA = IF
RLA = 17

RRA Et RLA have nothing to do with
moving left or right on the display.
They refer to shifting the information
through the accumulator via the
carry. This means it is a nine-stage
shift in which no output is activated
when the bit is shifted into the 'carry'.
This effect can be seen on the
displays when a long delay routine is
employed. The illumination travels
across the 6 displays, the next output
is not used and then the speaker/LED
combination is activated. A delay is
then noticed before the illumination
re-appears on the screen.

The main difference between the two
programs is the number of SHIFT
STAGES. The first program produced
an 8-stage shift while the second
prciddced a 9-stage shift due to the
carry bit becoming loaded with each
bit from the register as it circulated as
shown in the diagram.

Routine at Soo:

LD Ato1 	Soo
OUT DIA 802

OU
LD

 T 0
AIM 	004

0,A 	gob
CALL DELAY gag
LD A,00 	800
OUT (i),A 	SOD
CALL DELAY 80F
JP LOOP 	812

Delay Routine at 0900:
II FF 07
1B

C2 03 09
C9

The exact operation of the delay
routine is not important at thit stage.
It is enough to know that it creates a
delay of length determined by the
number loaded into register-pair DE.
If this number is 01 00, the delay will
be only a few microseconds. The first
byte refers to register E and this is the
lower register while the second byte
is the higher register and has the
greater effect on the delay.

Try putting different values into
location 902 to vary the length of the
delay. A value such as 02 will
increase the flash-rate while FF will
create the slowest.flashing.

The format of the main routine is very
simple.- It is an ENDLESS LOOP
which means it executes part of the
program over and over again.

The 'BIT' patterns for the segments
to be lit are loaded into the segment
register (port 2). Cathode 1 is then
turned on and the delay routine is
called.

The cathode register is then cleared
and the delay routine is called again.

This creates the OFF cycle.

The program then jumps back to
address 804 where it is instructed to
turn on cathode 1. This causes
segment 'a' to come on once again.

You can flash segment 'g' by loading
04 into the program at 802 thus:

3E 04
D3 02
etc...

Create flashing numbers and letters
in the display by inserting the
appropriate hex numbers as
discovered in questions 1 & 2 on
P 21.

You can also use this program to
alternate from one number or letter to
another. This is achieved by the
second letter taking, the place of the
blanking routine in the program
above.
Insert the value 28 at location 80C
and run the program. What happens?

The segment 'a' alternates between
one display and two other displays.
Turn the speed of the computer down
to observe this. But this is not what
we wanted. We want different
segments of the same display to be
turned on. We have forgotten to
change location 80E from 01 to 02.

Run the program and note segment
'a' changes once to a figure '1' and
appears to be stuck on this figure.

There is a second fault in the
program. Only the second part of it is
being cycled.

Change location 813 to 00. The
program will now alternate between
the 'a' segment and the figure '1'.

This is the introduction to simple
cartooning on the screen. Try
changing locations 801 and 80C to
get some interesting effects.

RUNNING AROUND THE
DISPLAY

To run a single illuminated segment
around the display takes a con-
siderable amount of programming.
There are a number of ways of doing
this and we will use a program which
uses some of the features we have
covered so far.

Basically what we are doing is
defining our start co-ordinates,
shifting a 'bit' six places to the left
and halting.

The next part of the program loads
the co-ordinates of the side segment
(at the top of the display) and then the
lower end segment is lit.

We then define the co-ordinate on the
bottom row and run the illuminated
LED across the bottom of the display.

Finally we define the bottom side
segment and tlie top side segment to
arrive back at the starting point.

This will create an endless run around
the display.

We will produce this program in 4
stages and check its operation at
each stage.

THIS IS THE
DELAY ROUTINE

3E 01
D3 02
3E 01
D3 01
CD 00 09
3E 00

01
CD 00 09
C3 04 08

900
903
904
995
906
909

21 TALKING ELECTRONICS No. 11

LD

LD C
OUT 41),A 	8

$
25

823

27

A

,
LI) Also 	84
OUT 004
LCA

51) B
LL DELAY 82E

82D

LD A 	831
RAC A

IR 	

8834
32

DEC C
.1p NZ,LOOP 2: 839
HALT 	838

If all is ok, type the last
program:

LD Am 	$38
OUT (021.A 	$3A
CALL DtLAY $3C
LD Atoll 	81F
OUT (MA 041
CALL atijar .. .41
JP START 	'Pow

Delay Routine at Ogo

3E 80
113 02
OE 06

II3
3E 20

1
47
C00 09
78
C

D
B of

o
C2 21 o$
76

part of the

31 20
D3 02
CD so og
31 08
D3 02
CD 00 01)
C3 00 OS

Os

OSCD C3
05110 D3
051)2 CD
005 13
05116 IA
05137 D3
05D9_ CD
05D c 13
o5DD 23
05DE C3
05111
05E4 03
05E5 78
05E6 BI
05E7 C2
OSEA Ce

LD IIL,oloo
LD

DIHL)
,oBoo

LD AA
CP FF
JPNZ 05

240
C2

LD 40
JP 05,6
OUT MI
LD A (DX)

A

CP ri
JPNZ ogllo
LD Dtolloo
JP 05 4
OUT (04)1A
CALL oat
INC DE
LD A,(DE)
OUT (04),A
CALL oat
INC DE
INC HL
JP °s16
LD BC,o3FF
DEC BC
LD A

CSB OR

JRET
PNZ, 05E4

0510 21
0513 11
0516 7E
0517 FE
05Bt C2
05BC 21
05SF C3
05C2 D

IA 05C4 3
o5C5 FE .52./
05 	11

0510
0514
05B8
05BC
o5Co
o5C4
o5C8
05CC
05110
0504
05D$
OSDC
05E0
05E4
051$

The faster sequence outputs to latch
04 and reads its data from address

.... AND

"AROUND TRE DISPLAY"

LD Aeoi
OUT WA
LD C,06
ED Atol
OUT (i),A
LD_ A
CALL DELAY

ALD A B
RLC
DEC C

H
JP NZ,LOOP

ALT
.

"'Push RESET, GO.

800 3E 0I
802 D3 02
Bo4 of o6
$06 	3E 01
So. D3 01
SOA 47
$0

78
CD oo 09

NE
SOF CB 07
811 oD
812 	C2 o$ 08
815 76

If the LED runs across the top of the
display and HALTS, everything is
working.

Press RESET,ADdress 815 +

Now insert the following program so
that the HALT instruction is written
over and is removed from the
program.

LD A102 	815
OUT (02),A r :17

OUTat
LLiL

 itkA_ 81B
CALL DELAY 820
HALT 	823

Check the program at this stage by
running it. If the LED travels across
the top and down one side, it is
working. Over-type 3E at address

' 823 and continue with the 3rd stage:

Mod forget
to add the
DEtAr ROUTINE.

The overall speed of the sequence
can be varied by adjusting the SPEED
control on the TEC-1.

More programs for the TEC•1 using its awn
display will be presented In the next Issue.

MON-IA

Some of the latest kits of the TEC-1
have included a monitor EPROM
marked Mon 1A. This EPROM will
work in both the TEC-1 and TEC 1A
as both are software compatible with
each other.

The difference between Mon 1 and
Mon 1A is a small additional routine
at 0560. This program was originally
designed for use with music
synthesisers but can also be used for
a number of other applications.

The routine is a simple sequencer. It
reads the data stored in RAM and
deposits it at a fixed rate into the
output latches.

The overall speed of the sequence
can be varied by adjusting the SPEED
control on the TEC.

There are two sequencing functions
being performed in this program, one
depositing information to its relavent
latch (04) at TWICE the speed of the
other (03).

The two sequences are synchronised
and one output falls mid-way
between the other. However the
sequence-length is independent.

The end of the sequence is marked by
placing an FF after the last piece of
data. The sequence will then reset
itself to the beginning. The other
sequence will continue unaffected
until it also hits an FF.

Because FF has been used to indicate
the end of the sequence, you cannot
use FF as a piece of data. In our
application, this presents no
problem, but when used with the
relay board, it means all 8 relays
cannot be activated at the one time.

We can go as high as FE without
upsetting the program and this will
turn on 7 relays, but not the lowest
priority relay.

The slower sequence outputs to latch
03 and reads its data from address
0800 until it encounters FF and then
resets.

OBOO until it encounters FF and then
it resets.

It should be noted that high memory
is used by the Z80 to store its stack
and thus memory above OF00 should
not be used.

A disassembly and Hex listing forthis
routine is given below:

Hex Listing:

21 0. 08 12
so as 711 FE
FF C2 C2 05
21 00 OS C3
R6 05 D3 03
IA FE FF Cs
DO 05 II 00
OR C3 C4 oil
D3 04 CD
05 13 IA I)
04 CD El Of
13 2 C310
05 01 FF 03
oB 	Bi C2
E4 05 CO

1117777# os, a 	I r(

DIOTAL. To ANAL04 INTERFACe

3E 62
D3 02
CD oo 09

D3
3E 40

02
CD 00 09
76

II FT 06
1B

131 2
C2 03 09
Cs)

TALKING ELECTRONICS No. 11 29

Here is the general program:

3E Hex value:
D3 03
3E Hex value:
1)304
76

8x8
M
A

I

The possibilities and effects on
a MATRIX layout are infinite.
We will allocate the next few
pages to showing some
interesting visual effects.

Firstly we will show how each of the
LEDs is accessed.

As with any matrixing system, each
location has a set of co-ordinates. If
we compare our display with the x
and y axes in geometry, we find the x-
axis has the lower output port
number and the y-axis the higher
number.

On the display board, each of the
LEDs has a particular co-ordinate
value which must be in the form of a
Hex number. Each successive row or
column has a hex number which is
DOUBLE the previouscnumber. The
following diagram shows this:

The lowest priority LED has the value
01, 01 and the highest LED 80, 80.
The value of each LED between these
limits is also given, as well as the
value for 4 individual LEDs, as a
guide.

Placing these hex values into a
simple program will illuminate any
particular LED on the screen.

The output ports allocated to this
display are 3 and 4 and this is
determined by the chip access lines
on the main board. Each line from the
74LS138 has a particular number and
we have selected lines 3 and 4.

IF THE 8x8 MATRIX DOESN'T WORK •

•
•
•
•
•

•
• On P.28 of this issue we described
• 	the construction of the 8x8 matrix
• and presented 3 short programs to •
• test the LEDs in the display.
•
•
• Hopefully you will have put the

project together by now and will be
ready to explore its capabilities.

The main difference between this
project and the display on the TEC-1

• is not so much the number of LEDs,
• but the way in which they are •
• arranged.
•
•
• We have created a regular matrix of 8
• 	LEDs by 8 LEDs and thiS produces a
• screen very similar to a window on a •
• video display.
•
•
• The most common fault will be one or •
• two of the LEDs failing to illuminate
• when the whole screen is accessed.
•
•
• If this is the case, or if one is dull, the
• fault will be a damaged LED. LEDs • ▪ are temperature sensitive. and

excess heat when soldering will
damage them. On the other hand, it
may be a poor quality LED in the
batch.

If any of the LEDs are particularly
dull, they should be replaced at this
stage to produce a good display.

Here are some of the possible faults
and their remedies:

If a row or column fails to light, the
fault will be in one of the output lines
of a latch or one of the driver
transistors. Make sure it is not a dry

****** • OOOOOOOOO •••••• 	

joint or a missing link and then check
the orientation of the transistors and
the LEDs.

If a row and column is failing to
illuminate, the fault will lie in a
shorted LED at the intersection.

Remove the LED and turn on the
remainder of the screen. If the
remainder of the LEDs come on, the
fault is a short.

The only other fault we have seen is
one row glowing brighter than the
rest. This can be due to one of the
transistors shorting between
collector and emitter. A short to base
may cause the row to be
extinguished.

If all these suggestions fail to locate
the fault, turn the TEC-1 off and re-
program the set of instructions.
Check to see that you have loaded FF
into both port 3 and port 4.

Check both ends of the connecting
leads and make sure they are
connected correctlyto the pins on the
dip plug.

Since the expansion port socket is
effectively in parallel with the other
memory chips, it is very unlikely the
the PC tracks will have shorts
between them.

This means you should look mainly
on the display board itself.

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•
• •

30 TALKING ELECTRONICS No. 11

Did you get 1 F?

80

P

T
R

PORT 3
Wag 1: The ports and their Hex
values.

If we take a particular case and load
the co-ordinates 04, 02 into the
program:

3E 04
D3 03
3E of
D3 04

As you type the program, this is what
you should be saying: Load the
accumulator with 4, output it to port
3. Load the accumulator with 2 and
output it to port 4. Halt.

Problems:

Illuminate 3 of the other LEDs by
inserting the following data into the
program:
1: 04,40
2: 20,08
3: 80,80.

TWO OR MORE LEDs

More than one LED can be
illuminated in any row or column by
adding the Hex value of each LED.
We will start with the simplest case
but absolutely any LEDs in any row or
column can be illuminated.

01

01 02
1)156 2.

In diagram 2, two LEDs are shown
illuminated. These have co-ordinates
01,01 and 01,02. To turn on both of
these LEDs we add the bottom Hex
numbers. The result is 03. Place this
value into the program .at address
801.

01 02 04 08 10

Wag 3.
Diagram 3 shows five LEDs
illuminated. Add the Hex numbers
together and insert it into the
program and see if you are correct.

Diag 4.
The fourth diagram shows ALL the
LEDs on the bottom row illuminated.
What value must be placed in the
program at 801 to access these
LEDs?

The answer if FF. This is obtained by
adding 01, 02, 04, 08 10, 20.40, 80.
this gives: 	OF 	+ 	FO

= FF
Problem:

Load the program with a hex value
which will illuminate the four LEDs in
the centre of the bottom row:

Meg 5.

Firstly look up which values are
allocated to each LED then add these
values.

Place this into the program and
observe the result. You will be
correct with the value 3C.

The program for accessing the LEDs
in the 8X8 Marix is identical to that
for the display on the TEC-1. The only
difference is in appearance. A regular
array makes the effect more dramatic
and the overall possibilities are much
greater.

Wag 13.

To turn on the four centre LEDs we
must insert the value 08 + 10 into the
program for both outputs.

Problem:
What value must be inserted into the
program to illuminate the four corner
LEDs?

It is now your turn to illuminate a
LED. Select a LED on the matrix and
mark it with a pen. Determine its co-
ordinates and put them into the
program. Execute the program and
see it the marked LED comes on. Try
two more of these routines and
confirm the program by illuminating
the LED.

Now illuminate two or three LEDs in
any row or column by adding the
relevant Hex values together and
observe the LEDs on the display.

With this simple program it is not
possible to illuminate any
combination of LEDs on the whole
screen because we are using the
outputs in the static mode. To
illustrate this, try to illuminate one
column and one row at the same
time. You know the Hex value for a
complete row is FF. Place this into
the program and see what happens.
The result is a completely-filled
screen. The closest effect to
producing an intersecting row and
column is a non-illuminated row and
column produced by inserting a value
such as EF into the program.

P R€ As/ 001;21:0. 	

TALKING ELECTRONICS No. 11 31

*Irtkalt4t LEO ON AN EMS MAT Mk"

PROBLEMS:

Demonstrate your understanding of
addressing the matrix display by
solving the following:

1. Illuminate the whole screen.
2. Illuminate the whole screen except
for the outer row and column of LEDs.
3. Illuminate the four centre LEDs as
well as the next row and column on
each side.
4. Illuminate any quarter of the
display.
5. Leave the two centre rows and
columns non-illuminated.
6. Place FF in port 3 and 00 in port 4.
What appears on the screen? Why?

MAKING A FLASHING LED

We know the general formula for
turning on a LED on the matrix:

3E (data) 'ail Vitt" 111"
D3 03
3

3 04
(data)

70

PLASitiNc. LED"

To FLASH the LOWEST priority LED
we insert data into the program as
follows:

LD A,01
OUT (:A
LD At01

3)
 our

CALL INLAY
A,

12
00

OUT (,A
LD At.
OUT
CALL DELAY
JP 0800

800 3E 01
802 D3 03
804 3E 01
Sob U3 04
808 CD 00 OA
SoB 3E 00
SOD D3 03
SOF 1E 00
811 D3 04
813 	CD 00 OA
$16 	C3 00 08

DELAY ROUTINE AT 0A04:

ii FF 06
1B

C2 03 OA
C41

Press RESET, GO and the lowest
LED will blink ON and OFF. The
prograM is basically loading data into
ports 3 and 4 then calling the delay so
that the information.will be displayed
on the screen for a short period of
time. The output latches are then
loaded with 00 data which will
produce a non-illuminated display
and the delay routine is called. This
produces the 'OFF' period. The
program is cycled in an endless loop
to produce the flashing.

With this program it is easy to flash
any number of LEDs or even the
whole screen.

TO BLINK THE
WHOLE SCREEN

To blink the whole screen, change
the data at addresses 801 and 805 to
FF. This has the effect of filling the
screen for one delay period and then
non-illuminating the screen for one
delay period.

To alternately blink the left-hand side
of the screen and then the right-hand
side:
Insert the following data:

at address:
801 insert FF
105 insert of
80C insert FF
810 insert FO

You can make the flash move in the
up/down motion by programming:

801 insert OF
81) insert FF
SOC insert FO
810 insert FF

An overlap can be created by
inserting the following data:

801 insert IF
805 insert FF
SOC insert FS
810 insert FF

You will notice the two centre rows
remain ON for the whole period of
time as shown by this.

40
20
10

B
4 	BOTTOM
2
I

An interlocking effect can be created
by programming the following:

801 insert AA
sog insert FF
80C insert 55
810 insert FF

To make a block of 4 LEDs jump
diagonally and back again, the
following information is inserted into
the program:

change $01 to OF
change 805 to OF
change 80C to FO
change $10 to FO

You can experiment with the
length of the delay to produce
a faster or slower flash rate.

For a slow flash insert: 11 FF OA
Medium flash: 11 FF 88•

fast flash: II FF 06

TO RUN A SINGLE LED
ACROSS THE DISPLAY

This program will run a single LED
across the bottom of the display,
from left to right and HALT.

LD A101 	800
OUT (4),A 	802
LD CAS 	804
LIS A101 	806
011),A SOB
LD B 	809
C 	DELAY SOA
LD A.B
RLC A 	

SOD
SOK

DEC C 	810

HALT
JP NZ 	

15
LOOP 812

8

TOP

3E 01
44 D3 0

OE 08
3E OI
D3 03
47
CD 00 0C

a 07
OD
C2 08 08
76

32 TALKING ELECTRONICS No. 22

3E 01
26 01

D3 03
OE 08
3E 01
113 04
47
CD Oo 0C

CO 07
OD
C224 OR 08

C3 04 08

800
802
804
sec
807
8401
SoB
80
8011

D

811
1112
814
11i5
012
1119

26 01
/C
B3 03
OE 08
3E 01
D3 04

a 00 OC

OD
GB 07

C2 09 08
OE 08
3E80
D3104

& 00 OC
78
CB OF
OD
C2 IA 08
24
C3 02 08

800
802
803

807
805

Soo
80
110C

B

8OF
810

$13
816
818
81A

BID
820
821
823

827
824

828

To regulate the speed at which the
LED crosses the display, we need a
delay routine. (Exactly the same as
the previous delay routine.)

In
FF 06

qB
2

C2 03 OC
C9

For a full column to move across the
screen, change the data at 801 to FT.

To create a REPEAT, change the Halt
at 815 to C3 00 08.

To make a single LED run around the
perimeter of the display, we must
create a program for each of the four
sides. The program above is suitable
for the first side and three more

:•?••••• :et • 	•

•
programs are needed. At location 815
we remove the HALT function (or
the return function) and add the
following:
Press RESET,ADdress 0815, +. Now
continue:

LD
OUT (4),A
LD C107
LD A,02
OUT (3),A

CALLDELAY
LD i
RLCA AB
DEC C

HALT
JP NZ LOOP

817
815

$19
BIB
81B
81F
820
$23
824
824

82A
827

Press RESET, GO. The LED will travel
along 2 sides of the display and Halt.

Program the third side as follows:
Press RESET, ADdress, 082A, +
Add the following:

OUT (
A
3
*

A,A 	
8
82C
2A

)

LD A. 	82E
A.,_40 	830

C
OUT (4),A 	832

D LATA 	$34
CALL D 	835
LAD A,B

ELAY
 838

RR A 	. a
DEC

C
 C 	. 83B

n

JP
HA LT

NZ LOOP . 113F 83C
•

Press RESET,G0 and watch the LED
travel the 3 sides of the display. If
everything is correct, program the
last side as follows:

LD Alot
OUT (4),A

LLD
Con

OUT (3),A
LD B A
cad DELAY
LAD A,B
RRC A
DEC C
JP NZ LOOP
JP 0800

$3F 	3E 01
841 	D3 04
843 	OE 07
845. 3E 40
$47 	

4
113 03

849
CD 8 	C 00 OC

94D 78
84E CB of
850 011
851 	C2 47 08
$54 	C3 00 08

Two adjustments must be made to
the first section of the program to
eliminate the double exposure on the
lowest priority LED. Change location
805 to 07 and 807 to 02. The led will
now travel evenly around the display.

To view the effect, press RESET, GO.

The previous program is long
because each direction of travel must
include the commencement location.

The next program is just as
interesting but much shorter because
it generates its own new set of values
at the end of each cycle via the INC
H operation.

It moves a LED across the screen and
increases its value on each pass.

LD
LD 11,01
LB A,H
OUT (3),A
LD C,011
LI) Alm
OUT MA
LD/hA
CALL

B
DELAY

LD A,
RLC A
DEC C

INCH
P NZ LOOP

JP 804

At OCOO:

I
11 FF 06
B

2
Ca 03 OC
C9

At the beginning of the previous
routine, the first instruction LD
is not needed as the second and third
instruction performs this task. Your
requirement is to re-write the whole
listing, beginning at 0800. with this
instruction removed. This requires
the instruction at 819 to be changed
to C3 02 OS as all the instructions
have been shifted two locations.

Run the new listing and make sure it
works.

Increase the speed of the program by
decreasing location 00O2 to 03.

How can we make it run slower?

Ans: Insert FF into location 00O2 and reduce
the CLOCK speed on the computer.

MAKING THE LEDS RUN
FROM RIGHT-TO-LEFT

We can add an instruction to this
program to make the LEDs run from
right-to-left.

The two locations to change are:

change 809 to 3E So
change 812 to CB OF

Try these variations:

change 802 to 26 FF
change 818 to 25

To make the LEDs run from left to
right and back again or from top to
bottom and down again, requires the
combining of a SHIFT-LEFT program
with a SHIFT-RIGHT program.

Key in the following listing and push
RESET. GO. Watch the effect.

Don't forget the delay routine at OCOO.

LD H,01
LD A,H
OUT (3),A
LD C,08
LD AlOt
OUT (4)9A
LD B,
CALLDELAY
LD Al
RLC A
DEC CB
JP NZ LOOP
LD
LD

Cl
80
og

OUT(4),A
LD B
CALi BELAY

LDCA
A,B

RR
DEC C
JP NZ LOOP
INC H
JP 0802

Delay routine
at OCOO:

3E 110
113 04
OE 07
3E 02
D3 03

ED 00 0C

B 07
OD
C2 ID 08
7$

3E 80
D3 03
OE 07
3E 40
113 04

qq
CD 00 OC

II OF
OD
C2 32 OS
76 • - • • AlIN11) C. LQ.I.c. 'T 1 PIER Row 	..

TALKING ELECTRONICS No. 11 33

OE 40
3E 01
D3 03
3E 01
D3 04
07
CD OD 00 09

C2 08 08
OE 20
3E 01
D3 04
3E 02
D3 03
07

OD
co 00 09

Cs IA oe
OS 4

os
 0

3E
D3 03
D3 04
07
CD 00 09
OD
CX off
C3 01 08

See
Sos
So4
Sob
Sot
NIA
SOB

Nor
112

116

SIC
SID
120
121
124

121
12A
RIC
820
130
131
834

At 0900:
900
901
904
90s

908
90B
90C
90F
912

II FF 06
ID
7A
B2
C2 03 OC

Delay at OCH:

"An over-worked TEC-1"

"TAKE-OFF!"
This program produces a single LED
which runs diagonally across the
display. The angle at which the LED

moves is the result of increasing the
value of both outputs AT THE SAME
TIME. This can lead to some
interesting effects.

At $00:

800 	3E 01
802 	D3 03
804 	D3 04

17
807 FE
808 	CD oo 09
sop F1
SOC 	C3 02 08

11 OF 00
1B

111
C2 03 09

At address 806 the instruction 17 will
cause the LED to travel up the screen.
If we insert the instruction IF the
LED will travel down the screen.

At location 801 insert the value 90.
Try both directions of travel and
watch the different effects.

Both ROTATE instructions 17 & IF
cause the 'bits' in the accumulator to
rotate through the 'carry' and this
creates(a 'hole or zero in the output.
This forms the non-illuminated band
which passes across the screen.

At location 801, the value 01 can be
replaced by 02, 4, 8, 10, 20, 40 or 80.
These will not alter the effect on the
screen as they will merely define the
starting point for the program and it
will run through its cycle in the
normal manner.

"FAN - OUT"

This program is almost identical to
the previous. But by adding one new
instruction, we can change the effect

on the display to produce a
completely different effect.

LD
OUT (3),A
OUT (4),A
RLA
PUSH AF
CALL DELAY

INC A
AF P

N
JP 802

Delay at 900:
IB FF 06

7A
B
02 03 09
C9

The new instruction is INC A. It
makes the least significant bit HIGH.
The result is to produce an increasing
row of LEDs. This is how it happens:

Initially a HIGH is programmed as the
Least Significant Bit. The operation
RLA transfers this HIGH to the
second location. When INC A is
executed, a HIGH is placed in the
lowest position. This gives two
HIGHs in the register. These two
HIGHs shift up the register when
RLA is executed. INCA produces
another HIGH in the lowest position
and thus the whole register is
gradually filled.

The program is producing its own
NEW set of data each time the listing
is cycled.

The final result is most impressive.
The display fans out from the lower
left-hand corner to fill the entire
screen.

OUR MYSTERY EFFECT

I call this our mystery, effect as I have
forgotten how it appears on the
screen. All I remember is producing

it. It took about an hour or so to get
the program together and I will leave
it for you to type into the TEC-1 and
see what appears.

Here is the listing:

LD 40 C,
LD

3), OUT (A
LD .A101

OUT (4)4

RLCA

DEC
CALL 900

JP NZ los
LD A.
LD A:
OUT (

,,
4),A

LI) A.ot
OUT (3)4
RLCA
Call 900
DEC C
JP NZ 824
LD C,40
LD Art
OUT 3)9A
OUT 4),A
RLCA

DEC C
CALL 900

JP NZ2
JP oleo

83

F;
CD 00 0C
F1
3C
CB
CA OC 09

21 00 0C
CD 00 OC
C3 00 09

LD ar
OUT 3),A
RRA 4),A

PUSH AF
CALL DELAY
POP AF
JP $02

At 900:

3E 01
D3 03
D3 04
07
F;
CD 00 09
Ft
3C
C3 01 08

34 TALKING ELECTRONICS No. 11

USING THE KEYBOARD

The next area of learning is to include
a keyboard input for the 8x8 matrix.

Whenever the HALT function is
placed in a program, the Z80 stops
the program and waits for an input via
the interrupt line.

In our case, this comes from the
keyboard and the non-maskable
interrupt line is activated to allow the
Z80 to accept the data from the
keyboard encoder via the data bus.

This data is loaded into the
accumulator and compared with a
value in the program. If the two
values are the same, the output is
zero and the program advances.

This is the basis of the next set of
programs. The correct key must be
pressed for the program to be
executed. Otherwise the program
will return to the HALT instruction
and the outputs will not change.

MOVING A LED VIA KEY '4%

This program moves a LED across the
bottom row. It advances one position
each time the '4' key is pressed.

No delay routine is employed and the
LED will shift at a speed determined
by pressing the key.

When the LED reaches one side of the
display it re-appears at the opposite
side. This can be a distinct advantage
when playing some of the games we
have devised. At the moment the shift
in this program is only left-to-right-

LD At8I
OUT (4)A
LD

LA
LD
OUT)
HAL ,A
LD
CP k.
JP SOS
RLC
JP 805

SOO 	3E OI
Ns 	D3 04
804 47
805 70

SWS
O6 D3 03

SOB FE
6

04
eot 	57

SOD 	C2 OS OS
SIO 	CB 00
812 	C3 05 OS

Accumulator A is loaded with 01 and
passed to segment port 4 where it is
latched. The contents of A are loaded
into register B so that it can be
operated upon by the ROTATE
LEFT CIRCULAR function and
also be in a "safe" register, so it is not
written over.

The program is HALTED at 808 and
the Z80 waits for a keyboard
instruction. When a key is pressed,
the NMI line is activated and the data
is sent to the Z80 and initializes the
INTERRUPT VECTOR R EGISTER 'I'.
The keyboard data is placed in the
accumulator register and compared
with the value 04. If the answer is
ZERO, the program is incremented to
address 810, which instructs the Z80
to ROTATE REGISTER B LEFT. This
causes the HIGH bit to shift from bit 0
position to bit 1 position and this will
make the LED shift one place to the
right on the display when operations
at 81C, 810, 81E. 805. 806, 807 and
808 have been performed.

The new data-value in register B is
loaded into register A at 805 and is
passed to the display latch port 3 at
806 and 807.

The important feature of this program
is the use of the interrupt vector
register I to detect the input from the
keyboard and to enable a compare
function to be performed.

SHIFTING A LED .14•"•110.-

This program expands on the
previous and adds a shift in the
opposite direction. We now have a
forward and reverse shift.

Key '4' shifts left and 'C' shifts the
LED to the right.

The direction of shift is governed by
RLC B and ARC B and these can be
swapped to give the opposite effect.

If you require the LED to travel up and
down the screen, the output ports 3
and 4 must be reversed in the
program.

LD AA' 	Soo 0 01
OUT (4)tA 802 D3 04
LD BtA 	804 47
LD A 13 	805 78

OUT43HAL
),A 	806 	D3 03

C
LD 0
	 F

LiI
	80$

D3

1E
613

04
.57

P
JP N 8I5 SOD C2 15 OS
RLC B 	810 CB 00

812 	C3 05 OS JP 805
CP OC 	SIN FE OC
JP NZ SOS 817 C2 OS OS
ARC B
JP SO; 	

SU CB OS
SIC 	C3 05 OS

This, and many other features can be
altered to suit your own requirements.
It is a matter of experimenting and
determining which instruction should
be altered. If you discover these
changes yourself, you will have a
much greater understanding of how
the program is put together.

The values at 80C and 816 determine
which buttons are operative. These
can be changed to any pair you
choose, simply by inserting the
correct data into the program.

The data corresponds to the value
which appears on the key, for 0 to F.
Keys f, —, GO and AD have the
values 10. 11, 12, and 13.

ADDING AUTO REPEAT

A simple addition to the previous
program will enable the LED to run
across the display in an auto repeat
mode, when the correct key is
pressed.

o o o dt-ir o o
This repeat operation is not capable
of detecting when the ken, has been
released as the keyboard encoder
contains a latch which retains the
last value outputted from the key pad.

The NMI line operates a flip flop
inside the Z80 which is edge
triggered and this means that when it

cont. over . . .

Ar49 	VfFet2- 13eAlt
cont. next issue!!

TALKING ELECTRONICS No. Il 35

3E 01
D3 04
3E 01
D3 03
06 01

ED
FE0

57
4

C2 0A oh
CB oe
79
D3 03
CD oe oC
C3 OB ea

800
$02
804
Sob
808
80A
SOB

D SO

$
of

$12
814
816
817
81A

3E et
D3 01
3E 01
D3 03
06 et

zu
FE 04

57

CB
Cx tA 01

00
78
Da 03

00 oC
FE Is
Cs 0A el
CB 0$
C3 OB 08

Boo
802

$06
804

Sol
80A
$0B
110D
80F

814
812

11
5

11
SIC
SIF
121

is reset, after dealing with the value
from the keyboard encoder, it cannot
be set again without physically
pressing the key AGAIN.

Thus a key pressed for a long time
can only be recorded ONCE.

The following program wilt detect
key 4 and run the LED across the
screen via a loop in the program and
continue to do so until another key is
pressed. This is the only way of
halting the run.

LD Atos
OUT (4),A
LD
OUT (3),A
LDBei
HAL+
LD

04
A,I

CP

RLC B
JP NZ HALT

LD A,B
O
CALL

UT
 D
(3),ELA

AY
JP SOB

At oCoo:

11 FF 0A
1B
7B
B2
Cs 03 OC
C9

Press RESET, GO.
Press Key 4 to shift LED.
Press any other key to HALT LED.

AUTO RETURN AND STOP

The following program detects 3
keys. The + key shifts the LED left,
the '0' key stops the LED and key '4'
shifts it right.

The speed of travel across the display
is controlled by the length of time of
the DELAY ROUTINE.

LD Alai
OUT (4),A
LIP A,01
OUT (3),A
LI) 1,01
HALT
LDX
CP 0
JP
RLC B ilk
LD
OUT (3Ij1
CALL DELAY

JSP NZ JP NZ HALT
RIC 13
JP 8011

At OCOO:

II FF 0A
IB
7B
B2
C2 03 OC
C9

4-DIRECTION SHIFT

This program is an extension to the
previous listing to obtain a 4-direction
shift.

Ø5

0

-
The four buttons we have chosen for
controlling the LED are: —, 5, 2 and 0.
There is no auto repeat feature in this
listing and the LED can be moved
around the entire display by using the
keys mentioned.

80o 	3E 01
802 	D3 13
804 47
805 	3E II
807
09 D3

6

 04

eA
8 	4F
S 	7__
SOB 	ED 57
80D 	FE it
SOW 	C2 IA 08
$12 	CB 08
814 •
815 	r 03
017 	C3

3
 OA 08

81A 	FE o8
SIC 	C2 27 08
SO 	CB 00

Lig 	L83 93
824 	C3 OA
827 	FE 02 es
$29 	C2 34 08
82C 	CB of

:2F 	'73 04
831 	C3 OA ea

836
	00 FE

C2 OA 08
839 	CB 09
83B a
83C 	123

04

83E 	C3 OA 08

This program is the basis of a game
we will be presenting in the next
issue. Basically it is a HUNT THE
FOX game in which a secret co-
ordinate is selected and the object of
the game is to locate the fox in the

MINIMUM NUMBER OF MOVES.
The LED is the pack of hounds and
when they coincide with the fox, the
screen will flash a victory-or produce
a hunting tune.

The completion of the game is up to
you. Try your hand at writing a game
along these lines and send it in for
publishing in the next issue.

In the little space left I would like to
include a program from one of our
readers.

Inspired by the content of issue 9, a
TEC-1 and a Z80 Machine Code
book, he has written a sound effects
program which will really amaze you.
It is a complex sound generator
which is fully programmable and it is
only when you start to change some
of the data bytes, that you will see
how it goes together.

ALIENS ATTACK RUN
-by fd J Allison, 3095

LD HL,0903
LD
LD H OA
LD 3o

CALL[
*863

INC a
WM CALL
JP 0$00

PUSH AF 	900 F5
PUSH DE 	901 D5
LB DE, ono 902 It 20 00
DEC DE 	905 Ili
LD AA) 	906 7A
OR AAE 	9 	B
JP NZ 9es 	90$

07
 Cs 05 09

POP DE 	90B Di
POP AF 	90C Ft
RETURN 	90D C9
PUSH AF 	90E F5
PUSH BC 	oof C5
LD BC, OAA 910 et AA oo
LD AA° 	913 3E80
OUT (i)A 	915 D3 es

OUT
Aoe 	917 3E 00

(1),A 	91 	D3 et
CALI. me 91B CD 00 09
D

D
 BC 	91E

7
913

L
EC

A113 91F 8
OR AJC 	920 Bt

POP 913 	921 C2 13 09
BC 	924 CI

POP AF 	925 F1
RETURN 926 C9

I have run out of room for this issue and still
have lots more programs end ideas. Next
issue will contain another 20 pages of
programming and include 2 more programs
from Mr Allison.

Tarn to P.50 for I pages on Ike RELAY DRIVER
DOARO project and type in the program for
operating the relays.

The projects for next Issue 	I'll keep
them a secret, but you'll be very pleased; I
assure you.

LD
OUT
LD B,A
LD Asei

LD OUTCA
(4),A

HAL+
LD A,I
CP II

RRC
JP NZ

B
 81A

LD

JP 8
OUTA

0
I),A

CP c
JP NZ 827
RLC B
LD

UT 3 O),A
JP 80
CP Os
JP NZ 834
ARC C
LD A80,C
OUT (4),A
JP A
CP oe
JP NZ
RLC C
LD AtiC 80A k
OUT 4),A
JP Se

leo 21 03 09
$03 3E 01
Sec 77
aob 06 30
sea CD a oe
80B 34
SOC 10 FA
NE C3 00 08

36 TALKING ELECTRONICS No. 11

STROBE 	 Link on PC hoard

74LS273—

74
74LS37400,..-

LS377

1N

Phi 1
Pin 1

4002

HIGH
LOW

A 100n

24 "Ira

20 	1 	11
13 1k

10 9 2 8

11 8 4 7

13 14 	15 8
LATCH

14 16 10 1N 4002 17

15 4 5 20

16 3 2 40

1 18 	19 80 1k

12

RELAY 0

r
BC 547 or
BC 338

RELAY

I
	

1441

BC 547 or.
BC 338

RELAY DRIVER
BOARD $25.60

Complete

UNREGULATED
POSITIVE IN, •

DIP HEADER

TEC-1 RELAY BOARD

The TEC-1 Relay Board has been
designed to give the TEC-1 an inter-
face with the real world.

It can be used in such applications as
the control of model railways or
complex light sequencers. It can also
be used to implement timing and
control functions for machinery.

The project will drive 8 on-board
relays or external relays with suitable
coil resistances and/or it is possible
to drive small low-voltage lamps
directly.

We do not recommend switching
240v via the relays on the PC board

as the terminations are very near the
other TEC-1 components.

If you require to switch 240v, the on-
board relay can become a slave to
power the higer-voltage relay.

Each of the relay contacts has been
brought to the edge of the PC board
where it is labelled 'NO' for Normally
Open contact and 'NC' for Normally
Closed contact. The centre 'C' is the
Common contact.

The Hexadecimal value for each relay
has also been Onted on the board to
make programming easier.

If relays are not required, small light

bulbs can be connected between the
two holes normally used for the relay
coil.

CONSTRUCTION

Three types of latch chips can be
used on the board. These are:
74LS273, 741S374, or 74LS377.

Each chip is capable of performing
the latch function and the only pin
which requires a different logic level
is pin 1.

On the 74LS273, pin 1 is master
RESET, active LOW. So this pin must
be tied HIGH to stop this chip from
remaining in the reset condition.

50 TALKING ELECTRONICS No. ti

COMPLETED RELAY DRIVER BOARD

U
I '11.x..0 Twit" 	7.4 ANTe t>
TO coil/ 7;7,04 'THE wolti-01

On the 74LS374, pin 1 is an output
enable, active LOW. When pin 1 is
HIGH, the outputs will go to a high
impedance state, effectively discon-
necting them from circuit. When pin
1 is LOW, the outputs are normal,
being either HIGH or LOW,
depending on the contents of the
latch.

Pin 1 on the 74LS377 is an ENABLE,
active LOW. When this pin is HIGH,
the contents of the latch cannot be
changed by any of the input signals,
When the pin is LOW. the latch
operates as normal.

None of these special funtions are
required on our project so pin 1 can
be tied HIGH or LOW and remain in
this condition.

For the 74LS273, pin 1 is tied HIGH
and this requires a very short jumper
as shown on the overlay.

For the 74LS374 and 74LS377, pin 1
is tied LOW and this requires a
jumper link the full length of the IC as
shown on the overlay.

Solder in the necessary link for pin 1
and another link on the other side of
the IC.

Next fit the eight 1k resistors, the
eight NPN transistors and eight
protection diodes. A 100n decoupling
capacitor fits above the input socket.

The board is designed to take two
types of relays. They are both single
pole double throw types and one has
a contact rating of 1 amp, while the
other has a 3amp contact rating.
Select the type your require and
install them.

This unit is designed to plug into the
EXPANSION PORT SOCKET on the
TEC-1 and there is two methods of
connecting them together.

One is to individually wire the leads
onto a dip header or dip plug and plug
it into the expansions socket. The
other is to use a wire wrap socket.
The socket is inserted into the holes
on the PC board and pushed home.
The pins are now carefully soldered.
Next a dip header is soldered to the
end of the long leads of the wire-wrap
socket. Solder the corner pins first,
then align the rest of the pins and
solder them. Care must be taken not
to over-heat the dip header as the
plastic melts easily.

Finally insert a 20 pin IC socket and
fit the latch IC.

Two jumper wires are atso needed to
complete the wiring. These are taken
from the 'STROBE' hole and the
UNREGULATED POSITIVE IN hole.

The Unregulated IN line goes to the
INPUT terminal of the 7805 regulator
as 12v is needed to operate the
relays.

The other line, from the STROBE
hole, is taken to pin 12 of the
74LS138 IN-OUT decoder nearest
the 74C923 chip. This is output 03,

Solder a 24 pin IC socket to the
EXPANSION PORT on the TEC-1 and
plug the RELAY BOARD dip header
socket into this expansion port
socket. The board should fit neatly
above the TEC-1. The printing on the
RELAY board will be up-side-down
because all wiring to the relays is
done from the back.

The unit is now ready for use.

TALKING ELECTRONICS No. ti 51

•

•

This is the unregulated positive line tram the TEC-1
power supply. Connect to the cathode of the diode as
shown and use a matrix pin and sockets so that it can
be removed.

• • •••

LED

I AS aim
HOW IT WORKS

The latch board works in the same
manner as the display latches and
displays.

Look at the timing diagram for the
Z80 INPUT/OUTPUT cycle.
Compare the IORQ signal to the
DATA BUS signal. It can be seen that
the DATA BUS stabilizes first, then
the 10R0 signal goes LOW and HIGH
again.

During this the DATA BUS has
remained stable and now that the
cycle is complete, it is no longer
required.

The latch used is a positive-edge-
triggered device. It can be seen that
the positive-going edge of the JORQ,
which is passed to the latch via the
74LS138, comes late in the cycle, but
as the data is still stable, the latch is
able to record this information and
energise a relay.

The port which is to receive the data
is selected by the 74LS138,
according to the information on the
address bus. There are 256 ports
addressable by the Z80, but only 8 are
decoded on the TEC-1. This still gives
us the availablility of using 40 relays!

Up to 5 boards can be added to the
TEC-1. These are stacked on top of
each other and accessed via ports 03,
04, 05, 06, and 07. Ports 00, 01 and
02 are used by the TEC-1 for the
keyboard, and displays.

HOW TO USE
THE RELAY BOARD

If you have a Mon 1A EPROIV1, try the
following:

Start at address 0800. program the
following: 01, 02, 04, 08, 10, 20, 40,

CLOCK

A" A

• •

wAtr

RD

Jul
REAL)

OPtitA 71011 I

Do

• •

un
IOTK 	 •

OPt AA /MK

Dv 07

80. FF ADdress 05130, GO, GO.

The relays will sequence in order,

If you have the MON-I EPROM,
enter the following at 0800: 3E, 01,
D3. 03, C7. RESET, GO.

The first relay will switch on and the
computer will reset. Substitute
different values for 01 in the program
and watch the operation of the relay
or relays.

With this RELAY BOARD your TEC-1
can access the REAL WORLD.

We will now show you how to use it
and produce delay routines of varying
length so that you can turn lights,
motors and pieces of equipment on
and off.

• • •

• • •

• • 	•

• •

•

•

	rf

SOURCE: SOS DATA BOOKS.

PARTS LIST

8 - 1 k 1/.$ watt

1 - 100n greencap

8 - BC 547 or BC 338 transistors

8 - 1N 4002 diodes

8 	relays SPDT type S 4060

1 	74LS273 Latch IC

1 - wire-wrap socket 24 pin
1 - dip header 24 pin
1 - 20 pin IC socket

Iona
•• 	•

52 TALKING ELECTRONICS No. ii

The diagram shows a close-up of the plug which connects the relay hoard to
the TEC-1. It is made up of a wire-wrap socket and a dip-header plug. The wire-
wrap socket is mounted on the components side of the board with its long
leads extending out the side shown in the photo. The dip plug is soldered onto
these 'thick' leads, effectively turning them into thin pins Minable for
inserting into the EXPANSION PORT socket.

LD B,dd
LD HL,Aoo
LD IX 904
LD A,(HL)
LD (I +00),A
INC HL
LD &HL)
LD (IX + ot),A
INC HL
LD A,(HL)
LD (I X+ 03),A
INC HL
LD Al(HL)
LD (IX + 04),A
INC HL

C H
LD Al(HL)
INL 	8
OUT (03),A 	8
CALL 0900
DEC B
LD A,B
OR A
JP NZ, 0809
JP 0800

SOO 	06 OS (No of stops)

802 21 00 OA
805 DD 21 04 09
809 7E
80A DD 77 00
SOD 23
80E 7E
80F DD 77 01
812 23
813 7E
814 DD 77 03
817 23
818 7E
819 DD 77 04
BIC 23
82D 7E
IE 23
IF D3 03

821 CD 00 09
824 05
825 78
en B7
827 C2 09 08
82A C3 00 08

Turns on relay(s)

The RELAY BOARD takes up to 8
relays and these can be turned ON
and OFF in absolutely ANY order, by
the program we have developed.

The only limitations are very heavy
currents and high voltages. The
relays are somewhat exposed and are
close to the components on the TEC-
1, so we do not suggest 240v
switching.

Secondly the relays are designed for
1 amp operation and should be
limited to around this value for
reliable operation.

We suggest only low voltage
operation (12v) with currents up to 1
amp for the relays and transistors.
We have a high current version (3
amp), S 4066 and this will enable
loads up to 36 watts to be handled by
each output. This is quite con-
siderable in electronic terms.

Higher currents and voltages will
have to be handled via a relay which
is remotely positioned so that it can
be provided with the insulation it
needs. Don't forget, any relays
switching high voltages can still have
a 12v coil. This means that you can
combine relays and transistors on the
one RELAY BOARD.

For fast sequencing, a set of tran-
sistors will be the best choice as
relays have a low operating
frequency.

THE PROGRAM:

The choice of using a relay or
transistor will depend on the type of
load you are driving. You will need to
know such factors as current
requirements, voltage, speed of
operation and if any spikes are
present.

Our main concern at this stage is to
test the RELAY BOARD and get it
working.

To do this you will will need some
form of indication on each of the
outputs to show when they are
operating. This can be a miniature

lamp or a light emitting diode. Fit 8 of
these and keep them near each relay
to show which relay they are
indicating.

The program that we have developed
for this project controls the 8 outputs
and will switch them ON and OFF in
any combination, as per the program.

It is merely a matter of changing the
data at oAoo to produce the required
sequence. The data governs the time
of the delay between each operation
and this can be set for a millisecond
delay or up to a 100-hour delay. To do

PUSH AF 	goo F5
PUSH BC 	901 CS
PUSH DE 	902
LD BC, FF FF 903
LD DE, FF FF gob
DEC DE 	909
LID AID 	goA
OR E 	go
JP NZ 909 	90C

B

DEC BC 	9oF
LD A,B 	no
OR C 	922
JP NZ, gob 	912
POP DE 	915
POP BC 	no
P AF OP 	917
RET 	918 C9

DATA
at MOO:

this requires 4 bytes of information.
The next byte governs how many
relays are activated at the end of each
delay. These 5 bytes form a 'UNIT or
'STEP'.

The theory of operation of this
program is quite complex. It will take
two or more chapters before we are
up to describing its features. In the
meantime we will describe it in a
simplified way.

Least effect
on timing

Veil

Fills OUTER loop

Most Mint
gun timin

Fills INNER loop

38 oo oo oo 23
IC 00 oo oo 86
IC oo 00 00 2C
38 00 00 00 38
IC oo 00 00 32
IC 00 00 00 62
IC 00 00 00 CO

What each byte does:
At 0A00 the data bytes are taken in
groups of 5:

IC

IC 00 00 00 01 •or
LOW

0ISFFF FF
IBFF FF

7A
B3
C2 09 09
OB
78
BI
C2 06 09

CI
FI

TALKING ELECTRONICS No. II 53

0
0

0

. z
0
C)

z
C)

ER

m

r-

z
0

W47# 1

Safi

. z
+ co

minwaahm.-14..-a.K.,..-1..1,—"-W-9,••••Sr., It

ri • 	V •

0

CIMIEMIUmminme

	°17\,
comememe 	411 	as TEC-141
•—•

L • 	• i
54 TALKING ELECTRONICS No. ii

0

80

40

20

10

B s

4

2

1

	from p. 53.

Here is an overall view of the
program:

The program consists of 3 sections:
The main program is at 800, This can
be likened to a cook book. They both
give an overall picture of what you are
trying to achieve.

The second part of the program is the
DELAY ROUTINE. This is at 900 and
is similar to the mixing and cooking
times for a recipe. They both involve
TIME, and this is the important
element of this section.

The third part is the DATA. This is
similar to the ingredients: flour, milk,
eggs, etc. The more flour you add,
the longer you have to mix.

That's a simple analogy. This is how it
works:

The main program (the procedure for
the recipe. Such as getting out the
bowls and equipment) contains all
the 'setting-up' data and instructions
with the first instruction, at 801,
telling the computer how many cakes
(steps) you require.

At 900 the length of time for the
mixing will depend on quantity of
flour and milk is going to be used.

0A00 contains the quantity of these
ingredients.

The., program can make up to 256
cakes (steps) before it starts to
repeat.

The main program may look complex
but most of it is a set-up routine, like
getting everything together to make a
cake.

To extend this program is very easy,
all you need do is add a 5-byte block
of data to the end of the data at 0A00.
Each block will produce one more
delay and instruct a set of relays to
come on at the end of the delay. The
value of 'B' at 801 must correspond
to the number of steps in the program
otherwise it will be forgotten!

The first three bytes in the delay {at
0900) PUSH the registers onto the
STACK making the delay 'trans-
parent' to the main program.

The delay-value is loaded into the
register pair and decremented by
one. The accumulator is then loaded
with the contents of the D register
and the E register is ORed with the
accumulator. The result appear inthe
accumulator. The accumulator will
be zero if both D and E are completely
zero and this will set the zero flag.

The next instruction JP NZ 909
checks if the zero flag has been set
and if it has, the computer will
execute the next instruction. If it has
not been set, the computer will jump
to 909 and perform another
DECrement instruction.

11 2 13141 5 1617101
.1•1

0 1 2 3 4 5 6 7 8 9 10

The graph of our program. It shows
the operating time for each of the
relays.

When the nested delay is zero, the
computer will decrement the outer
delay, check that it is not zero and
proceed to decrement the inner
delay. When the two delays are
BOTH zero, the original values of the
six registers are pulled (POPed) off
the stack and the program returns to
the main program.

DELAY•LENGTHS
The values 00 00 in the data at OAOO
may look like a short delay length, but
they are not. If fact we have tried to
trick you! 00 is, in fact the longest
delay you can get! If you load the
register with 00 00 it is decremented
by one to get FF FF and then
checked to see if the value is zero. As
you can see, it is not! The shortest
delay is 01 00 as this is im-
mediately decremented to 00 00,
then checked.

To give an example of the time taken
to execute 00 00, we place 00 00, in
the nested delay and 01 00 in the
outer delay. This will produce a time
delay of 2 seconds, when the
computer is turned to the high
position. The value IC 00 for the
outer delay will produce a time of
about 1 minute.

If you require a delay of 10 minutes,
the value of the outer delay is
increased 10-fold by inserting the
value 1C OA. For a 100-minute delay,
the value is 1C 64. See the HEX table
on P.16 for additional values.

Enter the program into the TEC-1 and
set it into operation. It will take 10
minutes to execute and has 8 steps.
There are six 1-minute steps and two
2-minute steps.

The length of the delay for each step
can be individually programmed as
can the data for the number of relays
which are to be activated. The
accompanying diagram shows the
various relays which will be activated
and by referring to this. you will be
aided in designing your own program.
More details will be given in the next
issue.

MINUTES RUNNING THE ROUTINE

At the end of the delay, the registers
are POPPED off the stack. This
means that they will contain the me
same value after the delay, as they
had before it.

The main part of the delay program
consists of two routines, one inside
the other. The inside or 'nested' delay
starts at 906 and uses the register
pair DE.

Complete
Relay Board positioned on
the TEC-I computer.

TALKING ELECTRONICS No. 11 55

TA114111G EIECTRORICS®

	 $&,,o 4r 	

Issue Ilo 12

I 'Add-ons' for the TEC
*RAM STACK
* PRINTER/PLOTTER

ilEAILIGHT

REMINDER

BIG EAR

TOUCH PUZZLE

TALKING
ELECTRONICS TEC 1 COMPUTER - PART ill

Asom;16
0,4

: w
4-

TEC-1 A
FEATURES IN THIS ISSUE:
* Programs for the 7-segment display.
* Programs for SOUND and TONES
* Programs for the 8x8
* RAM STACK Project
* Interface for PRINTER: PLOTTER

• Text mode
• Graphics mode
• Computer Graphics.

The TEC-1A is an update
of the TEC-1. For all pro-
gramming, both are the
same. Only TEC-1A kits
are available from the
kit suppliers.

Parts: $74.00
PC board: $21.00
Case: $19.00
Post: $5.00 MAX.

'Add-ons' as required .. .

With over 1,000 TEC's in the field, we
have had a tot of feedback on the
success of this project.

Most of them worked first go and this
was very encouraging, considering
the complexity of the unit.

Five schools bought class sets and
this included a University in New
Zealand.

More schools and TAFE colleges will
be including them in their micro-
processor courses and we will see
more of this type of demonstrator in
the near future.

it's undeniable that the Z80 is one of
the most brilliantly designed micro-
processors and it is unfortunate that
so little has been written about it.

This is most probably due to the
designers and manufacturers of the
chip. Until recently, the entire
production has enjoyed advanced
orders. They were extensively used in
controlling applications, computers
and intelligent games.

In fact the original manufacturer,
Zilog, could not keep up with
supplies for its own orders and
franshised SGS to make the short-
fall. With the down-turn of sales, we
have seen some of the chips come on
the market and in the initial stages,
nobody knew what to do with them.

A few Z80 programming books came
on the market but were generally
hard to follow and severely lacking in

information. Most of them didn't
explain how the programming went
together. This is why we have
designed this series.

In the first two parts we covered
some experiments to show how the
display was accessed and how to
create simple movement and sound

effects.

In this part we are continuing along
the same lines with slightly more
advanced material and introduce a
couple of 'add-ons' for those who are
advancing faster than the midstream.

Try them all, in the order presented
and you will see the concept of
MACHINE CODE programming fall
into place.

TALKING ELECTRONICS No. 12 13

TEC CASE

Either board can be mounted on a
RETEX BOX, size:RA-2 as shown on
P.3 of issue 11. From that small
photo we sold hundreds of cases.
proving that the magazine is read
from cover to cover.

These boxes not only neaten your
project but strengthen the board near
the keys. There is sufficient room
inside the case to fit a power
transformer however we suggest
using an external plug pack
connected to the computer via a plug
and socket on the side of the case.

If you want a TEC-CASE, they are
available from us for S19.50
including post and packing.

The beginning stages of Mr
Wragg's TEC. He now has a whole
batch of support devices including
a Velocity-Acceleration recording
interface & a programmed ROM.

We will be passing on may of these
developments in future issues.

mid

1119.~ 64. 1•

THE ADVENTURES OF Mr WRAGG: TEC-1A
After the first run of 1,000 boards we
found the 8212 display driver chips
were fairly difficult to get. So we
decided to update the board and
include a few small improvements at
the same time. Both the TEC-1 and
TEC-1A operate with the same soft-
ware however the TEC-1A has 3
small changes.

The regulator is mounted under the
PC board so that it cannot be bent
over and broken oft the 2,200uf
electrolytic has been changed w
1,000uf and the output latches have
been changed to 74LS273 (or
74LS 374 or 74LS377). In all other
respects, the boards are identical.

Some constructors have used their
own method of mounting the PC
board and others have strengthened
the weaker parts of the design such
as the PC board near the keys, the
7805 regulator mounting, the
expansion socket etc.with a variety
of ideas. But none have done more
than a teacher from Brighton High
School. Mr Wragg has made his
computer STUDENT-PROOF. He has
strengthened every lead and plug by
using clips, clamps, thick hook-up
wire and fasteners where ever
possible to reduce the possibility of
damage.

The results are shown in the photos.
It looks like a before-and-after case,

The lower photo shows the TEC-1,
screwed to a base-board, with the
8x8 matrix connected to the
expansion socket - before he got the
bug. The upper photo shows how
things grew, It shows only 3 add-
ons, out of the 8 he has designed and
built.

Inspired by the TEC, he now holds
early morning classes for electronics
enthusiasts.

He covers both the practical and
programming aspects of computers
and some of his teaching aids will be
presented in the next issue.

14 TALKING ELECTRONICS No. 12

Another Interesting TEC-1 repair came
In this week. The constructor had
purchased a set of components from us
in 'short-form'. He had bought some of
the items himself and the remainder he
purchased from us - things like the
EPROM, Z80 and display drivers.

But what was interesting, he had made
the printed circuit board himself. Not
being satisfied with photocopying the
layout on the back of the magazine, he
reproduced the entire artwork using
tape and stick-on lands. It was copied
so exactly that it took us a few minutes
to realize the situation. And when it
finally dawned, it was quite a shock! It
was like looking at a forgery! The work
entailed in its creation must have been
enormous. And now we had to repair it.

Normally there is not a single firm
under the sun which would entertain a
repair which had not been made with
components and PC board as supplied
by the organisation. You can Imagine
the assortment of repairs which would
be sent in.

But because we have had so much
success with repairing the computer,
we accepted it and went to work.

Theoretically, every track had to be
inspected because the board was a
'one-off'.

After quite a few minutes, we noticed
two tracks did not connect to the
appropriate places. When we joined
these with short lengths of tinned
copper wire, all the chips received
power, but still the computer failed to
work.

Then we noticed the clock chip was a
Fairchild 4049 and this was promptly
replaced.

The display immediately lit up and on
going through the keyboard, we found
keys 4 and 7 did not give the correct
display reading.

Back to more inspection. More
detective-work located a track on the
common line which should not have
been there. When this was cut, the
computer worked perfectly.

Here's the lesson:

II you are going to reproduce artwork,
you must check, re-check and then
triple check the layout. 	The only
effective way to do this Is to make the
artwork identical in size and design so
that the two layouts can be placed
together and held up to the light.
looking from both sides, you will be
able to detect any discrepancy in the
wiring.

When the board is etched and drilled,
go over the entire board with a multi-
meter and check each of the lines for
continuity. Mark each line as you check
It so that none are missed.

Only this way can you be sure every line
goes to its correct destination.

I know It is fun to produce everything
yourself. but for some items the result
Is not economical. Making PC boards Is
one of the most time-consuming and
costly endevours. After Its all finished,
it will probably cost nearly as much as
a bought one and won't have an over-
lay or solder mask.

If you have made your own PC board
and it doesn't work, please don't send
it In for repair. We have met the
challenge and don't need it again. It
will involve too much of our time and
delays the production of the next issue
of the magazine.

ei •

IT a 0 c,

I
)1

HA('

"BACK AND FORTH"

LD A,04 (g• segment) 	$00
OUT (2),A (sag Port/ 802
LD C,05 	804
LD A,01 1st dp,pi., 	INA
OUT (1),A (cad, port) 808
LD B, 	 80
CALL DELAY 	SOB
LD B, 	 110 A 	 E
RLC A 	 FOF
DEC C 	 Ill
JP NZ LOOP 	812
LD C,Ob 	In
OUT (1),A 	en

9 A LD B, 	 81
CALL DELAY 	PIA
LD
RAC A 	 OE 	

A,B 	 811)

DEC C 	 020
JP NZ LOOP 2 	821
JP START 	024

3E 04
D3 02
0E 05
3E 01
D3 01

00 09

B 07
OD
C2 08 08
0E 06
D3 01

ti) 00 09

CR OF
OD
C2 17 03
C3 00 OF

For
display
display,

Delay

Port 1,

then

at 09001

is activated,

11 FF 07
1B

B2
C

9
2 03 09

C

the cathode of the
then the

the third display,

F 	pen 2' TT 	li 	I 	ON 	11

first
2nd
etc.

the

ll

m.

tt 	t 	t 	tt
HIGH shifts LEFT across lila A reg.

I-1
••••••

rI

Programming on the 7-Segment
Displays:
We continue from P.29 of issue 11
with more programs on the TEC
display.

For this, you will need the TEC-1 or
TEC-1A. No 'add-ons' are used at this
stage. The displays on the PC provide
the readout.

The next program. "Back and Forth"
runs the 'g' segment across the 6
displays and back again without
shifting to the 7th and 8th outputs.
Thus the blank output and speaker
are not activated.

The number of 'shifts' is determined
by the value loaded into register C
and 1, 2, 3. 4, 5, or 6 displays can be
activated.

	It

Tim NIGH shtli• RICHT cross the Ain

1-
The diagram shows the shpt ng o the HIGH
acro s the accumulator (the A register).
This Is output to port 1 and will turn on one
transistor at a time. These transistors feed
the common cathode lines of the displays.

Keep this program in the computer
for the next experiment.

QUESTIONS:
1. At 805. why do we insert 05 into
register C? Try the value 06 and see
what happens. (slow the clock rate to
see the effect.)

2. At 805. insert the value 03. What
happens?

3. At 805. insert the value 01. Can
you see what is happening on the
screen and in register C. (The bit is
being shifted through the register via
the speaker and is appearing on the
left hand side of the display.)

/NP 	0 yr PUT L. AT(HE sinn

TALKING ELECTRONICS No. 12 15

It is basically an extension to the
BACK and FORTH program with an
additional listing at oAoo and a
change at 024 and 401.

At 0A00:

LD L,01
INCL
LD AIL
JP 0802

Aoo 216 01
Aos 2C
A03 D
A04 C3 02 08

Delay at 0900: 	
11 FF o7
111

Bs
C2 03 09

"ALL THE VALUES"
This program produces all the
combinations for the 7-segment
display. 	This will include many
unusual effects as well as all the
known letters and numbers.

MOVEMENT AROUND A
SINGLE 7-SEGMENT DISPLAY:

The following program produces
movement around a single 7-
segment display which can be
increased in speed to produce a novel
effect.

CALL 0900
JP 0100

LD A
U
 ,

A

24)
OT

lm
(1),A

LD
CALL 0900
LD A,02
CALL. ono

CALL.
LD A,20

0900

LD

LD A,04

CA 	oo

CALL 0900
LD A,40
CALL 0900
LD A,04
CALL ono
LD A,0$

LI. 09

	

Soo 	3E 20
002 	03 01
$04 	a 01
no 	CD 00 09
$09 	3E 02

IME 	3E 04
$10 	CD oo 09
$13 	3E 20
815 	CD oo 01
SO 	3E do
NA 	CD 00 09
SID 	3E 40
SIF 	CD 00 09
S22 	3E 04
$24 	CD oo 09
$27 	3E o$
$29 	CD oo 09
$2C 	C3 oo 08

CD 00 09

THE DELAY ROUTINE

We have used a delay routine in many
of the programs we have
investigated.

We have also seen how it can be
adjusted from a few milliseconds to a
few seconds in length.

For this time-delay to occur, many
thousands of clock cycles must be
involved in its execution. In fact, up
to one million or more cycles can be
involved.

Let us look at how this comes about
and how the delay operates.

The delay program we will be
investigating is:

1. 11 FF 07
2. 113
3.
4. B2
5. C2

The meaning of each line is:

at 0900:

OUT (2),A 	900
902

90 6
907
90$
901B

D3 02
11 FF 07
113
78
Bs
C2 05 09
C9

1. LD DE07FF 	FF soaded into E and 01
into 0

Register E 	decramentee by 2. DEC DE
one 	If 	an d dddd flow occurs.

3. LD A E 	
register D 	deciemented

Register E is loaded into the
/ 	accumulator.

4. OR D The D register is OR ad won
the accumulator

5. JP NZ to: The program lumps to line
of the result if not zero .

Fi
ll
 in

 t
hi

s
se

ct
io

n:

3E Oo
D3 02
OE 05
3E 01
D3 01

CD 00 o9
78
CB 07
OD
C2 00 0$
oE ob
D3 01

CD 00 09

B OF
oD
C2 17 0$
C3 02 oA

Push RESET, GO:

Write the ASSEMBLY CODE for the
program above and also the address
listings, starting at 0800.

A, and 'CALL' instructions. It
should have a BYTE TABLE This will
be shown in a later program.

However it does contain one byte-
saving feature. The statement OUT
(2),A is used at each stage and has
been placed in the CALL ROUTINE.
This saves 14 bytes of program.

1. Replace (07) at 904 with 00 and
watch the screen.

2. Replace (FF) at 903 with OF.

3. At address 001 replace the data
with 01, 04, and then 10. What
happens to the display?

4. Replace data at 1/01 with OS, OF,
20. What happens to the display in
each of these cases?

The number of cycles to perform each
operation is as follows:

LD DE 	Li FF 07
DEC DE 18
LD A,E 	7B
ORD
JP NZ Line t C2 03

One loop consists of:
IB 	- 6
B -7

B2 - 7
C2 	- 10

total: 30 cycles.

To produce a delay of 256 loops, the
instruction is:

11 FF 00
FF is loaded into the E register and 00
into the D register.

E is decremented by one on each loop
of the program and when it gets to 00.
the result of OR-ing the accumulator
(which will contain the value of the D
register - 00) will be zero and the
microprocessor will jump out of the
delay routine and back to the main
program.

Total clock time for the 256 loops is:
256 x 30

= 7680 cycles.

This program has not been efficiently
written. It contains a repetition of LD

10 cycles
6 cycles
7 cycles
7 cycles
10 cycles

16 TALKING ELECTRONICS No. 12

OE 20

139 301
CD oo 09
CB og
CB 79
CA 02 08
C3 00 oil

800
802
803
805
809
BOA
BOC
BOF

If the D register is loaded with FF the
delay time will be:

7680 x 256
= 1,966,000 cycles.

This is about 2 million cycles!

When deciding upon a delay of
suitable length, try various values in
this location:

FF 07

This location has only a small effect an the
delay time and can be considered to have a
'trimming effect'.

IMMINOSIMINON•

FIGURE l's ACROSS THE
SCREEN:

The next program introduces a table
of values which the program 'looks
up' during the execution of each
cycle. These are called 'data bytes'
or bytes of data. which are used one
at a time.

The LEO turn-on sequence around the
display.

LD C,20
LD A,C
OUT (1),A
CALL 0900
ARC C
BIT 7. C
JP Z LOOP
JP ioo

LD HL,oBoo goo
LD B,9 	903
LD A(HL) 	905
OUT (2)A 	gob
CALL DELAY gott
INC HL 	90B
DEC B 	9°C
JP NZ 905 	goD
RET 	goF

At oAoo
Aoo 	11 FF o7
Ao3 IB
A04 7B
A0 B2
AOb C2 03 OA
Aog C9

at oBoo:
Boo 01
Bo! 02
B02 04
Bo; 20
604 to
805 40
Bob 04
BO 7 08
Bo; 01

On the first pass, the program places
01300 into a register pair such that the
OB goes into the H register (meaning
the High order byte register) and 00 in
to the L register (Low order byte
register).

At 905 the contents of the byte at
01300 will be loaded into the
Accumulator because this is the
address specified by the HL
instruction.

On each subsequent pass, the HL
register pair in incremented by ONE.
Since the value 01300 is contained in
this pair, the result will be to add 1 to
00 to get 01, 02 etc. Thus the
program will look up 0601. 0802 etc
and finds the relevant byte of data.

The second interesting part of this

g
rcaram is the counting of the DATA
M table. The computer must know

how many data bytes are to be
accessed.

Thus it is given an intial value of 09 at
904 and decremented the value by
one on each pass. When the result is
zero, the program jumps to 0800 and
starts again.

The segment can be made to travel
across the screen in the opposite
direction by changing 3 values:

The starting value at 801 must be
changed to 01, 	RRC must be
changed to RLC (CB 00 and bit 6
must be tested for zero (CB 71)

The changes are:

No of et
808 CB 01
80A CB 71

CONTROL VIA THE
KEYBOARD

Movement on the screen can be
controlled by the keyboard by intro-
ducing a HALT or wait function.
This causes the program to halt and
wait for an input via the interrupt line.

When a key is pressed, the non-
maskable interrupt line is activated
and allows the Z80 to accept data
from the keyboard encoder via the
data bus.

The data is loaded into the
accumulator and compared with a
value in the program. if the two
values are the same, the output is
zero and as determined by the next
instruction, the program advances.

This program moves a LED across the
bottom row.

Key '4' shifts the LED left and 'C'
shifts it right.

The direction of shift is determined by
RLC B and RRC B. Each press of
a button moves the LED one place.
No delay routine is required in this
program.

LD A,04 	Boo 	3E 04
OUT (2),A 802 	D3 02
LD B,A 	80 	47
LD A,B 	805

4
 75

OUT (1),A 	Sob 	D3 01
HALT 	808
LD Alta 	809 	6 ED 57
CP 04 	ttoB FE 04
JP NZ 815 	8oD C2 15 08
RLC B 	Igo CB oo
JP 805 	812 	C3 o5 oil
CP OC 	815 	FE oC

A AR
JP

 B C
NZ 	

fl
So8 	817
	CB

 08 il oil
i 	C o

JP 805 	BIC C3 os OS

S

The 	segment sh f s across the d splay.
The direction is de ermined by buttons '4'
and t'.

21 00 OB
06 09
7E
D3 02
CD 00 OA
23
as
C2 05 09
C9

vipeo PI seLicl UNIT .--.

TALKING ELECTRONICS No. 12 17

CREATING A BAT
This program produces a 2.segmont
bat capable of travelling across the
lower segment of the display. The
'+' key moves the bat to the left and
the 'V key moves it to the right.

WRITING A PROGRAM

This is a written exercise requiring
YOU to write a program. Our aim will
be to write a BAT program exactly
like the previous program and you
can refer to it if a problem arises.

For each line, the MACHINE-CODE
value should be obtained from the
Z80 CODE SHEET on the back page
of issue 11. It should then be placed
in the space provided.

1. Load the accumulator with the
value 80. Answer 	
2. Output the contents of the
accumulator to port 2. 	
3. Load register B with the value 3:

4. Load register B into the
accumulator
5. Output the accumulator to port 1:

6. Halt the program.

The Z80 is now waiting for an
interrupt.

7. Load the index register into the
accumulator:
8. Compare the accumulator with the
value 10:
9. Jump to 'COMPARE C' (below) if
the answer to line 8 is NOT zero:

10. Rotate register B LEFT
CIRCULAR:
11. Jump to the address which
states: Load B into A (above):
12. Compare the accumulator with
the value 'C':
13. Jump to HALT (above) if NOT
zero:
14. Rotate register C Right Circular:

15. Jump to: Load register B into A
(above):

Complete the following listing by
adding the values you have obtained
from the statements above:

522
524
$25
527
52A

AUTO MOVEMENT & HALT
S Riley,

Guildford, 2161.

The following program detects 3 keys.
The "+" key shifts the LED left, the '0'
key stops the LED and key '4' shifts it
right.

The speed of travel across the display
is controlled by the DELAY ROUTINE.

0 0 0 N 0

OiR 0 0 0 0

0 0 0 9 0 0

$00 	3E es
002 153 02

4 50 	3E 01
506 	D3 01
US 	06 01
SoA /6_
$013 ED 57
SOD 	FE so
SOF 	Cs ID et
$12 	CB oo
$14 75
$15 	D3 01
$17 	CD oo OC
SIA C3
SID 	FE og
$IF 	C2 oD el
$22 	CB 0$
S24
Si; 1$ 1 3 01
$27 	CD 00 OC
HA 	C3 0B 0$

11 FF OA
111

138 2
C2 03 OC
C9

So far we have turned on one
segment or LED at a time in the
display or more than one segment or
LED within the same digit. But not 2
LEDs in different displays, in different
positions.

This seems impossible but by using a
clever pulsing technique we can
alternately access one then the other
to produce the effect of both being on
at the same time.

In this program we will alternately
access segment 'g' in the first display
and segment 'a' in the 6th display to
give the appearance that they are
both on at the same time.

SWITCHING 2 PIXELS
INDEPENDENTLY:

Run the following program and
observe the effect:

Soo
OUT (

$
I),A 	liot

LD A,01 	04
OUT (2),A 	$06
CALL DELAY So$
JP oAoo 	Sol)

3E so
D3 01
3E 04
D3 02
CD oo oil
C3 oe oA

LDA,01
OUT (1),A
LD 01
OUT(2),A
CALL DELAY
JP one

OUT (2),A
LD 11,03
LD
OUT 1),A
HA L
LD AtI
CP 10
JP NZ 0$16
'Use B
JP
CP C

$06

JP NZ Rog
ARC 13
JP Sob

Roo
$02
$04
tog
$07
See

SIC
1101
Ill
$13
516
$11
SIB
SID

31 50
D3 02

7$
06 03

7
D3 cm
5_

ED 57
FE to
Cs 16 01
CB oo
C3 06 oS
FE oC
Cs og of
CB OS
C3 06 05

Soo
102
SO4
Sob
50$
SOA
Soil
SoD
SOF
$12
514
515
$17
51A
SID
SIP

LD Asa
OUT (2),A
LD A,01
OUT (1),A
LD
HAL+
LD A,1
CP 4-•
JP NZ 0111D
RLC B
LD A B
OUT (I) A
CALL DkLAY

JP oil_
Son

RRC B

C
JP NZ SoD

LD
OUT MIA
CALL DELAY
JP Sol

at OCOO:

Aoo
A02
A04
Ao6
A011
AOB

3E 01
D3 01
a 01
D3 02
CD oo 03
C3 00 05

IS TALKING ELECTRONICS No. 12

0800

creates

3E 20
D3 01

D3
3E SO

02
CD 00 011

800
802
804
Sob

8013
8011

at 0800:
11 FF 00
18

82

C9
C2 03 OB

Turn the speed control up and the
effect is two different LEDs being lit
at the same time. Turn the speed
control down and the alternating
effect becomes more noticeable.

The flow diagram for this is:

0800

creates 'g'

delay
for 'g'

I

Insert 05into the delay routine at
0802 and watch the display. The
alternating effect is more obvious.
This is the basis for all the letters and
writing on the display. Each digit is
being turned on and off very quickly.

PROBLEMS:
Turn the speed control up and keep
the delay routine short for the
following problems:

1. Change values in the program to
turn on segment 'd' in the first display
and 'a' in the sixth display.

2. Create the figure 1 in the first
display and '0' in the last display.
Which locations in the program must
be altered to achieve this?

TO CONTROL 2 PIXELS. One
with movement.
This program produces two pixels.
One is fixed and the other moves up
and down.

In this experiment the main program
is at 01100 and it calls the delay at
oBoo and a short routine at0000.
When the program has been entered,
push, RESET. ADdress, OA00, GO,
GO to execute the program. The main
task with this experiment will be to
rewrite the main program so that it
appears at 0800. This will involve
changing a number of machine code
values to suit the new location.

LD C,BB tc" ianY, 01100 OE BB
LD A,01 	a a' OAO2 3E 01
OUT (i)4 01104 D3 01
LD A,01 01106 3E 01
OUT (2)2A OAOS D3 02
CALL DELAY oAOA CD 00 011
CALL 0800 OAOD CD 00 08
DEC C °Ale 0D
JP NZ 01102 OAI I C2 02 0A.
LD 01114 OE BB
LD A,01 01116 3E 01
OUT (1),A OA1S D3 01
LD A204 OA1A 3E 04
OUT(2),A OA1C D3 os
CALL DELAY OAIE CD 00 011
CALL 0800 0A21
DEC C 0A2

C
D
D 00 08

o
JP NZ °Alb 01125

4
C2 16 OA

LD C,BB 0A11 OE BB
LD 49.101 0A2

2
A SE 01

OUT (1),A 0A2C 113 01
LD A,110 OA2E 3E80
OUT (2),A 01130 D3 02
CALL. DELAY GA32 CD 00 011
CALL 011oo 01135 CD 00 08
DEC C 0A38 OD
JP NZ *ASA oA39 C2 2A OA
JP oAoo

Delay at oBoo:

0A3C C3 GO OA

11 FF o0
B

TB
B2
C2 C9 03 011

LD 11,20
OUT (1),A
LD
OUT(2),A
CALI. DELAY
RETURN

Problem:
1. Rewrite the MAIN PROGRAM to
start at 0800:

1.D C,BB
LD A,01
OUT (1),A
LD A,ot
OUT (2),A
CALL DELAY
CALL oAoo
DEC C
JP NZ 0802
LD
LD A101
OUT (1)4
LD A,04
OUT (2),A
CALL DELAY
CALL 01100
DEC C
JP NZ oSib
LD C,BB
LD Aohl
OUT (1)4
LD A,80
OUT (2),A
CALL DELAY
CALL 01100
DEC C
JP NZ 082A
JP 0800

at oBoos
Same Machine code
values for delay.

at 01100:
LD A,20
OUT (1),A
LD A,01
OUT (2),A
CALL DELAY
RETURN

Run the program by pressing RESET,
GO. Does it work? (It should)

2. Insert the following data into the
program you have written, to produce
the name of a semiconductor:

at Glob: 3E 47
at 011111: 3E C7
at 082E: 3E C6
What is the name of the device?

3. Create the name of another semi-
conductor device by inserting the
following information into the
program:

SO2 	3E 10
SO6 	3E IF
816 	3E OB
8111 	3E EA
82A 	3E 04
82E 	3E C6

Remove the value 20 at 0.401.
Push RESET. GO.
What is the name of the device?
Reduce the delay of BB in the MAIN
PROGRAM (at 3 locations) to 05.
The result will be your first readable
multiplexed word.

SOO
802

SOS
804

SOS
SOA
SOD
810
811
1114
1116
8111
11IA
SIC
IlliE
821
824
825
1128
112A
82C
112E
1130
832
835
838
839
83C

ONO
0803
0804
0805
0806
OB09

A00
AOX
A04
A06
A
L

11
B
11

AN)) AN E "'Dm eut"jer2
TALKING ELECTRONICS No. 12 19

F
F9 FA

F
F

IS
C
E rr

oo 01 02
03 04
OS
etc.

can be IS or 20

INSTR
AND C

UCTIONS

JUMP and CALL instruction% are
called BRANCH INSTRUCTIONS.

They cause the program to branch to
another location in memory and
execute the instruction contained at
that location.

The 6 instructions we will investigate
are:

JP Address 	C3 XX XX
JP NZ Address C2 XX XX

JR die 	 111 XX
JR NZ ins 	 20 XX

CALL Address CD XX XX
CALL NZ Address C4 XX XX

The meaning of each instruction is as
follows:

JP Address. This is an uncon-
ditional instruction . It means Jump:
Address. The program will jump to a
new address as determined by the
next two bytes XX XX.

JP NZ Address. This means Jump,
non-zero: address. The program will
only jump to a new address if the
result of the previous instruction is
NOT zero. (If the result is zero, the
program will neglect this 3-byte
instruction and advance to the next
instruction).

JR dis. This is an unconditional
statement. It means: Jump relative:
displacement.

In simple terms a relative jump
means the program will jump to an
address of plus 129 bytes or minus
126 bytes of the address of the JR op-
code byte.

For instance. the value FB will cause
a jump to 18 in the following program.

When determining the displacement
value. this is an easy method:

CALL Address. This is an un-
conditional instruction. It means
CALL the address given by the next
two bytes XX XX.
When using this instruction. it must
be the intention of the programmer to
call a sub-routine and then return to
the instruction which immediately
follows, as this is the requirement of
the microprocessor.

For this reason. the sub-routine must
conclude with a return instruction C9.
The address of the byte immediately
following CD XX XX will be saved
in the stack. At the conclusion of the
sub-routine it will be popped off the
stack, looked at, and cause the
program to return to the instruction
after CD XX XX.

CALL NZ Address. This is a
conditional instruction and will only
be executed if the result of the
previous instruction is NOT zero.
All other features of this instruction
as per CALL Address above.

The main differences between these
three sets of jump instructions are:

A JP instruction causes the program
to go to a sub-routine but does not
call it back again.

A JP instruction can make the
program go to any location in memory.
It is not restricted to a displacement
value.

A JP instruction cannot be re-
located without changing or looking
at the two-byte jump address to see if
the sub-routine is still at the same
address.

A JR can only operate within +127
and -128 bytes (approx.)

JR can be easily re-located as it
relates only to relative memory. This
type of instruction is ideal when large
portions of a program need to be
shifted.

CALL instructions are used when a
sub-routine is required to be
executed (such as a delay) followed
by a return to the main program.

QUESTIONS

1. Write the meaning of these, in
words:

(a JP
(b JP NZ
l
ci JR N
c

NZ (dig
(4 CALL
(f) CALL NZ

2. Which instruction would you use
for the following:
(a) You require to go to a sub-routine
and then return to the main program.
(b) You require to go to another
routine if the answer to the previous
line is NOT zero.
(c) You require to go to the beginning
of the program.
(d) You require to go to a location
about 15 bytes further down the
program.
(e) You require to go to a sub-routine
on the condition NON-zero, and
return.
(I) You require to go to a location
back 8 bytes.

3. Give one advantage of a JUMP
RELATIVE instruction, compared
to a JUMP instruction.

4. To produce a loop in a program,
which of the following should be
used: JR dis or JR NZ dis.

5. At the end of a program, which
instruction should be used: CALI.,
JR NZ, JP.

6. What is the difference between
CALL and JUMP?

Answers:

1. Jump.
Jump Non-zero.
Jump Relative displacement.
Jump relative non-zero displacement
Call.
Call Non-zero.

2. (a) CALL
(b) JP NZ
(c) JP
(d) JR 14
(e) CALL NZ
(fi JR Fb

3. The program can be transferred to
another location without affecting
the JUMP RELATIVE instruction.

4. It must have a non-zero condition.

5. It must be a JUMP instruction
with no other conditions.

6. CALL transfers the program to
another location and requires that it
be returned to the next instruction
after the sub-routine has been
performed. JP transfers the program
to another location without any
return requirement.

For a forward jump, 03will cause the
program to jump to D3 in the
following:

311 01
11 03
3E 20
In 01
3E 21

JR NZ db. This is a conditional
statement. It means Jump relative,
non-zero: displacement. The
displacement is given by a hex value
such as 117, EE, FS for a backward
jump or 079 15, 44, 76, for a forward
jump.

20 TALKING ELECTRONICS No. 12

QUICK DRAW
In this final exercise we will change a
number of JUMP instructions to JR
instructions. See the QUICK DRAW
program on P. 13 of issue 11.

This is how to change the program:

1. Copy all the assembly code.
replacing JP with JR.

2. Copy the machine code listing,
remembering that the 3-byte JP
instructions will become 2-byte JR
instructions. At this stage do not
insert the displacement values - this
will be the final job.

3. Insert the displacement values for
each of the JR instructions.

This is what your program should
look like:

4. Fill in the memory locations,
starting at 0800.

Push RESET, GO and play the Quick
Draw game. Does everything work
correctly? It should.

We have learnt the major advantage
of a JR instruction. It enables a
program to be transferred to another
location without having to alter any of
the data.

See the effectiveness of this. Move
the whole Quick Draw game to MO
or 0A00 making sure you wipe the
program at0800 before starting at the
new location.

To start the game, push RESET, GO,
GO. 	Is it a success?

QUICK DRAW

START
DELAY

LD A,00
OUT g)E,A
LD D 00
DEC D

800
802
804
807

3E oo
D3 01
II 00 00
IB

LD A,D 80$ 7A
O E 809 B3
JR

R
 NZ Delay 80A 20 FB

LD A,E3 80C 3E E3
OUT (2),A 80E D3 02
LD 	,0 810 3E 08
OUT (1),A 812 D3 01

LOOP I HALT 814 76
AND OF 815 Eb OF
CP OC 817 Fe OC
JR

R
 Z,Right

O A
819
SIB B7

28 05

JR Z,Left 111C 28 06
JR Loop SIE 18 F4

RIGHT LD A01 820 3E of
JR Finish 822 18 02
LD A,20 824 3E 20
OUT (I),A 826 D3 01

LEFT LD A,20 828 3E 28
FINISH OUT (

HALT 2),A
82A
82C

D3 02
76

JR Start 82D 18 D1

Your final program
this:
LD A,01 	800
OUT (2),A 	802
LD 0,01 	804
LD A,B 	806
OUT (1),A 	807
JR 820 	0
RLC B 	SOB
JR 806 	SOD

JR NZ 823
JR 80B

820
823
824
1125
826
828

will look like

11 FE FF
IB
7B
B2
20 FB
18 EO

3E 01
D3 02
06 ot

3 01
18 14
CB 00
18 F7

ANV REMe76 Co r•IT1201._

LD A,01 	800
OUT (2),A 	802
LD 11,01 	804
LD A,B 	806
OUT (1),A 	807
CALL DELAY
RLC B
JP LOOP 	SeE

3E Ox
D3 02
06 01
78
D3 01
CD 00 oA
CB oo
C3 06 08

Soo
80C

USING JR's
To show how we can substitute a JR
instruction for a JUMP instruction.
we will consider a simple program
containing a delay routine.

We will choose the program: RUNNING
SEGMENT 'a' ACROSS THE SCREEN. This can
be found on P. 26 of issue 11 and is
repeated here:

Type this into the computer and RUN.

at 0800:

oA00 	II FE FE
111
70
B2
C2 03 OA
C9

1. We will change the instruction at
80E to JR 806. Change the address
values to HI Fb.

Place this into the program and RUN.
Is any difference observed? (There
should be no difference).

2. The delay routine at °MO can also
be changed to include a JR
instruction.

at Aeb:
change C2 03 oA to 20 FB 00

Run the program and note the result.
No difference should be detected.
Both instruction perform the same in
this case.

3. The DELAY PROGRAM can be
placed immediately below the main
program so that a JR instruction can
be used at 800 and also at the end of
the delay.

at 809: insert JR 820.

Start the delay routine at 0820.

At the end of the delay routine. insert:
JR 80C.

The displacement values will have to
be worked out by you. Follow through
the steps as shown and write the
complete program. Use the TEC as a
counter to work out the displacement
values (by pushing -I-, 	4-, etc.)

Do not look at the answer at the
bottom of the next column until you
have finished.

Next issue we will give a JR table
and explain how it is used.

TALKING ELECTRONICS No. 12 21

PORT 2.
SEGMENT PORT 	 PORT 1. CATHODE PORT.

CALL RING
LD HL 1000
CALL PAUSE
CALL RING
LD HL 8000
CALL PAUSE
JR START

RING LD B,to
XRING PUSH BC

CALL oStE
POP BC
DJ NZ XRING
RETURN

PAUSE DEC HL
LD
OR LH

A,

RET Z
JR PAUSE

CD 14 os
SI oo 10
CD 1E 08
CD 14 08
21 00 50
CD IE OR
id EC

06 10
C5
CD SE 01
CI

C$
to F0

2B

B
C
5

CI
1$ FA

START

THE STRIPPER

Soo: oo oo 3R 00 32 oo 011 3E 09 32 ot 0$ CD Bo 01 C3
1110: 02 011

Soo
803
Sob

SoC
log

$01
$12

814
Sib

111A
517

SID D

$1E
SIF
020
021
$22

OSCILLATOR
by Peter Aleksolevs TONES & TUNES

LD

OUT (OI),A

LD A,00

OUT (01),A

JP soo

$00 3E
$01 SO
002 D3
$03 01
$04 3E
Sos 00
$06 D3

01
So C3
$09 00
110A oil

The principle of operation of this
program can be seen in the diagram.
We are accessing the speaker via
port 1 and this is the 8th line of the
driver chip. Thus the value 80 is
inserted in the program.

We load a HIGH into this line for a
number of clock cycles and then a
LOW. This produces a CLICK which
sounds like an oscillator when the
speed control is increased.

presented in various formats to get
you acquainted with the different
ways of presenting a program.

-by Stephen Clarke, 2774.

SOO: 00 oo 3E oo 32 coo WI 3E 09 32 01 oil CD BO 01 CD
$10: Bo 01 3E SI 32 00 0$ CD BO 01 3E 62 32 00 0$ CD
IMO: Bo 01 C3 02 oil

000: OA OF II 12 OF 11 12 id 11 12 14 16 12 14 16 17
91o:14 16 12 14 tt 12 oF 11 on oF oA oB 011 0A oA oo
920: IF 00 17 17 17 17 16 16 lb 16 Id 14 Id Id 12 IS
930: 12 12 11 11 11 11 of of of or on OE oE0 on of
940: oEciEoBoBoBon oADA0AoAoSoll os 00 0b 06
950:06 06 05 05 05 05 03 03 03 03 02 02 02 02 02 02
960: 00 IF OA OF 1112 OF 11 12 14 11 12 14 lb 12 14
970:16 17 14 16 12 Id 11 12 oF II 0E OF 0S 0S OS AA
900: OS 06 05 03 03 03 03 03 03 03 03 03 00 00 00 00
000:00 00 00 00 00 00 IF

Here is a selection of tones and tunes
for the computer. These have been
submitted by readers and are

TOCCATA

FREQUENCY SWEEP
by refer Aleksekive

This program gives an effect similar
to a phaser gun. By changing the
value of the second byte, different
effects can be generated.

This program can be placed
anywhere in memory as it consists
entirely of JR instructions.

26 FF LD H,FF

LD A oo 	It 00
LD B,H

OUT iiii,A D3 01

OUTV 3E So

71
A 	D3 01

LD At
DEC A 	3D
JR NZ FD 20 FID
DJNZ F2 10 F2
LD B,00 	06 00
LD Moo 	3E 00
OUT (1),A D3 01
LID A SO 	31 Bo

IN
OUTI1),A D3 01

C 	04
LD AI 	7 R 	1
DEC A 	3D

7C
JR N

A
Z
li

 FID 20 FD
LD
SUB I 	to
JR NZ EF
JP DA

900: 01 01 o3 03 03 06 06 06 06 06 06 OA 05 05 o6 06
910:06 02 02 02 02 Os 02 01 01 03 03 03 04 06 06 06
920: OA 06 OA 0D OD oC oC oC 0130B on on on oB on oA
93o: 0.4 01 01 01 in 0A oA ot e101010A DA 09 oA oA
940: 6A oB oA on oCoD OD oC oD oD oD on on oD

20 EF 	 950: OE on al oF OF on oF oF 11 11 11 01 11 11 12 12
IS DA 	 960: 12 12 12 12 12 00 00 00 00 00 00 00 00 00 00 IF

PHONE RING
By Cris Condon.

This program generates a ring similar
to that of a new phone. It would make
an ideal trick if you have one of these
phones!

22 TALKING ELECTRONICS No. 12

This program will allow the TEC to be
used as a CLOCK. The display is used
as the readout and the time can be set
as shown opposite.

This is a 24 hour clock and its
accuracy depends on the setting of
the SPEED CONTROL. In a future
issue we will present a crystal
oscillator to take the Mace of the
4049 to turn the TEC into an accurate
time-piece.

TEC
CLOCK

To set CLOCK:

at *St insert seconds
at 9* insert minutes.
at 91111: insert hours.

Example: 7:45:32
989: 32 9111At 45 Ms 07

START ED IY, Clock Buffer
LD B,2

900 	FU 2199 09 	Load pointer to clock counting buffer
904 	06 02 	 load number of 60's to be tested

LD A,(IY +0) 906 	FD 7E 00 	Read first clock buffer value
ADD A,Ot 909. 	C6 01 	add 1 to the value
DAA 9011 	27 	 decimal adjust the accumulator
CP 60 90C 	FE 60 	TEST A=60 sec/min
JR NZ,DISP goE 	10

F
 13 	GOTO 'DSP' if not equal

XOR A gio 	A 	 ZERO the accumulator
LD (IY+0),A
INC IT

911 	FD 77 00 	Store A in clock buffer
914 	FD 23 	Advance pointer

DJNZ EE 916 	EE 	complete LOOP if B is not zero
LD A,(IY +0) 911 	FD 7E 00 	Read hours value
ADD A,01 9221 	C6 01 	Increment hours value
DAA 27 	 Decimal adjust the accumulator
CP 249 91E

	
FE 24 	TEST hours =24

JR NZ,DISP 920 	to 01 	 If not GOTO 'DSP'
XOR A 922 	AF 	 ZERO A

DISP LD (IY + 0),A
LD B4O3 926

923 	FD 77 00 	Store hours in clock buffer
06 03 	Load number of bytes to be converted

LD HL,DISP BUF +6 928 	21 92 09 Load pointer to display buffer
LD IX,CLK BUF 92B 	DD 21 lig 09 	Load pointed to clock buffer

LOOP 1 LD A,(IX + 0) DD 7E oo 	Read CLOCK BUFFER value
INC IX 932 	DD 23 	Advance pointer by 1
PUSH BC 934 	C5 	 Save BC contents
PUSH AF
AND of 936

935 	F
	

Save contents of A
E6

5
 OF 	Get least significant 4 bits

LD BA 93$ 	 Transfer A to B
CALL LOOK 931 	CD 73 09 	Get pattern for B
POP AF 93C

. 	
Restore AF

SRL A 93E 	CB 3F 	Shift A one place to the right
SRL A 93E 	CB 3F
SRL A 941 	CB 3F
SRL A 943 	CB 3F
LD B,A 945 	 Load A into B
CALL LOOK 946 	CD 73 09 	Get bit pattern for B
POP BC 949 	Cl 	 Restore BC
DJNZ LOOP 94A 	to E3 	Complete LOOP if B is not zero.
LD B4OFFH 06 FF 	Load LOOP value

LOOP 2 LD IX.DISP BUF 9
94C
4E 	DD 21 IC 09 	Load pointer to digit patterns

PUSH BC 952 	C5 	 Save BC contents
LD B4O7 953 	06 07 Load number of digits to be displayed
LD C,40H 955 	OE 40 	Load bit pattern for display cathodes
LD A (IX +0) 957 	DD 7E 00 	Read display pattern
OUT (2),A D3 02 	Output pattern to port 2

95C LD A,C
OUT (1),A I/9 95D 	3 01

Load C into A
Output cathode pattern to port 1

SRL C 95F 	CB 39 Move cathode bit one place for MUX effect
XOR A 961 	AF Clear A
LD Eine 962 	IE 10 Load TIME DELAY value
DEC E 964 	ID Decrement E
JR NZ FD 965 	20 FD LOOP if not equal to zero
OUT (1),A 967 	D3 01 Turn off anode bits
INC IX
DJNZ loop 2

969_ 	
DD EA 96B 	tO 	

23 Advance to next pattern
LOOP if not zero

POP BC 96D 	Ct 	 Restore BC
DJNZ LOOP 2 96E 	10 DE 	LOOP if all digits not displayed
JP START 970 	C3 00 09 	Jump to START

LOOK ED DE, DISP
PUSH AF
LD A,E
ADD A,B

976
973 	11 7F 09 	Load DE with display pattern

FS 	Save AF
977 	UI 	 Load E into A
972 	 Calculate pattern address

LD E,A 979 	SF Load A into E
LD A.,() 9A 	IA Read pattern
ID _CH

H
LI,A 97

7
8

97C 	213
Store pattern in display buffer

DECEC Decrement HL
POP AF

L
 97D 	Fl Restore AF

RETURN 97E 	C9 End of sub-routine

DISP PATTERN: EB, 2O1, CD,

CLOCK
 E,

BU
A7,_

FFER
67, 29, EF, AF.

DISP BUFFER

97F

9$c

TALKING ELECTRONICS No. 12 23

859
85A
11C
115

5
D

85F
861
862
864
866
868
86A
86C
86D
86F
871
872

8
7
76

83

878

87
87A

D
87F
880
882
885
887
888
88A
88B
88D
88F
891
892
895
89
898

7

899
65c
89D
891
8A0
8A3
8A s
8A6
8A8
8AA
8Ac
8AD
BBD
8B2
8B3
8B4
8B7
8138
SBA
8BB
MBE
eco
8C2
8C
8C6
8C7
SCA
8CB
ICC
8CD
ICE
8CF
'Do
8D1
802
8D3
804
CDs

8D7

51

B
3E

B
72

20 02
lE 00

L6 03
FE ()
28 09
CB 26

BE
3E 4o

28 09
18 D7
4F
14
CD oo oB
18 05
of 00
CD oo oA
3E 01
77
io A2
21 07 08
3E oB
BA
38 1B
7E
FE Fo
28 03
Cb to
77
21 00 08
3E F8
77
Es
CD Bo 01
Ei
a ES
77
CD 7o 02
18 19
7E
FE 10
28 03
Db 10
77
21 00 08
3E DE
77
Es
CD Bo 01

SPIROID ALIENS * SPIROID ALIENS * SPIROID ALIENS * SPIROID
ra
m

ea

vs
a

O a
O

-a

311
Ire

a

O

CO

a

CO No
O

szi

co)

O
c•

CO

til

LD E,A
LD A
CP E,72
JR Zto8b1
LD Etoo
LD A,E
AND 03
CP (CODE)
JR 2,0871
SLA (HL)
LDA ,4o
CP (IiL)
JR z,0878
JR 0848
LD CA
INC D
CALL oBoo
JR o87D
LD CA°
CALL oAoo
LD A 01
LD (HL),A
DJNZ 0822
LD HL,o8o7
LD AsoB
CP D
JR C,o8A5
LD A,(HL)
CP FO
JR Z,0842
ADD A,io
LD (HL),A
LD HLIolloo

LD (HU
A,F8

LD
PUSH It
CALL otho
POP HL
LD A ES
LD (HL),A
CALL 0270
JR o8BE
LD A,(HL)
CP lo
JR ZIo8AD
SUB 10
LD (HL),A
LD HL 0800
LD ADE
LD 	.
PUSH Il

(HL)LA

CALL 01130
POP lit
LD A CA
LD (HL),A
CALL 0270
LD A,3F
OUT A, 01)
LD A,8A
OUT A,(o2)
HALT
JP 0802
Messages:

EI
3E CA
77
CD 70 02
3E 3F
D3 01
3E 8A
D3 02
7b
C3 02 08
00
01
0C
09
05
oD
12
00
04
05
12
1;
11
OE

SPIROID ALIENS
•by M Allison, 3095

This is quite a long program and
shows the length of listing required to
achieve a degree of realism. The
game uses all of page 0800 and
portions of 0900, 0A007 0800 and
ODOO.

The main program is at 0800 with
calls at the other pages.

The game consists of unusual-
shaped aliens passing across the
display. Each game consists of 16
passes and you must shoot down the
arrivals by pressing buttons 1.2 or 3.
To win, you must shoot down at least
11.

In the initial stages of the game. you
must acquaint yourself with the
connection betweeen the spiroid
shapes and buttons 1.2.3. After this
you will be ready to launch an attack.

Here's the listing:

Reserved for
message. 	800
Blank 	

802 00 08
00
21 03 09 LD HL,903 	

803 3E 80 LDA ,8o 	8ob
LD (RUA 	808 77

23 INC HL 	
809 3E oo LD Atoo 	80A 4F

LD C,A 	SOC
LD (HL),A 	1101) 77

21 11 09 LD FILM° 80E 3E 20
LD A,20 	811
LD (HL),A 	81; 77

23 INC HL 	
814 3E 00 LD Aloo 	815

LD (HL),A 	017 77
21 49 08 LD HL, 0849 818 3E in

LD Atm 	BIB
LD (FIL),A 	BID 77

06 10 LD Boro 	
IHE 16 00 LD Dt0o 	
820 ED 21 65 o8 LD 111,0865 	
822 CD oo oD CALL ODDO 	
826 3A 65 08 LD A4 	82 0865) 	

9 B9 CP C 	
82C 28 17 JR Z 0826 	
82D 21 49 08 LD HL,0849 	82F 00
832

CP 01 	833 FE oi
JR Z,083F 	835 28 08

FE 02 CP 02
JR Z,0843 	

837
839 28 08

LDA bi 	83B 3E 61
JR, 0&45 	830 18 06

3E of LD Ale 	
83F 18 02 JR 0845 	
841 3E 26 LD A,26 	
843 32 4D 08 LD (084D),A 845 3E(

LD A 	848
OUT A, (o1) 	84A D3 01
LD A,(syteow.) 84C 3E ()
OUT A,(02) 	84E D3 02
CALL 0900 	85o CD 00 09
CALL 090E 	853 CD OE 09
X0R,A 	86 AF
IN A(00) 	857 DB oo

PUSH AF
PUSH BC
PUSH DE
PUSH HL
LD HL(o903)
PUSH HL
LD HL(0911)

LD HL,0912
LD (A,00

HIJ LD I
DEC HL

A

LDA tm'
Id (HL),A
LD HL,o9o4
LD Atoo
LD
DEC HLA
LDA ,24
LD CHULA
LD HL,oB35
LD A.tot
LD (HL),A
EXX
LI) DE,o904
LD Ctoo
LD HI.,01368
LD
LD
LD (IIE),A
LD AtOt
OUT (01),A

O
LD

UT 0 (
IM

2),.) UT

8D8
809
8DA
8DB
8DC
8DD
IDE
8DF
8E0
8E1
8E2
SE;
8E4

8E
E

6
5

6
8E7
8E8
8E9
SEA
SEB
SEC
8ED
SEE
SEE
8Fo
8F1
812
8F3
8F4
SF;
8F6
817
818
8F9
SFA
8F11
8FC
8FD
8FE

Boo F5
Sol CS
Bo2 D5
Be; Es
Bo4 2A 03 09
Bol Es
Bob 2A 11 09
BOB Es
BoC 21 12 09
BOF 3E oo
BIt 77
1112 2B
B13 3E 20
B15 77
Bib 21 04 09
1319 ;E 00
BIB 77
BIC 2B
BID 3E 24
BIF 77
62o 21 35 oB
B23 3E 01
B2; 77
1326 D9
B27 11 04 09
B2A OE oo
B2C 21 68 oB
B2F 06 06
831 3E 01
1333 12
834 3E 01
B;6 03 01
838 7E
B39 D3 02

16
05
off
LA
00

04
off
04
00
04
00
01
01
01
iF
00

oD
05

04
00
of
06
00
05
01
11
s;
08
IA
00
iF

IA
01

of
lA
01

IF

CA

O
cc

z

b
y

LLI

O
rcc

CA
z

ex

O

O
cc

CA
a
LLI

O

O

fr.

a
LLI

4

24 TALKING ELECTRONICS No. 12
	

ALIENS * SPIROID ALIENS *

LD A,R 	COO
CALL o3B5 	CO2
AND o3 	Co;
LD E,A 	CO7
LD A,00 	CO8
CP E 	COA
JR Z oCoo 	COB
LD 	 COD
CP C 	COE
JR Z oCoo 	CoF

ED 5F
CD BS 03
Eb 03

3E oo
BB

5F

28 F3
7B
B9
28 EF

RETURN 	CII Cs
PUSH HL 	Doo Es
PUSH BC 	Doi C5
LD HL,oDob 	Doe 21 06 oD
LD B,oi 	DO5 06 01
LD A,R 	D07 ED 5F
DJNZ, 0D07 	Dog 10 FC
AND o8 	DoB
PUSH HL 	DOD

6
 Es

E o8

LD LH,oD33 	DOE 21 33 OD
ADD AIL 	Dii 85
LD L,A 	D12 6F
LD EIHL 	D13 SE
LD HL,OD33 	D1 21 33 OD
LD B4O8 	D17 06 08
LD C(HL) 	D19 4E
INC HL 	DIA 23
LD A,(HL) 	DIB 7E
DEC HL 	DIC 213
LD (HL),A 	DID 77
INC HL 	DIE 23
DJNZoDIA 	Da to F9
LD (IIL),C 	D21 71
POP HL 	D22 Ex
INC (HL) 	D23 34
LD A zo 	D2 3E 20
CP (ILL) 	D2b

4
BE

JR Z,oD2F 	D27 28 06
D29 FD 73 oo
D2C

LOOKUP 	D2D Et
TABLE 	D2E C9
FOR 	 D2F 36 01
RANDOM 	D;i 18 Et,
NUMBERS 	D33 01

D34 02
D35 03
D36 01
D7 02
D3

3
8 03

D39 01
D3A 02
D3B 03

Finally, the listing at 0900 must be
inserted. This listing can be found in
issue 11 P 36. under the heading
ALIENS ATTACK RUN. This will
provide the sound for the game.

This completes the listing. Before
pushing RESET. GO, it is a very good
idea to go through the complete
listing again and double-check each
of the machine code values. The
reason for this is to prevent the
program SELF DESTRUCTING. This
could happen if you placed the wrong
value in one of the locations which
caused the computer to write over
some of the contents of the program.

PUSH & POP
PUSH and POP are very much like
PUSH and PULL They are operations
which transfer the contents of a
register-pair to a holding area so that
the registers can be used for other
operations. This holding area is
called the STACK.
We say register PAIR because the
operations PUSH and POP require
that 2 registers be specified. Thus, if
the accumulator (Register A) is
required to be pushed onto the stack.
we combine it with the FLAGS
register to get the register pair: AF.

There are a few technical
complications concerning the
placement of bytes onto the stack but
these will not concern us at this
stage. It is sufficient to say that the
stack is located at the top end of the
RAM, (about 8 - 10 bytes from the
top)and as each new set of bytes is
placed on the stack, the pile grows
DOWNWARDS, towards the
program we are executing.

We have already seen the effect of
placing (PUSHING) more and more
bytes onto the stack (issue 11, P. 12)
and for this reason we must use the
stack very carefully. Otherwise it will
increase downwards and and crash
into our program!

Basically we PUSH one pair of bytes
onto the stack (from say register-pair
AF) then push another pair of bytes
onto the stack from say register pair
HL. This will leave the accumulator
and HL registers free for other
operations.

If we want to get the 2 bytes of AF
from the stack. we must firstly POP
the two bytes from HL and then we
can get the AF pair. It is a simple
principle of LAST ON, FIRST OFF.
Pushing and popping are very handy
instructions. 	By using a PUSH
instruction at the start of a routine
and a POP at the end, we can place a
routine such as a delay routine. which
will not affect the registers at all. This
routine is said to be TRANSPARENT.

PUSHING and POPPING can take
place between the stack and register
pairs including the index registers.
This group consists of the following:
AF, BC. DE, HL,IX and IV.

It is interesting to note that the bytes
are pushed onto the stack HIGH
BYTE first. then LOW BYTE. They
come off the stack LOW BYTE then
HIGH BYTE. But because the stack
is increasing DOWNWARDS. each
byte placed onto the stack will have a
lower address!

In the programs we have presented
you can see PUSH and POP in
operation. The stack is a temporary
holding area and only the top pair can
be accessed.

CALL 0900
LD Aso°
LD (DE),A
CALL 090E
INC HL
DEC DE
EX DEIHL
DEC (HL)
EX DE HL
INC DE
DJNZ oB3i
EXX
SLA (HL)
EXX
INC C
LD Alob
CP C
JP Z oB5A
JP 016C
Exx
POP HL
LD (o911),HL
POP HL
LD (09o3),HL
POP HL
POPDE
POPBC
POPAF
RETURN

LOOK-UP
TABLE
FOR
SPIRAL

PUSH AF
PUSH BC
PUSH HL
LD HL(o9o3)
PUSH HL
LD HL(0911)
PUSH HL
LD Bo9
LD HI. 0911
LD Alos
LD (HL),A
INC HL
LD A,00
LD (HL),A
LD HL,o9o3
LD A IF
LD (HL),A
INC HL
LD Atoo
LD (HL),A
DEC HL
CALL o9oE
DEC (HL)
LD Lot
CP (HL)
JP Z oA2F
JP 0A22
DJNZ °MA
POP HL
LD (o911),HL
POP Hi
LD (o9o3),HL
POP HL
POP BC
POP AF
RETURN

B3B
B3E

B41
B44

BO
B47
B48
B49
114A
B4C
B4D
B4F
B50
B51
B53
B54
B57
BSA
BSB
BSC
BO
B60
B63
B64
116
366
B67
1368
1169
BbA
BbB
B6C
BBD

Aoo
Aoi
A02
A03
Aob
A07
AOA
AoB
AoD
Mo
M2
A13
A14
At 6
A17
AIA
AIC
AID
A1E
A20
A21
A22
A25
A26
M8
A29
A2C
Aa
A31
A32
A35
A36
A39
A3A
A313
A3C

CD oo 09
3E oo
12
CD of 09

111
23

ER

LB
35

D9

13

D9
to Es

C 26
B

oC
3E 06
B9
CA 5A oB
C3 2C oB
D9
Et
22 11 09
Ei
22 03 09
Et
Di
Ci
FI
Cq
01
09
29
A9
Eq
LB

F5
Cs
Es
zA 03 09
Es
2A 11 09
Es
06 09
21 1i 09
3E os
77
23
3E oo
77
21 03 09
3E IF
77
23
3E oo

2B
77

CD of
35

B
3EE 01

CA a OA
C3 22 OA
10 Et*

22 11 09
Ei
22 03 09
El
CI
Ft
Cq

O_

C
a
Ca

CO3

O

C

Ca

CA
'CI

C

7:4

a
Ca

C

C

rn

U3

SPIROID ALIENS * SPIROID ALIENS

ca

O
cc

COJ

CO3

C cc
Co

4(
CO

W_

C

C cc

-4(

1.1.1

O
CC

C cc
CO3

4(
CO

1.61

* SPIROID ALIENS *

* SPIROID ALIENS * SPIROID

SPIROID TALKING ELECTRONICS No. 12 25

Sit

819
817

SIB
SID
SIF
$20
523
524
$26
$27

$2C
1112E
$30
$2
$34
$35
$35
$39
S3B
83C

541
543
545
847
849
84A
84D
84E
85o
1151

554
1156

SSA
11511

115E
C $5

95F
$62
$63
$6
$66

The 8x8 matrix was a very popular
'add-on', with nearly every TEC
owner building up a display.

Here are some more programs for the
matrix, commencing with a simple
routine similar to the FAN OUT on
P.34 of issue 11.

FAN OUT MK H

LD A 01 	SOO
OUT 13),A 	to2
OUT 4)),A 	004
RLA 	 So
PUSH AF 	t076
CALL DELAY tot
POP AF 	SOB
INC A 	SOC
JP NZ Sox 	SOD
LB A,FE 	Sio
OUT (3),A 	as
OUT (4),A 	814
RLA 	 MA
PUSH AF 	Si7
CALL DELAY SO
POP AF 	SIB
DEC A 	SIC
JP NZ 812 	62D
JP tos 	$20

BOUNCING BALL
by G L Dent, 3219.

Bouncing Ball is an extension of
'AROUND THE DISPLAY' (issue 11, P.29).

The diagram below shows the effect
produced by this program and by
varying the delay, it will appear as if
two or more LEDs are circulating the
display.

500 	3E 01
$02 	D3 03
$04 	OE O$
1106 	3E 01
SOS 	D3 04
SoA
SOB CD 00 OC
110E
SoF B 07
St! oD
$12 	Cs 06 0$

DELAY AT oCoo:
11 FF 06

7B

C1 03 DC
C9

Type the first section into the TEC
and RUN. This will check the code-
values and prevent a major mistake.
Type the second stage and RUN.
Continue this way until the whole
program has been inserted.

3E 02
D3 03
OE 0$
3E $0
D3 04

& 00 OC

B OF
oD
C2 ID oil

3E 04
D3 03
of OS
3E 01
D3 04

CD OO OC
78
CB 07
OD
C2 32 OS

3E OS
D3 03
OE 0$
3E So
D3 04

CD 00 oC

B OF

Cs C1 47 011

3E 10
D3 03
OE OS
3E 01
D3 04

& 00 OC

CDB 07
0
C2 SC OS

lin 	3E 20
D; 03

SOD 	OE OS
IMF 	3E SO
871 	D3 04

$74 "3 	& 00 OC
877 78
1178 CB OF
57A oD
87B 	Cl 71 08

$7E 	3E 40
D3 03

$52 	OE oll
584 	3E of
SII6 	D3 04

$119 "I 	$ 00 0C
SIC 7
SSD 	CB 07
UF oD
$90 	C2 016 OS

$93 	3E to
595 	D3 03
897 	of 0$
899 	3E So
598 	D3 04
89D 47
$9E 	CD 00 0C
SAI 78
$A2 	CB of
8A4 oD
8A4 	C2 9B oil

SAS 	3E 01
SAA D3 04
SAC of 06
SAE 	3E 40
SBO 	D3 03
$B2 47
$83 	CD 00 0C

$B7
8B6 7$

CB OF
5B9 OD
IBA Cs Bo MI
811D C3 00 08

JUMPING LEDs.
• by G L Dent 3219.

This program demonstrates multi-
plexing in an easily understood
manner.

By adjusting the SPEED CONTROL
the flickering effect of each LED will
be speeded-up to give a steady
pattern.

;E 01
D3 03
D3 04
07
15
CD oo 09
Ft
3C
C2 02 08
3E FE
D3 03
D3 04
07
FS
CD oo 09
Fl
3D
C2 12 of
C3 02 08

Delay at 0900:
II FF06
ill 7B B2
C

9
2 03 09

C

MORE PROGRAMS FOR
THE 8x8 DISPLAY:

26 TALKING ELECTRONICS No. 12

LD B4O8 800 06 08
LD Alot 802 3E 01
LD HL,oBoo 804 21 00 OB

PUSH
(3))

Ak A 809
807 D3 03

F5
LD AHL) 90A 7E
OUT(4 A SOB D3 04
CALL ELAY 80D CD 00 OA
INC HL 810 23
POP AF 811 Ft
RLC A 812 CB o7
DEC B 814 05
JP NZ 807

818
C2 07 08

JP Soo C3 00 08

To reduce the flicker even more,
change the value of B for FF to 50(or
similar value). If the display is too
dim, try our next modification:

INCREASING THE
BRIGHTNESS OF THE Sat
The brightness of the 8x8 can be
dramatically improved by sourcing
the display with a set of transistors.

These are soldered under the PC in a
row similar to the 8 sinking
transistors. Don't forget to cut the PC
tracks to each of the columns of LEDs
before starting assembly.

Delay at 0A00:
11 OF 01
IR
7B
B2

C9
C2 03 oA

5v a.--

BC338 C

ton l‘72
ST 3

20 	74LS273
or 74LS374

1

or 74LS377 10

at OB00:

BYTE TABLE
for letter A:

00
IF
3F
b4
64
3F
IF
00

LD A,01 800 3E 01
1102 D3 03 OUT(34A

OUT (A 80
806

4 D3 04
CALL kLAY CD 00 oC
LD A,02 809 3E02
OUT (3),A SoB D3 03
LD 4,20 80D 3E 20
OUT (4),A D3 04
CALL. DELAY Sit CD oo oC
LD A 04 81

816
4 3E 04

D3 03 OUT131,A
OUT 4 ,A
CALL ELAY 814

818 D3 04
CD 00 OC

LB AAS SID 3E 08
OUT (3)4 SIF D3 03
LD A,80 821 3E 80
OUT (4),A 823 D3 04
CALL, DELAY 825 CD 00 oC
LD Atli 828 3E 10
OUT(ISA D3 o3
OUT (4

3114
IA 82C D3 04

CALL ELAY 82E CD 00 OC
LD A,2o 831 3E 20
OUT (3),A 833 D3 03
LD 4,02 835 ;E 02
OUT (4),A 837 D3 04
CALL DELAY
LD A,40 83C

839 CD oo oC
3E 40

OUT 83E D3 03
OUT (4

IA
IA 840 D3 04

CALL ELAY 842 CD 00 oC
LD A,80 845 3E So
OUT (3),A 847 D3 03
LD 849 3E oil
OUT (4),A 84B D3 04
CALL DELAY 84D CD 00 OC
JP °Soo 850 C3 00 08

DELAY at 0000:

11 of OF
1B
7B
52
C2 C9 03 oC

Change delay to these values to
create the full multiplexing effect.

at °C00: 	
II OD 01
11 bE 00

PRODUCING A LETTER

This extension to JUMPING LEDs
program produces a letter of the
alphabet. It will show the flexibility of
multiplexing. Any figure or shape can
be created on the screen.

The letter we will produce is the letter
A. This will be somewhat dimmer
than when displaying one or two
LEDs due to the current limitation of
the latch at port 3. It cannot supply
sufficient current to turn on 8 LEDs at
the same time. A set of emitter-
follower transistors would cure the
problem.

PODUCING A SHORT DELAY
When running the letter program
above. you will find a disturbing
flickering produced by the scan
routine. This is basically due to the
number of operations which must be
carried out by the Z80 for each
complete cycle of the program.

This takes a lot of clock cycles and
the scan speed cannot be increased
without increasing the clock
frequency.

The solution is to provide a delay
routine which requires less clock
cycles for each loop.

This can be done by using the B
register and an auto decrement
function DJNZ. This will auto-
matically decrement register B until it '
becomes zero.

At MOO the following delay routine
is inserted:

PUSH BC
LD
DJNZ

B,FF

POP BC
Return

Note: The B register must be pushed
onto the stack before it can be used
as a decrementing register as it is
alreay used in the main program to
count the number of DATA BYTES.

CS
06 FF
10 FE
CI
C9

This will enable you to start experi-
menting with different letters and
shapes on the display and allow you
to see them in a brightly lit room.

We will continue next issue with
running these letters across the
display in a similar manner to the
running signs in shop windows etc.

AND 	NE) 	or‘11 H

TALKING ELECTRONICS No. 12 27

PRESENTING: 	 $9.70 per 2k 	k

I
No PC board required. k

OUR

1

1

RA WI

i

E
1
s 	 STACIE' 1

I 	
k

3
ADD 12K TO THE TEC. OR ANY NUMBER OF 2K BLOCKS 4

I FOR RUNNING LARGER PROGRAMS.

‘ 	 4
Some of the best ideas are 	Failure to see any of these breaks will
discovered by accident while others 	render some of the chips inoperative. 	

\

I are over-looked for years because of
$ their sheer simplicity. 	 In addition, the closeness of the

tracks highlights the need for a solder
h Such is the case with our RAM 	mask, all contributing to increasing
g STACK. 	 the cost of the project.

1
1 We have been thinking of a RAM 	But a PC board can actually be

\
PACK for a long time but never came 	eliminated.
up with an idea we really liked. Most 6
ideas revolved around a PC board and 	The simplest and best design for a

t trying to simplify the accompanying 	RAM pack requires no more than a
complexity of track-work. 	 set of IC's and sockets.

Due to the parallel wiring require- 	And that's when we struck upon our
ry 	

ii
t ment of memo chips. it is necessary brilliant idea
6 to have PC tracks running between 	

- a RAM STACK.

g each of the pins. Not only is this design the cheapest
arrangement possible. but it also 1 This produces a very FINE set of 	incorporates a number of advantages.

tracks and consequently a number of 	The best of these is memory can be 	 !
problems arise. The most trouble- 	increased or decreased in blocks of

t some of these is the chance of a land 	2k for little more than the cost of an 	 i
being cut-in-two when the holes are 	IC and socket. This will enable 2k or

I
kit being drilled. This causes a fine 	4k to be an economical addition. 	 S

break in the track-work which must
be repaired with solder when the 	With our design, if a fault develops,
components are being mounted on 	each chip can be tested individually 	 i

i the board. and removed if found to he defective.

!..,
. 	

• '
4 .

Two 'units' piggy-hacked together.
h The lower chip is accessed via the 	

- .: .- . •4 . 	
II, '

.. . • '
4 	' 	

-, •••••,-• •
1

-- 	. 1111,
S PC board; the top chip via the 	*

• 1 * . 	• •
g jumper lead. 	 *. 	 • iw ••

kg mss* 2 	 . • 	 §

2
a

PARTS LIST:

3

3 	 ... - -, for each 2k: 	 1

(
t....ts

ds. A 	
1 - 6116 orequiv.
1 - 24 pin IC socket 	

i
.- . 	 1 - length of hook-up flex 	S g ' 	 ilnliat..., 	... 	1 - matrix pin & connector.

	

:i. 	 I
3 	

, • 	T-4:44
1,..- "'"

4 	
t,

. 4.4...i.

......•

• ••• , .'1"..

6:4:14ralrAVAIVIvAIKOOKKIPWIrarIlreAllge./..4%./..WAW/AlAWAIIMPter/AlraWir/Ar././..141:4111.1%"IirarevaNteAlIArAVAIO
5

28 TALKING ELECTRONICS No. 12

'PM

V.

ViroAKKAKKAKe.m.FAiwArigrorAffirolmumuir.#41r,

Putting all these advantages together
k you can see why we are pleased with

this design. The accompanying
photos shows how it goes together.

t There isn't much to explain about
construction. Ifs just a matter of

S placing an IC socket over a RAM chip
and soldering each of the chip-pins to
the sucker pins

P.
'le 4

Make sure the solder does not flow
down any of the IC's pins otherwise
you will not be able to insert the chip
into a socket when putting the whole
thing together.

The only other connection to each of
the RAM chips is at pin 18. This is the
CHIP ENABLE pin and an individual
line is taken from one of the outputs
of the 74LS 138 (near the oscillator
chip). to this pin.

Each pin 18 of a memory chip must be
kept separated from the others so
that any chip can be individually
selected.

The close-up photos show how this
pin is bent away from the rest so that
it does not make contact with the
lower IC socket.

Only the lowest RAM chip in the
stack is selected by the track under
the PC board. All others are
connected via jumper leads, directly
to the relevant output of the 74LS138
mentioned before.

Without any additional decoding. we
can add a stack of 6 chips to the
EXPANSION PORT SOCKET
making a total of 14k for the TEC.

The lowest chip will have address
values starting at 1000H to 17F Fii.
The others will have values as shown
in the diagram below.

4

. 4

6th RAM
5th RAM

.---4th RAM
3rd RAM
2nd RAM

1.11P..00,11,..1111.111.'".1111.111P"Kelt

F
.4

E
—41

The first chip in the stack is enabled
via the Expansion Port socket wiring.
The other chips are enabled by
connecting a jumper lead from pin 18
to one of the pins as shown above.

Of course you can ENABLE the chips h
`out-of-order', by mixing up the 3
juniper leads. This may fill the bottom
chip, then the top chip, then number
3. then the fifth etc. No damage will k
result, it's just not a systematic way
to do it.

This is the EXPANSION PORT

17FF

•

07FF

0000
1FFF

1800
37FF

3000

The start and finish address for the
first 6 RAM chips.

.041V-0411P:AAKIAIAMIII:WOrAIAr.iI/Irari

TALKING ELECTRONICS Na. 12 29

2K

EPROM

2k

6116

RAM

4ININSOM.10b .14 10

2k

6116

RAM 0
2k

6116

RAM

0
41

27FF
0800

2000

3800

3FFF

OFFF

2800

1000
2FFF

Connecting the TEC to a: Parts: $24.110 PC board: OM

PRINTER/PLOTTER
4

DATA BUS

+5 VOLTS

TO WAIT ON TEC 2

4069

13

24
21

20
12

OE
GND

100n
GND

a

a.GND

ADDRESS BUS

000
00 r Me NO M1

	Ji 4 4
a
a 2

a.
a

6

Ai— 7

tut 19
a 22
a a 23

a 8

6

1

	

3 	
2716

9.11
... CI 0 CI a a

mna rerm

20

74LS273

10
r 	0 in 	to nl)11

Nfl a Nlp r
CY 0 C 0

12
BUSY 11

	pia to m
DATA7 8 cr
DATA6 7
DATA5 5 z
DATA4 E 5 A 	DATA3
DATA? 3. 2
DATA 1

	

crwir 	

3.5.

MEMORY SELECT 63

VO SELECT ifZ

Printer/Plotter circuit

1

1
1
1

1
1
1

 1
1

Buy a Dick Smith VZ 200
Printer-Plotter.

This project explains how to directly
access (talk to) a PRINTER/
PLOTTER. We have used the most
readily available printer/plotter as it
is not only the cheapest. but can be
obtained from a number of suppliers.

Talking to one of these clever little
performers is not very involved when
you know how. But without the
correct information it will remain
completely DEAD. When you know
how to supply it with the right stuff, it
will do practically anything bar talk to
you.

Actually you only have to send it the
necessary codes to produce the
character, all the creation of the
shape of the symbol is done by the
chip within the printer.

Not only do these printer/plotters
accept instructions to produce
numbers letters and' symbols, but
they can also be told to rotate, plot,
vary the size of the characters and
move in almost any direction.

There is a two-way interaction
between printer and computer. Data
is sent to the printer faster than it can
be executed and to save holding up
the computer, it is deposited in a
FIFO register in blocks of about 4
bytes (in our case). Larger computers
can be instructed to go away and
execute other work while the FIFO
register empties.

Bursts of data are transmitted like
this until the whole program is
executed.

As we have used a standard printer, it
is obvious that it has been designed
to connect to any computer which
has a normal, full-size, key-board so
that each key will produce the
corresponding letter on the paper.

But this luxury is not absolutely
necessary as the computer merely
produces a code number which is
sent to the printer.

The code number (or value) is called
an ASCII number or ASCII CODE and
fortunately is identical for all types
and models of personal computers.

The secret to getting the printer
to work on the TEC is the latch
chip. It holds the data long
enough for the printer to read it.

PARTS LIST

100n mono block

4049
74LS273
2716 (programmed)

14 pin IC socket
20 pin IC socket
24 pin IC socket
24 pin wire-wrap socket
24 pin DIP HEADER

36 pin Centronics type plug.

tinned copper wire
hook-up flex

3 - 'quick connect' pins and sockets

PRINTER INTERFACE PC BOARD

30 TALKING ELECTRONICS No. 12

The printeriplotter interface board complete
and ready for plugging into the TEC & printer.

This means all we have to do is
produce the same set of ASCII
numbers (or codes) and the printer
will produce the correct set of shapes
on the paper.

Thus we don't need a full-size
computer at all.

It may be a bit slow pressing the keys
on the TEC, but all the printing
capabilities will be possible, and
that's all we want.

In this series of articles, we will
explore the functions of the printer/
plotter and create some amazing
effects.

The most important aspect of this is
realizing you can create a CONTROL
PROGRAM with machine code
listings and thus fill the minimum
amount of memory for any given
effect,

In this way you can produce you own
system and expand it as much as you
like without having to resort to
buying a ready-made console, This
will produce a cheaper and more
compact system and will gain you
much more respect from your boss or
customer.

The first part of this project requires
assembly of the printer interface
board. This board contains a latch
and EPROM (filled with a number of
handy programs). This will give you
a run-up program to test the interface
board and provide instant transfer of
data from computer to paper to
reduce the amount of button-
pushing.

The other chip on the board provides
an inverted WAIT signal to halt the
Z80. This basically keeps the two
units in synchronisation,

Set out all the parts on your bench
and check everything. Solder the
sockets, cap and 6 jumper links to the
board. Mount the wire-wrap socket
through the board so that the long
pins act as 'stand-offs' for the
component header plug. See the
RELAY DRIVER BOARD article and
photos for details of how this is done.

The final task involves connecting
the board to the 36 pin Centronics
plug.

WIRING THE PLUG
Wiring the Centronics-types plug to
the printer interface is very easy. On
the printer interface PC board there
are 24 holes. Twelve of these are
numbered. 	These 	numbers
correspond to the numbers on the
Centronics plug. Solder a length of

We used a VZ 200 printer/plotter
but there are other units with
the same internal workings on
the market. But they may not
have the same input Instruction
set.

The pens use water-based ink and
tend to dry-out fairly easily. If they
fail to start: open them up, add a
drop of water, heat them up and fit
them back into the printer.

A close-up of the 4•pen
print head.

hook-up wire between each hole and
a corresponding hole on the
connector plug. Pin 10 is not used, so
no lead is needed. It is not necessary
to use special connecting flex such
as twisted pairs or screened lead. Our
prototype worked perfectly with
ordinary hook-up flex. It's best to use
different coloured flex for each line to
make tracing easier. These leads can
be about 50 cm long and kept
together with ties or tape at regular
intervals.

TALKING ELECTRONICS No. 12 31

Pin-out for 741S273
This photo shows the connections to the TEC. y: 1-9/ 40

•

k 7 I . At: 4,

74LS 273
Vcc

07

07

06

96

05

05

114

04

CP

All the rest of the action must come in
the form of data from an outside
source.

This is why we need the TEC. It
supplies data at high speed to get the
print-head moving.

Connect the centronics plug into the
rear of the printer and fit the
PRINTER INTERFACE PC BOARD to
the computer. Connect the 3 flying
leads as shown in the diagram:

MR

40

01:1

DI

Q1

Q2

02

Da

03

GN 0

The only remaining wires left are the
3 control lines. These are:

Memory select 83,

I/O select 06, and

WAIT.

MININESSMIIMINer —

All the parts shown are included in the kit.
To get something interesting out of
the printer you will need to send it a
program. The first of these is:

KEN's START-UP PROGRAM:
Make sure the print-head is to the left
of the printer as when the printer has
been switched on.

Push ADdress 18A0 GO GO.

Watch the result.

This type of program is beyond us at
the moment but you will be capable of
similar effects after reading this
article.

For now, the next step is to be able to
get letters and characters onto the
paper.

PRODUCING LETTERS etc.. .

All information is fed to the printer in
ASCII code. If you want a particular
character, the correct code must be
sent to the printer. Even if you want to
send a number to the printer, such as
150. you must send it in the form of
ASCII. This means 150 translates to
31 35 30. as you will see later from
the table.

A small program is required to
interpret your button pushing and
send it to an output port This is
similar to making a segment on the
display illuminate and the program
for this is contained in the PRINTER/
PLOTTER EPROM at 1980.

To use this program:

Press ADdress 1980 GO GO

The display will go blank and the TEC
will be ready for conveying your key-
board instructions directly to the
printer.

These are fitted with 'quick connect'
terminals which push onto matrix
pins on the main PC board. Heat-
shrink tubing can be placed over the
terminals to strengthen the solder
joint and make them easier to handle.

When the printer is first turned on it
runs through an initial program (from
its internal memory) which feeds the
paper. sets the pen colours and starts
the ink flowing by producing a box
with each pen.

After this, there is very little else you
can do via the buttons on the unit,
except forward feed, change the
colour of the pens and/or remove
them.

32 TALKING ELECTRONICS No. tz

III
Ks

iO

Each of the letters, numbers and
symbols is shown in the table below
and the corresponding hex value
must be used for the symbol to
appear on the paper.

Try obtaining all the letters, numbers
and characters by following through
the table.

Any sentence you send to the printer
via the keyboard can be re-presented
again and again if placed into memory
before-hand. It can also be corrected
and adjusted (within limits). To do
this, place the data at 0800 and call a
program at 1130. PRINTER/PLOTTER ASCII VALUES:

SPACE 20 e 30 @ 40 P 50 ‘ 60 P 70

:gigt 08 9 	21 1 	31 A 41 0 51 15. 	61 cl 71

rEO OA " 	22 2 32 B 42 R 52 b 62 7 72

CR. OD 4 	23 3 33 C 43 S 53 C 63 S 73

Del 11 $ 24 4 34 0 44 T 54 d 84 t 	74

X 25 5 35 E 45 Li 	55 e 65 u 75 oc2 12

Mini 1 0 g. 	26 8 36 r 46 k-.) 	56 f 	66 td 76

' 	27 7 37 G 47 W 57 9 67 Li 77

28 9 38 H 48 X 58 h 68 x 78

29 9 39 49 Y 	59 1 	69 y 79

2A ; 	3A 4A 2 5A j 6A z 7A

lett RE O If - 	28 ; 	38 4B , 	5B (7B l< 	6B

2C 3C 4C SC l 	6C 7C

213 = 3D :r. 	40 ; 	50 m 68) 	70

2E •, 	3E 4E - 	SE n 6E -- 	7E

/ 2F ---s 	3F 4F 5F 0 6F E 7F

Try the following sequence and you
will see a word appear:
49 4E 43 52 45 44 49 42 4C 45

For the hex value 49. the letter I will
be printed. Press each number only
ONCE. The first press will appear to
have no effect, but as soon as the
second button is pressed. the letter I
will be printed.

fio

Be very careft I not to press button-
sequence 11 or 12 as this will cause
the mode to hange and everything
will appear to 'lock-out'.

Try writing a sentence using the hex
key pad. It's slow but eventually gets
you there. A space between words is
created by typing 20.

PRINTER INTERFACE TEC - 1/1A

Insert the following at 0800:

49 4E 43 52 45 44 49 42 4C 45 20 20
48 55 4C 4B oD oA ID FF.

Push ADdress 100 GO GO.

Recall it again by pressing:
ADdress 1850 GO GO.

THE LIST PROGRAM
This program lists any part of the
EPROM. RAM or any additional
memory you add to your TEC. In fact
the first thing you can do is get a
print-out of your MONitor ROM.
Many readers have written
requesting a listing of the MONitor
and now they can produce it
themselves.

But before you can get a listing, you
must make a modification to the
operation to the printer. This involves
setting the two switches under the
printer:

The PC layout for the
Printer/Plotter. The
overlay and parts
positioning can be
gained from the photo
on P 31.

TALKING ELECTRONICS No. 12 33

This is how to do it.

On the bottom of the printer is a small
plate. Undo the screws and remove
the plate. Inside you will find a bank
of 4 switches. Switch 1 should be in
the OFF position and switch 2 in the
ON position. Don't worry about
switch 3 and 4.

When the switches are set like this.
CR (carriage Return) will set the
print-head to the left of the paper
without feeding the paper forward.
The paper can then be fed forward by
using LF (Line Feed). The switches
should be set like this because the
program in ROM automatically line
feeds after each carriage return. If the
switches are not set like this. the
typing will be double line spaced.

Enter the following into the TEC:
ADdress 1800 GO GO:

The display will go blank and the
printer will CR and LF. Now enter
0000 and the printer will start printing
out characters in pairs. This is a
listing of the contents of your monitor
ROM.

If you want a listing of any of the
programs you have typed into
memory, start at 0800 or where your
program starts, and enter a 4-digit
number into the keyboard. It must be
4 digits. so don't forget the leading 0.

The text mode is not very interesting.
After all, we have seen electric/
electronic typewriters for years, But
for a print-head to produce
GRAPHICS! That's different!

GRAPHICS MODE
The program at MO can also be used
to generate graphics on the printer.

Remember, all information must be
programmed into the printer in ASCII.

Type the program below into the
TEC's memory at 0800. An FF is
placed after the last piece of data to
signify the end of a program. Now run
the program at 1880 by pressing
ADdress 11180 GO GO.

at 0800: 0A OD 12 49 2C 44
311 30 2C 30 2C 38 30 2C 2D
38 30 2C 30 2C 2D 38 30 2C
30 2C 30 OD FF.

The printer will draw a square.

Look at the listing. It may look
complex but can be easily decoded
using the table. It will decode to this:

OA = LF = Line Feed.
OD = CR = Carriage Return
12 = DC2 = Graphic Mode
49 = I = sets the pen's location as

co-ordinates 0.0.
2C = , =Separates I from D
44 = D = draw from present location

to the co-ordinate given by the
next byte(s) of data.

38 = 8
30 = 0
2C = ,
30 = 0
2C = .
38 = 8
30 = 0
2C = ,
2D = -
38 = 8
30 = 0
2C = ,
30 = 0
2C = .
2D = -
38 = 8
30 = 0
2C=,
30 = 0
2C = .
30 = 0
OD = CR = carriage return
FF = signifies end of program.

The printer uses a co-ordinate system
exactly like the x.y axis used to draw
graphs. The origin is 0,0 (or 00.00)
and the positive direction of x and y is
shown on the diagram,

The co-ordinates of the corners of
the box are shown in this diagram.
This clearly shows how the values
are obtained.

0,0
	

80,0

0,-80 80;80

The program can be separated into 4
sections. each drawing one side of
the box.This will show how the
program goes together.

The following program produces the
top of the square:

at 0800 type: 0A OD 12 49 2C 44 38
30 OD FF.

ADdress 1880 GO GO.

The result will be:

Let us produce a line the full width of
the paper. For this you will need a 3-
digit value. The printer is capable of
accepting a value as high as 999 (also
-999) but this will be too high for our
width of paper. Try 300.

The ASCII value is 33 30 30.

at 0800:
OA on 12 49 2C 44 33 30 30 2C30
0D FF.
Press ADdress 1880 GO GO.

The final OD is important to get the
printer to execute the graphics
command.

The value 300 will not quite reach the
far side of the paper. Try 450. This
will be about the longest line possible
and don't forget to use the ASCII
values in the program.

Shorten the side of the box to 80 and
continue with the experiment.

The second side of the box will be
produced at an angle other than 90'
by inserting the following co-
ordinates: 50, -80

at 0800:
OA 0D 12 492C 44 38 30 2C 302C 35
30 2C 2D 38 30 OD FF.

Run the program. Does it produce
two sides of an irregular figure'

The next side will be produced as
follows:

OA OD 12 49 2C 44 38 30 2C 30 2C
35 30 2C 2D 38 30 SC 31 35 30 2C
ID 38 30 OD FF.

Run the program and see the result.

Finally:
OA OD 12 49 SC 44 38 30 SC 30 2C
35 30 2C 2D 38 30 2C 31 35 30
2C 21) 38 302C OA OD II ID OD FF.

Produce other shapes and you will
understand how to plot co-ordinates.

X

34 TALKING ELECTRONICS No. 12

1425,43
c75,43

0,0

025,-43 	75,-43

ti

60,-120
	

12.0,-120

HEX
The second shape we will investigate
is a HEXAGON.

To produce this shape you need to
know the value of the internal angle
and produce a 30° 60° 900 triangle as
shown. This will give you the length
of the sides of the triangle and from
this the first set of co-ordinates can
be obtained (25,43) These values are
1/4 of 100. 173, which are the
lengths of the sides of the triangle.

The second co-ordinate. 75,43 is
found by adding 50 to the value 25.
Continue around the hex shape until
the figure is closed.

This is the listing for the printer:

at 0800:

12 49 OD 44 32 35 SC 34 33 2C 37
35 2C 34 33 2C 31 30 30 2C 30 2C
37 35 2C 2D 34 33 2C 32 35 2C 2D
34 33 2C 30 2C 30 OD FF.

0's and X's
The new instruction with this shape
is the MOVE command.— 4 0
This instructs the pen to lift from the
page and move to a specified location
without drawing on the paper.

Here is the listing and the shape
which will be drawn:

0800 OA OD 12 49 OD 44 31
0808 30 2C 30 OD 4D 36 30
0820 36 30 OD 44 36 	30 2C
0818 31 32 30 OD 4D 30 2C
0820 36 30 OD 44 31 	38 30
0828 2D 36 30 OD 4D 31 32
0830 2C 36 30 OD 44 31 32
0838 2C 2D 31 32 30 0D FF

This is a decoding of the first part of
the listing. This will be sufficient to
understand how the program is
written.

OA = LF =Line Feed
OD = CR =Carriage Return
12 = DC2 = Graphics Mode
49 = I = initialize the co-ords 0,0
OD = CR = signifies the end of the

previous command. It does not
cause the carriage to return but
enables the previous command

to be carried out.
44 = D = Draw
31 = 1
38 = 8
30 = 0
2C = .
30 = 0
OD = CR = end of draw statement.
40 = M = Move. The pen is instructed

to move without drawing.
36 = 6
30 = 0
2C = ,
36 = 6
30 = 0
OD = CR End of Move statement.
44 = D = Draw
36 = 6
30 = 0
etc.
etc. 	60,6o 	120,60

This diagram shows the value of the
co-ordinates required to draw the
shape.

Copy out the complete listing and
decode it to prove that the path taken
by the print-head is as shown in the
diagram.

ADdress 1880 to use.

38
2C
2D
2D
2C
30
30

WAR GAMER'S DELIGHT
The full impact of this effect is shown
on the next page.

The first thing you notice about the
program is a set of values at the
beginning which the printer does not
recognise. This means they must be
Machine Code values for an
'operations' program for the Z80. And
they are.

The program produces a honey-comb
pattern.

Anyone into war games will soon
recognise the possibilities of the
honey-comb as a playing board. The
reason is each block has 6 borders,
increasing the possible moves and
thus the strategy, over a regular field
of squares.

This shape is created using a picture
element of a hexagon attached to a
straight line thus:

0-
This pattern is repeated 4 times
across the paper and then a move to a
new starting point-450,-86 down the
paper.

The co-ordinates of the new starting
point can be explained as follows:

After each picture element is drawn,
the printer is initialized. This means
that the present co-ordinate of the
pen is taken as 00,00.

This gives us a value of 450,00 for the
commencement of the 4th picture
element with reference to the origin.

The next row of hexagons commence
at the left-hand edge, which is -450
with reference to the above X co-
ordinate and a y value of -86, with
reference to the y value above.

The only way to understand how the
honey-comb has been produced is to
decode the listing.lt contains two
loops, one to draw the picture
element and the other to count-to-4
across the screen.

Write each of the ASCII codes in a
single file and alongside it place the
printer value it represents.

You can experiment further by
making the hexagons smaller. This
will use a 2-digit ASCII value for the
length of the sides. In the program,
the original 3-digit ASCII values have
been converted to 2-digit by using 00
for the 3rd value.

TALKING ELECTRONICS No. 12 35

WAR GAMER'S DELIGHT

The first 18H bytes (31 bytes is the
MAIN program and this contains the
instructions to fetch one byte of data
from the printer program and send it
to the printer.

Data for the printer is stored in the
form of a BYTE TABLE and starts at
0820.

The main program is divided into two
separate parts. 0800 - OSOF is a loop
which loads the printer program and
runs it 4 times.

- SID loads the data for the
MOVE commands and each piece of
data is sent to the printer until FF is
detected.

The count-to-4 operation is
performed by DJNZ (at Sof) which
automatically decrements register B
by ONE on each pass of the loop until
it becomes zero.

The program then advances to
loading HL register-pair with the
contents of memory location OM
and this instruct the print-head to
move to the left-hand edge and down
the paper to a new starting point. The
main program then jumps to the start

5
no) via instruction JR Z E7 (at

17).

0800 06 04 21 20 08 7E FE FF

0808 28 05 03 06 23 18 F6 10

0810 Fl 21 60 08 7E FE FF 28

0818 E7 03 06 23 18 F6 FF FF

0920 12 49 OD 44 32 35 2C 34
0828 33 2C 32 35 2C 34 33 2C

0830 31 30 30 2C 30 2C 37 35

0838 2C 20 34 33 2C 32 35 2C

0840 20 34 33 2C 30 2C 30 01,

0848 40 31 30 30 2C 30 00 44

0850 31 35 30 2C 30 00 FF FF

08543 FF FF FF FF FF FF FF FF.

2860 40 20 34 35 30 2C 20 38
0868 36 00 FF

DATA
820 	12
821 	ee
822 	OD
823 	44
824 	32
825 	35
826 	2C

828 	33 828 	33

82A 	37
82B 	35
82C 	2C
82D 	34
82E 	33

830 	31
831 	30
832 	32.
833 	2,...
834 	30
835
	

2C
836 	37
837 	35
B;8 	2C
839 	2D
113A 	34
83B 	33
83C 	2C
83D 	32
133E 	35
8;F 	2C
840 	2D
841 	34

829 	2C 84D

82F 	2C 853

FOR PRINTER:
Graphics Mode
Initialize
CR
Draw 	847 	OD CR

2 	848 	4D Move

5 	849 	31
84A 30 	

0 ' 	$4B 	30
; 	84C 	2C

30
17 	84E 	op CR
5 	84P 	44 	Draw

' 	
850 	31

4 	851 	35 	S
3 	852 	30 	0

2C
i 	854 	30 	0
0 	855 	OD CR
0 	856 	FF 	End

0 	 Data for
, 	MOVE COMMANDS:

7 	860 	4D 	Move
5 	Ng 	2D •
I 	862 	34 	4
• 863 	35 	5
4 	864 	30 	0
3 	865 	2C

866 	2D 	•
i 	867 	38 	8
5 	868 	36 	6
, 	8b9 	OD 	CR
• 86A 	FF 	End
4
3

0

O

842 	33
843 	IC
844 	30
845 	2C
846 	30

)800 06 06

1808 28 Os

0810 Fl 	21
0816 E7 03
0820 12 49

0826 36 2C

0630 00 36

0838 2C 2D

0840 2D 32
0846 40 00

0850 39 30

eese 	!:17 	Fr
0860 40 20

0868 32 OD

21 	20

03 06

60 08
06 23

01) 	4 a

34 35
30 zr
32 36

36 2C

3i5 	30

00 2C
FF

34 35
Fr

08

23

7E
18

31
2C
30

2r.:

30

21

30

FF.

30

7E FE RF

18 P6 	1E

FE EF 	28
F5 Fr EF

35 2C 32
32 36 2C

2:: 	34 	35

35 2C

2C 30 OD
30 011 44
OD CF 	FE
;I: 	Fr 	rF

2C 2D 35

LD B4O4

LD HL,o820

LD
CP

Ft A.,(HL)

JR Z 05

OUT (ob),A

INC HL
JR Fb 110 Ems}

DJNZ Fl

LD HL 0860

LD
CP

Ft A.,(HL)

JR Z E7

OUT (06),A

INC HL
JR F6 lin 814;

NOT USED
NOT USED

800 06
801 04
802 21
803 20
804 08
805 7E
806 FE
807 FF
808 28
two 05
SOA D3
SOB 06
SOC 23
80D 18
BOE Fb
80F 10
810 F1
811 21
812 60
813 08
814 7E
Si; FE
816 FF
817 28
818 E7
Sig D3
SIA 06
8111 23
siC 18
SID Fb
BIE FF
SiF FF

36 TALKING ELECTRONICS No. 12

COMPUTER
GRAPHICS

-

800
sos

06 06 3E
3E 12 D3

oA
06

03
II

06
60

10
00

FC
06

810 08 C5 06 04 21 80 011 7E
SIB FE FF CA 23 OS D3 06 23
820
828

C3 17 08
06 3E ID

10
D3

EF
06

3E
AF

11
D3 06

D3

830 3E 12 03 06 CI 10 DA
838 FE FF C2 42 08 3E 11 D3
840 06 C7 32 41A OS 13 IA 32
848 9B 08 13 IA 32 9D oil

1$0 850 IA 32 9E 13 3 OF
1158 00 FF 00 FE 00 FF 00 FF
860 00 34 20 34 2D 34 2D
868 2D 34 00 34 FF FE FF
870 FF FF FF FF FF FF FF FF
878 FF FF FF FF IF FE FF FF

888
880 49 2C 44

38 30 2C
35
2D

30
38

2C
30

30
2C

2C
30

890 2C 2D 38 30 2C 30 2C 30

8A
898

0
OD 4D 00
FF FF FF

34
FF

2C
FF

00
FF

34
FF

0D
FF

at 8911189E
this will
negative

800
802
804
806
808
80A
SoC
SoF
811
812
814
817
818
81A
82D
81F
820
823
825
827
829
82B
820
112E
830
832
834
835
837
838
83A
8311
83F
841
842
845
846
847
84A
8B
84C
84D
84E
84F
Bso
851

load instructions
•

will change
from 00 34 to 21134

create the movement
direction.

Complete decoding
with explanations.

the data 	The 	Machine 	Code
and 	listing 	required 	to

in the produce the DIAMOND.
of the above listing,

Load' B with 6
Lead A with the Forward Feed instruction

OUT to.. the printer port

0$04 	create 6 loops of forward feed.
Select the Graphics Made
OUT to the:printer

Load DE with start of Direction Change TABLE
Sets number of colour changes before a direction change

BC 	Save B. B must be paired with C to be saved
Sets number of squares:for each colour
Load HL with start of DRAWING TABLE

Load the data at 880 into A
detects end of TABLE
At end of table. pimp to 823

OUT data value at 880 to printer
Increment to 881. 8S2 etc

Jump to'817 to increment through Drawing Table

0814 	Loop DRAWING TABLE 4 times
Change to TEXT MODE

OUT to printer
NEXT COLOUR

OUT to printer
Clear A
OUT to printer

Select GRAPHICS MODE

OUT to printer
Get B from. STACK. Actually BC.

01311 	Decrement 8 and jump to' 811 for 6 loops
Load A with data at 860 etc 	•
Detects end of DIRECTION CHANGE program

If not zero. pimps to 842
If zero. change to TEXT MODE
OUT to printer

END OF PROGRAM.* * * * * * * * * * *

Load first byte of Dirtation Change table into location 089A
Increment DIRECTION CHANGE table

DE) 	Load nest byte of Direction Change table into A

Load this byte into location 0898
Increment the DIRECTION CHANGE table

Load the third byte into the accumulator
Load this third byte intO loection 089D

Increment the DIRECTION CHANGE'TABLE.
Load the fourth byte of the direction change table into A E

)
)
, A 	Load this fourth byte into location 0119E

Increment the. DIRECTION CHANGE 	 tot

06 	06 	LD B4O6
3E 0A 	LD A,oA
Di 06 	OUT (06),A
10 	FC 	DJNZ
3E 	12 	LD A,12
D3 	06 	OUT (06),A
n 	60 o8 LD DE,0116o
06 	08 	

PUS
Ho8

CS 	 H
06 	04 	LD B4O4
21 	80 08 LD HL,o880
7E 	 LDA ,(HL)
FE FF 	CP FF
CA 23 08 JP Z,0823
D3 	06 	OUT (06),A
23 	INC HL
C3 	17 08 JP 0817
to 	EF 	DJNZ
3E 	it 	LD A,11
D3 06 	OUT (06),A
3E 	ID 	LD A,1D
D3 06 	OUT (e),A
AF 	XOR

06 	OUT (06),A D3
3E 	12 	LEI A,12
D3 06 	OUT (06),A
CI 	POP
10 DA 	Dna

BC

a 	LD A,
FE FF 	CP FF(DE)
C2 	42 08 JP NZ,0842
3E 	II 	LD Alit
D3 06 	OUT (06)1A

C2 	LD (0
7 	S

D
 T 0

9A o8 3894)4
13 	 INC DE
IA 	 LD A,

9B 32 	LD (089B),A
13 	INC DE
IA 	LD

3 	

A,(DE)
9D 08 32 	LD (080),A

1 	 INC

32
9E 08 	

NDA

 0D

DE
ED

C3 of 08 JP 080F
table.ready 	nest

Jump to EIOF to commence the twat direction

Being able to draw some of the basic
shapes (as we have shown), opens
up a whole new world of computer
graphics.

If we take the box-shape. we can
produce a very effective pattern
simply by re-defining the start co-
ordinates and repeating the shape
many times. The result can be any-
thing from a 'check-tie' to an irregular
octogon.

The colourful patterns which can be
obtained (of which we can only see
the result in black and white) is
produced by a combination of
drawing, shifting and colour-
changing. The first of these to be
investigated will be an irregular
octagon or DIAMOND.

We have already outlined the
structure of the program and briefly it
is a set of instructions which are
loops. Each sets a particular
condition and then decrements on
each pass.

For the diamond shape. a square is
generated at the origin, 00,00 via the
program at 0880. The lengths of
the sides of the square are So.
When the 4 sides have been drawn,
the pen lifts off the paper and moves
to a new origin with co-ordinates
04.04. The _program is now up to
location 083C. It then jumps to 0842.
The contents of the accumulator
(which is the value at location 0860
i.e. 00) is loaded into MA.. Register
pair DE is incremented and now looks
at location 0861. The value 34 is
loaded into the accumulator. At 0847
the contents of the accumulator is
loaded into location 086B.

So far, the program at 0880 has not
been altered but the next two sets of

TALKING ELECTRONICS No. 12 37

Mem ADD:
oFFo
OFEF
oFEE
oFED
OFEC
oFEB
oFEA
°FM
°FES
oFE7
OFE6
OWE;
o
FE3
FE4

o
oFE2
oFEi
OFEO
oFDF
OFDE
oFDD
oFDC
oFDB
oFD

9
A

oFD
01151

Reg:

A
F
B
C
D
E
H

IX MSB
IX LSB
IY MSB
IY LSB
A'
F'
B'
C'

E'
H'
L'
I

Slack MSB
Pointer LSB

The program will then jump to 1101
and draw the second side of the
diamond.

On the next pass, the register pair DE
will be looking at locations 01164,
0863, OM, and 0167. This will
change locations Onal 011913, OND
and 0110 to 20 34 ID 34 and thus
the third side of the diamond will be
drawn.

Via the same reasoning, the 4th side
of the diamond will be completed.

Try experimenting and changing
this program to produce other
patterns. We have included two
examples on the right and will be
continuing with these and more
"add-ons" in the next issue.

The aim of COMPUTER
GRAPHICS is to be able to
produce 'forms' and ruled work
for invoices etc. and place
information in correct locations.
It also gives you an understanding
of ROBOT movement, an area
we all would like to investigate.

$60 00
161 34
1162
1163 34
864 2
865 34
11662D
$67 34
$6 2D
569 34
S6A oo
$6B 34

o 140 II D

=

= I
4 	Sal 2C = ,

882 44 	raw
4 	143 35 = = 5

5S4 30 o
4 	1113 2C = ,

10 =
4 	SS

116 3 	o
7 2C =

SIS 31 = S
4 	SS9 3o = o
o SSA 2C ,x
4 	SIB 2D = —

The Direction Change
with decoded values.

SIC 3$ =
SSD 30 = 0
SSE =
OF 30 2C = 0
$90 2C = ,
1191 2D

38 =— 192 	=
893 30 = 0
895 2C =

595
599

$95
S9C
S9D
19E
59F
SAO

0D = CR
4D = Move
oo = 0
34 = 4

=
00 = 0
34 = 4
oD = CR
FF = end 895 30 = o

56 2 =
* SO

9
7 30

C
 0 =s it

table and Drawing table

MON-1B
LOOKING AT THE REGISTERS
The MONITOR ROM for the TEC-1A
(it can also be fitted to the TEC•1) is a
MON-18. This ROM has the facility
for looking at the registers.

This ROM is the result of a number of
requests from readers who needed to
look at the contents of the various
registers during the running of a
program.

If you would like one of these up-
dated ROMs, send your MON-1 or
MON-1A plus S3.00 postage and we
will re-burn your EPROM to include
the additional instructions.

There is a limit to when and where
you can use the register facility but it
can help enormously with debugging
programs.

For instance, it can let you know the
progress of a program or delay
routine simply by interrupting it part
way through.

The way this facility works is as
follows:

If you reset the computer while it is
executing a program, by pressing the
reset button ONCE, the contents of
each of the registers is pushed onto a
stack.

This stack starts at 01150 and
increases downwards to OFDS.

To look at any of the registers. press
reset once and key the address of the
register you want to look at.

The following list identifies the
location of each register:

Note: Reset clears the I register and
thus it will always equal 00.

Use JP 0000 if you wish to look at

An alternate method of saving the
registers is to insert a JP 00 00
instruction in the program at the
position you wish to investigate. This
will cause a JUMP to the beginning
of the MONITOR ROM where it will
find a jump to the register-save
routine.

This will enable you to exit a program
at a pre-determined point and look at
the registers. The contents will be
shown in the data displays.

Pushing Reset twice will destroy the
information.

This is the program at 05F0 which
performs the 'REGISTER-SAVE'
operation. Don't forget the Monitor
ROM has an instruction at 0000 to
Jump to 05F0.

05F0 	ED LD (0FD8),SP
05F4 31 LD SP,OFF0
05F7 F5 PUSH AF
05F8 C5 PUSH BC
05F9 D5 PUSH DE
05F4 E5 PUSH HL
05FB DD PUSH IX
05FD FD PUSH IY
05FF 08 EX AF,AF"
0600 D9 EXX
0601 F5 PUSH AF
0602 C5 PUSH BC
0803 D5 PUSH DE
0604 E5 PUSH HL
0605 ED LD A,I
0607 F5 PUSH AF
0608 C3 JP 0580
0608 FF RST 38H

3$ TALKING ELECTRONICS No. is

COMPUTER
POWER SUPPLY

+5v FOR TTL
+12v FOR RELAYS
+30v FOR EPROM

PROGRAMMING

2 PROGRAMMING AIDS
NON-VOLATILE RAM

EPROM• PROGRAMMER
FOR 2716/2732

LOGIC
PULSER

KITT
SCANNER

$98 COMPLETE
PLUS $6.00 POST

TALKING
ELECTRONICS
COMPUTER

TEC-1 A
TEC-1 B

PART IV

TEC 1A's can be converted to TEC
1B's by adding 1 push button. 1 47k
resistor and 1 diode. Update to
MON 2 and you have a SHIFT key for
functions such as INSERT, DELETE
etc.

PC board: $21.00
Parts for IB: MAO
Case: $21.50
Post: $6.00 MAX.

FEATURES IN THIS ISSUE:
* NON-VOLATILE RAM
* EPROM BURNER

SEE ALSO:

TEC POWER SUPPLY on P. 23.

TEC-1B board with SHIFT and RESET keys in foreground.

This is the fourth article on the TEC
and introduces you to more Machine
Code programming as well as two
valuable add-ons.

The NON-VOLATILE RAM has been a
real boon for assisting in program
preparation for the MICROCOMP-1
project described in this issue.

Program can be written directly into
RAM and by changing the switch, the
contents will be retained for up to a
year via the batteries mounted on the
board.

This is the answer to 	those
requests from constructors wanting
a battery backed-up system or tape-
save facility. When the TEC is turned
off, the contents of memeory will be
saved and thus allow you to move the
TEC from one location to another.

The RAM can also be used in place of
an EPROM for the purpose of getting
a system up and running. When you
are satisfied with the design, the
program can be transferred to
EPROM.

This is where our second 'add-on'
comes in. We have designed an
EPROM BURNER to fit on the
EXPANSION PORT socket.

With all the add-ons connected to the
TEC, it was soon realized that the
power required was more than could
be supplied from a plug pack or 2155
transformer.

This led us to design a power supply
exclusively for the TEC and at the
same time include all the voltage
values needed for the various
projects.

So far we need 5v for the electronics,
12v for the relays and 26v for the
EPROM BURNER.

The TEC POWER SUPPLY is capable
of delivering these and can be
expanded to about 1.4 amps at 5v by
paralleling two 2155's.

Don't forget, the DC current
capability of a 2155 is .lamps and
NOT 1 amp and this has been covered
in a previous article starting on page
5 of issue 11.

As you can see, one thing leads to
another and we have sufficient add-
ons to turn the TEC into a powerful
programming tool.

The TEC itself has changed too. From
the original TEC model, we improved
the layout and upgraded the output
latches to modem 20 pin types and

TALKING ELECTRONICS No. 13 9

+5v

Pin 15 Shift 1N 4148
741S138
0-0

Z-80
pin 9

mounted the regulator under the
board so that it would not be broken
off.

We have now upgraded the TEC to
model 1B and this has seen the
inclusion of a shift key.

This shift feature allows the keyboard
to have a second command for each
key and opens up a world of
possibilities.

Two functions which have been
lacking on the TEC are INSERT and
DELETE. With the addition of the
shift key, you will be able to make
corrections to your programs and
close up gaps as well as create
locations for new instructions.

Those who have already built the TEC
can add a shift key in one of two
ways. The lower RESET key can be
convened into a SHIFT function by
wiring a resistor and diode into circuit
and connecting to the computer. The
only problem with this is the upper
RESET button. It will be difficult to
access when the Video Display unit is
mounted over the Z-80/EPROM area.

A better solution is to drill 4 holes
near the lower RESET button and add
the necessary components under the
board.

The shift function is software
controlled and you will need the
updated MON 2 to get the shift key to
work.

The MON 2 also includes a few other
improvements. The most noticeable
of these is the location of the STACK.
You will remember the original
position of the stack is very close to
the top of the 6116.

The main problem with this location
is not knowing how far you can
program before running the risk of
hitting the stack.

The MON 2 places the stack at 0000
and allows up to CO bytes to be
stored. There is still a risk of crashing
the computer if a stack error occurs
as the stack wows down to 0000 and
restarts at FFFF and will eventually
hit the top of your program. Between
CO and FF is a storage area for
pointers, restarts, display buffer,
keyboard buffer, register save area
and for interrupts.

This means programming starts at
0900 up to OFFF with the on-board
6116 and you don't have the problem
of landing in the stack area.

You can upgrade to MON 2 by
sending in your ROM and it will be re-
burnt to MON 2. The cost is $3.50
plus $1.50 post.

A shift button, 47k resistor and signal
diode is available in a separate kit for
800 and this will double the
capability of your computer.

Adding Shift to TEC-1 , TEC-1A

MON 2 has 6 other shift functions
and we are in the process of writing
more software for further functions.

By the time this issue is released, we
will have completed this writing and
will include documentation with the
chip.

The cost of the TEC has risen to
$98.00 and it looks like going even
higher as the exchange rate for the
Aust. dollar drops. But we want to
keep the computer below the magical
$100 mark for as long as possible.

We have now supplied over 1,000
computers, in 3 different models.
Only the earliest model has been
fully documented. The upgraded
versions vary only slightly and you
should 	have 	no 	difficulty
constructing them.

The reason for this is the simplicity of
the board. Everything is fully
identified on the overlay and requires
only simple assembly.

Chances are it will operate first go
but there is always a small possibility
that something will be overlooked
and it will not come on.

If you are caught in this situation,
here is a run down on how to go about
fixing it:

You will need a LOGIC PROBE and a
MULTIMETER. A CONTINUITY
TESTER (to be presented in next
issue) will also be handy.

Firstly the visual checks:

If the displays fail to light-up and no
sound is heard from the speaker, the
most likely fault will be a broken
track or poor solder connection. Turn
the computer off and check each
track with a multimeter switched to
LOW-OHIVIs.

The regulator should get quite hot
and should have 5v on the output
lead. It must have at least 8v on the
input lead to prevent voltage 'drop-
out'.

The Z-80 will get quite warm, as will
the output latch near the edge of the
board.

The jumper near pin 1 of each latch
should be checked. Only one must be
inserted for each latch. This means
you have two unused holes for each
latch.

Check each of the keys for correct
positioning. All flats must be DOWN.

The notch on each chip must also be
DOWN.

Make sure all the pins of the IC
sockets go through the holes in the
PC board and are properly soldered.
We have seen some pins doubled-up
under the socket and not making
contact with the tracks.

Check the capacitor near the speed
control. It must be 100pf - not 100n.
100pf is indicated by '100' or '101' on
a ceramic capacitor whereas 100n is
shown as '104' on a mono block or
100nS on a blue body.

Check for non-soldered lands,
missing links and incorrectly
soldered links. We inspected one
project in which the builder had cut
the links to the exact length BEFORE
soldering and consequently one link
did not go through the board
completely. It was too short to be
soldered but the builder didn't notice.
He soldered the land with the result
that the link looked as though it was
soldered!

Finally check for solder-bridges
between adjacent lands with a
multimeter set to LOW ohms.
Remove the chips to get an accurate
reading.

Now for the 'in-depth' diagnosis:

1. Turn the TEC on and check for 5v
out of the regulator. Check POWER-
ON LED. Check for 5v on each of the
chips: 74LS 273 - pin 20. 2716 - Pin
24. 6116 - pin 24. Z-80 - pin 11.
4049 - pin 1 74LS138 - pin 16.
74LS923 - pin 20.

2. Check clock frequency by putting
logic probe onto pin 6 of Z-80.

3. Check RESET pin of Z-80 is HIGH.

4. Check NMI line. (pin 17 of the Z-
80). It will go LOW when a key is
pressed. If not, a switch may be faulty
or the keyboard scan oscillator may
not be working. Keyboard oscillator
is part of the 74C923 and the
frequency-setting capacitor and
debounce cap are the 100n and 10
electrolytic.

5. Check pin 19 of the Z-80 with a
logic probe. If it is not pulsing,
program is not getting through.

IO TALKING ELECTRONICS No. is

6. Logic probe pin 18 of the 2716.
Pulses on this pin show the ROM is
being accessed.

7. Pulses on pin 18 of the 6116 show
RAM is being accessed.

8. No pulses via checks 5, 6 or 7
indicate the full byte in an instruction
is not getting through. This may be
due to a faulty address or data line.

9. Check Do (pin 9 on the 2716. for
continuity to pin 9 of the 6116 and
also pin 14 of the Z-80.) Check the
other 7 data lines for continuity and
also the 11 address lines.

10. With all chips still in circuit,
check each pin with the one adjacent
to it, for the 2716, 6116 and Z-80.
Our continuity checker in issue 14
will be ideal but if you can't wait a
multimeter can be used. Remember
protection diodes are contained in
most chips and low value resistors
may be present on some lines. Low
values of resistance may be perfectly
acceptable - you are looking for zero
ohms or short-circuits between
tracks.

11. Check pin 20 of the Z-80 - the
IN/OUT REQUEST line. If it is not
pulsing, the output of the computer
may be putting a load on the data bus.

12. Remove the two output latches
and place the negative lead of a
continuity tester on one of the pins.
Touch every other pin of the output
latch with the other lead. Move the
first lead and repeat until all pins have
been tested. Do the same with the
other latch.

This will check for shorts on the data
bus as well as between pins of the
display.

13 If these fail to locate the fault, ring
us at TE. We may be able to help you
over the phone. If not send the TEC
in a jiffy padded bag and we will see
what the trouble is.

So far we have had about 20 TECs
sent in for checking and repair. About
8 of them suffered from voltage
surges. This occured when the
constructor shorted leads together
and/or dropped a screwdriver on the
back of the board when the TEC was
operating. This can damage the
EPROM, RAM and even the Z-80.

Don't let leads from the 'add-ons'
dangle over the rest of the computer
or let the SELECT leads touch each
other when fitting them over the pins
on the PC board.

The TEC is really very robust and we
haven't damaged a unit yet, even
though we have three in constant use
and they are let running both day and
night.

If you are careful with construction
the TEC will work. But as with all
pieces of electronic equipment,
excess voltage will sound a death
knoll.

While on this subject, we repaired
two more unusual faults this month.

Both problems were the same and
occured like this:

When the constructor was building
the TEC, one or more of the
components were soldered without
being fully pushed onto the board.

Some time later the constructor
discovered the fault and proceeded to
push the component into place while
trying to resolder the joint.

The result was the land broke away
form the copper track and created a
hairline fracture which was not
spotted.

If this occurs on either the address or
data bus, the TEC will fail to come on.

If this happens, the first pin to check
is each of the Chip Enable pins on the
two output latches.

If a probe on these pins show they
remain HIGH, they are not being
accessed.

Next check the IN/OUT select chip
(below the expansion port) and see if
it is being activated by the Z-80. No
information on pin 4 could indicate
that the program is not getting to the
Z-80.

This leads you to suspect either one
of the data lines or one or more of the
address lines. They may be broken.
with the result that the Z-80 is not
receiving a full byte of program.

Before you jump to this conclusion,
check the Chip Enable pin of the
EPROM (pin 18) and see that it is
LOW. This will mean the 2716 is
being accessed and it should be
talking to the Z-80.

If the Chip Enable pin is HIGH. go to
the ROM/RAM decoder (below the
clock chip) and check pin 4 to see
that the pin is being accessed.

If one bus line is missing, the Z-80
will get the wrong op-codes and the
program will not flow correctly.

Before we continue with pro-
gramming. here are a few notes on
assembling the TEC-1B as some
changes have been made since the
original notes in issue number 10.

The regulator is placed under the PC
and bolted to the board via a 6BA nut
and bolt. You can add heat fin if a
number of add-ons are to be driven.
but under normal circumstances, the
regulator and board will dissipate the
11/2 to 2 watts of heat.

The electrolytic has been changed to
1000mfd 25v and it lays flat on the
board to keep a low profile.

The display drivers are slim-line types
and 3 alternatives have been allowed
for in the PC pattern. The overlay
shows which links are to be added for
the type chosen. Only ONE link must
be used for each chip.

Finally a 2-80 or Z-80A can be used
as the CPU chip. We are operating
the TEC at 100kHz to 500kHz and
this is well below the maximum
speed for either type. A 2-80 will
operate up to 2.5MHz and 2-80A up
to 4MHz.

If any of the keys become worn, their
contacts become erratic and some-
times a double-entry occurs. This can
be overcome by increasing the value
of the 1 mfd on the 74c923 keyboard
encoder to 4.7mfd or even 10mfd.
This will mask out the contact
bounce and produce a single pulse.

A 100n up to 10mfd can be used
across the reset and it may be
necessary to use the higher value if
the Z-80 does not reset properly.

A 10k or 20k cermet can be used as
the speed control and it can be either
a VIP or HTP type. The advantage of
a cermet means you can use your
fingers to turn the pot and don't
require a small screwdriver.

SHIFT

The latest addition to the TEC soft-
ware is a SHIFT function.

This enables the number of functions
to be increased from 4 to 24.

It means each of the buttons can be
programmed to perform a second
function when combined with the
SHIFT button.

To access this second function the
SHIFT button must be pressed first
and kept pressed while the desired
key is pressed.

HOW DOES IT WORK?

The keyboard encoder uses 5 lines of
the data bus and the remaining 3 lines
are not used.

The SHIFT button is connected to
one of these lines and the monitor
program re-written to detect its
status when the keyboard is read.

Five functions are currently available.
More are in the pipeline and their
details will be explained in future
articles.

The 5 functions are:

SHIFT +
This is the INSERT function. It moves
every byte in the program up to the
next higher location and inserts 00

TALKING ELECTRONICS No. 13 11

into the present address. This
operation can be repeated any
number of times to produce empty
locations.

We have mentioned MON 2 allows
programming to start at 0900 and the
shift function operates in the area
0900 to 4000. Addresses above 4000
are not catered for by the software
but can be included if required.

Addresses below 0900 may cause a
systems crash if you try to insert in
this area as it is reserved for scratch
pad, pointers and stack etc. Data
below 0100 cannot be shifted as it is
in ROM.

SHIFT — (shift, MINUS)
This is the DELETE key. It performs
the opposite of INSERT. The data at
the address currently being displayed
is removed and all data above this
address (and below 4000) will be
shifted DOWN one location. OFF is
loaded with 00.

SHIFT ADdress
This function enables you to jump
quickly to a particular location.
Suppose you require to address 0A00
on a number of occassions. By
pressing SHIFT ADdress the micro
will jump to 0A00. Forthis to happen,
you must load a pointer location with
the value 0A00, then every time the
SHIFT ADdress buttons are pressed,
the display will show 0A00. The
pointer area is two bytes of memory
located at OSDI and 08D3. By
placing the JUMP ADDRESS at this
location, the operation will be carried
out.

We are loading these two locations
directly into BC re_gister pair via a 4-
byte instruction ED 4B 112 OS and for
the register pair to be correctly
loaded, we must place the lower byte
first in memory and then the high
byte. This means we must load
location 01D2 with 00 and 08D3 with
OA.

SHIFT 3
This function works exactly like
SHIFT ADdress and enables you to
have a second address to jump to.
This time the pointer area is at 08D4
and 08D5.

SHIFT 0
This is a search function. If you want
to locate a value in a program or table,
you could step through until it is
located. This could take a long time.
But with this function the value can
be found very quickly. You can also
locate the address of every other time
it appears in a program.

The value of the byte you are looking
for is placed at OSE1. Address the
pro -am you are testing and push
SHIFT 0. The display will illuminate
with the address of the byte you are
looking for. Pushing SHIFT 0 again
will display the second address of the
byte. This can be continued to locate
alt the addresses.

More function will be incluse d in
future monitors. Any suggestions will
be welcome.

These photos show our science/electronics/
computer teacher's add-ons to the TEC and Glen
Robinson's Robot Arm. It is made entirely from

12 TALKING ELECTRONICS No. 13

easy-to-obtain hardware parts, gears, motors and
sturdy pieces of steel. A larger photo will do it more
justice and this we will show in the next issue_

LD A,o1
OUTE102r
OUT oil A
PUS A
LD DE 2oFF
DEC DE
LD A,E
OR D
JR NZ olloA
POP AF
RLCA
JR 0804

800 	3E 01
802 	D3 02
804 	D3 02
Bob 	F5
807 	11 FF to
80A 1B
13oB 	7B
SOC B2
80D 	20 FB
801F 	F1
810 	07
811 	18 Ft

SIMPLIFYING PROGRAMS

One of the most important features of
machine code is the fact that it
occupies the least amount of
memory.

The skill is to make use of this fact.

If we take the simple program from
issue 12 page 21 (1st column),
RUNNING SEGMENT A ACROSS THE
SCREEN", we can shorten the pro-
gram by using the following set of
instructions:

This program saves 8 bytes but has
the disadvantage that the delay
routine cannot be used by any other
programs as it is hidden in the listing.

The delay could be placed apart if
desired.

Eight bytes may not seem many to
save but is a start to efficient
programming.

This is where the byte-saving
occ u red:

The instruction RLCA is a one-byte
instruction to shift the contents of the
accumulator left. (It does not shift
through the carry bit but sets it, as
explained in data sheet 13.)

The listing contains a number of JR
instructions (and a displacement
byte). These are 2 byte instructions
whereas a CALL instruction
requires 3 bytes.

THE DISPLACEMENT BYTE.
As listings get longer and more
complex. the value of the displace-
ment byte requires a method for
determining its value.

When the jump is 5, 10 or 15 bytes
forward or backward, the displace-
ment value can be obtained by
counting the locations: such as 00,
01.02, 03 or FE, FD, FC. FB. FA etc.
But when the jump is 20, 30 or more
locations, the value can be obtained
via a simple mathematical procedure.

Determining the value of the
displacement byte requires 6 steps.
By following these you cannot make
a mistake.

Step 1. Count, via normal counting,
the number of bytes between the
displacement byte and the location
being jumped to. Include the location
you wish to land on. e.g: Take the
following example:

11 FF 20
1B
7B
B2
20 dis

The number of bytes between dis
and IB are: 20, B2, 7B, IB. These
are counted as 1. 2, 3. 4. Thus the
answer is 4.

We will select a higher value for our
problem to emphasise the need for
the procedure.

Suppose the number of locations we
wish to jump back is 49.

Step 2: Convert 49 to a HEX value by
dividing it by 16:

The answer is 31 H

Step 3: Convert 31H to binary:

3 	1

	

0011 	0001

Step 4: Change each 1 to 0 and each
0 to 1

	

Ans: 	1100 	1110

Step 5: Add 1 to the answer:

Ans: 	1100 	1111

Step 6: Convert to a HEX value:

C F

This is the value of the displacement
byte required to achieve a backward
jump of 49 bytes.

The machine code instruction will
depend on the JR condition and will
be one of the following:

28 CF, 	to CF, or 18 CF

The steps we have performed are
called TWO S COMPLEMENT.

Using the knowledge we have
gained, we will improve the BACK
and FORTH program from P 15 of
issue 12.

Mainly aiming at byte reduction, we
will include a BIT TESTING
instruction to prevent overshoot of
the displays. Bit 0 in the accumulator
is tested and if it is a '1', the program
will cause a change in direction by
rotating the accumulator in the
opposite direction.

With these alterations in the program
we will save about 12 bytes. Try the
program:

LD A,o1
OUT(02

cm A
r

RLCA ,

OUT (
CALL D AY

BIT 6,A
JR Z 0804
RRCA
OUT (01),A
CALL DELAY
BIT 0,A
JR Z o8oD
JR atm

at oAoo:

F
11

5
FF to

1B
7B
B2
to FB
FI

The program is required to test bit 6 in
the accumulator. If it is found to be a
'1'. the contents of the accumulator
is shifted in the opposite direction.
Bit 0 is then tested and when found to
he '1', the program jumps back and
shifts the accumulator in the original
direction.

BYTE TABLE. To use this table, the
byte following the JR instruction is
counted as BYTE ZERO. From this
byte you count in either the positive
or negative direction using decimal
counting.

0 00 46 70 96 60 I FF -49 CF 97 96
I 01 49 31 97 61 -2 FE SO co 98 gE
2 02 SO 32 98 62 3 FO 51 CD 99 90 3 03 SI 13 99 63 4 FC 52 CC 300 9C 4 04 52 14 100 64 5 Fll 53 CH to no
5 05 5 35 101 65 1-4 54 CA 102 9A 6 011 54 36 102 66 7 69 59 CO 103 99
) 07 55 1) 103 6, -fl III 56 CH 104 98 H OH 56 18 104 68 9 67 57 C7 mg 9)
9 09 5) 39 105 69 in 116 SB C6 106 96 10 OA 59 3A 106 6A t I F6 59 CS 107 96 11 08 59 30 107 611 12 14 no C4 1011 94
12 OC 60 1C 108 60 13 63 01 C] .1043 93 13 00 81 30 109 50 14 13 -62 Cl 110 92 MI Of 62 16 110 OE 15 Fl 53 CI Ill 95 15 OF 63 3t II 1 66 16 ID -64 CO 112 90

16 10 64 40 112)0 17 6F 65 OF 113 BF
1/ II 6b 41 111 /I M F. 66 01 114 BE
10 m 60 42 114 12 19 ED 67 1M 115 BD
19 1.3 fil 43 116 71 20 EC -08 BC 116 80
20 14 mt 44 116 74 11 En 69 OR 117 BB
21 15 69 45 II) 75 27 EA M OA 118 nA
22 16 70 40 118 76)1 09 110 89
23 1/ /1 47 119 77 -24 EU 72 118 120 09
24 18 72 M 120 78 -25 11 73 07 121 87
25 19 73 49 121 79 -26 Eli /4 06 122 86
26 IA 74 4A 172 IA 1) ES 75 US 123 85
27 111 15 48 123 711 20 E4 76 HI 124 84
29 IC 76 40 124 IC -29 E3)7 113 125 83
29 10 40 125 7D 30 El /8 82 126 82
30 12 m 4E 126 6E 31 El 79 81 *27 81
31 II 29 4f 12) 7F 12 Mt 80 00 128 00

42 20 00 50 33 DF 81 Al
33 21 HI SI 34 DE 02 AE
HI 22 82 57 35 DD 83 AD
35 23 63 53 16 DC 84 AC
36 24 84 54 117 Dn 85 An
3/ 25 85 55 10 DA 56 AA
30 26 86 56 39 119 87 49
39 27 87 57 40 no 88 AB
40 28 88 FM Al 07 HO Al
41 29 89 59 A2 06
42 24 90 5A 43 05 91 AS
43 28 91 BB 44 04 92 AA
44
40

2C
ID

92
93

5C
50

.45
-16

03
v2

93
94

A3
42

46 21 94 SE 4) DI 95 AT
47 IF 95 SF 40 00 86 AO

800 3E 01
802 D3 02
804 D3 01
Bob CD oo oA
808 07
800 CB 77
80B 28 Fb
80D OF
80E D3 01
810 CD 00 OA
813 CB 47
815 28 Pb
817 18 Fo

TALKING ELECTRONICS No. 13 13

OUT os 	Soo
L1),A Sot

LD moo 804
LDA OIL) 807

T OU (2),A 80
LD B A 	80A

CP
HALT-e—iSoC

o4 	OD
JR NZ Halt 80F
INC HL 	811
LDA (HL) 812
OUT (2),A 	813
DJNZ Halt 815

-JP Z 0800 	817

3E 01
D3 01
21 00 09
7E
D3 02
06 OA
76
FE 04
20 FB
23
7E
D3 02
10 F5
CA 00 o8

The accumulator is loaded with 01 and outputted to port 01. This connects the

cathode of the first display to earth.

Load HL pair with the address of the number table.

Load the first byte of the number table Into the accumulator.

Connect segments of the display to the positive rail to get first number.

Register B is our 'counting register'. It counts 10 bytes from 0900 to *969.

HALT the program so that first number (0) will appear on the display.

The program recognises only button '4'.

If not button '4'. go to HALT. If button '4' pressed. increment HL to look at 0901.

The byte at 0901 is loaded into the accumulator.

The value at 0901 (28) creates the figure '2' on the display.

Output 16 to port 02.

Register B is decromented and if it is not zero. the program goes to HALT.

When register B is zero, the program jumps to START (01100).

at 0900

EB = o
28 =
CD 2
AD = 3
2E = 4
A7 = 5
E7 = b
29 = 7
EF = 8
AF =

INTRODUCTION
TO COUNTING

A microprocessor system is ideally
suited to counting situations. It can
be programmed to count to any
particular number then sound an
alarm or operate a relay or even notify
the near-completion of a run.

It can count UP or DOWN as well as
count in sub-multiples.

Take the case of packing a box of TE
magazines.

Firstly the operator requires a count
of 10. Each 10 issues must be placed
in opposite directions in a box to
produce a level stack. The operator
then needs to know when a count of
140 is reached, which represents a
full box.

Finally the packers need to know
how many boxes of magazines have
been packed so that the delivery
docket can be filled out.

This is effectively 3 counters which
must be interconnected to achived
the required result. Ideally an audible
signal should be produced at the end
of each count of 140 so that the
packer(s) can concentrate (day
dream) on the job.

The chance of finding such a design is
almost nil, except via individual
modules which will have to be
connected together to create the
system. The cost of doing this would
be about $300!!

But with a microprocessor system
such as the TEC, all these up-down
requirements are possible in the one
unit, by simply providing a program!

0.9 COUNTER

The art
program
section.

of producing a suitable
is the content of this

We will start from the beginning and
explain how counting is achieved,
how to interface a 'count-button' and
progress to producing a 3-digit up•
down counter.

A count-down system is often used
as it can be pre-programmed with a
START VALUE and the counter
decrements to zero. It then sounds a
bell, activates a relay and resets to
the pre-determined start-value.

After studying the 3-digit counter you
will be able to create a 4, 5 or 6 digit
counter and even incorporate sub-
values to facilitate packing etc.

The counter can also be designed to
have 2 concurrent tallies, one being
permanently displayed while the
other is available on call-up via the
press of a button.

They would be displayed for a few
seconds and fall back into memory.

Absolutely 	any 	combination,
application or requirement can be
catered for, it only requires
programming.

To make it easy to understand, we
have started with a simple program.
But, as explained, this type of
program soon runs out of capability.
Thus a more complex system of time-
sharing of the displays must be used.

But this too has limitations and finally
an even more complex (as far as
understanding is concerned) use of
registers, must be employed.

With this high-level system, the
scope is enormous. The system can
be increased to 8 digits, two or more
separate readouts. and have tally
values available on call-up.

This is where we start . . .

Creating your own COUNTING
MACHINE is one of the capabilities
of our micro. You can produce a
display which increments or
decrements by a count of one or more
on each press of a button. And the
button doesn't have to be the '1'
button. In our case we have used the
'4' button to show that any button
can be used.

By changing the values in the 'look-
up' table, you can create the up or
down condition - something which is
virtually impossible with discrete
counting-chip construction.

You can even produce letters of the
alphabet and increment each time 7'
or 'F' or 'X' appears. You can do
anything from counting by 2's to
dividing by 2'.

For our first exercise we will produce
a counter which counts to 9. This is a
very simple program. Only one
display will be accessed and thus we
can output to it so that it turns on
HARD, while the computer is in the
HALT mode, waiting for an interrupt
from the keyboard.

It is important to note the computer
does not produce the numbers 0-9.
the program creates them. The table
at 0900 contains values which turn
on various segments of the display to
create the numbers.

Type the program into the TEC and
press RESET, GO. The number '0'
will appear on the display.

Press various buttons on the key-
board and notice that only button '4'
advances the count.

Step through the table by pressing
button 4.

1. Experiment with the program by
creating the numbers on another
display.
2. Create a down-count by inserting
the table at 0900 in the opposite
direction. i.e: AF, EF, 29, £7, A7,

2E, AD, CD, 281 EB.
3. Create a count-to-six by changing
the value of B (oleA) to 06.
4. Create the letters A-F by adding
their appropriate hex values to the
table. select the correct value for B,
change the compare value to enable
button 'C' to operate and step
through the table you have produced.

14 TALKING ELECTRONICS No. 13

JP 0800

r

--•-LD HL,0900
XOR A 	
OUT (1),A
LD A,(HL)
OUT (2),A
LD A,oi
OUT (oi),A
LD Rao
DJNZ FE
XOR A
OUT (1),A
LD A,(DE)
OUT (02),A
LD A,02
OUT (00,A
LD 13,10
DJNZ FE
LD A,I
CP 04
JP NZ 0809
XOR
LD I A

INC AA H
HL

 L) LD
CP FF
JP NZ 0809
INC DE
LD A,(DE)
CP FF

—JP NZ 0806

XOR A
LD IA
LD DE,0900

TWO DIGITS

When two or more digits are to be
displayed, the program must contain
a multiplexing or time-sharing
arrangement so that each display can
show a number from 0 to 9 without
interfering with the other. This means
a HALT instruction cannot be used as
only one display will remain alight!

The program must be constantly
looping or 'running' so that both
displays are kept on. Each time the
program cycles, it is looking for an
interrupt from the keyboard and if one
comes along, the program operates
on the data it receives and compares

0.99 COUNTER

it with the value 04. Depending on the
result, the program will branch to one
of two places.

The program below produces a
count-to-99 using the '4' button as
the input.

The basic structure of the program is
quite simple and uses register pair HL
to point to the address (at 0900) for
the hex value needed to produce the
numbers 0 to 9.

Register pair DE points to the hex
value (again at 0900) needed to
produce the 10's value.

Each of these register pairs are
incremented and compared with FF
to see if the end of the table has been
reached. The increment of the DE
register takes place when FF is
detected on the l's count. When the
10's count reaches the end of the
table, the whole program is reset.

The computer does not know it is
counting to 10. It merely knows it is
incrementing through a table. You
could put Chinese values on the
display and count to 11, simply by
changing the value of a few locations.

Here is the 0-99 program and an
explanation of each step:

Boo
8oi
803
Sob
809
80A
8oC
8oD
8oF

AF
ED 47
11 00 09
21 00 09
AF
D3 on
7E
D3 02
3E 01

Set the accumulator to ZERO.

Load the interrupt register with ZERO.
Load DE pair with address 0900.
Load HL pair with address 0900. 	END OF START-UP.
Beginning of MAIN PROGRAM. 	Clear Accumulator.

Turn OFF 1's display.
Load accumulator with byte pointed to by HL pair.

Output to port 2.
Load accumulator with 1.

at 0900:

EB =0
28 	= 1
CD = 2
AD = 3
2E =4
A = 5
E7

7
 =6

811 D3 al Output accumulator to port 1. 	Display is illuminated. 29 = 7
813 06 10 Register 8 is a COUNT REGISTER, Load it with 10 to create 16 EF =8
815 10 FE loops to turn on l's display. AF = 9
817 AF Clear Accumulator. FF
818 D3 01 Output 0 to port 1 to turn OFF display.
8M IA Load accumualtor with byte at 0900 etc as pointed to by DE pair.
8111 D; 02 Output the value thus obtained to port 2.
BID 3E 02 Load the accumulator with 2
81F D3 01 Output to port 1 to turn on 1 D's display.
821 06 10 Load count register with 10 Idecimal 16) and create 16 loops to
823 10 FE turn an 10's display.
825 ED 57 Load the interrupt register into the accumulator.
827 FE 04 Compare with 4 	i.e. subtract 4 from I. 	If the result is ZERO.
829 C2 09 OS advance to 082C If the answer is NOT ZERO. go to 0809.
82C AF Clear Accumulator.
82D ED 47 Load the Interrupt register with ZERO.

830
82F

7
23

E
Increment register HL to paint to address 0901 etc

Load the value at 0901 into the accumulator.
831 FE FF Compare the value obtained leg 28) with FF. If equal. advance to
8;; c2 09 08 01136, if NOT equal, go to 0809.
836 13 Increment DE.
837 IA Load the value pointed to by register DE into the accumulator.
838 FE FF Compare with FF to see if end of table has been reached
83A C2 06 OS If FF Is reached, result will be zero. Advance to 083D. If not, go
83D C; 00 08 JUMP TO START 	 to 0806.

'The CONDITIONAL JUMP instruction
requires explanation.

In the 00-99 counter program above,
there are three places where the Z-80
will jump to another part of the
program when a certain condition is
met. The condition is NZ (NON
ZERO). Let us explain how to
interpret this:

From the program above:

LD
CP 04
JP NZ 0809

These 3 lines state: The I register is
loaded into the accumulator. The
accumulator is compared with 04.
Jump to 0809 is the result is NON
ZERO.

How does the COMPARE statement
work?

The CP operation is carried out like a
subtract operation and the zero flag
(Z flag) will be SET if the result is
ZERO and RESET if the result is NON
ZERO. This means it will be '1' if the
answer is zero and '0' if the answer is
not zero.

This is quite confusing because you
have to deal with the negative of a
negative. To simplify things we can
use the word MET for ZERO. Thus we
get:

JP NZ 0809

I = 04
Jump to 0809 if I is not 04 or go to the
next line of the program if I = 04.

NOT 04

TALKING ELECTRONICS No. 13 15

Now we come to the THREE DIGIT
COUNTER. It has an UP/DOWN
facility as well as CLEAR. Push +for
increment, — for decrement and push
ADdress to zero the display. The
counter can also be preset by loading
0103 and meg with values as
shown in the listing on the right:

PUSH Al
CALL oAoD
PROP AF

RRA
RRA
RRA
CALL MOD

THREE DIGIT COUNTER

01 oo 011
II n OB

CD oo OA
13
IA

80
806
507
BOA
BOB
80
BOF
812
815
817
8A
BIC

80'
ezo
821
822
824
825
en
827
112e
82
112B
82D
82F
e3o

DAA
LD (HL)A

CLEAR
HL

A(HL)
A

(HU&
CLEAR

1131

833
532

I15
53
3
6

esti

1139

83C
83A

83
840

E

842
841

843
844
846
848

JRNC
INC
LD
DEC
DAA
LD
JR

RESET CP
JRNZ

13
CLEAR

A
(HL)A
HL

)
A
(HL

,FFA
I A
START

XOR
LD
INC

-e-CLEAR LD
LD
JR

CD OD OA
21 02 00
CD oo 05
ED 57
21 03 oB
FE so
20 OD
7E
3C
27
77

23
30 20

7E
3C
27
77
18 to
FE Is
20 oD
7E
3D
27

7 7
30 of
23
7
D
E

3
27
77
15 05
FE 13
Ala

77
23
71
3E FF
ED 47
It B6

START LD BC OBoo
LD DE 0103
LD A(DE)
CALL 0A00
INC DE
LD A(DE)
CALL oAoD
LD HL 0002
CALL

,I
 SCAN

LD A
LD HL oBo3

INC CP so
JRNZ DEC
LD A(HL)

DAA
 I

LD (HL)A
JRNC START
INC HL
LD A(HL)
INCA

 DA
LDHA
	JR CLEAR
DEC CP Iii 	

JRNZ RESET—

DECA
LD A(HL)

SCAN
LD 5,04
LD AiL)
OUT (02)A

OUT,
(1)A

LD 50
DJNZ
DEC HL
LD B,A
XOR A
JOUT

RNC

(0)A
RRC B

RET

900 06 04
902 7E
903 D3 02
909 18
906 D3 01
got 06 50
90A 10 FE
90C 20
90D 47

90
AF

F D3 01
911 CB 08
913 30 ED
915 C9

at oCoo:

EB
28
CD
AD
sE

E7
7

A
29
EF
AF

	

Aoo F5 	 AND of AOD E6 of
Aos CD oD oA 	LD HL AOF es 00 OC

	

A04 F1 	 ADD A,C Ass 55

	

Ao; IF 	 LD LA An 6F

	

A06 IF 	 LB A(HL) Am 7E

	

AO 7 IF 	 LD (BC)A A15 02

	

Aot IF 	 INC BC A16 03
Ao9 CD oD 0A 	RET 	A17 C9
AoC Co

To makethisprogram easy tounderstand. we have listed ONE COMPLETE
CYCLE. Exactly as it Is run by he computer. CALL ROUTINES hove boon

included each time they ere c Iled and this makes the listing fairly long.

When the program is run for th first time, the display will show the values
contained at 01303 and €11194. For the purpose of showing how the program

works, we will place 21 at ossE end 43 atOBS4. This will cause the display

to show 123 the value 4 will not appear in this 3 digit counter).

Follow through each of the steps and you will see how the program picks
up date from the 'BUFFER LONE' and converts it values which can be
identified as numbers on the display. This program is being executed et

more than 100 times par secondl

START LD SC SIN Locanon Mid stores the value at the units rhsplaY
Li) Dv fain 0 is loaded with .82 end E pil Moiled with ay.
LB s(D? 	Load two nibbles 1.21 in out example) wile the accumulator
PUSH AtSave the accumulator

	

AND SF 	Thus instruction too a the high ntlible leaving 01
LH Hy acao 11 is loaded with DC and L with 00

ADD A4 	Add 00 to the accumulatot to get 01 101 Is liwni &WWII

	

LD L,A 	Load the accumulate., 01 has 01 in it) WWI dui L IOW War

LD AWL) 	Load the Willie at *Cal PIO into the OCCOrn OIL if 110W 'Cot)
LD mem 	Load mento. hum the Accumulator (111) into the BC legie ter per

	

INC fiC 	Mammon' the BC roglalet Iii will become NMI

	

POP AF 	Finch the accumulator Melee 211 ham the snick
Shdt the valve 21 lour place, to the right
w that the high bits will be transposed
with the low bum The result will be 12

Remove the 4 HIGH bits to get 02
H Will be loaded with OC and L with 00
Add 00 to the accumuletor to get 02
Load 02 solo the L reg 	
load the value at 00O2 1C13)mto the OCCL/Muletni
Load the accurnUILIOTP- Iit has 02 in its Into Me address painted Toby BC.
hicrement the BC wide, 110 06021
DE is incremented to 01304
The value at 0604143/ is loaded lido the accumulator
The HIGH mbbaa 11 cleated to get 03
H hs loaded wrItt OC and L writ, 00
00 Is loaded Into the /accumulator to get 03
03 is loaded into L

vlaus at 00O3 'ADI is Loaded into the ecuumulatur
Load AD into location OWL
The BC register pair hs WCIIIMOTTE•0 to 0003
toad H with 013 ants L with 02
Load 13 with 04
Load the accumulator with the value at 0802 1ADI
Output AD to pan 02.
Load me accumulator with 04
Output 04th port 01 Thts win turn en a v.c.d.ci to got '3'

is loaded with 50heti Dive•oh or 80 in drictmol)
Per/ono a Romp command tor 80 MOM.
HI now points to 0801
The accumulator tit comers, 04) is loaded into B
Clam the accumulator
Turn OFF the display
Shin register 8 nehl to gel 02 Mall its prevtoim value'
Load the value at 0001 (COI vita The accumulator
Output the value CO m pan 2
toed 13 (021 into the acru"1"'"
Output 02 to porl 1 This turns on rho SeCend display rum a 4 de.g
toed B with 50 fin hex/
Perform SO loops This it BO loops
HL now points to 0000
load 02 into B
zero the accumulator
Than OFF the display
Rohde register B to the right m got 01
Load me value at 0000 1281 into the wnuttiulutOr
Output 26 In port 2
Load 01 into Hut accumulslor
Output 01 to Port
Load B with 50
This instruction creMea 80 loops of delimitate
HI is decrememod but the 4th loaCtion is not used as you will see
toed 01 into B
Zero he accumulator
Turn an the display
Register B ill shifted and the cony bun SET
the accumulate os loaded with a valve ham the keyboard
H n loaded with 013 and L with 03
The value 10 is compered with the •ccumulatur
lithe Iwo are the SAME, Me program increMents IL nowtjurrips to DEC
Load A with 21
Increase the value 21 to 22
Decimal *Opal the accumulator d needed toot in line c•••1
toad 22 into the location OB03.
Jump to Mil is no carry tom 044 operation. II a Carry ie produced.' e.
whin 59 advance. to 11}C iacminant HI. to OB11
Load Me value at 0E111 - r.;o ted accumulator
Increment
Dottie& adjust M. accumulator if necessity
Load the accumulstor unto 01304
Jump to CLEAR
Load FF into the accumulator
Load Ma accumulator ono the interrupt with,. Isolator
Jiling In START

IRA
RRA
RRA
RRA
AND Of
LI/ HL Ks.
ADD iLL
• L,A
LB AML)
LI) (SC)A
INC SC
INC DE
LD A(DI)
AND of
LD AL Woo
ADD A,L
LEI 1.,A

LI/ (*C
A(11L)

IA
INC SC

HL
LD Soo

BN

0 MAL)
OUT (81),A
ID A,11
OUT (oi),A
LD fa
DJNZ
DEC AL
LD B,A
XOR A
OUT (tl),A
RAC B
LD A(HL)
OUT MLA
LI/ AD
OUT (uI),A
ID Sfe
DJNZ
DEC AL
ID LA
XOR A
OUT (0),A
RAC ■
113 A(AL)
OUT (n),A
LO A,B
OUT (o1),A
LD II,v)
DINE
DEC HL
ID 8,A
XOR A
OUT (MIA
RIC V
LD
0 AL oRoo

INC 0 Is
DDZ
LD

I
MAL)

INC A
DAA
LD LSA
JI NC Strut
INC AL

INC
LD AtHL)

A
DAA
LD (111)A
JR CLEAR

CLEAR LD Sirf
LE LA
JR START

16 TALKING ELECTRONICS No. 13

l ug

1 	

020 	

21
0 	

C>
12

.5r

1---4

18
0 	 r, 1 	

NON-
VOLATILE

RAM
ri I I I 	1 I 1 I

1,444 RED EEO

TT T T LT 	I T

PC Board: $3.60
Parts: $19.60

+5r
0

24

Rx
—4

114 40172 IN 4002

Of

I 3v

1C

1.1.14-151 ORS 	A1)141t[55 AND D—TA 	111

11201222 SUS

T T T TTT

mum Oe

1) -

A4.

A4
71.7
Aa

A.
A.

A!Ai

Ik

7171.

a 	24
7
6
5
4
3
2
1
23
22
19

9
10
11
13
14
15
16
17 OE PA, 12

6116

14 19

RC 547

8 	 RE A11.1Nall RIAD
10

0 	

SYVItC.t

4071

20 21 8N0

Note: Rx is used with WADS.

PARTS LIST

1 - 56R %watt
1 - 150R
1 - 2k2 (Rx)
3 - 10k
25 - 47k

1 - 100n greencap

2 - 1N 4002 diodes
1 - 3mm LED

cE18

Many constructors have requested
some means of saving the programs
they produce on their TEC'c.

Most suggested a TAPE SAVE facility
whereby they could load their
program onto a cassette and hold it
until required. This would allow the
TEC to be turned off / or used for
other tasks.

Tape save is a project which will
appear as a future add-on and has
certain advantages. 	Before we
present a tape save we have designed
a storage project using a 6116 CMOS
RAM chip, which will be the next
best thing.

It is a battery backed-up RAM which
can be written into and then
protected via a switch to become a
Read Only Memory. It can be left
connected to the TEC or removed at
any time and the battery auto-
matically takes over, keeping the
contents in an unchanged state.

The 6116 RAM takes an amazing 2
microamps in the storage state
(power-down state) and this
represents little more than the
natural deterioration of the cells.

Under these conditions the two back-
up cells should last about 1 year.

1
	

BC 547 transistor
1
	

CD 4071 IC
1
	

6116 RAM

1
	

24 IC socket
14 pin IC socket

1
	

24 pin wire-wrap socket
1
	

24 pin DIP header

1 - SPDT switch

2 	AAA cells

20cm tinned copper wire

1 - NON-VOLATILE RAM PC BOARD

•	 •

TALKING ELECTRONICS No. 14 17

4
a

B
A

T
T

E
R

IE
S

Z
0
rn 1—
Z CC

LL
< 0

LL
X
LL1

0

I.m1

,...IP.M..

.,.m.• CC

The main advantage of this form of
memory is information is
immediately accessible and does not
have any loading delays as
experienced with tape.

When producing Machine Code
programs, it is not necessary to have
a large RAM memory and a single
6116 will be sufficient for even quite
a long program.

We have called this project NON-
VOLATILE RAM and have already
found it to be invaluable when
developing programs for other
computers and dedicated systems. It
is easy to use and can be written into
directly or filled from TEC memory.

Once the data has been deposited,
the switch is changed to 'ROM'
position and the information is
protected.

HOW IS THIS DONE?

The 6116 RAM chip is the centre of
the design, It is a low-power CMOS

I device with exceptionally low stand-
by current. Many of the TEC owners
will already have one of these chips.
It is important to note that only the
6116 can be used as the N-MOS
version 58725 consumes 4,000
times more current in stand-by mode.

The 6116 draws about 2 micro-amps
whereas the 58725 consumes 8 milli-
amps. If you have one of each, use the
6116 for the non-volatile project and
retain the 58725 as the TEC RAM.

Theoretically the RAM in the TEC can
be converted to battery back-up but
this poses a problem as the control
lines must be taken HIGH or LOW to
prevent the RAM being written over
during the time when the TEC is
powering down.

We had difficulty in achieving a
guaranteed result and opted for a
separate RAM card. This allows the
card to be transferred to other
projects, enabling programs to be
generated and corrected until they
operate perfectly.

When the RAM card is plugged into
the TEC it draws power via diode D1
while diode D2 prevents the voltage
from charging the batteries. When
the TEC is switched off, the batteries
supply a potential to the chip via
diode D2. Diode D1 prevents the TEC
from drawing on the batteries.

The 2.4volts from the batteries (.6v is
lost across diode D2) is sufficient to
hold the data.

The LED and resistors R1, R2 form a
voltage-loss detection circuit to
switch the non-volatile RAM into
stand-by mode.

They form a voltage-divider circuit for
the base of the BC 547 transistor.
When the voltage across the LED and
resistor R1 is below 4v, the transistor
switches OFF, allowing the inputs of
the OR gate to go HIGH, via a buffer.
This takes the Chip Enable, Output
Enable and Read/Write lines HIGH,
protecting the RAM contents from
erasure.

All address and data lines are taken
LOW to prevent them floating and
thus wasting power.

USING THE RAM CARD
The 'on-board' cells will provide
power to the chip for about 1 year and
this makes it an ideal storage
medium for saving programs.

When inserting and removing the
RAM from the TEC, the RESET
button must be pressed. This will

--i-
PORT

—47K-
-47K-
-47K-
-47K.-
-47K-
-47K-
-47K-
-47K
-47K--
-.47K-
-47K-
-4K7—

-k.
See P. 75 for PC artwork.

freeze the address and data bus and
prevent any glitches from entering
either the RAM or TEC. Remove and
insert the RAM card quickly to
prevent excess voltage appearing on
the pins of the 6116.

If this does occur, the circuitry inside
the 6116 may heat up excessively
and cause the TEC to crash. The
RAM will also lose its contents, but
may not be permanently damaged.

CONSTRUCTION
All the components are mounted on
the top of the board in positions as
shown by the overlay. The ROM/
RAM SELECT is a slide switch and it
is best to keep to a slide switch so
that the writing on the board reads
correctly.

The RAM card is connected to the
TEC via a 24 pin wire wrap socket
and component header plug soldered
together to form a stand-off. The
6116 faces towards the switch as
does the 4071 and this may mean the
writing on the chip(s) is up-side-
down,

NON VOLATILE RAM I t cc cr co a •I'
O 0 0 6116

iz T 	CD
Lii

..
0 Avi
L1J
M 	Cr

x

—t—

TE
1 I 1

Illittlilli
,c2oczx 1 7,,,,,,,,,,,

ITITTITTIII

1

11

KS

CI ›.-
.15.. ¢z 0 Lu
cr cco

tr) i 	0

IS TALKING ELECTRONICS No. 13

The RAM card is accessed at the
address of the socket in which it is
placed. This means it is addressed at
1000 to 17FF in the expansion port
socket. It can also be placed in the
RAM socket and is addressed at
0800 to OFFF. If placed in the
EPROM socket it must already
contain a start-up routine for the TEC
and is addressed at 0000 to 07FF.

When placed in the expansion port
socket, it can be addressed at higher
values by cutting pin 18 of the wire-
wrap socket and taking a lead to one
of the Chip Select pins near the edge
of the board. The lowest of these is
addressed as 1800 the next as 2000
and the next as 2800 etc.

If the RAM card is used in the monitor
socket it can only be used in the
READ MODE as this socket does not
have a READ/WRITE line.

This situation also applies when
using the RAM card in our dedicated
computer project as described in the
book: ELECTRONICS FOR
MODEL RAILWAYS,
The RAM CARD can also be used to
create programs for the Microcomp.
Any of the programs described in the
Microcomp article can be typed into
the RAM and executed on the 'comp.

Remember, the Microcomp pro-
grams are designed exclusively for
the 'comp as it has only a single
output latch - the TEC has two output
latches.

DUMP ROUTINE
You can use the RAM CARD for many
other applications and also transfer
up to 2k of program into the card by
loading the following into the TEC at
0800:

TO II 00 10
FROM 21 XX XX

No of BYTES 01 YY YY
ED Bo
C7

Where XX XX is the start of the
program you wish to copy and YY
la' is the number of bytes you wish
to transfer. e.g: If the program to be
copied is at 0900 and 80 bytes long,
the program at 0800 is:

II 00 10
21 00 09
01 SO 00
ED Bo
C7

Note: If the program starts at 0900
and finishes at090F, you must insert
01 10 00 into the program because
0900 to 090F contains 16 bytes of
program {10 hex bytes) Not OF bytes!

The wire-wrap and DIP header are
soldered together to form a stand-
off.
If you have written the program at
0800, you can place the DUMP
ROUTINE at 0900. This is how to do
it. Load the program, go back to the
start of the program (0900) and push
GO. Do not push RESET. The dump
program will then be executed. The
dump routine can be placed any-
where in RAM by using this method.

Suppose you want to copy the
MONITOR ROM. Load the following
Dump Routine into the TEC at 0800:

11 00 10
21 00 00
01 FF 07
ED BO
C7 	Push RESET, GO.

Within a fraction of a second the
monitor program will be loaded into
the CARD. Change the Read/Write
switch to READ and the contents will
be protected. Remove the Monitor
ROM from the TEC. Insert the CARD
and turn the TEC on. It will start up as
normal.

To remove a program from the CARD,
it is best to fill it with FF's. This will be
needed in later programming, when
you want to transfer a program from
the CARD to an EPROM.

The unused locations will contain FF
and these can be burnt to any other
value. A value such as 00 cannot be
'burnt down'. For more detail on this,
see the EPROM PROGRAMMER
project.

TO FILL THE CARD WITH FFs:

at 0800:

LD BC 07FF
LD

A
HL

,
 1000

LD 	FF
	21 00 I0

3E FF

01 FF 07

LD (HL)A
	

77
INC HL 	

O
23

DEC BC
LD A
OR CSB
JRNZ
	

20 F7
RESTART 0000 C7

TO FILL THE TEC WITH Flos:

The TEC RAM can be filled with FPs
by loading the following into 0800:
it FF FF
D5
C3 03 08
Reset, GO.

This puts FF FF onto the stack and
the stack increments downwards to
0800! - until the computer crashes.

Both TEC and CARD can be filled at
the same time by changing the first
two lines to:

01 00 10
21 10 08

Using these programs, any number of
locations can be filled, anywhere in
RAM. They can be filled with any
value such as BB, CC, or 33 etc.

Programs can be transferred from the
TEC to CARD and from CARD to TEC
via the DUMP ROUTINE. Some
examples are given in the EPROM
BURNER article,

IF THE RAM CARD FAILS TO WORK:
There are three major faults which
may occur with this project:

i. You cannot write into memory.
2. Information in the RAM card is lost.
3. The TEC starts to play up.

If it is not possible to write directly
into the RAM card or dump into it via
a DUMP ROUTINE, the fault will he
in the READ/WRITE line. This is pin
21 of the 6116. It must be low to be
able to change the data. Test it with a
logic probe or high impedance multi-
meter. Don't forget to address the
RAM correctly (via the addresses
given previously).

If the information in the RAM card
gets lost, the fault will lie with pin 21
of the 6116. It may be floating or go
LOW for brief periods so that noise
and glitches enter the address and
data lines to change the stored data.
This problem can also be due to weak
batteries or poor contact between the
cell and the disk on the bottom of the
cell. Try a different brand.

If the TEC starts to play up, it may be
due to the RAM card drawing too
much current. Feel the RAM chip. if it
is getting hot, remove it immediately
and let it cool down. The fault may be
due to the way you inserted the
CARD into the TEC.

Make sure you push the RESET
button while inserting the card so
that the buses are in a non-active
state. If the TEC continues to play up
when the card is re-fitted, replace the
4071 and/or the 6116 chip. •

TALKING ELECTRONICS No. 13 141

:tc4,1 	. 4
J 	 • .

? 424 11NUt.4. emir.

41.1.1ct

VII Man

us: 	1

•1•

NO It*,
sit

11
It

40

11,00004,00000000009•••••000 00000 01,00 000 000

EPROM
BURNER

PC Board: t3.50
Parts: $13.70
ZIF Socket: $12.80

hig 44 um

• 1. 0

Ow VII 11141

7474
MI.,.

74 PI
WWI SICS71 11/441/00 P1141

N
• ••0

,, 	 r.• 1.02

An EPROM BURNER is the greatest
thing to hit the TEC since the regulator
was put under the board

It adds the versatility you have wanted for
ages.

To be able to save a program in a
permanent form is the final goal of
programming.

The TEC RAM CARD and EPROM
BURNER combine to make a system
capable of generating, testing and
producing programs in hard form which
can be saved. stored or sold - programs
capable of emulating almost any task
imaginable.

You can take any project from any
magazine or book and convert it to a
micro design with a consequent saving in
parts. space and cost. its capability can
be increased and its reliability improved
by using a tried-and-proven micro design.

By using the NON-VOLATILE RAM as the
intermediate stage and the MON 2
monitor (with insert and delete functions)
for the production of the program, you
can generate, and have running, any
machine code program, before burning it
permanently into an EPROM.

Burning an EPROM is the final stage and
you should be thoroughly satisfied with
the performance of a program BEFORE-
HAND as it cannot be changed once it is
burnt.

This is not entirely true as you can change
some values and 'burn-down' any value to
zero.

This is an important fact to remember
when programming and we will explain
what we mean:

EPROMs are purchased in blank form and
this means the cells (of which there are
16,384 in a 2716 and 32.768 in a 2732)
do not hold any charges of electricity.

Due to buffering circuits in the EPROM.
the output from a blank device will be a
set of HIGHs. Advantage is made of this
as you will see. Eight cells are accessed
at a time and if the value is read, it will be
1, 1, 1, 1, 1, 1, 1, 1. But we don't want to
read a blank ROM - we want to program it
with useful commands and data.

In Hexadecimal notation, the blank
EPROM produces FF's from each set of 8
locations. This is called a byte and as we
bum each byte in the EPROM burner, we
convert the FF's into a lower value. If we
don't burn a particular location, its value
remains FF.

If we burn all 8 cells, the resulting value
will be 00 and the designers of micro-
processors (such as the Z-80) have given
a very clever command to this value. It is
"NO-OPERATION" in which the
processor glides over the location with-
out affecting any of the remaining
program.

PARTS LIST
2 - 10k
3 • 100k
1 - 1M
1 - 1M5

1 - 10n greencap
3 - 100n
1 • 220uf 35v electro

2 - 1N 4148 signal diodes
4 - 1N 4002 power diodes
1 - red LED

2 - BC 547 transistors
1 - 4011 IC
1 - 7824 regulator

1 - 14 pin IC socket
1 - 24 pin wire-wrap socket
1 - 24 pin DIP header
1 - 24 pin ZIF socket 12,80 EXTRA

2 - 10cm hook-up flex
2 - matrix pins (for TEC)
2 - matrix pin connectors
4cm heat-shrink tubing
1 - SBA nut and bolt
3 - DPDT slide switches

1 	EPROM BURNER PC BOARD

2$ TALKING ELECTRONICS Nil. is

Switch positions for
programming and
reading 2716 s and 2732's

Pim kat. • 1731

6

ee 	6

Don't forget to add the
umper lead from p n 18
of the wire-wrap to the
PC board and cut pins
18,20 and 21.

27I4

,J

2732

The programming

B
ulses differ
etween the 2716

and 2732.

00111111411411/040110100011104111•••••••••••••••••••••111

F

A

V

V
N

E
U

The advantage of having a No-OPeration
command as 00 means any location can
be 'burnt-down' to 00 if it is required to be
removed.

This is where the term 'burn-down'
comes from. Whenever an EPROM is
burnt or programmed. the value produced
is less than the starting value for the
location.

We said values cannot be changed once
burnt, but in some cases you can reduce
the value if the following conditions are
met.

The main criteria is:the cells you wish to
change must be 1's.

The table below shows the values which
an be burnt down and those which
annot.

BURN-DOWN TABLE:

E

C

8
6
4
2
0

The ha d value can b h rn down to the
val es shown in the column

By using the TEC, the address values
increment automatically as the program
advances and the values of data are
automatically converted to binary when
each location is being burnt. This means
you can program in Hex.

In this way an hours' work is converted to
only a few minutes.

This is the function of an EPROM
BURNER. It connects an EPROM to the
address and data buses, provides the
necessary 50 millisecond programming
pulse and the 25v supply.

To hold the data steady on the data bus
for the duration of the burn. it is necessary
to HALT the computer. This is achieved
by using another monostable connected
to the WAIT line. with a pulse length
which is slightly longer than 50
milliseconds.

When you think of it. 50 milliseconds is
20Hz and when you include a short
additional delay for the wait function and
a number of machine cycles for the
execution of a program to carry out the
burn operation. you arrive at a burn rate of
about 15 locations per second.

Divide this value into the number of
locations you wish to burn and you arrive
at the length of time for burning an
EPROM. That why it may take a minute
or so.

SVIIICh position
nal IMpOrlant

HOW THE CIRCUIT WORKS

The circuit is very simple and consists of a
number of building blocks which come
together via the ROM SELECT line from
the computer.

Starting at the top of the diagram, the 25v
is derived from a 7824 voltage regulator
which has been 'jacked up' by 1.7v by the
inclusion of a red LED in the COMMON
line. This gives and output of 25.7v and
by the time it reaches the EPROM. a
voltage drop of .5v has occured across
the switching transistor. This transistor
is switched via the output line of the 50
millisecond monostable.

The 25v line need not be switched ON and
OFF when programming but must not be
present when the EPROM is to be
removed from the socket. By switching
the voltage as we have done, the EPROM
can be removed without damage.

In this article we have included only a
very simple burning routine which you
can load into 0000 and get the project
working.

The final two circuit blocks are mono-
stables or one-shots. created from NAND
gates. The lower monostable produces a
50 millisecond delay and the upper a 65
millisecond delay.

It places data on the data lines, turns on
the required address lines and turns on a
Chip Select line (located near the edge of
the TEC PC),

C

8
5
4
1
0

0

8
4
0

C

A
9

8
2
1
0

N

8
2
0

A

8
1
0

8

6
5
4
3
2
1
0

7

4
2
0

0

4
1
0

5 4

2
1
0

3 2

0

1

0

0

Va ues c nnot e 'burnt-up' a we cannot
produce HIGH in an EPROM BURNER.

The only way we can restore RIG Hs or l's
to the cells of an EPROM is to put it under
an ultra violet light source, whereby ALL
the locations will be erased and
converted to is.

THE CONCEPT

Locations in an EPROM can be burnt if a
voltage of 25v is applied to the Vpp pin
and pin CE pulsed for 50 milliseconds.

The cells which will be given a charge of
electricity will depend on the address
which is being accessed and the value of
data present on the data lines.

These are the only requirements and
programming can be done with a simple
set of switches. Unfortunately this would
take an enormous length of time as 11
switches would be required for the
address lines 8 switches for the data lines
and each would have to be set for each
byte of information.

A 2716 contains 2048 bytes and if a byte
is burnt incorrectly, the whole procedure
would have to be repeated.

The other inconvenience is all the bytes in
the program would have to be converted
to binary so that they can be loaded via
the switches.

All this would take so long that the
operation of burning would become a
head-ache.

TALKING ELECTRONICS No. 13 21

The timing diagrams on the previous page
start at the commencement of the
program (see page 48 for the program).
The program runs for the first 4 lines and
in the fifth line the instruction is to load
the contents of the accumulator into the
location pointed to by the DE register
pair. This instruction does three things:
not necessarily in this order.

It places data on the data lines. turns on
the required address lines and turns on a
Chip Select line (located near the edge of
the PC).

This line accesses either a RAM or ROM
chip connected to it and the address
starts at 1800.

This action triggers both monostables
and the WAIT monostable immediately
goes LOW to HALT the computer.

The program is stopped and the EPROM
BURNER circuit takes advantage of the
data appearing on the address and data
lines. This address is loaded into the
EPROM and the data placed on the cells
at this particular location.

The high voltage is turned on for 50
milliseconds and at the same time CE is
pulsed. This permanently puts the value
of data in the EPROM.

The 50 millisecond monostable ends it
timing cycle and 15 milliseconds later the
WAIT monostable goes HIGH. This
enables the computer to continue
through the program and come to a
JUMP RELATIVE instruction to bring it
back to line 5.

This time DE will be pointing to the next
higher location and A will contain a new
value of data. The count-register-pair BC
will be one less than previously. The
program continues to loop until BC pair is
ZERO.

At the conclusion of the burn routine the
program jumps to address 0000 and the
monitor program is executed to bring
0800 on the screen with the reset beep to
indicate the end of burn.

RECAP:

The program burns the EPROM at
address 11100 • IFFY. To look at the data
in EPROM: address 1000 • 17FF. When
the EPROM is removed from the
programmer, its address will depend on
the project you are using it in, but more
than likely it will be the only programmed
chip and thus it will be 0000 • 07FF for a
2716 and 0000 • OFFF for a 2732.

CONSTRUCTION

Begin with the resistors and signals
diodes. Keep them close to the board
before and after soldering but be careful
not to damage them with heat. Four
power diodes are needed for the 30v
bridge. Fit them next, along with the 10n
and 100n greencaps.

There is one jumper link on the PC board
and this can be made from a lead cut from
one of the components.

- Q0Q061)
The Chip Enable pin and Wait pin on
the TEC.

The 7824 voltage regulator is mounted
under the board and fixed to it with a nut
and bolt. The pins fit through the holes
provided and are trimmed on the topside
of the board.

The two transistors and 14 pin IC socket
are the next to the be added and then the
red LED.

The 220uf filter electrolytic must be
mounted around the correct way and the
board is ready for the hardware parts.

Push the 24 pin wire-wrap socket
through the holes in the PC and carefully
solder it in position. Cut oft pins 18. 20
and 21.

A short jumper goes from pin 18 of the
DIP header to a solder-land on the PC
board (located between pins 12 and 13).
The easiest way to add this jumper is to
solder one end to pin 18 of the DIP plug
and the other end to the PC board
BEFORE soldering the DIP plug to the
wire-wrap socket.

Keep the pins of the wire-wrap full length
and solder the 24 pin DIP header into
position.

The three slide switches are mounted
through the board if the holes are large
enough. But if only small holes have been
drilled, the legs will need to be extended
with short lengths of tinned copper wire
and the switches mounted above the
board.

Finally connect two juniper leads for the
WAIT and ROM SELECT lines and a
length of twin flex for the 30v line.

The jumpers require matrix connectors
and a short piece of hoot-shrink tubing
over them to make them sturdy Heat the
tubing with a flame to make it shrink over
the connector.

The twin flex requires a 2 pin DIN plug so
that it will fit the 30v socket on the TEC
POWER SUPPLY.

Fit the 4011 IC and the board is ready.

Two matrix pins will be required on the
TEC PC board to take the jumpers These
are soldered as shown in the diagram
opposite and are included in the kit.

If you intend to produce a number of
EPROMs you will need a ZIF socket.
These are expensive (too expensive). but
are essential if you want to avoid the
damage caused by constantly inserting
and removing EPROMs from an IC
socket_ The wire-wrap socket will accept
about 50 insertions and removals before
it gets a little weak. If the pins do not
make good contact, the wrong values will
be burnt.

When fining a ZIF socket, push it firmly
into the wire-wrap by starting at one end
and gradually introducing the pins. two at
a time. You cannot force all the pins
together at once_

Pin 1 of the EPROM is towards you and
this means the lever of the ZIF socket is
also towards you.

Cont. P. Ow

30v AC or DC

-04- -OH-
4 x 1N4002 --7824 0 I

— 4-1

Nel +0 	
MOUNT 7824 UNDER

RED LED

10n
ROM I's

-100K-
0

SELECT

c
o 2
F y

-im - 0 	x TE W
WAIT 	

cm

0
cc

2

0.

EPROM BURNER

C

•-•

BOARD

2 x BC547

Nie D0
g 2,,
7 V2

N 0

i
Li

2716 -141.— cr;
READ 2732

PA.U.L. >-
• cc
O 0

12

3 2
O N

tel
r-

CO 0
0
0 a

beemonnentmennommenmem

22 TALKING ELECTRONICS No. 13

11•••••••••••••••••••••••••••••••••••••••
EPROM BURNER
...cont. from P. 22.

The lower switches must be set for 2716
or 2732.

When burning 2716's the upper switch
position does not matter as it is not in
circuit.

When burning 2732's the upper slide
switch selects the UPPER 2k or LOWER
2k of the 2732.

The switch closest to the EPROM is
placed in the upper position when
programming 2732's and in the lower
position to read them.
This switch is placed in the lower position
when programming and reading 2716's.
Refer to the set of diagrams before
carrying out any operation.

The high voltage is derived from a 30v
supply. This can be the TEC POWER
SUPPLY or from a 30v AC transformer.
Very little current is required, however
the voltage must not go below 30v or the
regulator will dop out. This is because we
are generating 25.7v and the regulator
requires 3-4v across it for regulation.

Connection of the EPROM BURNER
board to the TEC is via a 24 pin wire-wrap
and DIP header plug. The board fits in the
expansion socket and requires a WAIT
line and ROM SELECT line.

The ROM SELECT line is pin 12 of the
74LS138 and WAIT is pin 24 of the Z-80.

Connect these lines to the TEC and plug
the EPROM BURNER board into the
expansion socket, Connect the 30v
supply and the red LED will illuminate to
indicate all is ready.

You can burn a new EPROM or blank
locations in an old ROM. You can even
bum old locations providing they fulfill
the requirements mentioned previously.

THE PROGRAM

The BURN PROGRAM can be placed
anywhere in the Monitor ROM or typed
into the RAM. If placed in the RAM, it will
need to be typed each time an EPROM is
to be burnt.

The program is very simple and does not
have any checking facility to prevent it
burning over previous program.

The absence of this means you can bum
or reborn any location(s) anywhere
without having to break a safety lock.

The first three lines of the program
contain variables which have to be set
each time you want to burn an EPROM.
For this reason, the three lines must be
typed into RAM with a fourth line to
provide a call or jump to the remainder of
the program. The rest of the program can
be located in ROM (at say 0700).

Here's how it is done:

You will need a blank 2716.

The first stage is to transfer the MONitor
program into the new EPROM. Load the
following into 0800:

LD DE 2500 	Soo II oo it
LD HL 0000 	to; 21 im oo
LI1 LD BC 061F lob of FF 06

PUSHPUSH

AAHLI 	7E

LI 'Re 	SOA 12
SOB C5

DJNZ FE 	toC io FE

POPBCE
F
C

E 	
1110 Ci
toE FE

POP

INC DE
IN 	

S12 1
!Hi

 23
3

DEC BC 	513 0B
LD A,B 	114 7 .1
OR C 	1115 B1
JR NZ 	Si 6 to F1
Restart 0000 Sit C7

Make sure the switch selects 2716. Push
RESET. GO. The TEC screen will blank
for about 2 minutes while the program is
burning.

When the screen reappears you can
check the operation by addressing 1000
and read the locations. Compare them
with 0000 and confirm the program has
been transferred.

The next stage is to add the burn routine
to the MONitor ROM. This is done at
0700. Change the values at 0800 to:

11 00 IF
21 OS OS
01 10 00

Push RESET GO and the program will be
transferred in a few seconds.

You have now produced a MONitor ROM
with a burn routine at 0700. Place the
new ROM into the TEC and it will start up
with 0800.

To use the BURN ROUTINE, type the
following at 0800:

TO: ROM address + MOH
FROM: RAM address
No of hex bytes

Programs to be burnt into EPROM are
placed at 0900 and can extend to OFFO.
To transfer these programs to EPROM.
place the following at 0100:
110021
21 00 et
01 Fe 0
C3 00 07 	Push RESET GO.

EX:
So

EPROM:

byte program at 0900 to 0000
in
at 0800:
11 00 IS
21 00 09
az to oo
C3 00 07

A6 byte program at OA00 to 0150 in
EPROM:
at 0800:

21 00 0A
II 110 19

01 A6 00
Push: RESET, GO. C3 00 07

40 byte program at 0000 to 02C0 In
EPR.OM:
at 0800:
11 CO OA
21 00 OC
01 40 00
C3 00 07

If you type a program at 0100, the BURN
ROUTINE can be located at 0900:
11 0.0 Xx
21 00 Oa
01 22 XX
C3 00 07
decrement to 0900 Push: GO, GO.

Before starting any programming you
should fill the TEC RAM with FF's. This
will allow any non-program locations to
be transferred and retain the value FF.

To fill RAM with FF's:

11 IF FF
D5
C3 03 OS
Reset, GO.

Programs can be transferred from
EPROM to the TEC memory via the
following routine:
at °COO:

11 00 OS
21 00 10
0
ED BO

1 	(No of bytes)

decrement to OCOO Push: CO, GO.

Program will transfer very quickly - This is
not a burn routine but a DUMP
ROUTINE which can also be used for the
non-volatile RAM project.

Example: 80 bytes in EPROM at 0000 to
0900 in TEC RAM.

at 0800:
11 00 09
21 00 10
01 10 00
ED Bo
C7 	Push Reset, Go.
(0000 in EPROM means page-zero in
EPROM).

Er BO bytes in EPROM at 0630 to
0900 in TEC RAM.

at 0800:

It 00 00
21 10 16

OED
1
 BO
BO 00

C7 	Push: Reset, Go.

Before attempting any transfer, you must
write the necessary program on a piece of
paper using one of the examples in the
text. Check it carefully then type it into
the TEC at 0800 (or other location as
explained).

Using the programmer and the non-
volatile RAM in conjunction with the TEC
will open up lots of possibilities.
Programs can be used on the TEC or
MICROCOMP and you will begin to see
how everything is going together.

11
21
01
C3 oo 07

Push: RESET, GO.

Push: RESET, GO.

411 TALKING ELECTRONICS No. 13

10, 7805

	 .30.

1000 of 35.

	0 +12v

12 6. AC

	iill, 	

in 4002

2N 3055

+ 5 v

1000,A 	10001.0
1=11

T TI

==i
=NMI

I-•

12 Gv AC

T

100n

	0 OND

TEC 4.
POWER
SUPPLY PC: $5.50

Parts: $13.90
Complete Kit incl. Transformer, PC & case: $44.25

With the gradual expansion of the
TEC, we have come to the stage
where we have run out of voltage and
current from a plug pack.

A 12 volt 500mA plug pack may
sound ideal in theory but when you
connect it to a project requiring about
300mA, a cruel thing happens. The
output voltage falls from 12v to 10v!

This may be ok if you are dropping it
down to 5v via a regulator. but when
you want the full 12v for say a voltage
doubling operation, 10 volts is not
enough!

For too long we have been gulled into
believing the ratings of transformers
and plug packs. It's only when we
require the full rated output that we
realize it will not produce.

We learnt our first lesson with the
2155 in a power supply some years
ago. Its stated output is 15v AC at 1

amp and this really means 1 amp AC.
It also has an AC rating of 15VA and
this is very similar to saying 15 watts.

But as soon as we place a 2155 in a
power supply we convert the AC to
DC via a bridge and gladly accept the
output rise to about 21v DC, which is
about 40% higher than the AC
voltage.

Since the volt-amp rating of the
transformer is a CONSTANT (a
constant is a value in a formula
which does not alter) and is 15VA, we
must derate the output current to
700mA to maintain the rating of
15VA (or 15 watts).

Thus we can safely draw only about
700mA from a 2155.

There are further projects being
designed for the TEC and they
include a VDU, possibly for the next
issue. The VDU board takes about

350mA, making a total very near the
maximum for a 2155 and above the
capability of a 500mA plug pack.

We also have a Relay Driver board
requiring 12v-15v for the relays and
an EPROM BURNER, in this issue,
requiring 30v.

Ail this has led us to design a power
supply capable of delivering these 3
voltages. At a later date it can be
expanded to deliver about 1.4 amps
to the 5v line, to cater for fully
expanded TEC's.

The TEC Power Supply is not only for
the TEC. but will also power any
other project requiring one or more of
these voltage.

The project is mounted in a neat
plastic case as supplied by Altronics
and Dick Smith and is the LARGER of
the two (in the range).

TALKING ELECTRONICS Na 13 23

I I I

i
ll 78051

 	+
1 00 0 u

cE
0

4rY

lOu

O
C
co
c‘i

11

O

fV

1000u

- 1000u 35v

100n 100n

—4—

cv
3 LEDS

cv
O i 	0

30v 	12vAa 5v

O 0 0
DC OUTPUTS

TEC POWER SUPPLY

	I

	

13 	+
x 1N4002

—104—

1 000 u

These cases make the project look
very professional and can
accommodate both 2155's and the
PC board. The floor of the case has a
number of spigots for mounting the
board and transformer(s) so that
everything fits firmly and neatly in
position.

As with all projects which involve
connection to the mains, this project
must not be connected until it is
checked by someone with
experience.

The first question you will ask is
"Why use two 2155's and two
bridges."

The answer is simple. Working with
currents up to 1 amp produce very
few problems. Components such as
diodes. regulators and transformers
are designed for a maximum of 1
amp. When you go over 1 amp. the
problems start.

Nothing is designed for 1.5 amp or 2
amp and in fact high power
components start at 3 amp.

This means a 1.5 amp or 2 amp power
supply falls into the middle of
component availability.

The cheapest and best solution is to
produce two 1 amp supplies and
parallel them up. This is what we
have done. Two 2155 transformers
are taken to two bridges and from
there the current gets divided
between the three outputs. Most of
the current will be required by the 5v
line while the 15v and 30v lines will
not require heavy currents.

In practice. only about 30-50mA will
be required on the 30v line for the
EPROM BURNER and only about
100mA for the Relay Driver board.

HOW THE CIRCUIT WORKS
The circuit is basically a 7805
regulated power supply with a series
pass 2N 3055 transistor to supply the
current for the 5v rail.

The 15v rail is taken from the input to
the regulator and is filtered and
smoothed DC. but not regulated.

Referring to the circuit diagram, the
30v rail is obtained by voltage
doubling the 15v line. The top bridge
is responsible for this and means it is
the bridge which operates when only
ONE transformer is used. The lower
bridge provides the back-up when
more than about 700mA total is
required.

The 5v line has some interesting
points.

The output transistor is an emitter
follower in which the base voltage is
determined by the output voltage of
the 7805 regulator. As we know, the
emitter of a transistor in an emitter
follower arrangement is .6v lower
than the base. Thus, to obtain a 5v
output, we must supply the base with
5.6v. This is achieved by placing a
diode in the 'common' line of the
7805 and increases the output by .6v.
Thus it emerges from the 2N 3055 at
exactly 5v.

In this arrangement we have lost the
shut-down facility of the 7805. But
since we have found this to be very
unreliable with a 2155 transformer,
nothing has really been lost.

PARTS LIST

1 - 470R %watt
1 - 1k
1 - 2k2

2 - 100n greencap
1 - 10mfd electro
3 • 1000mfd 16v or 25v
1 - 1000mfd 35v or 63v

11 - 1N 4002 diodes

1 - 5mm red LED
1 - 5mm green LED
1 - 5mm yellow LED

1 - 7805 regulator
1 - 2N 3055 transistor

1 	- TO-3 heatsink

2 - 4BA nuts and bolts
3 - 6BA nuts and bolts

10 x 20cm hook-up flex
1 - 2 pin DIN socket
1 - 3.5mm socket
1 - RCA socket

1 • 2155 transformer
4cm heat-shrink tubing
1 - cord clamp
1 - power cord and plug-top
1 - solder tag for earth lead
1 - H 0482 case
1 • SPOT switch for mains

heatsink compound

1 - TEC POWER SUPPLY PC
Extra parts: 1 - 2 pin DIN plug,
1 • 3.5mm plug & 1 - RCA plug: S1.30

The 7805 requires about 1.5 amps to
be flowing before it will shut down
and this current is not available from
a 2155.

When looking at the photo of the
completed project you will notice the
regulator does not have a heat fin.
This is because the regulator does
not supply the current to the 5v line.
The transistor does all the work. The
regulator supplies a voltage and
about 50-BOmA to the 2N 3055, to
drive it. The transistor has a current
gain of about 10 to 20 and thus it is
capable of supplying about
700-1400mA. This is why the .2N
3055 must be properly heat sinked.

CONSTRUCTION
All the comonents are mounted on a
single PC board with flying leads to
each of the output jacks and the
indicator LEDs. If using one trans-
former, a twisted pair goes from the
12.6v AC holes on the middle of the
edge of the PC to the Ov and 12.6v
tapping on the transformer.

The overlay for the TEC POWER SUPPLY. The 7805 voltage
regulator does not require a heatsink but the 2N 3055 must be
suitably heatsinked as it is the current regulating component.

24 TALKING ELECTRONICS No. 13

COAD CLAMP

QY 12.8v AC !APO AC INPUT

1 I 	2155

240v AC ‘?
TEC POWER SUPPLY

PC BOARD
2
30v

pin DIN for

3.5mm
for 15v

Start by fitting the 11 power diodes.
The cathode end is identified via a
white band around one end and this
corresponds to the line on the symbol
on the overlay.

The diodes must be pushed home
BEFORE soldering and must touch
the board AFTER soldering. This is
necessary as the copper tracks are
designed to act as a heatsink to
prevent the diodes getting too hot.

Next fit the three resistors. These are
current-limiting resistors for the
indicator LEDs.

Fit the two 100n greencaps and the 4
electrolytics. Note the marking on
the electro's indicates the negative
lead whereas the board identifies the
positive lead. Don't get mixed up.

Layout of 2.2155 transformers and
PC board inside case.

compound squeezes from around the
edges of the transistor. If you have
done this correctly, it will be even all

round. Solder the base and emitter
leads. The collector is the case of the
transistor and gets its voltage via the
bolts. That's why they must be
screwed up tightly and don't get the
thermal compound on the bolts.

The next stage is to attach the flying
leads to the board for the input and
output.

It is suggested that a colour code is
used so that each output can be
recognised by a colour. This will
prevent a major mistake.

The 3 output sockets are different to
each other so that the plugs must
also be different. Each project you
connect to the supply must be fitted
with the correct type of plug and this
will prevent the wrong voltage being
selected.

The sockets we have chosen are RCA
for the 5v line, 3.5mm for the 15v and
2 pin DIN for the 30v. The RCA
socket is used for the 5v because it
provides the greatest amount of
contact between plug and socket for
the higher current flow.

These sockets are mounted on the
front panel along with the indicator
LEDs.

The exact position for these sockets
is not critical except you have to
make allowance for the heat fin and
transformer. This restricts the layout
somewhat and the photo shows a
suitable positioning.

The only other component on the
front panel is a 240v power switch.

Next push the leads of the
7805 through the hoes in the
board and bend the regulator
over. Attach it to the board
with a nut and bolt and then
solder the leads.

The final component to
mount is the power
transistor.

Place the heat-fin on the
board and before the
transistor is fitted into place,
smear a little thermal
compound on the underside
of the transistor.

Take care not to short the
base or emitter leads against
the heatsink.

Place the transistor onto the
heatsink and attach to the
board with two nuts and
bolts. As you tighten the
bolts, you will notice the

lz

GROMMET

Layout for 2 transformers. If only one transformer is
required, the smaller case can be used.

TALKING ELECTRONICS a. 13 23

ITirr• irrri

WIRING THE MAINS SECTION
Wiring the mains lead to the power
supply is simple enough except that it
must be done according to RULE.
This states that the lead must be
attached or 'gripped' to the cabinet
so that it will not pull out or pull on the
wires inside the box.

Make a hole in the rear panel which is
just large enough and push 20cm of
the lead through. Place a cord anchor
about 2cm from this hole and fasten
the lead to the cord grip with a nut
and bolt.

Remove 9cm of the outside sheath
and separate the three inner wires.
The ACTIVE lead is RED or BROWN
and must be taken to the switch on
the front panel. Bare'/2cm of the lead
and slip a 2cm length of heat-shrink
tubing over this lead. Solder to either
terminal of the switch.

Cut the BLUE or BLACK neutral wire
slightly shorter and repeat the same
procedure, this time connecting to
either of the primary terminals on the
transformer. Don't forget the short
length of heat-shrink.

Finally the earth lead must be
connected. Surprisingly, this lead
must be the longest so that it is the
last lead to be broken, should the
cord be pulled. Solder this to a solder
tag and screw it onto one leg of the
transformer.

A short jumper is required between
the switch and the other input of the
transformer. Add this and include the
heat-shrink.

The heat-shrink must now be pushed
over the exposed parts of each of the
connections and shrunk into place by
heating with a match or candle. The
object of the exercise is to cover ail
the mains wiring so that nothing can
touch a live wire.

If you have bought a MOULDED
PLUG, the power cord will now be
complete. If the plug-top requires
attaching, use the colour code given
above for the correct connection of
the wires. You may think the choice
of colours is rather poor. Don't blame
me. It's an international code, to
assist colour-blind people.

TESTING THE POWER SUPPLY
Testing the power supply is done in
two stages.

Connect the plug to the mains and
turn the switch on the case ON and
OFF very quickly. The three indicator
LEDs should come on_ If they do, you
can be sure the three voltages are
present.

Next you must test the supply to see
if any of the components are going to
overheat. This is always an important
stage in testing a project which has
the potential for supplying a lot of
power.

Turn the supply ON for 10 seconds,
then pull the plug from the wall. Feel
the temperature of each component.
If everything is cool, repeat for 30
seconds. Again remove the plug and
feel each item.

If everything is ok, switch on for 5
minutes and try again.

Parts can be damaged very quickly
when in a high current situation like
this and if an electrolytic is around
the wrong way, it will very quickly
heat up and may even explode.

The next stage is to measure the
output voltages with a multimeter.
The most important voltage is the 5v
rail. It must be exactly 5v. TTL
projects such as the TEC computer
will be connected to this rail and it
must be spot on 5v.

The other rails are not quite so critical
as they are used to operate relays;
and the 30v rail will be taken to a 24v
regulatorfor feeding into a 25v tine as
shown in the EPROM BURNER
project.

Even so, you should make sure they
are delivering the required voltage. If
the 30v rail, for instance, is only 15v
or 20v, something is wrong. And if it
is 25v, it will not be sufficient for the
EPROM project.

A low voltage, like this. may be due to
low mains or a diode missing (not
working) in the bridge.

One way to test the diodes is to fully
load the supply, via say the 15v rail,
and feel the temperature rise of each
diode. They should all get equally
warm.

If your area suffers from low mains
voltage. you can increase the voltage
of the supply by connecting between
the Ov and 15v tapping on the
transformer.

FINAL ASSEMBLY
After testing the power supply for
temperature rise. fit the front and
back panels and close the case using
the two long screws provided. Use
white lettra-set or other form of
identification to show the three
output voltages and the ON position
for the mains switch.

POWERING THE TEC
The TEC can be powered from either
the 15v line or the 5v line.

If powering from the 15v line, a lead
can be taken from the AC terminals
on the TEC to the 15v output. The
7805 regulator on the TEC will
provide the regulation. It is
interesting to note the input lines can
be either way around as the TEC has a
full wave rectifier and this means the
input voltage cr n be of any polarity.

If supplying from the 5v output,
things are different. You must
connect to the 5v rail of the TEC. This
is done by connecting one lead to the
earth line and the other to the output
pin of the 7805.

24 TALKING ELECTRONICS No. 13

A 3-CHIP Z-80
COMPUTER

COMPLETE MICROCOMP
MOUNTED ON RETEX CASE RA-1.

MICROCOMP CASE $12.50

Parts: $47.25
Board: $8.50

SOME OF OUR 'ADD-ONS':

PHONE DIALLER

letbt'

MORSE TRAINER

4 DIGIT DISPLAY

MICRO
COMP

$55,75COMPLETE

COMES WITH FREE
STORAGE BOX!!

Don't think this project displaces the
TEC. It goes hand in hand with it and
uses some of the "add-ons' and
capabilities to assist in preparing
programs. In reality you need BOTH.
The TEC produces the programs and
the MICRO-COMP runs them.

But if you are only starting in this field
and want a low-cost introduction into
micro-computer programming - THIS
IS IT!

There are some pre-requisites how-
ever. Although the project is simple
(according to computer standards). it
needs a degree of competence in
assembly and you should have
constructed at least 6 other TE
projects before attempting it. Digital
projects have an inherently high
degree of success however
construction requires a fine tipped
soldering iron and a lot of attention to
detail.

if you are not up to it, don't do it. But if
you have made a lot of projects and
want to graduate to the next level -
this is how to go. You will be amazed
with the capabilities of the unit and it
will involve you in hundreds of hours
of programming.

At the conclusion of this protect
you will:
- Know a little (a lot) about the Z 80
microprocessor.
- Learn about Read Only Memories
and Random Access Memories.
- Learn about Input and Output
ports and devices.
- Learn how a Micro system works
- Learn how to produce MACHINE
CODE programs.

TALKING ELECTRONICS No. 13 59

This project contains everything to
get you started in Machine Code
programming. It assumes you know
nothing about micro-processors or
how they operate. The MICRO-
COMP is the simplest computer to be
offered on the market. It uses only 3
chips and a handful of small
components to prove that computers
can be tackled and mastered by
anyone interested in electronics.

As with all our projects, full kits are
available and come with a complete
back up service.

As we have said. it doesn't displace
the TEC but complements it. And yet
the MICROCOMP is a stand-alone
project. It is self-contained and
comes with a range of interesting
programs as shown on P. 70.

Ten programs have already been
designed and come in the pre-
programmed ROM. They include
COUNTING. DISPLAYING and
GAMES. The readout for these is via
the displays on the board but as the
games become more complex we
have designed plug-in modules
which connect to the main board via a
wire-wrap/component header plug
similar to the arrangement used in
the TEC.

This has proven to be the neatest and
most rugged way of adding features
and allows you to increase and
extend the capability of the system to
quite high levels.

Some of the plug-in boards run two or
three programs and by building all the
modules, you will be able to run all
the programs in the EPROM.

Programs which have already been
completed include:
- MORSE CODE TRAINER
- MORSE RECEIVER
- TELEPHONE DIALER
• COUNTING
- MASTERMIND
- JUMP RELATIVE routine for
determining the value of the
displacement byte.

The MICRO-COMP can also be
combined with the TEC and they go
together perfectly. With the
assistance of the TEC you can create
your own programs. burn them via
the EPROM BURNER or hold them in
our non-volatile RAM card for
running on the Micro-comp. This non
volatile RAM project is equivalent to
TAPE-SAVE and has the advantage
of being able to be transferred
instantly or run as a ROM.

It is a battery backed-up 6116 and
when in the power-down mode.
consumes less than 2 microamps.

Two AAA cells power the unit and are
capable of holding the information for
about a year.

The TEC and MICRO-COMP provide
a complete designing system for
creating Machine Code programs
and you can use the Micro•comp for
the execution of the program.

The Micro-comp comes complete
with a 2732 EPROM which is filled
with lots of programs. All these have
been produced entirely on the TEC
and tested on the Micro-comp. We
have not had the assistance of a
compiler, video display or Z-80
simulator, proving that programs can
be generated 'by hand',

Agreed, this means it has taken
longer to create the programs but the
challenge was well worth it. Even the
concept of a half-byte memory for the
Phone Dialler was an innovation
never before tried.

We admit Machine Code is not a fast
method of creating programs but has
the advantage that almost anything
can be turned into a program. And it
can be done with the simplest of
equipment. The only limitation is the
programmer's skill.

By building both the TEC and Micro-
comp, you gain first-hand knowledge
of two different methods of designing
a micro system. You will also have
need for add ons such as the non-
volatile RAM and EPROM burner.

In effect you will be a self-contained
programming station capable of
turning out 'one-offs' or mass
copying your own programs.

Please remember: These notes use
simple 	terms 	and 	simple
explanations to make programming
easy. Although they are accurate.
they do not cover everything and we
suggest you purchase a couple of
books on the Z-80. The two best
books to buy will be given later.

Since its introduction, the word
MICRO has been the most feared in
the industry because. up 'to now, the
operation of a microprocessor
system has been very much a
mystery.

Never has a writer explained or
presented a system which could be
understood by beginners. They
argued it wasn't for beginners but
everyone must be a beginner at some
time. Because of this. Micro's have
been a closed topic to the newcomer
and this amazing electronic device
has been left for the clever ones.

Now this has all changed.

The MICRO-COMP is here. With only
3 chips it is even simpler than a
medium sized 'regular' project and
yet its capabilities are beyond belief.

For the 'brains' of the unit we have
used the Z-80. The most popular
microprocessor on the market. Why
the most popular? Because, up to
now, industry swallowed them up
totally and consumed the entire
production. It's only with the slump
in computer and games sales that
supplies have reached the hobby
market. And due to manufacturing
efficiency, these truly amazing chips
have come down to only a few
dollars.

This means the project will be well
within your budget.

Apart from the programs already
mentioned, we are in the process of
producing programs and modules for
an Alcohol Breath Tester. a Digital
Resistance 	Meter. 	Digital
Capacitance Meter, a Bio-feedback
Unit, a Mini Frequency Counter and a
Lung Capacity Meter.

But before we get too carried away,
lets look at the project in detail:

THE MICRO-COMP.

This is a 3-chip computer capable of
accepting input data, performing
operations on this data and
displaying the results. The amazing
part of this project is the three chip
count. To achieve this we have used
some very cunning circuit designs.
some of which cannot be translated
to larger designs. However our aim
has been to produce a computer
which will execute Z80 Machine
Code with the least number of chips.
And this we have done.

The reason for the minimum chip
count is simple. Most constructors
count the chips in a project before
starting and anything over six scares
nearly everyone away. With 3 chips,
ma iy will 'give it a go' and that's
where we win. We want lots of
readers to try their hand at
construction and experience the
excitement it offers.

Everyone has seen micro systems in
a hard-to-get-at form. The Personal
Computer. But these have never
enabled you to get into the 'works' or
let you find out how they operate. You
only get to see the end result -the
print-out or Video picture.

The Micro-comp is designed to break
this barrier. With only 3 chips you
will be able to follow a 'minimum
parts' system and understand what is
going on. Even with 3 chips you can

60 TALKING ELECTRONICS No. 13

use nearly all the Z 80 commands and
create an endless number of
programs.

This project is really a software
project. Building the Micro-comp is
purely secondary. But how can you
learn about programming without
experimenting with the real thing?
So building the Microcomp is really
an essential part of learning to
program.

Its price is low enough for everyone
to afford and it has an end-use around
the home as a controller for lighting
or security which would match any
commercial unit. You could also use
it in your hobby, model railway layout
or as a timer-controller in industry.

The MICRO-COMP doesn't do much
when compared with a Personal
Computer. But that's not its purpose.
It is intended to teach Machine Code
programming, the code behind all
computer instructions.

The only instructions a processor
understands is Machine Code. All
other high level languages have been
invented to allow humans to under-
stand what is going on. Languages
such as BASIC and FORTH provide a
connecting link between the micro
and the human mind. This means all
inventors of languages have had to
use machine code to write their
programs. So why not use Machine
Code direct?

Using BASIC is like hiring a scribe.
Centuries ago people could not write.
So they went to a learned man and
told him what they wanted written.
After a lengthy discussion he would
write a letter. The letter represents
Machine 	Code. 	The 	lengthy
discussion represents BASIC.

BASIC has its advantages and a
number of disadvantage. Its
advantage is it gets you into a micro-
processor system with very little
effort and undertanding. But its dis-
advantage is it needs the 'scribe' to
be present at all times. With machine
code its like using the typewriter
yourself.

But most important Machine Coda is
the best way for producing programs
for controlling applications. When
you consider all video games and
industrial machines are Mad- ine
Code based, you will see where the
future lies.

It is interestng to note that a micro
system rivals a 'normal' project
(using individual chips) when as few
as 10 chips are involved. When you
consider a microsystem can be
modified and altered to suit changing
circumstances, it is clearly the only
way to go.

Why this hasn't been the case, is
simply due to fear.

Everybody thought microprocessors
were complex mysteries and
preferred to stay with the building
blocks they knew and trusted.

But in fact, the micro system is
simpler. Once the basic design is
built, it only requires programming to
perform the required function. To
change the function, the electronics
don't need altering, only the program!

Micro systems are simply thousands
upon thousands of building blocks
stored in the form of program and to
write a program is equivalent to being
able to create your own chips.

This is what the MICRO-COMP is.
You can get it to execute your own
programs and connect all sorts of
input-output devices. You can get it
do just about anything in the
controlling and timing field but first
you have to learn how to program.

To help you with this we have
produced a number of programs to
demonstrate the capabilities of the
system and these are contained in the
lower half of a 2732 EPROM which
comes with the kit. Later you will be
able to send it in for re-burning for the
additional programs.

Before we get into the construction
of the 'Comp, here's a brief
discussion on how it works.

HOW A COMPUTER WORKS

This is a very simple explanation to
get you started.

The operation of a computer revolves
around a chip called the CPU. This
applies to any computer and the
MICRO-COMP is a computer, even
though it is very simple. In our case
the CPU is a Z 80. It is the 'brains' or
'clever chip' in the system and
controls all the other chips.

CPU stands for Central Processing
Unit and the feature which makes it
so clever is it is good at organising
things. It keeps the whole system
operating and running smoothly.

In an audio or radio circuit there is
usually only one signal path. In a
computer there are lots of signal
paths. This is the one striking
difference between the two. In a
radio. the path can be tapped at any
point and you will be able to hear the
signal (such as voice or music). If you
tap any of the paths in a computer you
will hear a series of clicks or tones
and they will not make any sense.

This is because a computer requires a
number of lines carrying signals AT
THE SAME TIME to produce the
necessary commands and output
effects.

A sing-le line in a computer will sound
like a tone because of the high speed
of operation but as far as the
computer is concerned, the line is
producing a HIGH for a very short
period of time and then a LOW for the
remainder of the time.

Since a single line can only produce a
HIGH or LOW, a group of lines is
required for the transmission of
numbers. This is achieved by
assigning the lowest-value line with
'1', the next line with 'Z. the next
with '4', the next with '8', the next
with '16' and so on.

By turning on combinations of these
lines, almost any value can be
transmitted.

A group of lines such as this is called
a BUS and a computer has two
buses. One consists of 8 lines and is
called the DATA BUS. while the other
has 12 or more lines and is called the
ADDRESS BUS.

The microcomputer starts operating
after the reset button has been
pressed and released. This action
resets the Program Counter inside
the Z80 to 0000 and instructs the
chip to fetch 8 bits of information
from MEMORY.

It does this by putting zero's on all the
address lines and turning on the 2732
via the Chip Enable line.

The EPROM responds by delivering
the 8 bits of data which are located at
0000 to the data bus. The Z 80
accepts these and places them in a
special instruction register which is
only accessable to the Z80.

Eight bits of information is called a
BYTE and the Z 80 determines what
to do with the byte , according to its
value.

The Z 80 will do one of two things. It
will either carry out the instruction or
request another byte. An instruction
may consists of one, two, three or
four bytes. and the Z 80 waits for a
command to be completed before
executing it.

Looking at the machine codes on the
back of issues 11 and 12 you will
notice some of them consists of one
byte while other are 2, 3 or 4 bytes
long. The Z 80 knows exactly how
long each instruction is and knows
that some contain a data byte or

TALKING ELECTRONICS No. 13 •i

displacement byte. This knowledge
is inbuilt into the Z80 and only needs
to be fed a simple program for it to
respond.

The first byte from memory is always
interpreted as an instruction and the
byte or bytes which follow make up
the first command. If you add a byte
or delete one, at any time in a
program, it will not be interpreted
correctly and the Z-80 will carry out
totally incorrect commands.

The Z 80 reads a program one byte at
a time. It does not look ahead and
cannot correct any mistakes. That's
why it is important to check a
program before offering it to be run.

Information passes out of the Z 80 via
the address bus and into it via the
data bus. After the Z BO has
processed the data, it will send the
result out via the data bus. This
means information moves in TWO
directions along the data bus,
although not at the same time.

In our case, information from the Z 80
is passed to an output latch. This
latch is a device which fits between
the computer and say a LED, motor or
relay. The need for this chip is very
important, as you will see. Data
could be sent directly to a LED
without using a latch and it would
work. But the computer would have
to stop functioning for the whole time
when the LED is to be lit. This is
obviously not a solution and so a chip
is placed between the two which
holds the 'turn-on' pulse for as long
as the LED is required to be activated.

This chip is called a latch . It is merely
a set of flip flops which hold the bits
of information for as long as is
required. This enables the Z 80 to get
on with its other operations such as
turning on a motor via another latch.
Output devices such as LEDs and
motors cannot be connected directly
to any of the data lines for two
reasons:
Firstly the current available in these
lines will not be sufficient to operate
them and secondly, the lines must be
available for other purposes.

This means any device wishing to be
placed on the data bus must be
separated from it until the exact
instant when it is required.

This is what an input latch does.

When these chips are not being
activated, they place no load on the
bus and allow the lines to rise up and
down. This feature is called TRI-
STATE as they are capable of
producing a HIGH or LOW when
required.

This is the basis of how a computer
starts up. More aspects will be
discussed later.

BEFORE YOU BEGIN CONSTRUCTION:

It is posssible to construct the Micro-
comp using your own components
and on your own PC board.

That's because all the parts are
standard and the circuit board is fairly
easy to reproduce. 	The 2732
EPROM can be programmed via an
EPROM programmer and everything
will operate perfectly.

There are only two hitches to you
doing this.

First is the guarantee.
If you make the project from your
own parts, it cannot be sent to TE for
repair. We guarantee to fix any model
made from one of our kits as we have
had lots of experience at this. Mainly
poor soldering joints, jumper links
cut before soldering, parts inserted
the wrong way around and broken
tracks. Small faults but enough to
keep the project from working.

Digital electronics is extremely
reliable but not if you make a mistake.

The second hitch is reliability. If you
use second-hand or unknown
components, how do you know if
they are perfect? They may have been
over-worked or damaged in a
previous project and fail when put in
the Micro-comp.

Making your own Board?
The PC board is not as easy to make
as it looks. One mistake in its etching
and a track may be etched through.
Or a hairline crack may be created in
one of the lines which will be
extremely difficult to spot. You also
have to consider the overlay and
solder mask. These make the project
look neat and professional. You may
save a few dollars at the start but end
up costing more in the end. We have
had a few troubles with home-made
boards and unless you have made
lots of boards before, we suggest
buying a ready-made board.

Building from a kit is the safest way.
All parts are absolutely brand-new
and chips are transferred from bulk
tubes without being handled. Boards
are inspected three times during
manufacture and made on semi-
automatic equipment with very little
margin for error. A sample kit is
constructed before they are released
and at least three prototypes have
been made before the project goes to
print.

This contributes to the success of our
kits and the neatness of the finished
project is enhanced by the solder
mask on the underside of the board.
This prevents solder sticking to
unwanted areas and shorting
between tracks.

To be sure of success, buy a kit. A
number of shops are selling these kits
and you will find the cost is less than
hunting for the individual bits
yourself.

PARTS LIST

1 	- 1 OR
8 - 100R
1 - 330R
1 - 47OR
1 - 3k3
1 - 4k7
14 • 10k
3 - 22k
2 - 39k
4 - 100k

1 - 100k mini trim pot

2 - 1n green cap
1 - 100n
1 - 1mfd 63v electro
1 - 1,000mfd 25v electro

9 	1N 4148
4 - 1N 4002

1 - 5mm red LED (SPEED)

1 - 5mm green LED
24 - 3mm red LEDs
8 - BC 547 transistors
1 - BC 557 transistor
2 - FND 560

1 - 74L5273 IC
1 - Z-80 CPU
1 - 2732 EPROM (PROGRAMMED)
1 - 7805 regulator

1 - 20 pin IC socket
1 - 24 pin IC socket
1 - 40 pin IC socket
1 - 8 way DIP switch
1 - DPDT slide switch
3 - PC mount push switches

1 - 3.5mm mono socket
1 - mini speaker

1 - 6BA nut and bolt
4 - rubber feet
13 - matrix pins
1 - hollow pin
20cm hook-up flex
1 metre tinned copper wire
1 - female matrix pin connector
2cm heatshrink tubing.

MICROCOMP PC BOARD

62 TALKING ELECTRONICS No. 13

2A

32

AI

3 4
OE

•fr

a

r! 2 EPRO

ID
10110

la 	 1.1.133

—0

•

7riFir 	

'r 3

; 1.
ender 	 r NI

Tr

CP
BO . END SSD

I

0 4

PRO

INFO

POR

OU PU
PORT BB

EMU

.32 MOM
MOM •
MOVE

I-SR

2 DIGIT

015PLA

4 	4

DIS LA

BINARY

DISPLAY

POWER
SUPPLY

AUDIO
PROS

PINI 1-2(
MAKIN

GU(IN

	IE 	

-1©
P1011

•5r

PORT (112/

To

8 x 1N 4148
	 DID

—I

BC 551 eo 442 2 oho T OP lamp RED 1E03

II WAY BLP SWITC

A
[-- 	

0
e- n•-o

—a ne-o
C0
INPUTS

a • RC 54

BLOCK DIAGRAM OF MICROCOMP

TALKING ELECTRONICS No. IS 63

fit, 	L 03,

Note the 4 lines
connecting the cathodes:

CONSTRUCTION

Lay all the components on a sheet of
paper and identify them. Make sure
all parts are present.

Start assembly by fitting the jumper
links. There are 41 of them and each
must be inserted carefully to produce
a neat result. For each, cut a piece of
tinned copper wire longer than
required and bend it to form a staple,
with the long lower section kept as
straight as possible. The two ends
must fit down the holes cleanly and
the wire must be able to be pushed
right up to the board. This means the
bends must be sharp.

If the two ends do not protrude
through the board, do not attempt to
solder the link as this will produce a
dry joint which will be very hard to
locate when troubleshooting. We
have had two cases of this and it took
heurs to locate the fault.

Solder the ends of each jumper and
cut the ends off with a pair of side
cutters so that a little of the wire
emerges from the solder. Do not cut
through the solder as this will
fracture the joint and possibly cause
a fault.

Next fit the IC sockets. Make sure
each pin fits down a hole before
starting to solder. If a pin bends under
a socket it will be very hard to rectify
after the socket has been soldered.
So check before-hand.

Solder one pin at each end to keep the
socket in place while you attend to
each pin.

Solder each pin very quickly and use
fresh solder for each connection. The
solder mask prevents the solder
running along the leads or touching
any of the lines which pass between
the pins. It helps give a professional
result and makes your soldering
100% neater. But don't use too much
solder or blobs will result.

On the other hand don't use too little
or the leads will not be fully
surrounded by solder.

All the components are marked on
the PC board and it is possible to
build the project without any other
help. But as a guide we will go
through the assembly and explain
everything as we go.

Basically you start with the smallest
components which are closest to the
board and progress to the highest or
largest components.

We have fitted the lowest items and
now the smallest. There are 13
connector pins on the board and one

hollow pin for the TONE OUTPUT.
The pins accept flying leads and
female connectors as used in the
plug-in modules.

Fit the 16 LEDs in the 4x4 display and
8 LEDs in the single row so that the
flat on the side of each LED is on the
right. Refer to the markings on the PC
board. The cathode leads of the LEDs
in the 4x4 are left long and a piece of
tinned copper wire soldered across
them, about half a cm from the board.

There are 4 individual pieces of
tinned copper wire which join the
cathode leads of the LEDs to the
circuit. Refer to the drawing to see
how this is done.

Next add the resistors and signal
diode in the clock circuit. All these
components touch the board and the
leads are trimmed neatly after each is
soldered. Next fit the 4 power diodes
and eight BC 547 transistors. Almost
any NPN small signal transistor will
be suitable and BC 547 is only used
as a guide. There is one BC 557
transistor used as the input decoder
and this is indicated on the board
with a white transistor symbol. All
transistors should be pushed onto the
board leaving a space between body
and board equal to about the
thickness of a resistor.

Mount the 100k mini trim pot and
solder its leads. Push the leads of a
LED through the screwdriver slot in
the pot and bend them over so that
the body becomes a handle. By
turning the LED you will notice the
trim pot rotates too.

Now comes the need for a careful bit
of soldering. The two leads of the LED
must be soldered to the rotating part
of the pot so that the solder does not
run over the edge and touch any other
parts. If this happens the pot will be
ruined as it will no longer rotate.

Fit the two 1n greencaps into the
clock circuit.

Mount the ON-OFF switch and input
jack so that they touch the PC board
and solder the leads carefully.

The 7805 regulator is mounted under
the PC board with a nut and bolt so
that it touches the copper laminate.
This will act as a heat sink and
prevent the regulator getting too hot.

The leads from the regulator fit into
the holes on the underside of the
board and are snipped off the top side
so that they don't protrude.

The two electrolytics must be
mounted around the correct way.
Observe the negative marking on the
component and the positive marking
on the board. The 1 mfd reset electro
is bent over and lays flat on the board
to prevent it getting in the way of the
reset button. Allow enough lead for
this to be done.

A 'POWER-ON' LED is fitted near the
regulator to indicate 5v.

Three push buttons are the next
components to be fitted. The
positioning of these is determined by
a flat on the side of the switch
aligning with the marking on the PC
board. You can use any colour for the
switches as they are not colour
coded.

The mini speaker can be mounted
either way around as it is not polarity
sensitive. A 10cm wander lead is
required for the probe and it must be
long enough to reach over the entire
board. A short piece of stiff wire can
be soldered to the end of the lead to
act as a probe tip or alternatively the
wires can be soldered to make them
stiff.

One jumper lead is required on the
board to select either the upper half of
the 2732 or lower half. A female
socket is attached to the lead and
kept in position with a short piece of
heat-shrink tubing.

The last component to be fitted is the
8 way DIP switch. The numbers
and/or letters on this switch must be
removed before it is fitted to the
board as they are not used in this
project and may cause confusion.

Use a knife or blade and scrape the
numbers until they disappear. Next
you must determine which way
around the switch is to be inserted as
some switches are CLOSED when
the lever is UP while others are
closed when the lever is DOWN.

We require the switch to be closed or
ON when the lever is DOWN so that
each of the levers correspond to a
number on the PC board. This is not
essential and the switch will work
satisfactorily around the other way,
but to make things simple keep to our
suggestions.

64 TALKING ELECTRONICS No. t3

A Note the LED used as a knob
for the SPEED control. SGS
transistors don't work very
well in the clock circuit.
They freeze at high speed. To
prevent this, use 47k base
resistors,

The MORSE TRAINER is our yip-
first add-on and will be
presented as soon as the
programs in the lower half of
the 2732 have been
covered.

G D
c, -10K-
80

D
r-

1

8
 x

B

C
5

4
7

0_

0

cr

z

C

0_
z

0)
z

Check the operation of the switch
with a multimeter before inserting it
onto the board and solder it in
position when it is correct.

Fit 4 rubber feet to the underside of
the board. insert the chips and you
are ready for testing.

TESTING

Insert the power plug into the 3.5mm
socket and switch the Microcornp
ON. The power LED should come on_
Make sure all the input switches are
OFF. Push button B. The number 99
should appear on the displays. Press
button A and the numbers will
increment. Push button B and they
will decrement. This is a fairly good
indication that everything is working
perfectly and you can go on to
learning about programming.

If you do not get 99 on the displays
you may have a fault in the system.
This will require you going through a
trouble-shooting procedure as
covered on P. 66.

Consider yourself lucky that the
computer doesn't work. You will gain
a lot by trouble-shooting it yourself
and gain experience in finding the
fault.

7 SEGMENT DISPLAYS 4 x 1N4002
UNREG v 	 44— OUT

-tjmr- -I- -9 +4-- -4—LATCH
PUT

Z
i_O -1 co

0 	
- 0

z 330R1

OFF 	gm ON 	 AC OR DC

1000U
a

WR

PORT (02) 7)
(\i

•4'

0
(s)
tr.)
0 z

OH 1

OH 2

O'd 4

x

 0 - 01

- 1 .1 10
a) 	0.120

0.140

ao

°ROBE "
0
-1 OK -

(r)

'Cr ...

4g-

111111 11
8 x 10K

1 1 1 1 	1 1 1

0 Z80 MICRO

PROCESSOR

The overlay for the Microcomp shows all the 	pins. A wander lead selects HIGH/LOW 2732,
component locations and link positions. The 	while another is taken from the AUDIO PROBE
large donuts indicate the positions for the matrix 	input pin.

	D

1-nA -10K
— RESET

-100K- -100K-
tija

PORT
ac Y a(02)0

02

YY CV 0) 0> C
CN *

1 1 1 1 	I
in 1n 1N914

,c2 2

0 	 oo K-
,c2 I SPEED 	cv

0CLK <
0

•:(

0
CO
N

11
0
0

0

:TE -0
a
,_ 	.
- 3 CHIP 0

i
MICO

COMPU
R

TER MICROCOMP— 1

(.0

0 cy

Lfl ct)
Pft.

N. CNA
CNJ

•	

2716 OR

2732
EPROM

z

0 CC

AUDIO

LI
PROBE 	0

TALKING ELECTRONICS Na. 13 65

IF IT DOESN'T WORK
As we have said. digital projects are
extremely reliable and have an
enormous success rate. The chances
of this project working as soon as the
power is applied, is very high.

However, if it doesn't snap into life.
here are some helpful suggestions.

Firstly check the power LED. It
should come on as soon as the power
is applied. If it doesn't, the fault will
lie somewhere in the power supply.

Feel the 7805. It should get warm
after operating for a few minutes. If it
is very hot, you will have a short in the
circuit. Turn off the computer and
look for a bridge between two tracks.
This may be anywhere at all on the
board and this is how to go about it:

Measure between the positive and
negative rails with an ohm-meter set
to LOW OHMS. It should measure
about 30 ohms in one direction and
50 ohms in the other. The values you
will get are mainly due to the
presence of protection diodes inside
the chips and the resistors on the
board. The actual value of resistance
does not matter. Values such as this
do not indicate a short circuit. But if it
10 ohms or less. a short-circuit is
present.

Remove one chip at a time. If the low
value is still present after all the chips
have been removed, you will have to
look for a fault on the board itself.

Start by removing the 7805 and then
one end of each of the 41 jumper
links. Measure the resistance value
at each stage. If the short is still
present, lift one end of each resistor
and capacitor. If it is still there, it will
possibly be a short between 2 tracks.
You will need a magnifying glass and
a sharp knife. Cut between the tracks
at every location where you have
made a connection to make sure no
wiskers of solder are shorting
between one land and another.

After this, the short should be
removed. Refit the 7805 and switch
ON. The LED should light. Refit all the
components and jumpers. Use
desolder wick to remove the solder
from each of the holes so that the
leads can be inserted.

If the power LED comes ON but none
of the displays, set an input value on
the switches of say '40' and reset the
computer. This will produce '99' on
the displays. If they remain blank,
you will have to look into the
operation of the system.

This is where the built-in AUDIO
PROBE comes in. The probe lead will
enable you to hear the signals on
each of the active pins of the chips.
We have specially designed the
computer to operate at a speed which
can be heard by the human ear. The
probe will let you hear the frequency
of the clock, the output of the address
and data bus and also the activation
of the latch.

Firstly turn the clock speed down and
probe the 'clock-input' at pin 6 of the
Z-80. You should hear a fairly high
pitched whistle. As you increase the
clock speed, this whistle will
increase until it gets too high to hear.
Next probe one of the data lines and
you will hear a tone which is exactly
one-eighth the frequency of the
clock. If nothing is heard, it means
the Z-80 is not operating or not
accepting the input clock waveform.
Make sure the reset pin of the Z-80,
pin 26. is HIGH, otherwise the Z-80
will be sitting in a reset state.

If nothing is heard on the address or
data buses, the fault will lie between
the Z-80 and EPROM. They must be
talking to one another for the system
to start up. Even a blank EPROM
(filled with junk of FF's) will produce
a tone on the buses.

Test pin 18 of the EPROM to make
sure it is being accessed. You should
hear a tone on this pin which means
the Z-80 is accessing the EPROM
and trying to get it to place data on
the data bus.

Some of the faults which can occur
between the Z-80 and EPROM
include non-soldered connections.
IC socket pins which do not pass
through the PC board and thus do not
connect to the circuit, power not
reaching the chips (due to a broken
track), or a fault in one of the address
or data lines near a solder
connection.

This generally occurs when you are
soldering and may be due to the iron
being too hot, taking too long to
produce the joint or moving the
component while the solder is
setting. The result is a hairline crack
where the track meets the land and
this is very hard to spot. Use a multi-
meter set to low ohms to measure the
continuity of each of the lines.

If everything seems to be correct, try
replacing the Z-80. It does not matter
if you use a Z-80 or Z-80A. they will
both work equally well.

There is only one remaining
possibility. The Z-80 requires a
perfect square wave for it to function
and we have gone to a lot of trouble to
produce a near perfect waveform.

If the rise and fall time is not
extremely short, the 2-80 will not
accept it. This problem will be almost
impossible to determine, even with a
30MHz CRO. If you have come to this
conclusion, you should send your
project in for a check-up.

Once you have values appearing on
the displays, you can check for the
correct operation of the programs by
accessing our OUTPUT LATCH TEST
ROUTINE. Turn on switches 01, 08
and 20. This will give a value of 290.
Push reset and the micro will jump to
address 0290. Three LEDs should
illuminate: 01, 08 and 20. Now turn
all switches OFF. All LEDs should
extinguish. If any remain ON, the
fault could lie in the input port. Check
the soldering for shorts and all lines
for continuity.

If a fault is present in one of the lines
other than 01.08 or 20. the micro will
not address 0290 and the wrong
program will appear.

If this is the case you will have to
experiment with various settings and
try to determine where the micro is
jumping to.

If a wrong program is picked up, you
cannot be sure it has accessed the
beginning of the program and thus
you cannot immediately determine
which line is at fault.

Turn all switches OFF and press
reset. The computer should not
address any programs as the jump
routine will be loading HL with 00 00
and jumping to the start again. Thus
it will run around a loop, back to
address zero.

If the 7-segment displays illuminate
but not the 4x4 matrix, or the row of 8
LEDs, the fault will lie in the jumper
lines which must be connected to the
cathode leads of each of the 16 LEDs.
See the construction notes for this as
it will be the first time you have come
across this method wiring the
underside of a board.

The decoding transistors for ports 1
and 2 only come into operation when
they receive the correct instruction
via the program.

When the micro is executing the
start-up program. it will be looking at
the input port twice per loop and you
will able to hear this in the mini
speaker.

The output port will not be accessed
during this time and probing the
Latch Enable line will give no tone.

You must put a value on the input port
switches to get the computer out of
the start-up routine if you want to
probe the output decoding transistor.

66 TALKING ELECTRONICS No. 13

This is done at pin 11 of the 74LS273.
If no tone is heard, trace the circuit
back to the BC 547 (near the Z-80)
and probe the base and emitter leads.
When the transistor is being turned
ON, a tone will be heard in the
collector circuit.

If all these suggestions fail, start at
the beginning again and solder each
connection. Use desolder braid to
collect any excess solder and inspect
every joint under a bright light.

Make a continuity check of each
copper track and make sure each
land is not shorting to the one next to
it.

Check all the LEDs for correct
insertion and all chips for placement
around the correct way.

Check the regulator, the 4 power
diodes, the clock circuit, the place-
ment of the 9 transistors. the
positioning of the 3 push buttons and
the value of all the resistors.

Ask a friend to go over the project and
carry out the troubleshooting hints.

If all this fails, there is a repair service
from TE and for $15.00 plus $4.50
postage, you can get your unit
repaired. Send it in a jiffy bag with
$19.50 and we will do our best. Up to
now every computer sent to us has
been repairable.

So, don't despair. Send it in and we'll
check it out.

WHAT EACH CHIP DOES

There are 5 major building blocks in
the MICRO-COMP. They are:

THE CLOCK - made up of 3 transistors
THE CENTRAL PROCESSOR UNIT
• A Z-80.
THE MEMORY - A 2732 EPROM.
THE INPUT PORT - 8-way DIP SWITCH
THE OUTPUT LATCH a 74LS273

There are also a number of other
active devices (transistors) which
perform inverting and driving
functions and also a single transistor
connected to a mini speaker to
provide an audio probe to listen to the
computer in operation.

We have intentionally kept the chip-
count down to make the project
attractive and in this chapter we will
discuss each chip and how it fits into
the circuit.

THE CLOCK

Even though this is not a chip, we
could have used one. The require-
ment of a clock is to produce a very
fast rise-time waveform at a
frequency to suit the project.

The clock in a computer controls the
speed at which data flows through
the whole system. The Z-80 will
operate at a frequency as low as 7kHz
and below this its registers will fail to
hold information. This is because
they are dynamic and have to be
'topped up' many times per second.

At the higher end of the range, the Z-
80 will operate at 2.5MHz and a Z-
80A at 4MHz.

In our project, we want the Z-80 to
operate as slow as possible so that
we can 'see' the program run and
hopefully listen to the bus lines
change tone as the program runs
through its steps.

The reason for the clock circuit
containing a diode and wave-shaping
transistor is to generate a perfect
square wave. The Z-80 is very critical
as to the shape of the wave it will
accept and the rise and fall edges
must be extremely fast - especially at
this low frequency.

In addition, we have included a speed
control in the clock circuit so that the
frequency can be adjusted from
7.5kHz to 35kHz. This is nearly a 5:1
ratio and allows each of the programs
to be run at high and low speed.

Even at these speeds the Microcomp
must be one of the slowest
computers on the market as most
operate at a clock frequency of 1 MHz
to 2MHz. But don't worry, even at
8kHz, you will see operations
performed faster than you can think.

THE Z•80

This chip is the heart of the computer.
It is called the CENTRAL PRO-
CESSING UNIT or CPU for short.
This is a truly an amazing chip and we
could fill many pages on its workings.

You will pick up a lot more on how the
Z-80 works as we progress with the
notes and the main fact is it controls
all the other chips in the system. It
takes information from the 2732 and
delivers the result of calculations and
operations to the output latch. The
speed with which it performs these
tasks is controlled by the frequency
of the clock.

The Z-80 is capable of controlling
over 100 chips and you can see our
'comp is only a very small design.

The Z-80 is like a story-teller. It reads
the 2732 like a book and delivers its
interpretation to a child (the output
latch). The input port is like a child
telling the story-teller where to start
in the book. The clock circuit is like a
watch - telling the story-teller how
fast to read.

THE EPROM

Chip number two is the program
storage chip. It has been
programmed by TE so that a number
of programs and effects can be
produced on the displays. These
chips are bought in a blank condition
and programmed by means of an
EPROM PROGRAMMER so that
they contain the necessary set of
HIGHs and LOWs to make the Z-80
perform the required operations.

The EPROM supplied in the kit is
ready to operate the computer but
you can program your own or get a •
friend to program one for you and it
will work just as successfully. The
full listing to do this is supplied in the
notes.

This is the main advantage behind the
type of programming we are covering.
It means you will be able to write
programs for your own micro-
computer controllers, produce the
EPROM and get it running without
the need for any outside help.

It is the most efficient type of
program available, in terms of
memory required. It consumes the
least amount of memory and is used
in all types of industrial applications
and video games.

THE INPUT PORT

This is an interface between the
computer and the real world. We
have already mentioned the need for
this connecting link.

The input port takes in information
from a set of switches and loads it
into the accumulator in the Z-80. The
Z-80 operates on this according to
the instructions in the program.

As well as the 8 switches, there are
also 2 push buttons which are in
parallel with the two highest value
switches. Provision for two more
switches (external to the board) is
also provided on the PC.

The input port is software controlled
and thus any of the switches can be
programmed to perform any
operation you wish. They can start a
program, stop it. call up a number,
increment a count value, decrement
it, sound an alarm, dial a phone
number and lots more.

TALKING ELECTRONICS No. 13 •7

A switch places a HIGH on the data
bus, when it is closed, and only when
instructed to do so via the program.
The instruction for this is: IN A,(01)
and the input decoder transistor is
activated to allow this loading to take
place. At all other times the switches
put no load on the bus and allow the
lines to rise and fall so that the other
instructions in the program can be
performed.

THE OUTPUT LATCH

The output latch is the third and final
chip in the project. This is the chip
which drives the set of output LEDs
and displays. We have created three
different types of display and each
will produce its own special effect
according to the program being run.
The main purpose of this latch is to
hold the information coming from the
Z-80 for long periods of time so that
we can view it on the displays. This
allows the Z-80 to go away and carry
out other operations.

A set of transistors turn on one or
other of the 7-segment displays via
the 8th line so that a two digit number
can be displayed.

INPUT/OUTPUT

The Microcomp is capable of
accepting information from the
outside world as well as delivering to
the outside. This capability is called
INPUT/OUTPUT.

In a simple system such as ours, for
each address line it is possible to
connect 8 devices to the data bus and
access them individually via the
program These devices must also be
gated into operation via the IORQ
line.

Devices can have either input or
output capability and since the Z-80
has 16 lines, this gives us a lot of
devices! This is more than we require
and to keep it simple we will consider
only one set of 8 on address line AO
and one set on address line Al.

THE INPUT PORT

Input information is obtained from a
set of 8 DIP switches and these are
connected to the data bus. Eight
switches like this gives us the
capability of up to 256 combinations.

When address line AO goes HIGH and
IORQ goes LOW the value on these
switches is passed to the Z-80 as an
input value.

These switches are software
programmable and can be instructed
to perform many tasks. depending on
the instructions in the program. The
micro only looks at the switches
during the instruction IN A,(01) and
during the remainder of the time the

switches are allowed to float up and
down and don't interfere with the
data bus.

THE OUTPUT PORT

The OUTPUT PORT is a latch chip. It
must be a latch to hold the output
value long enough for us to see the
data on the displays. The latch will
retain this data until updated.

There are two gating transistors in
this project. One controls the input
port and the other controls the output
port.

Each transistor produces a LOW
output when the I/O Request is LOW
and the prescribed address line is
HIGH.

The I/O Request line does not
determine the IN or OUT nature of the
signal, it just goes low when the Z-80
requests one of its ports. The
circuitry and instruction in the
program determines the IN or OUT
condition.

THE DISPLAYS

The Microcomp has three different
types of displays:

* Two 7-segment displays
* A 4x4 matrix of LEDs
* A row of 8 LEDs.

Each display provides a different
effect for any given set of values and
you will be able to make a
comparison between them as the
programs run.

Here are a few facts and hints on
producing effects on the displays.

At first you may be surprised to see
two 7-segment displays operating
from one latch chip. Normally this is
not possible as all the lines from one
latch are required to drive the LEDs in
the display.

But by using only 7 lines to drive the
segments, we have one line left over
to switch between the two displays.
This eighth line is normally used to
drive the decimal point but this is the
sacrifice we have had to make.

In our arrangement only one display
will illuminate at a time and to make
them both appear to be illuminated at
the same time we must switch
rapidly between them. This will
create a two-digit number and allow
us to produce a readout for a 00 to 99
COUNTER. It will also give us a
number of other effects as you will
see in the programs.

The 4x4 also connects to the latch
and because the LEDs are connected
in a different way to the 7-segment
displays, a completely different effect
will be created. A program for the 4x4
will not be recognisable on the 7-
segment displays and vise versa.

The 4x4 matrix can be thought of as a
miniature display board. It is
connected to the latch via 4
horizontal lines and 4 vertical lines.
The anodes of the LEDs are
connected to the 4 lower bits of the
latch such that the first column goes
to bit 0. Column 2 goes to bit 1,
column 3 to bit 2 and column 4 to bit
3.

The anodes of all the LEDs are
connected to the 4 higher bits of the
latch such that the lowest row
connects to bit 4. The second row
connects to bit 5, the third row
connects to bit 6 and the top row to
bit 7.

This means bit 0 sources 4 LEDs and
so does bit 1, 2 and 3. Bit 4 sinks 4
LEDs and so does bit 5. 6 and 7.

To turn on a LED, the source bit must
be HIGH and the sink bit must be
LOW. This arrangement will allow
any individual LED to be illuminated
and even certain combinations of
LEDs. But it does not permit
absolutely any combination to be
illuminated due to our wiring.

We can overcome this by a trick in
programming called multi-plexing.
This will be covered later and can be
seen in the dice project.

To see exactly how the LEDs are
accessed, address the program at
0290. By switching off the input
switches you will turn the matrix off.
Load input values into the switches
and you will see the rows and
columns of LEDs illuminate.

The third display is a row of 8 LEDs.
This display can be referred to at any
time for both the binary value and hex
value being outputted from the latch.
The binary value is simply obtained
by looking along the row of LEDs and
noting the on-off pattern. By adding
their value in binary you obtain the
decimal value of the latch.

But decimal values are of no real use
to us in this project as we are
concentrating on hexadecimal
notation.

To find the hex value of the output
latch, add the hex values alongside
each LED. This is easy to do after a
little practice.

Using the three displays together you
will see the hex value required to
produce letters and numbers on the

611 TALKING ELECTRONICS No. 13

7-segment displays and also see
what the micro in inputting and
outputting in binary form to create
these numbers and letters.

In all, it gives a graphic picture of
what is going on.

THE AUDIO PROBE

The audio probe consists of a single
transistor and a mini speaker. Its
prime function is to enable you to
listen to the 'computer in operation'.

This is possible when the clock speed
is turned down and the probe touched
on each of the pins of the chips.

It is interesting to hear the HIGHs
being sent along the lines, especially
the address bus where each line is
running at half the frequency of the
previous. The Z-80 is acting like a 16-
stage divider and you can hear this on
the probe.

The probe is also used for
determining the operation or non-
operation of the Z-80. This is one of
the tests you will be required to do
when setting up the project as the Z-
80 requires a near-perfect square
wave for it to operate.

The easiest way to see if it is
accepting the clock pulses is to listen
to the address or data lines.

The only way to know if the Z-80 is
accepting the clock is to use the
probe on pin 6 of the Z-80 and then on
one of the address lines.

The audio probe is also used during
the course of the experiments. By
comparing the program with the
tones on the buses and the Latch
Enable pin, you can determine how
often the chip is being accessed.

The audio probe also connects to pin
'80' on the PC board which is bit 7 of
the output latch. The Tone program at
0010 outputs a HIGH to this line and
then a LOW to produce a click in the
speaker. This is the basis to
producing tones and by varying the
speed control, the pitch can be
altered.

WHAT IS THE 2732?

The 2732 is a memory chip
containing 32,768 individual cells
which can be programmed to contain
a small charge.

Each cell is a single P-channel MOS
transistor capable of detecting the
presence of a charge.

This charge is held on a conducting
layer above the transistor, on a thin
film of insulating material. When the

charge is present the transistor
outputs a HIGH. When the charge is
not present, the transistor outputs a
LOW.

We can access each of these 32,768
cells and supply them with a small
charge during programming. The
charge remains in place for many
years because it has no where to
jump to as each area is surrounded by
insulation.

Exposure to ultra violet light will give
the charges sufficient energy to jump
off, leaving the plate in a neutral
state.

When you look through the quartz
window you can see the array of
cells. It seems incredible that over
32,000 cells can be seen, but that's
the reality of electronics.

We access these cells 8 at a time and
this is equal to one BYTE. This is the
basic unit which is fed into a
processor and is the basis of all
Machine Code programs.

One byte can have up to 256
possibilities due to the fact that each
of the 8 cells can be either ON or OFF.

To output these 8 bits of data from
the chip we need 8 lines and these
form the DATA BUS.

We need another set of lines into the
chip so that we can locate these 8
cells. For a 2732 we need 12 lines
and these are called the address bus.

There is one interesting feature about
the address and data lines. Even
though they are identified as AO. Al,
A2 	DO, D1, D2 etc. they can be
connected to the microprocessor in
any order. This is because the cells
are uncommitted and provided you
read in the same order as it was
programmed, the correct data will be
outputted.

The only reason for keeping to an
accepted pin-out arrangement is so
the EPROM will work in other
designs and on common
programming equipment.

THE GATING TRANSISTORS

Input and output ports must only
come into operation when requested.
At all other times they must not put a
load on the data bus as it is required
for other communications.

However when an instruction such as
IN port 1 is sent to the Z-80, there are
two lines which will be held in a
stable condition and can be used to
activate the port latch. These are I/O
Request and address line A0. These

can be gated together and the
resulting pulse used to activate the
port.

This is called simple decoding and
since the Z-80 has a number of
address lines it is possible to
connect lots of input/output devices.

We have used only the first two lines,
AO and Al and they provide a simple
way to achieve an end result.

With this arrangement, the first
device will be activated with the
instruction: IN A.(01) and the second
by IN A,(02). Further devices would
be activated via IN A,(04) IN A,(08)
and IN (10),A. By adding port values
together, more than one port can be
activated at the same time, should
this be necessary.

USING THE DIP SWITCHES

The 8 dip switches are connected to
the input port and are capable of
providing up to 256 different
combinations.

Eight lines like this is equal to one
byte and depending on the program
being run, this value can be used in
many ways. Examples can be seen in
the programs contained in the
EPROM that comes in the kit.

We will now explain the meaning of
the values on the PC board, alongside
each of the switches.

You will see numbers: 80, 40, 20, 10,
8, 4, 2, 1. These are hex values and
are an easy way for us to give values
to a set of binary switches. The other
option is to write: 1. 1. 1, 1, 1, 1, 1, 1.

Hex is a successful solution to
writing values from 1 to 256 in a form
which is easy to read and only
requires 2 digits. To input a value
such as 234 refer to the Hex
Conversion table on P 16 of issue 11.
It is equivalent to EA. Once you are in
Hex notation, you stay in Hex. This
makes it awkward when you see
values such as 10, 20 45. 80, 100 but
you must remember these are also
Hex values and a number such as 10
(one-oh) is really 16 in decimal
notation.

To place EA on the switches, you
need to know about Hex addition. For
instance E is made up of: 8, 4, 2, and
1. This is how it is done on the input
switches: The switches are
separated into two banks of four. The
low value switches are labelled 8, 4,
2, 1. The high value switches are 80,
40, 20, 10.

The value EA is placed so that E will
be loaded into the high section and A
into the low section. To enter E turn

TALKING ELECTRONICS No. 13 69

LIST OF PROGRAMS:

0000
0010
0020
0080
OODO - 00F4

100 - 1FF
200 - 28F
290 - 29F
2A0 - 2BF
2C0 - 2CC
2D0 - 2DD
2E0 - 2EC
2F0 - 2FF
300 - 36F
370 -
390 -
3A0 -
3F0 - 3FF
400 - 469
470 - 51F
520 - 52F
530 - 623
630 - 6BF
6C0 - 6CB
6D0 - 6DB
6E0 - 6EB
6F0 - 738
740 - 760
765 - 79D
7A0 - 7FF

JUMP ROUTINE
TONE
QUICK DRAW
RUNNING NAMES
RUNNING LETTER ROUTINE (can

be called)
LIST OF NAMES
LOOKING AT DATA
FROM INPUT TO 8 LEDs
INCREMENT VIA BUTTON A
AUTO INCREMENT (fast)
AUTO INCREMENT (variable)
AUTO DECREMENT
AUTO DECREMENT (variable)
4x4 EFFECTS
0- 9 COUNTER
0- F COUNTER
A - Z. 0 - F COUNTER
VERY LONG DELAY
00 - 99 COUNTER
DICE
EPROM IN BINARY
POKER
BINARY CLOCK
ONE MINUTE TIMER
3 MINUTE TIMER
1 HOUR TIMER
ADJUSTABLE TIMER
1 MINUTE DELAY
Table for adjustable Timer
FINAL MESSAGE

These programs occupy the lower 1/2 of a 2732 EPROM.

at 0000:
THE JUMP ROUTINE

This routine will be used every time
you want to access one of the
programs.

Set the address value on the input
switches and press reset. The micro
will then jump to the program you
have selected.

Each program is a loop and the
Microcomp will run around this loop.

The input switches can now be used
for other functions according to the
demands of the program. Don't push
reset as this will cause the micro to

jump out of the program. Only
buttons A and B are used during the
course of the programs. These are
equivalent to switches 8 and 7.

THE JUMP PROGRAM

This routine looks at the input port
(01) and jumps to the address set on
the input switches.

The program multiplies the value set
on the switches by 10 (one-oh) and
jumps to this value.

If no switches are set, the program
constantly loops back to 0000,
looking for an input from the
switches.

If '1' is loaded on the switches, the
program jumps to 0010. If '2' is set,
to program jumps to 0020 etc. If
switches 20, 8 and 1 are set, the
program jumps to 0290.

In this way we can access from 0010
to 07F0 in blocks of 10 hex bytes.
This is equal to every 16 bytes and
gives us a very good coverage of the
EPROM.

The way in which the program works
is this:

on switches 80. 40 and 20. This gives
E0. To produce the value A, turn on
switches 8 and 2. The input switches
now hold EA.

After you have used them a few times
you will become familiar with their
operation.

One of the main uses is to generate a
JUMP VALUE to get to the programs
in EPROM. The computer interprets
the value on the switches as a START
ADDRESS by multiplying the value
by 10 (one•oh) and jumping to the
address of the value created.

The multiplication value of 10 is a hex
value and is equal to 16 in decimal.

For example if we load the switches
with the value '1', the start-up
program will convert it to 10 and
produce the address 0010. This is the
address of the first program in
memory • a TONE routine. To address
the RUNNING NAMES routine, load
the switches with 8. This will make
the Z-80 jump to 0080, when the
reset button is pressed.

In a similar way, the start of each of
the programs can be accessed via the
switches. For instance, the Final
Message at 07A0 is addressed by
loading 7A.

Although we can only address every
16th location, the programs have
been written to start at an even Hex
value and end before an addressable
location. Some programs occupy 80
or more bytes while other take less
than 8. This means some locations
will be unused but this is the
limitation of the system.

Experiment by loading the start
address of various programs and run
them to see how they operate.

THE PROGRAMS

We now come to the programs them-
selves.

The list shows all the programs in the
lower half of the 2732. The number in
the first column is the START
ADDRESS which is loaded into the
DIP switches. Once the program has
been accessed. you can use the push
buttons and any of the DIP switches
to operate the program.

Whether you have burnt your own
EPROM from the listing or bought a
kit, you will want to know how the
programs are put together and how
they run. That's the whole purpose of
this project.

Study each program carefully,
running it at different speeds and
answer any questions associated
with the listing.

1. LD B100 	0000 06 00
2. IN A,(01) 	002 DB 01
3. LD HL 00 00 004 21 00 00
4. LD LIA 	007 6F
5. ADD HL,HL 008 29
6. ADD HL,HL 009 29
7. ADD HL,HL 00A 29

8. 9 JP
ADD HI

HL)
 L,HL 00B

(00C
29
E9

Line 1 loads the B register with 00
ready for a DJNZ statement as
required in some of the programs. It
has nothing to do with this program.
Line 2. The program looks at the input
port and loads the value it finds on the
switches into the accumulator.
Line 3. The HL register pair is zeroed.
Line 4. The accumulator is loaded

70 TALKING ELECTRONICS No. 13

into the L register, which is the LOW
register of the pair.
Lines 5, 6, 7 and 8 add the contents of
the HL register pair to itself four
times. Each ADD doubles the result,
making a total increment of 16 times.
A multiple of 16 is equal to 10 in hex.

Line 9. The micro jumps to the
address given by the value of the HL
register pair.

QUESTIONS:

1. Set the switches to address values
which are not the start addresses of a
program. Why do some of them
work?
2. Why does button B address the
start of the 00 - 99 counter?
3. Could the DIP switches be
replaced with push buttons?
4. Explain what we mean by the input
switches are software programmed:
5. Name a few devices which can be
connected to the input port:

ANSWERS

1. Sometimes you can start part-way
through a program and it will run.
This is because the micro jumps into
a location it understands and it
follows the program to the end. It
then jumps to the start of the program
and produces a full display on the
screen.
2. Button B has the same value as
'40' on the switches and this
corresponds to address 400 in the
EPROM.
3. Yes, but remember up to seven
buttons would have to be pressed at
the same time to achieve the result of
the DIP switches.
4. The input switches can be
programmed to do anything. as
requested by the program.
5. Any device which has a set of
contacts such as a relay, morse key.
micro-switch, pressure mat or even
transistors acting as switches can be
used.

THE TONE ROUTINE

The TONE routine is located at 0010
and this is addressed by switching
the lowest value switch ON thus:

1°1°1°1°1°1°1°1.1
The print pie beh-nd crea ing a tone
is to togg e an ou put bit. The speed
with which the bit is toggled.
produces the frequency of the tone.
To produce a 1 kHz tone requires a
minimum clock frequency of about
50kHz. This is because the clock
frequency is divided by eight to run
the data bus and further clock cycles
are required for the load and output
instructions. Since the maximum

frequency of the Microcomp is about
35k Hz the highest tone which can be
produced is 700Hz.

This is not sufficient for a musical
scale or a tone generator and only a
sample tone has been included in the
EPROM.

By inserting the lead of the AUDIO
PROBE into terminal '80' on the
board, below the 7-segment displays,
the tone will be reproduced in the
mini speaker.

You can compare this tone with the
Latch Enable pin and the data bus and
see if the tones are different.

The TONE routine is a loop, starting
at 0010 and ending at 001 F. The first
instruction AF is a single byte
instruction which clears (zeros) the
accumulator so that this value can be
outputted to port 2. The accumulator
is then loaded with 81 which

LD C,02
LD D 011
LD thorn
LD L)
OUT ot),A
DJNZ 002A
INC HL
DEC D
JR NZ 0027
DEC C
JR NZ 0022
LD Aloo
OUTits:),A
LD D 0602
DEC D

OR ED
LD AID

JR NZ 00
IN A,(01)

3A

BIT 14A
JP NZ 0020
BIT 7,A
JP NZ 0020
LD OF
OUT (02),A
LD BAGS
DJNZ 0051
LD
OU T

A, 0
02),A

IN 	1)
BIT 6A
JR NZ 0066
BIT 7,A
JR Z,004B
LD
OUT 0),A
HA

ITL B 7,A
JR Z,0074
LD 06
OUT 02),A
LD 0
OUT (02)4
JR 00 A
LD:

OU
106

T 02),A

TONE ROUTINE:

XOR A
OUT (02),A
LD A. SI
OUT 02),A
XOR
OUT (02),A 001$ D3 02
LD A. SI 	001A a SI
OUT (02),A ODIC D3 02
JR 0010 	ootE 	Fo
produces a HIGH to the AUDIO
PROBE input pin and also turns on
segment 'a' of the first display. This is
the complete TONE routine. The
sequence has been repeated again to
use up the available memory before
jumping back to 0010 via a JUMP
RELATIVE instruction.

The program will loop continually
until the reset button is pressed. The
input switch must be OFF to prevent
the program being accessed again.

0010

0010 AF
0011 	D3 02
0013 	3E SI
0015 	D3 02
0011 AF

QUICK DRAW PROGRAM

0020
0022
0024
0027
0021
002A
002C
002D
002E
0030
0031
0033
0035

of 02
ts: oS
21 F5 00
7E

02
1
D
0
3

 FE
23
15
20 F7
OD
20 EF
3E 00
D3 02

This is the COUNT register for 2 rotations of the display.

D is the COUNT register for the B LEDs

Load HL with the start of the byte table.

Load the accumulator with the value POINTED TO by HU

Output the accumulator to port 2.

Register B contains 00 Nia jump program) DJNZ is a DELAY.

Increment HL to look at the second byte in the table.

Increment the BYTE-TABLE COUNTER.

If and of table not reached. jump to lino 4. Otherwise next line.

Decrement C and illuminate 8 LEDs again.

If C is zero. advance to next line.

The accumulator is zeroed to blank the display.

The Accumulator is outputted to pan 2.

0037 11 02 06 Tha DE register pair is available for along DELAY.

003A 03 Decrement DE

00313 7A Load D into A

003C B3 OR E with the accumulator

003D 20 FB Jump if both IS and E are not zero.

003F DB 01 Input the two switches.

0041 CB 77 Test BIT 6 to see if switch B is pressed.

0043 C2 20 00 Jump to start of program if button B is pressed.

0046 CB 7F Test BIT 7 to see if button A is pressed.

004$ C2 20 00 Jump to start of program if A is pressed.

004B 3E OF Load A with OF to produce a 'backward C.

004D D3 02 Output OF to port 2.

004F 06 oil Load B with 08 for a short DELAY ROUTINE.

0051 to FE DJNZ decrements register B to zero.

0053 3E Bp Load the accumulator with BF to produce 'C' in display 1.

0055 03 02 Output BF to port 2.

0057 DB 01 Input the two switches to see H either is pressed.

0059 CR 77 Test BIT 6 to sae if 8 is pressed.

00515 20 09 Jump if button B is pressed.

000 CB 7F Test BIT 7 to see it button A is pressed.

005F se EA Jump back to line 24 if not pressed and loop constantly.

3E Bo 0061 If button A is pressed, load the accumulator with BO.
Op63 D3 02 Output BO to port 2 to give '1' on display ONE.

0065 96 The program HALTS. Reset by pressing reset button.

0066 B IF Test bit 7 to see if button A is also pressed.

OM 2$ OA Jump if button A is not pressed.

oo6A 3E0 Load Accumulator with OF

006C D3 02 Output 06 to gat '1' on display two.

NeE 3E BO Load accumulator BO.
0070 D3 Os Output BO to port 2 to get '1' on display ONE.

0072 1$ F6 Jump beck to display l's on both displays. Keep looping.

0074 3E 06 Load the accumulator with N.

00
0076

75
D
76

 3 02 Output 04 to port 2.

Halt. Press reset button to reset game.

TALKING ELECTRONICS No. 13 71

DD 21 00 01 The IX register points to the start of the byte table.

21 SA 00 	The HL register provides a return address for the sub-routine.

C3 DO 00 	Jump to the RUNNING LETTER sub-routine.

OE 00 	.c, is our COUNT register and is compered with an input value

DD 21 14 01 IX is loaded with the start of the NAMES table.

DB 61 	Input the value on the switches, to the ace ttttttt lator

FE 00 	 the input value is GO. the program increments to line B and

20 13
57
DD 7E oo
2F8E0F4F

DD 23
LI F5
oC

/39A
20 F7
10 02
DD 2B
21 B3 00
DD 23
C3 Do oo
of
3E 58
D; 02
10 FE
3E3 00
D02
IO FE
OD
20 Fi
DD 21 	01

ON-OFF enact is repented B times

21 SO 00 	
Register IX is loaded with 01F8. data ler '1905'

Register HL is loaded with return address (re-stan address)

C3 DO 00 	Program pimps to RUNNING LETTER routine.

The micro lumps to line 20. II input value is NOT zero. to to 9:

The input value is SAVED by loading it into register D.

The data byte pointed to by the IX register is loaded into A.

The accumulator is compared with FF to detect and of name.

II end of name is reached. the program pimps to line 15.

if end of name not reached, INC IX and jump to line 10. where

the next byte is loaded into A and compared with FF.

The C register is incremented. indicating end of word.

Load C into the accumulator

Compare accumulator with 0 to see if word has been located.

Jump if word is not found

Jump OVER line 20

This line only applies to the firm word in the list.

Load HI. with the return address for the subroutine

Increment IX for the first letter of the name.

Jump to the LETTER RUNNING routine and display name.

The C register is used to count 'COPYRIGHT' flashes.

Load accumulator with SO to produce letter •C' on display.

Output 58 to port 2

C remains ON for 256 loops of DJNZ (B register).

Accumulator is loaded with zero.

Zara is outputted to turn OFF 'C'.

Display is OFF for 256 loops of DJNZ
The ON-OFF count register IllegisterC I is docremented.

OUT (02),A 00D6 D3 02
LD
DJNZ

Rao 	00D7 06 to
eon 10 FE

OUT (02),A ooDD D3 02
LD Rao 	00E0 o6 20
DJNZ 	on 10 FE
DEC C 	 OD
JR NZ ooD2 	00a 20 E9 	c is NOT zero , lump to line 2 and repeat OR times_

Increment the IX register

load accumulator with next byte in table

Compere accumulator with FF.

II accumulator is not FF. jump to start and shift letters across.

When FF is detected. micro jumps to address contained in HI.

RUNNING LETTER ROUTINE: -
LD CAB 	ooDo of OB
LD A,(IX +00) o0D2 DD 7E 00
SET 7 at 	sane CB FF

sub routine
Each letter appears OR times Ill times)

Load accumulator with byte pointed to by IX

SET bit 7. to tun art left-hand display

The accumulator is outputted to pan 2.

Load B with 20 flor 32 loops of DJNZI for time delay.

Perform 32 loops of decrementing register B.

Load the accumulator with next data byte in table.

Output the accumulator to port 2

Load B with a value of 20. 132 in decimal)

Decrement El 32 times.

Decrement C

LD MIX + ooD DD 7E 01

INC IIt 	ooE7 DD 23

C
LD At(IX + 01) oat DriE E

F 	
os

JR
F
NZ ,00D2 00EE 20 DE

JP (HL) 	ooFo E9

QUICK DRAW

Quick Draw is located at 0020 and
this is addressed by switching ON the
second lowest switch thus:

0 0 0 0 0 0 0

0

Quick Draw is a reaction game for
two plays s. Player 'one' uses button
A and player 'two' button B.

The game is played on the two 7-
segment displays and the program
starts by illuminating segments
around the two displays. Then the
perimeter of the two displays
illuminate.

The first player to press his button is
the winner and this is shown by a '1'
appearing in the appropriate display.

If both players press at the same
time, both displays illuminate.

If a player 'beats the gun', the game
resets.

Press the reset button to start a new
game.

Data Bytes at 00F5:

01
02
04
08
88

AO Ao
81

RUNNING NAMES
To access this program, switch 8
must be ON. This will produce
address-value 0080. Do not turn on
switch 80 as this will produce 0800!
Once the program has started, the
switches can be turned OFF or set to
the value necessary to access the
name you want to appear on the
screen.

0 0 0 0 0 0 0
0

Running names 's a program which
you use soon after the Microcomp
has been completed.

It displays a message saying the
builder of the project is YOU!

To do this we have included a list of
about 30 names and these are
accessed by loading the input port
with a particular value, once the
program is running.

Hopefully your name is amongst the
list, but if not, there are a few general
names at the end of the table to cover
those excluded. Names containing M
and W have been left out due to the

difficulty in displaying them on the 7-
segment displays. But for the
majority, a name can be added to the
message to add a personal flavour to
the project.

The main program consists of 4
different sections. The first produces
the message: "3-Chip uP built by".
The second looks at the list of names
and counts the FF's separating the
names. It compares this with the
value set on the input switches and
displays the chosen name.

RUNNING NAMES:
MAIN PROGRAM:
LD IX 0100 0080
LB HL 008A 0084
JP ooDo 	0087
LD Ctoo 	oo8A
LD IX 0114 0011C
IN A,(01) 0090
CP 00 	0092
JR Z o0A9 0094
LD D,A 	0096

CP FF 	o
LD MIX 0o09A 97

JR Z oat oo9C
INC IX 	oo9E
JR 0097 	ooAo
INC C 	oat
LD C 00A3
CP D

A, 	
ooA4

JR NZ 009E 009E 00A5
JR 00 	00A
DEC IX

A 	
00A9

7

LD *Wows; 00AB
INC IX 	ooAE
JP ooDo 	ooBo
LD C,OS 	00B3
LD A,58 	0015
OUT
DJNZ

(oz),A
ooB
ooB97

LD A,,, loo 	ooBB
OUT (o2),A ooRD
DJNZ 	CORP
DEC C 	ooCt
JR NZ 00115 ooC2
LB 	Ono
LD HL,00lIo 600
JP ooDo 	ooCB

Part 3 of the program flashes 'C' on
the screen to represent copyright and
the 4th part of the program produces
the date: 1985.

The letters running across the
displays are produced by a sub-
routine which is used for the first
second and fourth parts of the
program.

This sub-routine picks up the first
two bytes in the table and displays
them on the two displays. When the

0020

0080

71 TALKING ELECTRONICS No. 13

3 41
40
39

H 8
1 06
P 73

oo
u LC
P 73

00
B Ic
U z
1 06

T 75
38

oo
B C
T

7
bE
00
FF

A 77

T 6E
FF

B 7C

Sbb

I 06
L 38

FF
B isc

R 33
79

T 75
FF

B C
1 o I6
L 38
L 35

FF
B 7C
0
B 7C

3F

FF
B 7c

U 3E
39

C 39
A 77

33
L 38

FF

S bL
FF

E
It 33

79

00
1 06
N 3
P 73
U 3E
T 73

00
V a

C
L
I
F 71

;IF
3

I 06
V a

FF
C 39

1 06
S 6D

33

FF

0
39

L

14 8
I

3
06

FF
J lE
0 3F
H 76

N FF
37

P 73
77

F

H
C 7396

A 77

L 36

36
06

C
11 33

39

A
I

7
067

G 3D
FF

D 5E
A

	

00 	V li

	

oo 	I ob

	

E 79 	D SE
TN ?I FF

D 5E
0 F
U 3 3E
G 3D

FF
B
D

7
5E
9

FF
E
V a
A 77 A

L II N a

	

U a 	G 3D
E 79 	E

	

00 	0 I;

	

oo 	IL 33

	

oo
oo 	G 3D

	

oo 	E a
FF 	G 3D

L
B79

31

N F17
G ID
11 33

G
E it

FF
I 06
A N 77

S 6D
T 71
A 77

PI a

0
T 71

3F

Pi ti
FF

L 3/
o6
71

T T 71
L 31
E 79

00
0 3F
L 31

00
I 06

FF
53
53

FF

• 40
• 40
• 40
G 31)
U 730E
E
S 60
S 6D

40
40

40

A
N 37

7
7
00

0 3F
L 31
D SE

00
P 73
It 33

F 0 3
FF

1 06

7F
F

5 6D
oo
00
FF

73
79
7B
79

FF
33

76
73

06
73

FF
33
77
3
73

FF
33
3F
6E
FF
6D
31
30-
71

F

clock speed is HIGH they will appear
to be on at the same time. When the
clock speed is LOW, they will
produce a flickering effect.

The routine displays the letters for OB
cycles (11 cycles) and then looks at
the next byte. If it is FF, the micro
jumps back to the main program. If it
is not FF. the sub-routine picks up the
next byte and displays bytes 2 and 3
on the displays.

A table of names is situated at the end
of the sub-routine, which is accessed
by the main program and used by the
sub-routine.

TABLE OF NAMES:

P

T
E

H
1
L
I
P

11
A
L

H

It
0

C
Y

The list of names in the table and the
corresponding Hex value which must
be placed on the input switches. If '8'
is on the input the message will read
'ENTER INPUT VALUE'

7- 1 ANDY
2 BASIL
3 BERT
4 BOB
5 BRUCE
6 CARL
7 CHARLES
8 	ENTER INPUT VALUE
9 CLIFF
A CLIVE
B CRIS
C COLIN
D CRAIG
E DAVID
F DOUG
10 ED
11 EVEN
12 GEORGE
13 GLEN
14 GREG
15 IAN
16 JOHN
17 PAT
18 PETER
19 PHILIP
1A RALPH
1B ROY
1C SCOTT
10 STAN
1E TONY
1F 	LITTLE OL I
20 	? ? ?
21 	- - GUESS - -
22 AN OLD PRO

NUMBERS AND LETTERS

To produce numbers and letters on
the displays, you cannot load a data
value of 01 and hope to get the figure
'1' on the screen. You will get
segment 'a' illuminated. This means
the hex value of the required
segments must be added together to
achieve the required figure.

For example, to produce the figure
1'. we must turn on segments 'b' and
'c'. The hex value for 'b' is 02 and for
'c' it is 04. Add these together to get
06. To create the figure '2' on the
screen, we must illuminate segments
a, b, d, e and g. The hex values for
these are: 01, 02. 08. 10 and 40.
Adding these together we get 5B.

This process has been continued for
the alphabet and numbers as shown
in the following table.

Some of the letters are hard to create
on a 7-segment display and the
closest possible resemblance has
been created.

A Al
B 7v
C 3/
D SE
E 79
F 71
G 3D
H 76

o6
.s LE
K 75
L 31
M 55
N 37
0 3F

Q
P 73

2F
33

S 6D
T 70
U 3E
V IC
W ID
X 64
y bE
Z IS

06

4 66
5 bD
6 7D

This table gives you the full alphabet
and numbers, along with the Hex
value needed to produce the
character. Most of the letters will be
quickly recognised with 'M' and 'W'
having a bar over the character to
indicate it is repeated again to create
the letter.

3
2 5B

4F

TALKING ELECTRONICS No. 13 73

1 = 011
2 = 95
3 = 4F
4 = 66
5

=
= D

6 7
6
D

t
= 77
= 7C

C = 30
1) =

= 7
F =9

0 = 311

LD Ctoo
LDE,00
IN MN)
AND 67
LD D,A
LD AE
AND of

213 D3 02
215 cm, 10
217 10 FE
219 7E
21A D3 02
21C 7B
2ID IF
21E IF
21F IF
220 11

The accumulator is outputted to port 2.

B is loaded with 10 (16 in decimal)

DJNZ A delay of 16 is created.

The accumulator is loaded with the value pointed

to by HI. and outputted to port 2.

The count register is loaded into the accumulator.

The accumulator is rotated RIGHT. The 4 high bits

move down to the 4 lower places and are ANDed

with eF .

221 E6 OF 	AND II removes the 4 upper bits

223 21 to 02 HL Is loaded with Mt

226 $5 	The L register is ADDed to the accumulator.

227 6F 	A new value for L is created.

22 	3E 00 	Zero the accumulator.

22A D3 02 	Output the accumulator to port 2

22C 06 10 	Load B with 10 for a delay routine

221 10 FE 	DJNZ for 16 loops.

230 	7E 	Load the accumulator with the value POINT ED TO by HL.

231 	CB FF 	SET bit 7 of the accumulator to turn on display 1

233 D3 02 	Output the accumulator to port 2.

235 DB 01 	Look et the input switches

237 CB 7F 	Test bit 7 to see if switch A is pressed

239 2$ 0$ 	JUMP if it is not pressed_

23B CB C9 	SET bit 1 of the C register indicating A pressed

23D CB 51 	Test bit 2 of register C to see if it 'I' or Tr.

23F to c3 	ll it is '1'. lump to line 3. If it is zero. jump to nest loop.

241 	It 08 	Jump to start of loop '2 -

200
22
204
206
20$ 51
209 	

1

01 00
1E
DB 0

00
1

E6 07

LOOKING AT DATA

This program lets you look at data in the
EPROM. This way you can check each of
the programs we have listed.

ado
o I

0101016 o

The program is located at 0200 and is

accessed by turning on switch .20.. Push reset

to access the program. Page zero address

0000 will be displayed. To access page 1. 2. 3.

4, 6. 6 or 7. the appropriate switches at the

input port must be switched ON.

For page 1. turn on switch 1. For page 2. turn

on switch 2. Far page 3. turn on switches 1 and
2. etc. Switches 8, 10, 20. 40. and 80 are

masked OFF via the instruction at 2111 and thus
they do not affect the page-accessing.

The program is designed to loop around
FF bytes and at page '2' the program is
capable of reading itself!!

At page zero (or any other page) the program

starts by displaying the address value. This will

be shown with LOW BRIGHTNESS. Pushing

button A will display the value of data at the

address. This will be shown with FULL

BRIGHTNESS.

Pushing button A again will advance to

address 01 and pressing button A again will

show the data at this address.

A fast-forward facility is provided by pushing

button B when the address value is being

displayed. This will enable you to fast-forward

around a page to pick up a missed location.

You can select a different page number at any

time and the correct data will be displayed.

This program Is very handy for reading the

contents of the EPROM and proving the data

to be as stated.

The display values are generated from a byte

table situated at the end of the program and is

as follows:

BYTE TABLE at 0250:
All too soon we has run out of

specs. There are Iota more programs

In the EPROM and these will be

covered In the nest Issue.

When you buy a kit you will be able to

access these programs and see how

they work.

The Microcomp Is deraigned to fit Into

• cassette case and be stored like •

book. Hopefully you will be using It

ell the time and it won't seethe boolt•

shag. I hope I have encouraged you

sufficiently to buy one of the kite. I'm

sure It'll be the best decision you will

ever make.

C is our TEST register BIT• are SET or R ESET in the program.

Register E holds the count. from 00 to FF. Zeroed at start.

The value on the switches is loaded into the accumulator.

The accumulator is ANDed with 7 - only 01. OZ Et 04 detected.

The value on the switches (up to 07) is saved in 413'.

LD HL este
ADD

L,A
L

LD A,
LIS)
OUT

AM
(02),A

LD B,10
DJNZ 021
LD A,(HL)
OUT RRA (0 2),A
LD A,Z

ARA
RRA

RRA
AND of
LD
ADD A

HL,ILosto

LD L,A
LD Aloo
OUT (02),A
ED B10
DJNZ 022E
ED A,(HL)
SET 7 A
OUT i02),A
IN A, on
BIT 7,A
JR Z 0243
SET 1,C
BIT 2,C
JR NZ 0204
JR 024E
RES 2,C 	'243 CB 01 	Reset bit 2 of register C.

BIT 6,A 	245 CB '7 Test bit 6 to see if button Si. pressed

JR Z 0204 	247 21I B 	If it is not pressed. jump to line 3

IC 00 00 Increment register E

It Bs 	Jump to line 3.

21 $o 02 Load HL with start of byte table

1A 	Load A with the data painted to by DE .

E6 of
65
6F

D3 02
IA

Add register L to the accumulator.

Create a new value for L

Load A with the value pointed to by HL.

266 	II FF SET bit 7 of the accumulator to turn on display 1.

26$ 	D3 Ot 	Output the accumulator to port 2.

26A DB Os Look et the switches

26C CBF

	

1 	Detect If button A has been pressed.

24E 2$ 0 	JUMP if button A has not been pressed.

270 	CB di 	SET bit 2 of register C indicating button A pressed

272 	CB 4: 	 if Test bit 1 of register C to see button A hes been released.

Jump if bit 1 of register C is 1 .

276 IC 00 00 Increment register E.
Jump to loop 1.

27 	CB 	Reset bit 1 of register C.

JR 0241 	27D It c 	JUMP to start of loop 2.

0200

The COUNT REGISTER Is loaded in the accumulator.

20A 	OF 	AND OF removes the 4 upper bits leaving the 4 lower bits.

BOC 21 So 02 Load HL with the start of the BYTE TABLE.

201 55 	ADD to to the accumulator.

210 61 	A new value for L is created (for later use).

211 aE 00 	The accumulator is zeroed.

INC 	.NOP. NOP

JR 0204
LDH 142110
LD , E)
AND

A
 0

ADD
L,A

AIL
LD
LDA AHL)
OUT (02),A
LD LADE)
RRA

RR RA
RRA
AND of
LD
ADD A

HE,
,L
Os to

LD
A,(HL) SET UHL)

SET 7,A
OUT

A,
0
01)
2, A

IN)
BIT 7,A
JR Z 0275

249
24C
241
251
252
254
255
256
257
259
25A IF
255 IF
25C IF
25D IIF`

E6 Eip OF 	AND the accumulator with IF to remove the 4 upper bits.

260 	21 to 02 Load HI. with start of DATA TABLE.

263 $5
264 6F
265 tE

And the accumulator with OF.

Add register L to the accumulator.

Create a new value for L.

Load A with the data pointed to by HI..

Output this data to port 2.

Load A with the data byte pointed to by DE.

Rotate the accumulator RIGHT so that the 4 high order bits

are shifted to the 4 lower positions.

BIT 1,C
JR NZ 412411
INC IL .NOP, NOP

JR 0204 	279 111 1141
RES IIC

274 20 D

74 TALKING ELECTRONICS No, 13

4

& 5.4. r
1 	

B,
I; 	. '4.,
trikr 7 • 1X

4 	 ' .
0'

1

•

• VOA. - 	 - 	/ •

441 -o&o• "iann't, rit

a 40111 	 a milt flIiisimm 	lallbr•Ismok

TEC-1114 B Kit of parts: $90.60
PC Board: $24.30
Complete: $114.90

TALKING
ELECTRONICS
COMPUTER

TEC 1A's can be converted to TEC
18's by ailing a push button, a 47k
resistor and a diode. When you
update to MON 2, the SHIFT function
allows INSERT and DELETE and a
number of other commands.

PART V

Features in this article:
* Crystal Oscillator
* Input/Output Module

TEC 1B with SHIFT KEY FITTED.

This is the fifth article on the TEC and
quite frankly we have only just scratched
the surface up to now.

The more ideas you try, the more you
realise the potential of programming.

We have received a number of pro-
grammes for the 7-segment displays as
well as the 8x8. 	These have been
included in this article and also a few
more hints on programming in general.

But before we get onto the programmes,
there are a number of loose ends we have
to tidy up. to bring the documentation up
to date.

So far there have been 4 different models
of the TEC and although the changes
have been slight, they have not been put
down on paper.

As far as the software is concerned, all
models are compatible as the only
modifications have been in the hardware.

The output latches have been changed
from 8212's to 74LS273's, the 2200uF
filter electrolytic changed to 1000uF arid
the 7805 mounted under the board so
that its leads cannot be bent or broken.

The rest of the design remains
substantially the same with the only
addition being a shift button near the
keyboard.

This button allows the keys to have a
second function and we have already
described these in issue 13.

Kits are now supplied with both the 1B
ROM and also MON 2 ROM. it is possible
to fit both programs into a single 2732
and to select either one program or the
other requires a slide switch to take pin
21 HIGH or LOW. With this you can get
the best of both monitors.

The computer can be switched between
one MONitor and the other by pressing
the reset button and while it is pressed.
the slide switch is changed. When the
reset button is released, the other MON
will come into operation.

The following is a reprint of an
information sheet supplied with the latest
kits:

THE 2732 MONITOR
Both MON 1B and MON 2 are in the same
chip and is called MON 18/2. The MON
18 program has been placed in the upper
half of memory so that when it is placed in
the TEC. the MON 1B section will run and
the computer will display 0800. You can
now access all the games. tunes and
running letter routines as covered in
issues 10. 11, 12 and 13.

The MON 2 routine is more advanced and
does not contain any of the games.
Instead it has a SH in' routine that
enables you to insert bytes into a program
by shifting all the higher bytes, and the
byte at the present address, up one
location. And a delete function, as well as
a number of other routines that have been
covered in issue 13.

When you want to accesss the MON 2
program, a switch must be fitted to the
board so that pin 21 can be taken to
ground. This will enable the lower half of
the 2732 to be brought into the system
and thus run the MON 2 listing.

The diagram above shows how to fit the
mini slide switch to the two halves of the
link that has been cut as shown.

You can switch from one monitor to the
other at any time by pressing reset and
altering the switch_

If you are writing a program using the
MON 1B, it is best to start at 0900, so
that when (if) you want to use the INSERT
or DELETE functions, you can change to
MON 2, use the function and then change
back to MON 18.

Gradually you will realise it is best to use
MON 2 for most of your programs.

There are two major differences between
MON 1B and MON 2. MON 1B uses a
simple routine that places the value of a
key directly into the accumulator,
without firstly saving the value of the
accumulator. Thus its original value is
destroyed. MON 2 loads the key value
into location Oin and thus your program
must include an instruction that looks at
this location for the value of the key.

Unless you load directly into the A
register.

Simple programs designed for MON 1B
will not run on MON 2 if they include a
key press: unless they are altered
accordingly.

TALKING ELECTRONICS No. 14 9

The second difference is the start address
for programming. MON 1B starts at
0800, white MON 2 starts at 0900.
Programs written at 0800 cannot be
successfully modified via the insert and
delete functions as they will run into part
of the scratchpad area for the MON 2
system.

We had an interesting fault in an 8x8 last
week. It is interesting because the
knowledge we gained applies to other
projects where LEDs are driven in
parallel.

A constructor built the 8x8 and was not
happy with the output of about 3 of the
LEDs.

number to indicate the number repeats.
(This is called a recurring number or
recurring fraction).

The letter W is displayed as a small 'u'
with a bar over the top, for the same
reason. The letter 'U' is displayed as a
capital letter while V is a small 'u'.

The following diagram shows hoer to add
the diode and resistor for the shift
function. The diagram in issue 13 was not
clear and this is an improvement:

ADDING SHIFT TO
	+5v

TEC 1 AND 1A.

SHIFT

PIN 14
74C923

TEC 1A/1B CONSTRUCTION HINTS:
The output latches for the latest TEC's
are 74LS273's and the dotted link below
each chip Is fitted.

The 7805 regulator bolts directly under
the PC board and a little thermal
compound can be applied to assist heat
transfer.

The small link from pin 4 of the 74LS138
IN/OUT decoder must be added. It can be
cut later if expansion is required.

About 58 empty holes will be on the board
after construction. Some provide for
expansion while others are unused.

After the keys have been added and
everything is operating satisfactorily, the
letters and numbers can be applied to the
tops.

Firstly clean the buttons with
methylated spirits and apply the rub-
down letters. Cover them with clear nail
varnish to protect them. if you want to
add another layer, wait for the first to dry,
otherwise the letters will smudge!

NOiES ON THE 13x8 DISPLAY
The 8x8 has been modified to include
sinking and sourcing transistors as
described on P 27 of issue 12 and all kits
now include 16 transistors and the
necessary current limiting resistors.

This results in the LEDs being driven
harder and increases the brightness of
the display noticeably.

This is important when multiplexing as
each LED will be turned on for only about
one-eighth of the time and if sufficient
current is supplied during this instant the
LED will appear to be on for the total
period of time with an acceptable
brightness.

He went to his local electronics shop and
bought a few replacements.

After fitting them. he was quite surprised
that they did not work at aft! So he rang
us. At this particular point in time we
were not familiar with the fault and did
not know how to advise him. So we
suggested he call around with the
project.

When we tested it, sure enough: die 3
LEDs did not light up.

On measuring across the new LEDs with
a multimeter set to low ohms, the voltage
drop across the crystal was slightly
higher than the rest. (When we me taking
a measurement like this, the swing of the
needle is being taken as a voltage drop.
We are using the 3v suppy in the multi-
meter to provide the LED with voltage and
the needle tells us the characteristic
voltage drop across the crystal)

We then got three LEDs from our stock
and measured the characteristic voltage
drop. It was exactly the same as the
majority in the display and when we fitted
them, the whole screen lit up perfectly.

The reason why the LEDs failed to
illuminate was due to the higher voltage
needed to turn them on. Even if this is
10OmV or so, the result will be the LED
will not turn on at all. (See the experiment
in Stage-1, P 9)

It is important that LEDs are matched
according to this characteristic voltage,
for situations where they are placed in
parallel. The 8x8 is one example as the
LEDs are effectively in parallel when the
whole screen is being illuminated in a
non-multiplexed situation.

DISPLAYING LETTERS AND NUMBERS
The 7-segment display is quite a unique
unit. It will display all the numbers from 0
to 9 as well as many of the letters of the
alphabet.

There are only about seven letters that
cannot be readily displayed and for these
we will have to make a compromise.

The letter M is displayed as a small
with a bar over the top. This corresponds
to a feature in mathematics where a dot is
placed over the first and last digits in a

The letter 'X' is displayed as part of a
cross and Z is shown as two angles in
opposite corners of the display, and looks
quite readable.

The only letters which require inter-
pretation are 'K' and 'Cr.

Ten other characters have also been
included such as a question mark and
'equals' as well as a reverse bracket to
assist in displaying mathematical
problems.

A = 6F
B = E6
C = C3
D = EC

F
= C7
= 47
= E3

H = AI
1 =

K
= EP
= 67

L = C2
N = 65
N = 6B
0 = EB
P=41/

2=" = 44
S = A7
T=46

= EA
V = SO
W = EI
X = 26
T=AE

r -

= = =
=
=

If

=
=

= =
)

I =
2 =
3 =
4 =
5 =
6 =
7 =

=
9 =
0 =

4D
$4
04
31

IA

1111
if
OF

21
CD
AD
2E

E7
29
EF
AF
KB Z = C9

TESTING A BLANK 2716 FOS FF's
Aker erasing an EPROM, such as a 2716,
it is wise to make sure it is entirely blank
before reprogramming it. The program
that follows does just that. It does not
inform you of the location or locations
that do not contain FF, but rather the
screen goes blank and stays blank if a
location has not been fully erased.

If all locations contain FF. the TEC resets
via the MONitor program to the start-up
address (either 0800 or 0900). This
protean can be placed anywhere in RAM
wed w6lwork with either MON 1 or MON
2 	

• by Jamas Baru. 3218

is so OS
21 MI III
71
FE FF
IMO 07
23
II
7A

se Pi
C7
7'

Some time later that day he arrived and
we noticed the first difference was the
colour of the LEDs he had used. They
were less opaque than the rest and the

PIN ••1 crystal inside the LED could ba madlydRy
seen. This did not disturb us as the light

1N914 	Z-80 output of the LEDs was our prime
concern.

10 TALKING ELECTRONICS No 14.

	

0000 C3 se 92 FF 	5114 to 94 IC 11
=

	

FF FF FF FF 	ens 	$4 to 7F

	

IA CO 00 El 	etIC II 77 24 71
0

	

606C FF T7 FF IF 	110 26 6A 29 Ii

	

sem IA Cs si HO 	0131 IA SF ID sq

	

501417 IF FF Fr 	etti IF St 31 50
Fen 2A C4 SI otIC 3; 48 30 47

	

eexC FP FP FY FF 	0134 3C 43 SF IF

	

one IA CO OS Et 	0134 43 3C 47 31

	

Hsi if FF FF FF 	0131 4B 3t fe 31

	

HU IA CO el 119 	si3C 	21, 59 3D
sr= FF FF FF FI OIs sy IA 64 ii

	

5630 tA CA ell B 	0144 FA 26 71 14
ee34 yr IF FF 	o241 77n 	20

	

6031 sA CCN Et 	et4C $4 HE $1 IC

	

6030 FF 17 FF IF 	5150 94 IA I4 10

	

0440 PF FF FF FF 	s1f,4 A 11 113 16

	

Kw Fr FF VF 17 	5191 BE xs C9 la

	

yea n FF 1trF IF 	0150 115 13 El 72

	

INC FF FF FF FF 	sibs IF 11 VD s5

	

sop FF 117 FE 1111 	014 FF Fit FI FIT
PM 	 N • FF FF FE 	U

4
 FF FF FE FF

	

6651 FF FF 17 FF 	o160 FF FF n PF

	

HSC FF FF n FF 	0170 Cs Ess Eg ES

	

e66o FF FF FF FF 	0174 A7 10 03 SF

	

6664 FT FF F5 DB 	0171 II 01 II 16

	

MI 0632 fa 01 	017C 22 611 01 17

	

sobe Ti EDF FF 	0110 IS OF 41 13

	

solo FF FF IF FF 	0144 41 711A3 si

	

.074 FF FF FF VI 	0111 I5 FE 46 AF

	

5070 FF FF FF 1FF 	et1C D3 a- 10 FE

	

0e7C FF FF FF IF 	0190 sn se Ft Ti
Sellse 	aff CD AD 	5144 Es 	CI Pt

	

211 A7 117 =I 	0106 FF IT FF FF

	

EF IF OF El 	extC Fr FF Fy F11
NSC C3 EC C7 47 	elm F5 IS 2A DO

	

0500 El 64 11 ES 	IIA4 II 7E FE FT

	

=
4E Ca ID 61 	atAl xe 03 El FI

elt

	

Eb 4F a 41 	'LAC C9 FE FE SI
A7 41 IA is *Ms Fl 23 CD 79

	

AC AA AE C9 	0114 ex 11 EF FP

	

66A4 10 of 11 14 	0114 FF FF 1/1 FP

	

.*AS sC el IF FT 	einc SPF EE FF FE

	

IOAC Fr FF FF FF 	oiCe 21 DF OS CI
IOU me 06 ee 	42C4 411 10i 	CR
:9 n

	

BS F
0114 	

n FF 	0
ace
1CC a F FF 	 TO_ 03 CB lb

NSC Er Fr FF FF 	eine 	CE C3 7$

	

seCe III IS a ID 	01D4 03 FF FF FF

	

ioC4 Di 17 FE 19 	etas cs ark Ca

	

sect ei It 29 17 	GIVC Ao 112 10

	

*see 11 W /4 11 	.IES CI Ce FF Ft

	

6.
NOV 21 It If 11 	0114 ED 43 Os

	

na FE IC ID to 	 cs to 04 CD
/7 	FF FF 	otEC 75 02 C3 711

	

FF FF FF IF 	eaFs 63 FF ED 41

	

$510 co re 82 03 	0114 Ai oi CB 90

	

5.14 El 04
CD

19 	@IFS et CD 70 II
VIII 01 si 	te 	stile C-3 71 rs FF
NEC 41 	_

	

CD 74 01 	axes CO 73 113 aro 	DI N 6.41 	0101 31 00 et rt

▪ F4
cs OE C3 am Cs Ds Es BD

	

gen 7s IS 1F IF 	rise Ef 374 E5 e/

	

NFC FF TV Fr FF 	ings DI Fs Cs pc

	

4200 ID lo se FD 	Es 113 gy rg

	

9104 11 EF 12 EI 	otti AF 3I CC of

	

nig 13 Dg 24 CI 	NIC 31 CD 01 a

	

Luc Is BE 14 B3 	0111 yr si iv es

	

5110 DI A9 19 9F 	4124 es or 02 FF

viii
exaC
6130
0234
O231
ex3C
0140
0144
0141
4340
ens
11251
6151
cue
este
0244
0211
e34C
O170
5174
4171
917C
0250
0244
5111
6100
0295
0204
irm
6s9C

o
SILO
zAi

s4As
irlAC
4273•
02114
01131
etiC
s306
osc4

shticcd
sane
01131
01131
win
011$
s114
sill
otEC
moo
rays
1527
elFC
0350
4364
030
o3eC
ems
0314
1311
531C

03
53so

24
0325
e3aC
03033430

5330

As promised, a larger photo of the robot arm. if
you have built anything like this, why not take a
photo and send it in.

Your ideas, combined with others, will help us
to present an article.

MON 2 HEX LISTING:

For those with the TEC 1B and an
EPROM BURNER, here is the hex listing
for the MON 2.

With this you can make your own MON 2,
and save the cost of conversion.

Insert the date 01100 on the TEC, and
continue through to 01114.

Go through the program at least once,
checking each of the values to make sure
a mistake has not been made. A single
mistake can mean the difference
between perfection and failure.

MON 2 HEX LISTING FOR TEC 1B:
FF FF FF FF
IF FF FF FF
FF FT Fy FF
FF FF FF FF
FF FF FY FF
FF FF FF FF
31 CO 02 AT
DI II DI 02
21 DI 68 It
D5 si 01 05
oe ED Be CB
70 52 31 55
CD 70 01 38
IF CD 70 el
31 01 31 OF
II CD AS 01
CD of 03 IS
Fi FF FF FF
Fs 1E5 Cs CD
ill 	02 	111i 	Fe
sE 57 of oF
32 nc 01 ow
E14 of 3a 	1313
of CI Et Ft
49 xx DS 01
7E 07 07 97
07 	13 	14 	47
23 71 07 07
07 07 23 fi
IF oh C9 FF

D1
ES Os C5

It 	al Al
03 01 CD 50
03 CR 41 11
es Cb 137 as
e2 3E 20 D3
et II 10 10
FE AF DI CI
CD Se 53 CB

11 81 CB

10
1P3

 7 D3 DI 01
25 15 FE AF
/113. 01 	CD 55
03 CB a 25
61 CB 17 D3
02 3E OS D3
ea 	44 	as 	Is
FE Al DI 01
CD 50 03 ca
41 xi 42 CB
P7 Ds es 31
e4 	113 01 	II
20 le FE AF
D3 el N C3
41 53 FF FF
FF FF IF IT
CD 19 SI C5
E1 31 Ca ell
le FF FF IF
CD SO OS CE
46 if SI CB

04 D3 	t 	6
El D3

o
z

0
SE

sik so FE AR
D3 ox CD 321
0013 Clem 	usIS

el 31 01 133

033C
0340
0344
5340
*IOC
0455
0354
0331
DISC
6364
0304
03611
6360
0370
0374
537e
037C
*310
e314
0311
lift
039e
0344
01911
6390
03A6
03A4
43A1
S3AC
e314
v314
031111
6313C
63C8
0304
FICS
*Mc
031011
03134
03D1
03DC
.310
0314
OM
031C
93E0
6374
o3F1
eon
4400
sot
apt
0400
0410
0414
601
1141C
5426
0434
0411
4410
0430
0434
4431
0430
0440
5444
4441
asst

II Ob 10 10
FE AF D3 01
Ca Ds El Fs
C9 FF FF FF
FF FF FF IF
11 NO se sA
Ss IF 71 13
22 DF r.09
FF FF FF Ff
F5 11; 11 FA
as 31 sir BE
if II 71 El
IF Cil FE 25
82 CO 14__ Cl
Ai 61 FF FF
Er FI C9 37
FF Et Tx C9

FF FF Fr
Co 69 52 Cc
BD 151 DD 13
DD El El IC
FE 46 it 05
DO 7E 00 DO
77 FF IS SE
31 se 31 FE
3F CD 7. ot
C3 71 03 FF
Ci SI CD 70
01 	C3 21 04
CD 19 02 611
DO 34 FE 3F
DD 7E el DD
77 01 DD lB
DD ES 11 7,
10 20 Fl 71
BC Is ED DD
36 01 le CD
70 02 c3 71
$3 FF FF rag
Is Fs BD Es
C5 &V 32 DF
es 04 56 II
Di et 31 19
77 13 10 FC
1A DO 61 78
FE FF to 06
C I BD RI F1
11 C/0 FE FE
31 FE DE121
Di 6/1 14 05
131371 si 	1313
77 00 DD 13.
14 Fl 7/ 32
DD el 13 46
49 CD AO 02
Is vs sr 113
FF FF FF FI
FT DI 01 36
FF CO 17 CI
C6 54 CB FF
Ca Get 11
OF Ile CD 44
CA 55 94 57
CDM 02 11
DI 04 CB FE
28 53 A? CE
DK 07 47 07
*7 FA Fo is
03 CD 75 et

0450 	C3 7
7
1) 03 Fr

0430 	FT 5 	11 DF
6436 	el CB 911 CB

04405C 40" 116" eI CD ea"
0464 	04 al El CD
04425 	le 01 It 07
445C
0475 	Fs IF 75 07
0471 	07 07 07 16
0471 	OF 63 47 79
147C 	07 07 07 07
5450 	Et Fs Is 43
004 	CD I. $4 CD

045C5158 	537 	FF" 	
7D
n

Iwo 	II Of
0494 	.1 75 Si FS
SOS 	$7 07 $7 17
54W 	77 23 711 14
64A0 	IF 77 13 /1

01A°41 	07" er 07 701742037 04AC 79 66 of 77
0410 	El El CI FF

DISC
4414 	FF FT FE IF

IF FF FF FF
WIC FF FF FF FF
s4C4 	21 DF off CB

s044C4C4 	01: Ie CA18" FE te
etcc FE II CA Eft
%De us FE 11 CA
eat 8C 53 FE 13
*or CA CO 51 FE

sA es o 05 oiaixtEIC n14 15 jk
 FF

44F-4 	FE FE SO CA
pal FF FF FE 17
NEC
0420
1121 	FE 191"729 4c751A "FE"
5421 	EF

Frei :A FF FltFEIYAF FE

504 	IC CA 00 46
11561 	FE ID CA FF
eSeC 	Fr FE lb CA
0510 	FT FF FE IF
Mt CA FF IF FE
sull 	20 CA FF FF
OTIC 	FE 21 ca
0510 	IFF FE as CA
0524 	FF FF FE 23
Sill 	CA FT FF FE
USIC 	24 CA 11* 93
5534 	FE- 25 CA 14
0534 	63 vs 22 CA.
ma 	IF FT FE 17
Of3C 	CA I4 et C3

0051: 	Iii
if

 11
0141 	FF FF IF FT
0340 	IF 17 FF FF
0550 	CDN Si 00
0534 	SO 3A El OS
055* 	13 BE 10 FC
0351.6.44C 0"444 One, mcc?

01

TALKING ELECTRONICS No. 14 11

e o6
• D5 DP_la
6 04
f G7

134,
DO

15 17 19

74C923
KEYBOARD
ENCODER

1
1 1

9
8

RC547

OUT

AD 3 7 B
I.

F

GO 2
r
6 A E

1 5 9 D

+ 0 4 8 C

sh

	

e 	a
13

D5 ea

	

15 	14

	

421-6 	7
443- 6 5 F2 4
.4112-1 B .1 14, is

	

16 	Is 	17

	

OO 2 	3
10 11

1

• + 511

IN
rk7

NOW THE CIRCUIT WORKS
(and a general discussion.)
The circuit diagram is TALKING
ELECTRONICS COMPUTER 1B
(TEC 16). It is a 9-chip, single-board
computer capable of executing Machine
Code commands and displaying the
result on either the inbuilt display (a set of
7-segment displays) or on other displays
via the expansion socket.

The expansion socket is configured
identical to the RAM socket and is
accessed via line Y2 of the ROM/RAM
decoder 74LS138. at the top right-hand
corner of the diagram.

The computer starts-up via a MONitor
program contained in the 2732 and two
monitor programs are in this chip.

The MON 1 select switch takes address
line All LOW for the low half and HIGH
for the upper half.

The other major change between TEC 1
and TEC 18 is the output latches. They
were originally 8212's but now
74LS273's have been used. These are a
modern chip and are more readily
available.

STARTING UP
When the power is applied to the
computer, the reset line on the Z-80 is
taken low for an instant via the 100n
capacitor and this resets the internal
workings of the 2-80.

Its first operation is to look for the first
byte of data at address zero, in the
monitor. Depending on this being a one-

contains 11 lines while the data bus
contains 8 lines. The data bus is always 8
bits wide for a Z-80 processor and this
gives it the name '8-bit system'.

The address bus is a ONE-WAY bus in
which the Z-80 activates the lines and
turns them on and off using binary
notation to generate an address value.

When all lines are LOW, address zero is
represented. When line AO is HIGH,
address 1 is represented. The Z-80 has 16
address lines and address 1 is:
0000 0000 0000 0001. When line Al is
HIGH, address 2 is:0000 0000 0000 0010

The address lines connect to a number of
chips but only one will respond due to a
'turn-on' line called a command line being
required to be activated.

TEC 1B COMPUTER CIRCUIT

When the ROM select switch is HIGH,
MON-1 program is accessed and the
computer displays 0100. When the
switch is LOW, the computer displays
0901 and the MON 2 program operates.

This has been done so that the TEC 113 is
compatible with the original TEC 1 and
it can be upgraded by adding a monitor
switch and a programmed 2732 EPROM.

The original TEC 1 had a 2716 EPROM
but these chips are no longer
manufactured and thus a 2732 is now
used. When a 2732 is placed in a 2716
socket the upper half of the chip is
accessed and thus MON 1 program has
been placed in the upper half.

byte, two-byte or three-byte instruction,
the Z-80 will execute it or request one or
two more bytes.

The flow of information from the Z-80 to
the other chips is via two buses. They are
the ADDRESS BUS and DATA BUS. In
addition, there is a set of control lines
(sometimes referred to as the control bus}
that activate (generally) one chip at a
time.

All signals within the computer are at a
level equal to rail voltage (called HIGH) or
ground (called LOW). For this reason they
are called digital circuits.

The shaded paths of the diagram
represent buses and the address bus

These command lines are called chip
select, chip enable or output enable and
this allows only one chip to be activated
at a time.

The chip select lines are the outputs of a
decoder chip and this chip is 'turned on'
by the Z-80 and only one of its outputs
goes low at a time.

It is a 3-line to 8-line decoder and this
means it has 3 input lines and depending
on the HIGH-LOW values on these lines,
one of the outputs will go low.

This is a form of expander so that a single
line from the Z-80 (e.g. from pin 19 or 20)
can control 8 devices.

12 TALKING ELECTRONICS No 14.

TO 2N0 RAM 	

+6y

CT

1

A6
11

Ill 13
7 	A.,3 15

Al7 	13 2
All 	IfirJ"n

A13 	C 3 	6,fL.
741-5138 1

Ig -q2.80 pr

+5V

16 101(}-41

24-2M-T--113-1-1(

25 	 1 0

9;

6

+5V

19.4E 4049

1080

'71

05

SPEED SH1FT 	 +AV
To Pin 14

0-1411-4-1 47K ,1-1
740923 	544148 Information stored in RAM will only be

maintained as long as the power is
applied as the flip flops storing the data
will not hold their state when power is
removed.

`ADD-ONs
This computer is only a baby in the
computer world however it does have the
facility for expansion and already a
number of "add-ons' have been produced.

Possibly the most important add-on is the
NON-Volatile RAM. This consists of a
battery backed-up 6116, into which
programs can be placed.

The Z-80 immediately ceases all
processing and jumps to address 66 in
the MONitor. Here it executes a short
program and activates the input/output
decoder to turn on the keyboard encoder.
The encoder puts a 5-bit number on the
data bus and this is stored for later use or
operated upon, as required.

When the shift button is pressed, and
kept pressed while one of the keys is
pressed, an extra bit is added to create a
6-bit number and thus an additional set of
20 commands can be created.

The top right-hand decoder is called the
ROM/RAM decoder and the lower left-
hand, the IN/OUT decoder.

The data from the monitor flows to the
Central Processing Unit (the Z-80) along
the data bus as 8 parallel bits of
information AT THE SAME TIME.

This is called a BYTE of information and
can have 256 different possibilities. The
2-80 knows if the byte is data or
instruction by the fact that it starts at
address zero looking for an instruction
byte. From there the program must follow
correctly and this is the responsibility of
the programmer.

The data enters the 2-80 via a holding
register (an instruction register) that is
not available to the programmer and to
keep the discussion simple, we consider
the byte flows directly into the A register
(called the accumulator). This is the only
register capable of accepting information
from the data bus. All other registers
must be fed from the accumulator.

Data can also flow out of the 2-80 along
the data bus and this bus is BI-
DIRECTIONAL. The arrows on the bus
show the direction of flow of information.

The keyboard is scanned by the 74C923
and this is called hardware scanning as
the chip has inbuilt scanning circuits for a
matrix of 20 keys.

When a key is pressed. a signiti is
generated at the Data Available pin and
the 2-80 is notified via the Non-Maskable
Interrupt line.

The output latches are also controlled by
the in/out decoder and the control line on
each latch is called CP (clock pulse).

When these lines are taken LOW, then
HIGH again, the data appearing on the
input lines is latched into the chip and will
appear on the output lines and will remain
there.

Other devices can be connected to the
system via the expansion port and this
includes an IN/OUT module, an OUTPUT
module, a display module and a controller
module (to come).

The clock oscillator is adjustable via a
speed control pot and allows programs to
be run at different speeds for assessment.
If a real-time situation is required, a
crystal oscillator can be fitted and this
will allow time to be programmed
accurately.

The main intention of this computer is to
provide the starting point for an under-
standing into computer operations. For
this reason, machine code programming
has been employed. This means you will
be able to create your own systems for
such applications as controllers and
timers for industry and home and be able
to produce the project from the ground
up, without requiring any external
operating system.

TALKING ELECTRONICS No. I4 13

This allows devices such as 7-segment
displays, relays or globes etc. to be
activated.

The 6118 RAM is RANDOM ACCESS
MEMORY and as the name suggests,
bytes of information can be placed
anywhere in its matrix of cells. These
bytes are generally data however
programs can be literati, and run in RAM
and these are usually developmental
programs.

	Alg 40

+5V

U w
4,

tO

O

19
22
23
1 	6116
2

24

21 Al
I TO 2ND

RAWPORt

RE

Gra3

IE
24 	 19

22
21 	

2732
	23

1
2
3
4

U EPROM

12
17 15 13 10

16 14 11 9

3
A 44 4

0-14 5
.112 6 	RAM
Ali 7 20

12
17 15 13 10

16 14 11 9
a

DATA 505

39
	38
AZ-81
A§35
AL,35
AL 34
N- 33
AZ-.32

114-.30

WR 22

21 la
.12k 10

9
7
	 8

-41 15
12

90 	14 720

Z80

CPU

t
A
g
g t
U
S
t
2
2 3

01
C7

se
6F
fe
EA
el
A7
04
A7
02

PROGRAMS FOR THE
TEC DISPLAYS and a sound
Program:
Here are three programs for the TEC and
TEC displays. The effects that can be
produced on a set of 7-segment displays
is quite amazing. I thought we had run
out of ideas and yet they still keep
coming.

The first program is a Space Invaders
sound effect using button 4 as the firing
button. The other two programs use the
displays.

SPACE INVADERS 'SHOOTING'
Phillip Barns, 	2118

Computer sounds and effects are always
impressive, especially when we have
control over them.

This program does just that.

It is a Space Invaders sound effect and
you can control it via button 4.

The point to note with this program is the
way the delay is increased by inserting a
varying value into a delay loop. In the
latter half of the program the OFF time is
gradually increased by placing another
varying value into a delay loop.

The resulting ON-OFF values outputted
to the speaker produce the changing
tone.

The program only accepts the press of
button '4' (determined by CP 04) and by
pressing this button repeatedly. a firing
sound will be produced.

JP Z nee

JP NZ 0808

LD A,12
LD I,A

INC n

XOR

LD A,1
CP 04

DEC II

JR NZ
JP nee 0821

LD 11,17
LD Ro

LD A,S0
OUT (01),A
CALI. HU

OUT (1),A
CALL 012$

CP ea

	

ses ED 47

8o8 04
809 3110

ND 	CD se OS

NE 	Cs el el

$25 	C3 oo

$00 	3E 12

804 	26 FF
$ee 	ea et

SO 1 D3 ot

110 AF

RIO 	ED 57
Ste 	FE ea
111A CA ee
SID 25

823 	20 FC

811 	D3 es
813 	CD 28 el

sat 	FE 04

628 46 LD CJI 	
829 OD DSC C 	
82A 20 FD JR NZ Otro IsC C9

RETURN

THE BOX 	G.L Dunt 3219.
This program is an extension of the
techniques we have been discussing in
issue 12. P 18, covering the control of
two or more pixels at the same time.

It produces an interesting piece of
animation in which a box with lid is
displayed and moved across the screen in
a 'chase scene'.

Again we won't say much about the
effect, except to say that you can get
quite involved with it and find it very easy
to improve upon.

The program consists of 25 'frames' and
each frame requires 4 bytes of the table to
produce the necessary effects. Each time
you increase the table (by 4 bytes) you
must also increase the counter register by
one (for each frame).

By using 4 bytes we gain the ability to
control two pixels at the same time. If
only one display is required, the two pairs
of bytes will be identical.

LD IX 0840 0800 DD 21 46 08
16 19 0404LD

I) LLD Coto Nei SE as
0114 DD 71 es

OUT 01),A 'SOB Da el
LD/IX + oe)

LD 	IX + 00 0100 DD 71 et
OUT 02),A 0110 Da ex
DJNZ eSts la FE
XOR A 5514 AF
OUT 02),A 0015 113
LD A IX + es) 0817 DD71 12
OUT et),A NIA Da et
LD

Ai

J D N si

IX + ea)
12),A

WIC
IS

n
O

D
Da es

O 71 e;

to FE
DEC C 0023 ID
JR NZ
INC IX0808

002
ell2

64 se Es
s3 DB

INC OM DD 23
INC IX MA DD 23
INC IX 012C OD 23
DECD 0021 15
JR NZ aSe6 082F se Da
JP oleo 01131 C3 es of

at 0540:

i et1 et

iso

II 1

20

se
E4 	14 	 14
01 	el 	so
14 	E4 	C4 	E4

01 	01 	et 	se
ES 	RI 	110 	E4
01 	 10
El 	

et 	o
Et 10 14

et •11
E4 	

et 	02
01 	So 	E4

01 	03 	s0 	08
14 Be 10 E4

el 	et 	84 	04

ofEX 	SO 	E.
02 20 of

Ea 	Ea 	ED 	04

et 	et 	1$ 	02
14 	so 	Se

20 	
le

et 	 08
El 	

es
Eo Eo 04

et 	01 	10 	01
LI 	80 	04 	le
01 	oA44 	2110. 	04
14 	

04

01 	et 	20 	el
Ex 	Se 	11 	Re
of 	ae 	20 	02
Es 	04 	Et 	04

Halllavic's Plano:
This program has been designed by BOB
Helifovic end gives a piano effect when
one of the 20 keys Is pressed. The notes
have a pre-determined length, and this
distinguishes it from the organ programs
we have previously presented.

1111111111111111111

BOOMERANG
Boomerang is a program for the TEC
displays. The effect you get is so clever
that we are not going to spoil it by telling
you what happens.

The only point we will mention is the
composition of the byte table.

Each pass of the program uses two bytes
from the table and the end of the program
is detected by looking for address 0144.
Register L will be 44 at the end of the
table.
By using the table two bytes ata time. we
can specify the display we wish to access
and the segment to be lit.

Also, using a byte table like this requires
less program and fewer registers. It is
one of the tricks of compact
programming.

The delay at 0900 produces the speed of
execution.

Try altering and modifying the program
and you will learn a lot about what each
instruction does. You can also lengthen it
by adding more frames. It'll be like
creating your own cartoon.

LID
LD
OOT ('1)4

III; 7121 sa

0804 113 et
23 INC

01717

,31. 0847 78 LIS
2D33 es

INC
	

WOA
MB CD oo moo CALL
6668 71) • LD A,L

CP 44_ 	ail 44 P1
o$12 Cs 63 04 JP NZ ems
6614 C3 so st JP

at 0020:

os
49

63
$4
00
SI
OC
10
09
so
03

Delay at 0900$

it FF 0A
211

Data
Data
LD AtiP
LD (0941),
CALL otB4

A

HALT
CP to
JR NC
ADD Alec
LD (6900),A
JR 6807
SUB AjOF
JR 0911

0868 00
0101 09
01_11 3E IF
4444 	32 01 09
0107 CD Bo Os
MIA 76
086B FE 10
080D 30 07
01OF C6 05
0111 	32 ao 09
0$014 11 Fl
NM 	D6 OF
0111 	IS F7

G. Sheehan &
D. Svendsen. 3175

900
903
904

906
941

949

14 TALKING ELECTRONICS No 14.

0$42
004A
084C
084E
0850
0052
0153
0855
0858
015A
0850
085E
085F
0861
0864
0866
0868

CB 09
CB ea
30 DC
CB oA
CB 0A
7A
D3 04
CD 00 09
CB t A
30 176
CB 09
79
D3 03
CD 00 09
CB 09
36 F6
C3 oo 68

21 FF ob
21
7D
B4
Cx 03 09
C9

21 00 oB
06 ot
7E
D3 03
711
D3 04
06 20
10 FE
23

Al
47

13 04
CB 00

Ct
30 ED

ED gF
47
ED 5F
17
ED 4F
10 F13
C9

PROGRAMS FOR THE
axe DISPLAY:
The 8x8 has remained a popular 'add-on'
and we still get requests for more
programs for it. Here are some recent
submissions:

If you have written a program equal to
these, send it in for inclusion in the next
issue:

FAN OUT Mk DI
Dean Svendsen 3175.

FAN OUT Mk III produces symmetry on
the displays and can be seen by the same
byte being outputted to both ports 3 and
4. The end of the table is detected by
looking at the value of L and starting
again when it equals the address of the
end of the table.

LD ILL MI5 	 21 15 ell
LI TIL) 	 7E
OUT 03),A 	 13 03
OUT 04),A 	 D3 04
INC 	 23
CALL o

L
 ses 	 CD es es

LD A,L 	 7D
CP 20 	 sz se
JP NZ 0803 	 02 03 el
JP 0000 	 a ea es

at Mut

10
	

01
3C
	

C3

FF
E7
	

7Z
C3
	

3C

900 	it FF OA
903 11
904 7B
905 12

909 	C
6 	Ca

9
 03 09

BOUNCING BALL AND
ROLLING BALL.

G.L. Dunt, 3219.

This program is an extension and
improvement over the Bouncing Ball
program in issue 12, P. 26.

If you look at P.26, you will notice the
program is fairly long.

This is because it is necessary to specify
the start address of the ball, each time it
changes direction.

Much of the program is a repetition of
similar or nearly similar codes and to
reduce its length we need to look at any
pails) that repeat.

At first they may not be obvious but one
can be found that starts at the base of a
column, up the column, across to the next
and down to the base again. The
sequence ends with the LED jumping to
the start of the next column.

If we repeat this 4 times, the whole of the
board will be covered. This will reproduce

the effect as described on P. 26 of issue
12 Using the same technique. we can
travel across the display and back again,
to produce a weaving effect as the LED
advances up the display To complete the
travel we need to move the LED from the
top right hand corner to the lower left
hand corner, ready for the start of the next
sequence.

By using efficient programming as
covered in this program. we can produce
twice the effect with about half the
program,

Most of the reduction is done by defining
the co-ordinates of the ball only once.
This is done at the beginning of the
program and from there the ball position
is kept in the C and D registers. They act
as the x and y values in co-ordinate
geometry.

To move the LED across or up and down
the screen, the C and D registers are
rotated left or right. Each register
contains only one bit and when this
moves out the end of the register, it either
"sits in the carry box" or passes it and
enters the other end of the register. In
either case the carry flag is affected and
we look for this to let us know the end of
the display has been reached.

As you can see, the LED is either "off the
end of the board" or at the other side of
the display, when the carry is detected
and we must shift it back one location,
ready for the next run. This way the LED
appears to be darting back and forth from
one side to the other, and we are not
aware of the 'corrections' that take place.

LD
	

0800 of et
LD 1,ot
	

0802 Of 01
LD

LD :

At
OUT 03),A

OUT(GA
CALL 09

O

0o ofloa 79
0865 D3 03
6807 7A
0108 	113 04
08oA CD oo 09

RLC D
	

080D CB az
080F 30 16

JR NC 0807 0811 CB IA RR D
0113 CB at RLC C

LD A,C
	

0815 79
0016 	D3 03 OUT A 03),

LD A,D
	

6818 7A
0119 D3 04

OUT (04),A 0811 CD oo 69 CALL 0960
°SIR CB to RR D

JR NC,0818 0$20 30 Fb
0122 CB II RL D

RL C C
	

0824 CB ot
JR NC,0$64 0126 30 DC

0828 CB 61 C RRC
LD A,

,C

,D
	

082A 7A
6821 D3 04 OUT (04),A

LD A
	

082D 79
012E D3 03

OUT (03),A 0830 CD Oa 09
R CALL 090o 0833 CB 09 IC C

0835 	30 16 SRC C,012D 6837 CB it L
0839 CB 02 11,LC D

LD A,D
	

0831 7A
013C D3 04

OUT,C
(04),A

LD A
	

013E 79
083F D3 03

OUT (03),A eta CD 00 09
CALL 0900 0144 CB ot RLC C

0846 	38 F6 JR NC,0831

RAC C
RLC D
JR NC,o8aA
RRC D
RRC
LD A,D
OUT (04),A
CALL 0900
RR D
JR NC,0852
ARC C
LD A,C
OUT (03),A

It
CALLRCC *goo

JR NC,0115E
JP olteo

At 0900:

LD IMAM
DEC HL
LD
0

A,L
11 HSL

JP NZ 0903
Return

RAIN DROPS:
Jim Robertson,

This program produces a very effective
pattern, similar to falling rain. The
random number generator is the
interesting part as it is very difficult to
produce random numbers in a program
that loops.

CALL Random Nos. CD 00 OA
AND 07 	 E6 07
LD 11,01 	01105 	26 OB

RRL
LIA 	ollo7 	6F

C (HL) 	0$011 	CB OE
LD DE,0006 010A 11 06 00
CALL SCAN OOOD CD 00 os
DEC DE 	0810 	118
LD A,D 	eau 7A
ORE 	0812 B3
JR 	081

ti 	
20 FS

JR STARTA 	n3 II Ee

at 0900:

SCAN

LD /IL 0100 0900
LD B4O1 0903

0105 LD AfIBILY
OUT 03),A 0906
LD A, ogee
OUT (04),A 0909
LD 8,20 090R
DJNZ 0911
INC HL 09OF
LD B,A •910
XOR A 0911
OUT (04)1A 091a

14
JR NC

69
09 16

RETURN

at OA00:

6918

RANDOM NUMBERS:

LD A,R
LD
	 SAN

ali02
LI) A, 	oA3
RLA R
	

eA05
OA06 LD R,

DJNZ
A 	

6A08
OMA RETURN

TALKING ELECTRONICS No. i4 15

PHONE DIALLER - Part
LD D, 01
XOR A

r
ED 111-,0000
LD(HL),A.
INC BE
DEC 23
JR 19Z
LD 	
CP sA

—JR NC
LD DE Dna
ADD A1E
ED E,A
LB RE No°

E

LD *AL)
CP so
JR Z
INC HE
JR
ED A
LD M

WE)
ENA

—*ED A,FF
ED EA
ED C,20
LB ILL,ogoo
ED DIN

+LD Row
LD A(HL)
OUT

RRC

LD A,C
(00,A

OUT (01),A

C
DMZ
XOR A
OUT (oi),A
INC HI,
DEC D

—JR NE
JR 	

ohs 	20 in
0$02 AF
O103. 	22 00 00
4100
um 77 23
son IS
0400 	26 EB
•0012 	ED 57
soon EE 42A
NW 	30 12
Nn 	II i0 00
0814 53
Nag 5F
n o 	21 00 04
alto 71
NIA 	PE 00
N IC 	25 03
N A 23
N or 	11 FO
0121 IA
0112 	17
0523 	3E FF
0125 	ID 47
0627 	0E 20
10129 	2102 04
0520 	Ii 06
2/28 	00 oo
0030 7E
0531 	D3 02
0533 	79
0$34 	D3 01
0536 	CB 62
0536 	10 FE
603A AF
01313 	03 01
053B 23
0531 15
0537 26 ED
0$41 	Cl 00

The first 8 memory locations are cleared so that the program
will come on with a blank screen. We need only 6 locations.
The 7th location is explained in the text.
Register A is zeroed and this value is inserted into oipos -10o7
via the HL register being the pointer register.

The Index register contains the value of the key.
Compare the accumulator with IA.
Jump relative if the key is A or higher
Load DE with the start of the DISPLAY TABLE.
Add Se to the key value.

Load the result back into E. DE will point to a table-byte.
Load HL with the start of memory.
Look for the first blank memory location byjoading the value
pointed to by HL into the accumulator and comparing with
zero until a blank location is found.

When found, load A with the byte pointed to by DE.
Load the table value into the blank memory location.
Change the value of the index register by loading It with FF so
that we can detect the same or another button.
start the scan at the left hand end of the display.
Load HI with start of memory.
Load D with 06 for 6 loops of the program.
Load B with delay value for turning ON each digit.
Load the data at the first memory location into A.
Output to the segment port.
Load C Into A.
Output to the cathode port.
Rotate register C right, to access the 2nd display.
Create a short delay to display the digit.

Zero A
Output to the cathode port to turn display OFF.
Increment to the next location.
Decrement the loop register.
Jump to start of loop if D not zero.
Jump to start of program if D zero and look for new key.

PHONE DIALLER
TURNING THE TEC INTO A PHONE DIALLER

The following three or four pages
examine the development of an idea. It is
a Telephone Dialler capable of storing up
to 30 or 40 names and phone numbers
with a dialling facility and auto re-dial.

It is only a program of ideas as the output
appears on a speaker in the form of tones.

Since this is a fiarly ambitious concept, it
has been divided into 3 sections. Each
section describes a program that is
complete in itself and increases in
complexity with complete design in
section 3.

The first program is fairly simple. It
shows how to get figures from the
keyboprd and display them on the screen.
The second contains two function
buttons, C and E. The 'C' key clears the
screen and 'E' indicates the end of a
phone number.
The third program is much more complex.
It has more features and is keeping track
of more things.

Each program has been created from
scratch as it is almost impossible to 'add
onto' an existing program.

Type each of these programs into the TEC
and study them. This way you will learn
how they operate.

PHONE DIALLER PROGRAM 1.

This program is limited to displaying 6
digits on the TEC screen as no scrolling
feature is present. As the keys are
pressed, the numbers fill the screen from
left to right. When the screen is full, the
capability of the program is reached.

The screen buffer is located at 0900 and
the scan rate is determined by the value of
B (at 0S2E and 0127. We can increase or
reduce the scan rate by altering the value
of B and by adjusting the TEC clock
speed.

No other features are available in this
program. The TEC must be reset and 'GO'
pushed to clear the screen so that a new
number can be keyed in.

This simple program shows how to get
numbers from the keyboard and onto the
screen.

The only instruction that will be
unfamiliar is Ma. It effectively divides
the keyboard in two, allowing keys 0-9 to
be accepted and A-F to be disregarded.

JRNC means Jump Relative if the Carry
flag is NOT SET. When the previous
instruction is a 'COMPARE', it is best to
substitute the word 'BORROW' for carry,
and the instruction will be much easier to
understand. This is because the compare
instruction subtracts the data byte from
the accumulator and if a borrow is
required, the carry flag is SET.

In our program, CP OA causes the Z-80 to
substact OA from the accumulator (it will
hold the value of the key). When any key
below A is pressed, the subtraction
operation creates a borrow and this sets
the carry flag. If we push key 6, the
operation will be 6 - A and the answer will
require a borrow. Thus the carry flag will
be SET. If we go to the program, we can
see the Z-80 will continue down the
program and NOT JUMP as the
instruction says: JUMP RELATIVE NO
BORROW.

To fully understand these instructions
you have to comprehend the double
negative. For instance: I am NOT. NOT
going to jump means I AM going to jump.

Type the program at 0800 and the display
conversion table at ONO.

Push RESET, GO and the displays will
blank. Press any combination of keys and
notice that only number keys respond.

Modify the value of B in the scan section
to increase the scan rate.

Some ideas for experimenting include:
scanning from the opposite direction,
scanning only 6 displays, allowing letters
to appear on the screen, and changing the
output to a CODE, so that you can turn it
into a CODE-BREAKING game.

at 01002

EB
2$
CD
AD
21
Ay
E7
24
EF
AF

PHONE DIALLER - Part 2
The second part of the Phone Dialler
program uses a different approach. As
we have said, each must start afresh as it
is more difficult to adapt an existing
program.

This program accepts a string of digits of
any length and will remember them for
recall after key E (for END) has been
pressed.

The C button clears the display and can be
pressed at any time. When the desired
number has been entered, button E Is
pressed. The display is blanked and the
numbers emerge from the right hand end
of the display and shift across to the left.
Three empty spaces are created before
the numbers start again.

16 TALKING ELECTRONICS No 14.

0877
01178
0879
08713
087E
0880
0882
0883
0885
0886
MID
08SA
MISC
°88D
088F
0890
0892

0196
4 089

0897
eSee
08A
089E
089C
ol9D
089E
ollAo
01A2

ES
D5
a 20
et oe 09
1606
06 Se
7E
D3 02
79
D3 01
CB 09
10 FE
AF
D3 01
23
ED 57
FE eC
28 06
15
to E7
Dl
Ef
C9
DI
Ei
3E FF
ED 47
C3 00 011

oS5B
eS5C
085F
0160

0862
0864

AF
21 00 09
77
23
15
20 FB
C9

This program introduces the concept of
control keys and also the need for sub-
routines for any sequence that is required
more than once.

Programs increase in length as more end
more housekeeping is called for.
Housekeeping is looking for button
presses or detecting the end of a
sequence etc.

The prime requirement of the program is
to keep the displays illuminated. This
means we must be calling SCAN for most
of the time and as you will see, the SCAN
routine is a favourite place to put house-
keeping.

If you want a key to be immediately
responsive. it must be checked during the
SCAN loop. To be more precise. it must
be checked during the inner-most loop as
this is the loop which is being run for most
of the time.

Key the program into the TEC and run it.
Try changing some of the locations and
see the result. This is the best way to
following what is happening, especially
at specific locations.

HOW THE PROGRAM WORKS
The program generates 2 memory areas.
One is made up of 6 locations, from 0400
to 0905 and is called the DISPLAY BUFFER.
The other is from 0907 onwards and is
called MEMORY AREA.

The SCAN ROUTINE (at 0877) looks at
the Display Buffer locations and outputs
their value onto the displays.

The remainder of memory, starting at
0907 holds any number of digital as
required and is open-ended.

One location, 0000, is left blank and its
purpose will be explained later.

As each number is keyed in, it is stored in
memory, from 0907 onwards, and the HL
register pair keeps track of the next
available location.

The number is also outputted onto the
display but firstly a SHIFT ROUTINE is
called. The function of this routine is to
take the value corresponding to the left-
hand digit and drop it out of the buffer
zone. The second location is then
transferred to the first, the third to the
second etc until all the digits have been
shifted one place to the left. This leaves
an empty hole at the right-hand end of the
display.

The way in which this empty space is
generated is quite clever. The 'OW in 0906
is shifted into the 6th buffer
location.

The displays are cleared and the program
picks up the first digit at 0907and places
it in the Sth position of the buffer area.

The shift routine is called then the next
memory value is placed in the 6th buffer
location.

Before each new value is loaded into the
buffer area, it is compared with OE to
detect the 'end of message.'

When E is detected, three blank locations
are produced and the message starts
again.

The CLEAR function is included in the
SCAN routine. This has been done so that
CLEAR can be detected instantly, as the
display scan must be running at all times
to keep the displays illuminated.

DIALLER Part 2 listing:
Main Programs

t6 20
CD SB et
21 07 04

FE DE 051

2303 12
8131 AS MI

5F
CD 65 08
IA
77
32

509 3E FF
ED 47
FE oE
28 e5
CD 77 et
18 DF
23
77
16 oft
CD SB oS
21 o7 09
7E
2136 20

FE a
28 ME
32 05 09
CD 77 08

201 FA
CD 65 08
IS EA
a 02
16 20
CD 77 OS
is
20 FA
CD 65 MI

F2
18 D5

Shift
LD B4O7
LD IX oat FF
LD A,(IX + et)
LD (IX + 00),A
INC IX
DEC B

JRETUI
R NZ

 IN
MB

01165 06 07
0867 DD 21 FF et
011611 DD 7E 01
086E DD 77 eo
0871 DD 23
0873 05
0874 20 F5
Gm C9

Scam
PUSH HL
PUSH DE
LD C,20
LD HL,o9oo
LD D,06
LD 11,8e
1.111 A,(HL)
OUT (02),A
LD A,C
OUT (01),A
RRC C
DJNZ MISA
XOR A
OUT (61),A
INC EL
LD A,1
CP eC
JR 2,089C
DEC D
JR NZ,oSito
POP DE
POP HL

POP
RETURN

DE
POP HL
LD A,FF
LD ItA
JP We

at oSAS:

0 = LB
1 = 28
2 = CD
3 = AD
4 = zE
5 = A7
6 = E7
7 = 29
8 = EF
9 = AF
o =

PHONE DIALLER - Part 3
The third and final part of the Phone
Dialler program is the longest and most
impressive. 	It looks complicated
because it is looking after a lot of things.

The program accesses memory and when
using the 2k onboard RAM, it is capable
of holding up to 36 names and numbers,
each fitting into a block of memory 20H
bytes long. The program allows up to 27
characters for the name and number and
this should be sufficient-for any situation.

LD D,20
CALL CLEAR

LDLD AM" ,I "17
CP OA
JR NC,0820
INC EL
LD DE,09A5
ADD AIE
LD
CALL SHIFT
LD AL,(DE)
LD itilL),A
LD 0905),A
LD 	,FF

D L 	I
CP A

A

LR Z 002A
CALL SCAN
JR Mt
INEL
LII (ELIA
LD D,06
CALL CLEAR
LD EL 0907
LD AIHL)
LD DA'
INC HL
CP of
JR Z,0849

CALL
DECD
JR NZ,0113E
CALL SHIFT
JR 0133
LI) E,112
LD D,20
CALL SCAN
DECD
JR NZ,144D
CALL SHIFT
DEC E
JR N,084B
JR 0830

Z 	 20
6

0800
0802
0805
0801
o 8 oA

otesiNE
"o8o11

0813
0814
0117
e818
0819
eStC
ME
0820
0822
0824
0827
082
0$2A
082B
0821)
0830
0833
00183364

0837
0839
0838
083E

014 4215
0844
0847
0849
084B
0114D
0150
0851
0853
085

7 085
e859

The program then loads the present key
value in the buffer zone, position six, and
reverts to a scan situation in which it is
looking for an 'end of number via button
E.

When this is detected, memory is
incremented onelobation and E is
inserted.

Clear:
XOR A
LD EL me
LD (11L),A
INC HL
DEC D

RETURN
JR NZ, ot5F

The program uses a lot of sub-routines
and they perform most of the work.

As the processor goes through the MAIN
program, it CALLS the sub-routines and
they do all the displaying, shifting. display
converting etc.

TALKING ELECTRONICS No. 14 17

PHONE DIALLER PROGRAM:

CALL CLEAR [
LD HL,0A0C
CALL SCROLL
CP to
JR Z own
CP GI
JR C,080o
CALL CLEAR
1.11 A,FF
LD I,A
LD HL,0000
LD A,o2
13) (09FE),A
CALL KEY VALUE
LD A,C
LD (O9FC),A
LD A,ot
LD (0911E),A
CALL KEY VALUE
LB A.,(09FC)
RLA
RLA
RLA
ALA
ADD AC
L11 (o9FC),A
LD D,20

rCALL SCAN
DEC 11
JR NZ,W3C

[
CALL CLEAR
LD HLAA2C
CALL SCROLL
L11 AAHL)
CP n

CP
7,01145
oA

JR C no
CALL CLEAR
CALL MEN ADDR
LD DAC

• . LD E,00
LD
LD I,

A, -0 	
A
FF

CALL SCAN 21
LD A,1
CP to
JR NC,01162 --J
INC E
LD A,E

P In
R• Z,o87C ----I

CPA,I
P oF

JR E,t095 	

JR 085E
CALL

(09FANA .1

CALL SHIFT _
LD A,(09FA)
RLA
RLA
RLA
RLA
LD 11,A
LD A,I
ADD

W o 8
(MIA
(),A

INC HL
DEC D

— JR 197415c
J P 0109
XOR A 	
LD (111.),A
CALL stun
LD A,D
LB 09FEIA
CALL KEY VALUE
LD 11,63

[INC HL
XOR A
LD (1114,A
DEC
JR NZA8A3
INC HL

Failt). A

Call CLEAR to clear the display.
Read MEMORY ADDRESS notes.
Register D counts up to 28 characters (max allowed).
Register E counts to 2. Two key presses for a char.
Fill the I register via the accumulator so that we can

ED 4.7 	detect when a key is pressed.
CD Do OA Scan the display looking for a key press 0-F.
ED 57
FE to
30 F7
IC 	Increment the E register.
7B 	 Load E into A.
FE 02 	Compare the accumulator with 02 and jump if the two
2$ OB 	are the same. If not, go to the next instruction.
ED 57
FE OF 	

Look to see if a space ie required as this will indicate
the end of names and the beginning of numbers.

20 IE 	Jump relative if F has been pressed.
32 FA w otore the

button. 18
value of A at 0917A and loop for second press

E2 	of

CD Et 09 Call SHIFT to get display ready far next number.
3A FA 09 Load the first number into the accumulator and shift it
17 	4 places to the left to occupy the upper half of the
17 	register.
17
17
47 	Save the result in B.
ED 57 	Put second number into the accumulator.
Bo 	Combine the two to create a 2-digit number.
77 	 Load this value into the location looked at by HL.
32 SS OA Also load It into the first display location.
23 	Increment HL.
15 	Decrement D and
20 CA 	Jump if IC locations not filled.
C3 00 OS Jump to start if overflow occurs.
AF 	Zero A and load it

g) El 09 i
enthoitithoLlodcisatpilonay Idnigioktesdoanteb:fdaHceL ttoo ctrea

ha l
teefte.spece.

Load the remaining locations into A and store at 00F11
for use by the CALL KEY routine.
Cell KEY VALUE. This will put Nos onto the display.
Create 3 blank locations after to numbers have been
inserted, to produce a space between the end of the
message and the start so that it can be scrolled across
the display.

Increment HL and load last location with IO so that
program will loop name and telephone number.

01100 	CD 20 oq
2t oC OA

blob CD Co oq
0809 FE to
OMB 	28 Pb
MOD 	FE oA
WO 	38 EF
tan 	CD to 09
0814 3E EF
580 	ED 47
WO 	21 00 00
NIB 	3E 11
oftD 32 FE 09

CD 36 09
0823 79
0824 32 FC 09
0827 3E Si
0829 32 FE 09
0820 CD 3o 09
082E 3A FC oq
0832 17
0833 17
0834 17
0835 17
036 111
0837 32 FC 09
of3A 16 20
093C CD So 09
011317 15
0840 MFA
0842 CD 20 09
0845 21 2C oA
0840 CD Co 09
.14D

7E

OLIC FE 10
MIH 	22 F5
0850 FE oA
0852 32 EE
0854 CD 20 09
0157 CD bo 09
9115A 29 1C
085C IE 00
095E 3E FF
oho
01162

08• 67
0869
NOB
oWC
WW2
086E
0871
0873
4175
0077
4117A
017C
0117F
0082
0083
0884
084
ono
0807
1019
olMIA

SUE

Woo
0892

0
0095

0497
089A
011911 32 FE 09
NO 	CD 30 09
08A1 06 03
ollA3 23
011A4 AF
OAS 77
WM 05
WA7 	so FA
WM 23
WAA 3E to
WAC 77
°SAD so

The first 7 lines of the program displays "Enter Index .
. . etc and looks for the value 10 at the end of the

table to repeat the sequence. The program also looks
for an input value above 9 to jump out of the loop.

The screen is cleared and the index register is loaded
with FF so that we can detect when a button has been
pushed.
Memory is set to zero by loading HL with 00 00,
Location O9 FE stores the value 01 so that key value is
celled once. The requirement of the next 12 lines is to
get a double decimal number into location IOC.
C will contain the key value and this is loaded into
memory location OlPFC (first figure).
R epeat the sequence and call KEY VALUE once more.

Load the first figure into A and rotate the accumulator
4 places to the left to shift the number into the upper
half of the register.

Add the second figure to the accumulator and store
the result into 00PC as a two figure decimal number.
Create a delay with register D and call SCAN for 2011
loops. (32 loops).

C lear the display and load the pointer register withthe
start address of the second table. Display "Enter
name ...etc" Look for the end of the table (II) and
loop. unless a key 0-9 has been pressed.

Any operation that is required more than
once is put into the form of a sub-routine.
This reduces the length of the program
and allows the sub-routines to be called
as many times as required.

USING THE PROGRAM

Basically the program is self explanatory
as the instructions for its use are
displayed on the screen after the GO
button is pressed.

The first instruction is to select an INDEX
NUMBER from 00 to 36 (decimal) into
which the telephone number is placed.

Push button E and the screen will blank
so that the index number can be inserted.

The index number will remain on the
screen for about one second and then the
second set of instructions will appear.
After reading the instructions. push E.
This will cause the screen to blank so that
you can type the name corresponding to
the phone number.

After the end of the name, insert a space
by typing F and the program will convert
to displaying a digit for each key pressed.

At the end of the phone number type E
and the program will scroll the contents
of memory.

To dial the phone number push D. The
program will pause for 5 seconds then
dial the number.

At the completion of dialling, the screen
will scroll the name and number again.

You can rediat the same number at any
time by pressing D.

To re-load the memory BLOCK, push C.
This will re-start the program and allow a
new name and number to be inserted.

Once a name and number has been
inserted into memory at a particular index
value, it can be dialled very quickly. You
can push either button C or RESET. If the
Reset button is pushed, the GO button
must be pushed for the first set of
instructions to appear.

Push E and insert the index number: then
push D. The computer will dial the
number. A constant beeping will indicate
the location is not filled and you should try
another index.

At the end of dialling, the name and
number will scroll and you can confirm it
to be correct.

A SUMMARY OF THE PROGRAM

The program creates a display buffer area
at OMO to OA'S and the values placed at
these 6 locations are directly transferred
to the TEC display via the SCAN routine.

The CLEAR routine zeros each of these
locations and also the next location. This
is one of the clever tricks of the program,
and it is cleared for the following reason:

The SHIFT routine starts at a location
that is one lower than OM°, (namely
0A7F) and places the data at OAS° into

18 TALKING ELECTRONICS No 14.

CALL CLEAR ."--

[
CALL HEM ADDR

CP a*
CALL SCROLL

JR pltli
RAI

CALL PAUSE."'
DJNI G
CALL CLE

OD
AR

CALL NEN
LB AMIL)

ADDR
-Pn

INC IL

JR P4ZO1CS-1
CP oo

46.1.11 MOW

CALL BEEP
LD 	+ 00)
CP)
JR LI) ZASD2

Ego
CALL PAINE-01
BRIE HIDE
RNC HL
LD
CP 110

AAHL)

JR Z,011C
—JR WE

• A
ol1

JR ZASAI —
JR NEC

BEEP

PUSH AP
PUSH BC
LD 11.20
LD A,So."8---
• C,20
OUT (oi),A

C
1-31i NZ,oloA

LD CAD
XOR A

OEC
UT (61),A

FIN.DC
JR NZIO112
DEC B
JR
CAL

MEAN
L PAUSE

POP T
POP B

AC
RETURN

CLEAR

XO IOR A
LD

INC ELAM
),A° LD 1111.

 IL
DEC
JR=726-1

HET VALUE

-0-LD DI4oAoo
LD A,I

IL

CP *A
JR Minas
INC
LD D

,,

Colk
AD AA
LD j1A
CALL SHIFT
LD

LUFT

)

ID LA

EC
/

A
91.9FE)

D

RST
 LD ROMA

Z
XOR A
CP OE
RET Z
CALL SCAN

—JB ono

Clear the screen.
Get start of BLOCK via-NSC (36 blocks 'sellable).
Scroll name and number across screen.
Look for end of message. If another key is pressed.
jump out of loop.
Create a pause before dialling by loading B with 20
and calling pause 32 times. This creates epprox 2
second delay.
Clear the screen of any junk etc.

Gat start of block (00-36).
Look for space between name and phone rmbar by
comparing the contents of each location with 00 and
incrementing until 00 is found.
The next 6 lines create the dialling pulses by loading
IR with the start of the numbertabie and calling BEEP
routine. (The beep calls a pause). The program then
compares the byte in the table with the byte in the
block and loops until a comparison is found. Note: we
go Into the routine 'blind' and beep before a CPR
Create a short pause at the end of each digit so that
the phone system detects the end of a digit
Increment to next digit, look to see if end of phone
number has been reached end return to above routine
for next set of pulses.

If no buttons have been pressed during dialling. I will
still contain OD (from above) and program will scroll
name and number. If any other key has been pressed,
program will loop with blank screen until D pressed.

CD
CD 09

00 09
CD Caw
FE Is
at P6
06 so
CD 72 09
• FB
CD to oo
CD 0019
7E

30' FA
ID 21 oe 6.11
DD 23
CD 00 oo
DI 7E 50

to
BE

15
06 10
CD 7s t9
IS FS
23

FE es
se es
se Zs
ED 57
FE elD
IS BC
at N

FS
CS
at 20
3E lo
a
113

so
ea

oD
to ED
OE 20
AF
033 01
OD
20 FD

This is tie mid of Ms MAIM PROGRAM. The sub-
muftis below are called by the male program.

Registers A, B and C are used in this sub-routine end
thus they must be pused 0111D the stack and saved.
Reg B holds the numberof cycles forthe beep routine
Register A turns on the speaker bit
Rag C holds the tum-on cycles for the spirt
The spkr is turned on via OUT (01).A
and a delay created via register C for
32 loops.
The same OFF delay period is created via register C
for an even 'mark-space" ratio for the speaker.

09 	 The count register (register B) is decremented and the
20 IC 	program loops until B is zero.
CD 72 op 	The program calls pause to produce silence.

Registers A,B and C are popped off the stack and will
contain the original values and before the routine.

C9 	 Return to the main program.

WAD
OBI
014

ono

GOBI 4011
B

D
oN1
011C2

as
sag
*CA
OSCC
NCB
5502
tan
01107

DA @I
ODE
ODD

0
011

E4
▪ 12

OtEs
08E6
ION
NIA
oSEC

OP.
WEE

gem

11900
egos

09
egos

04
600
Not

as
NA

egeD
ego1
1910

09
sou
• 13

out

1911

1910
00C

5920
0922
0923
0020

:19 OA
ogoi
0921

8930
0933
1935
0937
4/1

093E
09K
4WD
090
0941
0942

0947
Zit

094D
0050

1954
GOFF

16
AF el
ss le eA
77

20 FE
C9

al of oA
ED 57
FE SA
30 19
23
41
13
SP
CD Ea o•
IA

a
77
xi es @A

Er
ED 47
3A3D FE eg

s2
FE W

Al
FE

D▪ g
M

at

This routine clears the 6 display locutions 0AM to
OAS! end also IAN by zeroing A and
loading HL with start address of buffer zone
and loading zero Into the location pointed to by Hi..
INC HL
DEC Cr
and jump for 7 loops.
Return to main program.

Load OE to point to beginning of number table.
Load key value Into accumulator.
Compare with OA and jump if the key value is A-F or
not pressed or go to next instruction if 0-9.
INC HL (used when creating phone number)
Save A in C.
ADD the start of table to A (table may start at 01031).
Make DE reedy to point at value in table.
SHIFT display contents one place to left.
Load byte from number table into accumulator.
Load number byte into inaction in BLOCK.
and also into right hand display.
Load A with FF and then into I to detect when another
key hem been pressed.
sort csontains 01 via beginning of of main program
and KEY VALUE Is called once. MOM contains IC
to keep track on the number elevations being filled In
the BLOCK.
Zero A.
Compare accuinulatorwith E and RETURN if E key is
pushed. Otherwise call SCAN and display the
contents of the 6 memory locations. Jump to stat of
KEY VALUE sub-routine end loop until 0-9 Pressed.

this lower location. As can be seen from
the program, this lower location is not
displayed on the TEC and thus the data
shifts off the screen. The data for the
second location is shifted to the location
for the first display and this repeats for
the 6 locations. The result is the data in
the blank location at OASb is shifted into
the last display location and thus an
empty space is produced on the display.

It is important for DAN to be empty for
this to work.

The MEMORY ADDRESS routine creates
areas that are 20H bytes long and starts
at 0100.

The program stores the Index number at
location 16FC and as each memory area
is created. it decrements the Index
number and the program exits when the
count register is zero.

The HL register will contain the start of
this address. It is not used for any other
purpose and thus it will not be destroyed
during the running of the program and will
hold the current value for re-dial, if
required.

The SCROLL routine picks up the first
byte from the table and places it at GAIN
and then cells SCAN for 20H loops (32
passes of the display).

The SHIFT routine is then called and all
the bytes (including the blank locations)
are transferred one position to the left.

The scroll program then loops and
repeats the sequence until the end of the
table is reached. It detects this by looking
for 10H (we could have chosen any value)
and the message re-starts.

When the 'Dial key' `B' is pressed, a BEEP
routine and PAUSE routine are called.
These produce a suitable ON-OFF tone to
the speaker and the program converts the
values in memory to a string of beeps.

The program ignores the name at the
beginning of memory and looks for the
first location containing zero.

The end of the phone number Is detected
by also looking for a location containing
zero.

The program then jumps back to calling
the start of memory and scrolls the
message across the screen.

SUGGESTIONS
The program can be keyed into the TEC
and fills about 3 pages, from 0166 to
eARE.

After this is done, it is wise to save a copy
of the program in non-volatile RAM so
that it is not lost.

To save the program, type the following
dump routine at ONO:

11 00 10
21 00 00
01 0 07
ED 110
C7

TALKING ELECTRONICS No. 14 19

MEMORY ADDRESS Decrement to MU and push GO. Make
sure the non-volatile RAM switch is on
RAM (read/write) so that the data will be
accepted. Check that the program has
been dumped by addressing 1000 and
compare the data with the listing.

If you have inserted names and numbers
into index locations and want to save
them, address CM and push GO. Make
sure the RAM card is in read/write mode
and everything will be saved.

Switch to ROM mode and everything will
be preserved.

You can now turn the TEC off.

To transfer the program back to 0100.
addressITS0 and change 2 of the bytes to
the following:

11
21

11)
01

00 SI
10 10
90 07
110

-•111 these two bytes
ere changed

C7

Decrement to 1710 and push GO. The
RAM card should be in ROM MODE for
this operation.

Push GO again and the program will run.

All names and numbers will be available.

AUTO BEDIAL
An automatic re-dial facility can also be
included so that the number auto-
matically re-dials after say 5 or 10
minutes; if the number was originally
engaged. This is very handy for those
accessions when you particularly want to
contact a person and their number is
busy. By the time you get around to
calling again. they have gone!

A simple addition to the program can be
fitted in at MBE end this will create a
delay by counting the number of times the
name and phone number scroll past the
display. This is only a suggestion and we
have not actually produced the program
for re-dial.

Register E is the 'count register and the
remainder of the program remains the
same. The only bytes you will have to
change are jump relative values as well as
the jump value at 0934. You may also
need a subroutine and a flag to pick up
radial mode.

Her is a suggested AUTO RE-DIAL
program for insertion at 51341

LI) ELM
DEC I
Mt
CALL CLEAR
CALL MEMORY ADDR
CALL SCROLL
CP 10
JR
CALL CLEAR

LD itLientoo
LD A.,(09FO
LI) DA*

c
CP Do
BET Z
INC HL
DEC D
JR NZ,64611
DEC A
JR ee66

PAUSE

XOR A
OUT rt

En
),A

LD D i E DEC Dn
LD
OR D
JR titEratre

SCAN I

PUSH HL
PUSH

se
DE

LD C,
LD MAAS.
Lit DA6
LD
LB (111.)
OUT (62),A
Lit sti,C
OUT
RIC C0 }'A
DJNZ 0013
XOR A
OUT tot),A
INC HL
LD Asi
CP IC
JI
CP

EC D

on

D
JR Z,eglis —

JOPNDEeitee —
P
POP ILL
RETURN
POP III
PoP HI.
LD kr!
LD
JP oleo
POP DE 	
POP EL
JP SIDE

SCAN 2

PUSH EL
PUSH DE
LD C.ss
LD FiLleASO
LD 1Le6

9,-LD B,20
LD AAHL)
OUT MLA
Lit A,C
OUT (eINA
EEC C
DJNZ eAE3
KOR
OUT (e
INC ntA M.
DEC D

—JR NUMB,
POP DI
POP EL
RETURN

000 	2.1 so 01

0963
	a16 FC ee

20
0601 	FE oe
eiptiA 	Co
09611 	23
696C 	IS
096D 	20 FC
0196F 	3D
0970 	te F4

0972 	AF
MS 	D3 et
•975 	11 	2
MI 	Is

FF 0

0979 	VI
M as
09711

A 	
se FB

0970 0

• ES
*9• 111 	Di
0902 	II 20

u Se
O9• 87 	

eA
16 0*

004 	06 ze
atell 	7E
00SC 	D3 02
sesD
O011F 	D3 et
O991 	CR *9
0995 	to FE
0995 	AF

0010
0990 	

23
D3 01

099t 	El) 57
FE oC

099D 	20 eA
0991 	FE en
e9At 	se OF
atA3 	15
09A4 	se 13
0066 	Di
o9A7
egA0
o9A9 DI
',AA El
e9AB 	3E FF
09AD 	ED 47
09AP 	C3 00 ee
eelts 	DI
0933 	El
09114 	C3 DB ee

eADo Es
eADI
*AM 	of 20
eAD4 	21 00 orf
OAD7 	06
DAM 	elp so
*ABB 71
eADC *ADE D3 ea

MU

eADI M et
'AEI C11”
OAU 	

Al
to FR

PAHO 	D3 et
eA110 23
eAE9
'AEA se ED
*AEC DI
eAED
*AEE C9

ltomwv Address sulrfoulline locates the beginning
of the name and phone number block. Each block is
20H Bytes long (32 bkes) and memory start. at
fiBOO.The BLOCK No is stored et irsitc and the
program increments 20H loops for each block by
decrementing register D to zero, then decrementing
register A by ONE This is repeated until A is zero. The
sub-routine then exits. 	HL pair is constantly
incremented during this program and will point to the
start of the block we want.

Pause produces a silence from the speaker by
outputting zero to port 01. Register DE is
decremented and 'wastes computer time for about
1/10th second. This sub-routine then returns to
where it has been celled.

The SCAN routine uses H. L and D registers end thus
they must be pushed onto the stack and saved.
Load HL with start of display buffer.
The routine displays 6 locations.
The left-hand display Is accessed vie line '20'.
Load B with a short delay value.
Load the byte at the first location into A.

Output to port 02.
Load C into A, and
output to port 01. This will turn on left-hand display.
Rotate register C to the right for the next display.
Short delay via register B.
Zero A. and
output to port 01.
Look at next memory location.
Load the keyboard value into A.
Look to see if CLEAR has been pressed.
Jump if it has.
DEC D ready for outputting to the next display.
Jump relative if D is not zero.
Pop DE and HL register pairs off the stack.

and RETURN to the mein program.
H CLEAR has been pressed, pop DE and Hi. and load
the I register with FF so that the program will detect
when another key has been pressed.

Jump to woe.
POP DE and HI. and Jump to ass if D (DIALS) has
been pressed.

SCAN 2 is identical to SCAN 1 in the scanning
section. The only difference is the 'checking
instructions, to see if a particular key is pressed.
SCAN 1 above checks to see if a function key is
pressed, whereas SCAN 2 performs the scan without
any checks.

By careful programming both routines could be
incorporated into one. This would require a 'check bit'
and if 'set', the sub-routine would check the function
keys.

Cont. P.51:

JR

20 TALKING ELECTRONICS No 14.

r - -
4.0
c0
et 1
O

SHIFT

LH
LH A

It7ix
71/

LE 	+ yl)
LD (I + 00JA
INC IX
DEC B
JAMIE7

at 'Aim

DISPLAY TABLE:

YEI
yE5
21E7
05E*
YEE
yEF
891,2
een

31 FF
ED 47
ED 57
FE IA

FE SE
CI
7E_
16 20

FE le

52 •5 IA
CRY,'

2, FA
CD El 011
211 E3

Load A with >fF and transfer to the I register to detect
when a key has been pressed.
Look to see II a key has been pressed by comparing
the accumulator with SE. Return if the accumulator
is IL

Load the value pointed to by HL into the accumulator.
Load 0 with a short delay value (for below.)
Increment to the next location.
Look to see if end of table reached.
Return if end reached.
Load the byte of the table into the display buffer.
Cell SCAN for 32 loops las determined by the
register.

Call SHIFT.
Jump to the start of the sub-routine.

29
11

;2
;t

1B
CP

9
S1

P0
1

2 t
ri

a
:a

n
g

ta
n

:W
rs
it

ta
t5

.9
2

N
S

A
H

a

O
N

N
0

I

... trawl P.20.

PRONE DIALLER Part III

EXPERIMENTING FURTHER
Phone dialler part Ili took about one
week of part-time effort for Colin to write
(He's not very quick!) and has been tidied
and closed up for publication.

However there are a number of
improvements that can be made to the
program (apart from the auto re-dial
extension). For instance, the first byte in
the number table is not used and can be
deleated, the CP IA instruction at ()C6
is not valid, and a few others.

he six middle locations are used by the
SCAN routine for displaying data onto the
screen. The 7 arrows under the locations
show how the data is shifted from one
location to the next via the SHIFT routine.
Locations °ASO to 0A116 are the ones
cleared by the CLEAR routine to blank the
display.

The diagram below shows how the
DISPLAY BUFFER operates.

T

0
03

•-•
00

cM
00

01
CO

.cr
CO

in
1 03

< < < < <
0 0 0 0 0 0

Diagram showing the DISPLAY area, the
SHIFT procedure and address for NEW 	NEW DATA DATA.

These will be your challenge end at the
same time see how you can simplify the
program by using higher level commands.
If you can't, don't worry. Programs in the
next issue will be at a higher level and will
use logic operations to create the same
result with fewer instructions.

New data is inserted at OAS; and this
location is cleared via the SHIFT routine
prior to a value being inserted (refer to
SHIFT on P. 18). This prevents rubbish
being shifted into the location from eAS6
as this would appear on the screen as
brief flashes of junk.

m
H
t
o
w
n
p

o
r
00
-v

;
Pi

.1
i2
m
et
4
m
m

O
u
l
o

pm
e
n

m
u
m
m
o
m
oo

SCROLL

LD

LLD I
-CP •
NOP
CP SE
RET
LD A,(11L)
LD DIU
INC ISL
CP n
MET Z
LI) (*AMA
CALL SCAN
DEC D
JR WErAD4r
CALL
Ji eta

e=
1 =
2 =
3 =
4 =
5 =
6 =

•
• =

oIC2

09
•4IC4
0

MCB

D
soCC
seC
esCF
min
esDs

"Pb
eaD3

YR,
yDA
yDC
0513F

M
HD sl 7F IA
HD in
RD

71
••

DO 23

24 n
C:i

The alphabet table on the right Is used to
produce the letters for the name. Two key
presses are required for each letter.

The display table on the left is used by the
program to produce, the digits of the phone
number. These hervIeues can also be used in
conjunction with the alphabet table if you want
irdiglt to appear in the NAME.

A = 141r
= 16

c= c3
D=EC
E = C7

GI It
= al

1 = 2S
J = ES
E=47
L = C2
11=6g

N = 1•11
0 = IR
P=4/

2:14_31
S=A7
T=46

V=E0
U=ILA

W=Ei
= 26

Y = AE
z=c

E
N 63
T
▪ y

Il eu
ee

N
D EC
▪ C7
X 26

••
N 41
• gi

N
▪ ES
a Es

3
I ay

eta
P
▪ 54
Z
S A7
S A7

ft
C7
N

N
f• e

A7
4F
IF
C3

$4
47
so
C3
Cs
Cl
•F
14
S4
C3
so

rt.

••
611
N
tic

6F
Cs

N
C7
6I1
IC
$4
C7
se
IS
ea
N

MP 10

EB

cD

AD
211
A7
17
29
EF
AF
ER

Land 8 with 7.
Load IX with location one lower than display buffer.
Load A with the value in the display buffer and transfer
it to the next lower location.
Increment the IX register.
Dec 8.
and jump to above for 7 loops
Return.

TALKING ELECTRONICS No. 14

•

51

=y111111elm=

at 'IMO 	at •AtQ

CRYSTAL
OSCILLATOR

CONVERTS THE TEC TO REAL-TIME CAPABILITY

1001

7
Q

XTAL

	'0' 	
	2-7C lk

Kit of parts: $9.85
PC Board: $2.10
Complete: $11.95

111

2

1K

10

	C tic

7473

CLOCK
SOCKET

ON
TEC

K

15

14

.41=•1 •16

74LSO4

'10001

GNP

CRYSTAL OSCILLATOR CIRCUIT

This project is a crystal oscillator for the
TEC. It turns the TEC into a fixed-
frequency computer in which each of the
Machine Codes takes up a precise period
of time.

This means programs such as controller
programs or timing programs will run for
a precise time span and will not vary from
one day to the next due to speed control
adjustments.

As you know, the TEC was originally
designed with an adjustable clock and its
frequency could be altered by turning the
speed control.

This served a valuable purpose as the
games of skill (contained in the MONitor

,ROM) could be adjusted according to the
skill of the player.

It also proved that the Z-80 could be run
at very low speeds and even adjusted
while operating and still execute the
programs correctly.

The only disadvantage of a variable speed
control is its inability to create accurate
REAL-TIME programs.

This is highlighted by the clock program
(as presented in issue 12). Everyone
expects a clock to keep accurate time as
even two dollar' watches are accurate to
two seconds a month. The clock program
could only approach this accuracy as it
had to be manually adjusted via the speed
control.

To remedy this situation Paul has
produced a crystal oscillator module that
plugs into the 4049- socket.

it contains an inverter chip (74LS04) and
a divider chip so that a 4MHz crystal or
colour-burst (3.5795MHz) can be used
(because they are cheap) and a divider
chip (7473) to divide the frequency by two
so that the TEC will run at about the
maximum speed permissible for a Z-80
CPU.

The 7473 is wired in TOGGLE mode to
provide a divide-by-two output.

Some of the earlier model TEC's used a Z-
80 CPU (later models used a Z-80A as
these were cheaper than the Z-8011) and
the maximum operating speed for a Z-80
is about 2.5MHz.

Almost any crystal can be used in this
circuit providing it is in the range 1 M Hz to
6MHz for a Z-80 or up to 8MHz for a Z-
BOA. If a crystal other than 4MHz or
colour-burst is used, it will be necessary
for you to carry out your own conversion
for timing etc. if a real-time situation is
required.

An inverter is also necessary to invert the
Data Available line from the keyboard
encoder to the NMI line of the Z-80 so
that the NMI line goes low when data is
available from the keyboard encoder. This
is provided via one of the unused inverters
of the 74LS04.

The oscillator circuit is a simple twin
inverter using feedback resistors.

A 100pf capacitor at the front end
provides guaranteed start-up and the
crystal provides a k capacitive feedback
that is a maximum at the fundamental
frequency of the crystal.

This is why the oscillator circuit operates
at the frequency as specified on the
crystal.

A 100n capacitor on the oscillator module
reduces noise on the power rails and a
330R pull-up resistor in the clock line
guarantees a full amplitude waveform for
the Z-80.

To convert the TEC to crystal control.
remove the 4049 and plug in the crystal
oscillator board. The speed control pot
will have no effect and the speed of
execution of the monitor will be about
double.

This will too fast for many of the games
and you may have to convert back to the
adjustable speed by replacing the 4049
by pressing the reset button and keeping
it pressed while changing over the
clocks.

PARTS

1 330R
2 	1k

1 	100pf ceramic
1 	100n monoblock

1 	3.5795MHz crystal

1 	74LSO4 IC

1 	7473 1C

2 	14 pin IC sockets
1 	16 pin dip header

1 CRYSTAL OSCILLATOR PC BOARD

TALKING ELECTRONICS No. 14 21

c.a

0
1•11111.

et

•

TEC XTAI. 	IIIIIII I
OSCILLATOR 	

TO CLOCK
SOCKET
ON TEC

TEC XTAL
OSCILLATOR

100p

9
ix" 	TE

8

MI future programs will have to be written
especially for the new speed and this will
mean delay values etc will have to be
lengthened accordingly.

ASSEMBLY

Assembly is very simple and we suggest,
as always, that the two chips be fitted via
IC sockets. The two 1k resistors stand
upright and the 330R lays flat against the
PC board. The leads of the crystal must
be left long enough to allow the crystal to
lay over after it has been soldered and a
wire strap placed over the body to prevent
it being damaged, as the leads are very
thin.

The 100pf and 100n are fitted against the
PC board and soldered in the positions
shown. Don't get them swapped over or
the oscillator won't work!

The module is connected to the TEC via a
16 pin dip header soldered under the
boaid.

If the cermet pot on the TEC is a stand-up
version, it will be necessary to include a
wire-wrap socket between the dip header
and the board to create additional
clearance for the pot. This is not supplied
in the kit as you can fold the cermet pot
over slightly to allow the clock board to
frt.

When you have the new board in place,
the first program you can try is the Clock
in issue 12, P.23. The best idea is to type

it into the non-volatile RAM at 1000 and
down-load it to 0900 via a block-transfer
program:

11 00 10
21 00 09
01 AB 00
ED BO
C7

To convert the program to operate with
4M Hz crystal, two of the inbuilt delay
values must be altered and a 'fine tune'
delay added to the end of the program.
This will create a clock that is accurate to
within a second a day.

Type the complete program as per issue
12 then change the following locations
and also add the extra 7 bytes:

For a 4HHz crystal:

94C sir FA
962 1E 41
970 C3 93 09
993 06 SS
993 10 FE
997 C3 01 09

For a 3.5/9331Hz crystal:

94C 06 FC
962 IE 39
970 C3 93 09
993 06 37
993 10 FE
997 C3 00 09

	4 .••••••••••w 	

U TALKING ELECTRONICS No 14.

SI 1.4.1 1111

INPUT/OUTPUT CIRCUIT

INPUT/ OUTPUT
MODULE Kit of part $33.60

PC Board: $5.00
Complete: 30.00

This project allows the TEC to talk to the
outside world and also accept
information from the outside. It is the first
interface we have described that brings
the possibility of robotics to the TEC.

The INPUT/OUTPUT MODULE has one
input port and two output ports. This
means It will Input 8 bits (8 lines) and
output 16 bits (16 lines).

To allow the module to be functional as
soon as it is constructed we have
Included two input switches and three
output devices so that a simple program
can be written and seen In operation. The
output devices are two relays and a mini
speaker. These will allow you to test the
board and see how it operates, before
adding any other devices.

We have included some test programs in
the article and they will show the
Indicator LEDs in operation.

These LEDs indicate when a particular
output is high and will be invaluable when
trouble-shooting a fault in either a
program or in hardware.

The 5 flying leads on the module are
clearly marked and you will see the input
port is controlled via strobe line 03 and
output ports via strobe lines 04 and 05.

Each of the 8 input and 16 output lines is
further identified by a hex value on the PC
overlay and this will assist you when
writing a program.

The most interesting use for the board
will undoubtedly be for robotics and when
designing in this field, a whole new world
of mechanical and electromechanical
terms will be encountered.

Before embarking on a design, it is
important to have some idea of what you
are going to create. It may be an arm, a
wheeled vehicle or a' mechanical
controller such as a door opener, a lift,
crane or remote controlled boat or plane.

No matter whet the project begin by
collecting articles end notes describing
similar or related devices and study how
other designers have puts things
together. Combine the features you like
and make sketches and diagrams of how
you indend yours to look.

The most important point is not to be too
ambitious on your first attempt. Aim for a
simple design. using maybe a single
motor end gearbox with say one or two
flashing lights and a speaker.

You will havit sufficient interfacing
problems with theile to keep your
inventive skills at work for a while.

The other point to remember is to select
materials that you can readily obtain and
don't choose thick material as this will be
very difficult to work with.

PARTS
16 - 220R %watt

3 - in greencap
2 - 100n

2 - 1N 4002 diodes
16 - 3mni red LEDs
16 - BC 338 transistors

2 • 741.5273 IC
1 - 74L5373 IC

3 • 20 pin IC sockets
2 - PC mount push buttons
1 • Mini Speaker 80R
2 - SPOT relays

50cm tinned copper wire
5 - PC matrix pins
5 • Matrix connectors
10cm - Heatshrink tubing
15 - 20cm lengths of hook-up flex

20cm - 10 core ribbon cable
1 - 12 key telephone pad

1 - INPUT/OUTPUT MODULE PC

TALKING ELECTRONICS No. i4 23

12v 02

NO
C

NC

NO

C

NC

Vc

04 OM
CO

1000000/0000000000
ti 0

O.

1 12v

RELAY

01
1y

cc 	 cc
ly

0 	le x 2 2 OR 	 co
N 16 x BC338 16 x 3mm RED LEDs N

CN

7.7 cy—o 0 10 20 40 80 l; v wc:1 2 10 20 40 80

° 0 OUTPUT PORT (Os) OUTPUT PORT (04)

mi

P 	1 2 3 4 5 6 7 N

1111111

f 741-3273

w
CO
0
CC

0
co
0

' ?c, 	TEC

ul INPUT/OUTPUT
0' MODULE
cr
ct)
0 c
c g —

01

02

we IN

INPUT PORT (03)
v-t•v:tc00000
00000I-Nlt GO •-

TE

*c3
0

La
CCI

DCC

•

12v

RELAY

3rnm clear plastic sheet is the best choice
as it can be cut, bent, folded and even
heated into shape. It also looks appealing
and being clear, you can sea through it
and this makes the project look more
complex!

Equally suitable is PC board as it has a
copper surface that can be soldered to
and thus small brackets can be added for
shafts etc.
The only material i would avoid is sheet
metal. Even though it has good strength.
the same can be provided via plastic with
the use of a few strengthening pieces,
without the difficulty of cutting folding
and drilling. For tinplate to have any
strength it must be reasonably thick and
you will require heavy duty tools etc to
shape it.

Another handy medium is wood, however
this should be restricted to base panels
and platforms. where a number of items
need to be screwed into position. You
should only use soft wood, as it will be
lighter and easier to drill and screw into.
Don't use nails for fixing or joining as they
tend to work lose.

Lastly, don't be frightened to use parts
you already have on hand, especially from
the kitchen and laundry where you will
find plastic bottles, lids and boxes ideally
suited for turning into pulleys and wheels.
Use all your imagination and initiative -
you will need it as you are basically
breaking new ground!

In robotics, lots of new terms need to be
understood to make the project function
properly. But the best way is the hard
way. By trial and error. Terms like gear
ratios, torque, drive speeds, strength of
beams, can involve an enormous amount
of mathematics.. That's why it's best to
look through articles and see how it has
been done by others.

At the time of writing, only a very limited
range of motors and gearboxes are
available at the low end of the market and
the best of these we found at Dick Smith
Electronics.

The gearboxes are in kit form and require
a small amount of assembly to fit the
gears onto the shafts to produce a gear-
box known as a compound gearbox.

A gearbox reduces the rotational speed of
a motor and at the same time increases
the torque.

Torque is the twisting or turning force of a
shaft and after 3 or 4 gear reductions, a
shaft will have a considerable turning
force.

This will be sufficient to turn wheels or
move a robot arm or lift a weight.
Sometimes it is necessary to convert
rotation into straight-line motion and this
can be done with a rack and pinion, winch
and string, crank and arm or wheel and
track.

Apart from the problems you will
encounter adapting the mechanics into
the available space. there will be
problems interfacing the motor to the
electronics.

One of the major problems will be noise.
Motors are inherently high noise
producers and they must be kept far away
from the electronics, both physically and
electrically.

This may require a separate power supply
so that noise and glitches from the motor
do not get into the computer bus lines.

It will also be necessary to have high
current available for the motor(s) as they
draw a high current under load and if they
stall. you must have sufficient current
available to allow them to restart as soon
as the load reduces.

A stalled motor can create a virtual short
circuit and if connected to the computer
5v supply, the computer may drop out.

This has been avoided on the INPUT/
OUTPUT MODULE by providing a
separate supply line for the collectors of
the output transistors and also the relays.

0'
24 TALKING. ELECTRONICS No 14.

ID A

Ark
OUT A
OUT

UT

CALL D
LI AM
OUT (
OUT (+
CALL
DMZ

I

Lo
01141AL
011T
DI 'a—
CPL
OUT (04),A
JR

*gee 	eta to
Woe 	3E AA
0944 D3 04
5556 D3 of

T INN CD 50 se
seta 31 55
eta 	D3 s4
BOOP D3 ef

y eett CD So
me 	to EC
6516 3E
0915

tA D3
3 54

se 	D of

0t
	2

C D
1
B 03

511
551F 13 114
ern 	Ii 15

This will allow you to select your own
supply voltage, with the necessary
current capability.

When you are driving a motor, there will
be three functions (or commands) needed.
These are: ON/OFF (one command)
FORWARD and REVERSE.

To achieve this, a number of lines (bits)
will be required from the output port.
Depending on the circuit used to drive the
motor, either 2 or 3 bits will be required.

If you require the motor to operate in the
forward direction as well as reverse, it
will be necessary to use a relay. For a
simple ON/OFF and FORWARD direction,
a transistor can be used and only one bit
(1 line) will be required. You can also get
speed control from this line by including it
in the program.

Basically speed control consists of
outputting a high for a short duration and
a low for a long duration and repeating the
sequence about 100 times per second.
To increase the speed, the duration of the
high is increased and the low decreased.
The only feature that remains constant is
the repetition rate. It is essential to keep
the pulses above 100Hz so that the motor
rotates smoothly.

ASSEMBLY

By now you will be familiar with our
assembly technique. Neatness is the
overall aim. No matter how you build, the
final result must be as neat as possible.
This means the jumper links must be
straight and sitting firm against the
board, the LEDs must be close to the
board and likewise the transitors,
resistors and diodes. I thought it would
be unnecessary to mention these points
but we are still getting projects for repair
in which the parts are mounted high
above the board, the jumper links are
twisted and kinked and the soldering is
rough.

On the topic of soldering, It is important
to use enough solder to cover the land and
the hole. Again, we ere seeing the
smallest amount of solder on some joints,
just enough to tack the lead to the landl

This Is a very dangerous situation as you
can create a problem that will be very
difficult to locate. Sometimes the holes
in the PC board cut through the track and
the circuit relies on the solder to bridge
the gap.

If you don't solder all around the lead, the
copper track may contain a gap and
obviously the project will fail to operate.
Inspect the board before starting and
check your workmanship after
construction and you should have no
problems in this area.

Begin assembly with the jumpers. Make
sure they we straight and touching the
board.

Next fit the resistors, followed by the
LEDs transistors and two spike-

r 	

suppressing diodes. The overlay shows
how these components are placed.

The 5 spike-suppressing capacitors are
next and must be fitted close to the board.
The IC's are mounted in sockets and the
dot on the overlay indicates pin 1. You
will find one end of the IC socket has a
'cut-away' portion to match with pin 1.

Fit the relays. mini speaker and switches.
Then inspect the board to make sure all
leads have been soldered properly.

After adding all the parts to the board, the
5 jumper lines are added and a female
matrix connector soldered to each lead.
These are covered with heatshrink to
prevent shorting between leads when
connecting to the TEC board.

MATRIX PINS
You will notice the module in the
photographs has a set of matrix pins on
the output ports and also the relays.
These pins are not included in the kit
however you can buy some and fit them
as shown in the photo if you wish.

The 6 pins included in the kit are for
adding to the TEC PC board to take the 5
flying leads from the input/output board.

Paul has included a9 pin input plug and a
10 pin plug for connecting to the TEC.
These are not included in the kit but can
be easily made from 18 pin and 20 pin IC
sockets. They are small and delicate but
will last a number of insertions and
removals.

TESTING
The first program in the list is the test
program. It has a short routine to flash the
output LEDs so that every second LED is
lit and then the others are flashed. The
program repeats this a number of times
then changes to detect an input from the
input port. The result is indicated on the
corresponding output LED.

If this sequence is not observed, the
program should be double-checked.
Make sure it contains the correct
commands. Then check the flying leads.
They must, be connected to the correct
outputs on the decoder chip. Refer to the
line diagram for the position of each lead.

TEST PROGRAM

095o
913 	

11111es es
0
NSI
1,55
550 	21 Pi
Nye CO

The second program is a 12-note organ
using a solf-touch key pad for the input
and the mini speaker on the IN/OUT
module as the output

The ide of an organ may have limited
possibilities in itself, but the knowledge
of how to produce a tone will be very
beneficial.

In robotics, for instance, a mouse can be
equipped with a speaker to produce a
tone when it touches an obstacle etc. The
note sounds for as long as the robot
touches the object.

The importance of the program is to show
how * tone is produced and how the pitch
can be altered by adjusting the delay
value.

Follow through the program and see how
this is done:

ORGAN PROGRAM
XOR A sees Al
OUT ri,A eget DI et
OUT No} 11903 13 02
OUT oeof 13 04
OUT (4r1,. 5557 D3115
LI litieeFE MM 21 Fr *5
IN A,(03) eeeC DB 03
CP FF een FE FF
JR ElseeC Nie all FA
LI) BC,e3FF eeta et Flt 53
DEC BC MS 11B
LD A,B 5e16 711
OR C 0517 Dt
JR Meets me NF1
IN AAs3) NIA DM 03
INC M. WIC 23
INC HL 5511 23
CP (HL) 850 BE
JR NZ,seiC 551? 25 TR
INC IL 1921 23
LD 111(11L) 5522 46
DJNZ 5523 5523 IS FE
LD Agee 5,25 311 54

5527 D3 53 OW
DA
(04")

IL)
,A

LB oese 46
DJNZ seek 552A te FE
XOR A SOC Al
OUT (695),A 5521 D3 05
IN A,(43) 052, D103
CP FF
JR NZ1.922 M

.5313
se
Mt

 ESD
JR Woe 5535 1$ DI

at SAN:
•• 3C
BA 	BD CF
14 	5C 34
DE 	F3 Al
IC
BE 	1

54
7 if

74 	4C
15 	B7
6C 	44
ID 	ED

•

LEI Moses
DEC DE

Oa
t

JIM
DET

TALKING ELECTRONICS Na 14 25

CONTROLS OUTPUT LINES
0900 	 Date for port 05 is Stored at 0A05 and 0A04 for port

099t
0903
0905
0906
0907

AF The third program controls the 16 output
lines via a 12-key phone pad.

To turn on one of the left-hand outputs
(port 05), press the asterisk key then a
number button from 1-8. The right-hand
port (port 04). is accessed by pressing the
'hatch' key then a number from 1-8.

When a second number key is pressed,
the corresponding output-line changes
state. Thus a high output will go low and
vice versa. To access the other latch, one
of the control keys (asterisk or hatch)
must be pressed.

The program is fully described beside
each instruction and this will assist you to
design your own programs.

An important point to remember is
DE BOUNC E. The soft-touch keys require
a time to settle down before a value can
be read. This means a short delay must be
included in the program (see address
O913 and 0914).

The reason is the contacts in the pad are
made from a carbon compound and they
create a considerable amount of bounce
when a key is pressed.

Since the computer is a high-speed piece
of equipment, it will pick up an incorrect
value if the three contacts in the switch
are not closed when it is being read.

To overcome this a short delay is
introduced between the time when a key
is pressed and when it is read.

The program can be modified to suit your
own requirements. For example: a
random output can be turned ON. or more
than one output can be turned ON at the
same time. A delay could be introduced to
turn OFF and output after a set period of
time or you could create a visual effect on
a set of LEDs.

It's up to you. Study the program and try
making some modifications.

For a very simple test program, try this:

3E IF
DI 04
C7

Eight LEDs will illuminate to show the
program and board is working.

Wiring diagram showing the connection
of the phone pad to the input/output
module, and the module to the DIP
header plug. Note: line '80' is not used
when connecting the phone pad.

Photo, left: Motor and gearbox with two
100/16v electrolytics placed back-to-
back to create a non-polar capacitor to
reduce spikes from the motor (i.e: the
positive lead of each electro connects to
a motor lead and the join of the negative
leads is left 'floating).

Photo, right: The key pad connected to
the input/output module via ribbon cable
and to the TEC via hook-up flex.

KEY PAD
BOR A
LD BAB
LD Co4
LD (BC),A
INC C
LD (BC),A
LD HLlooFF
LD D,00
IN A,(03)
CP FF
JR ZsegoD
DEC D
JR N7,10913
IN Al(03)
INC
INC HL
CP (HL)
JR NZ,0910
CP ER
JR NZ,0925
LD Cos
JR 0945
CPAP
JR NZ,092D
LD C,04
JR 0945
LD A,(BC)
LD EID
RRCA
DEC D
JR NZ,092F
BIT 7,A
JR Z,093B
RES 7,A
JR 09311
SET 7,A
LD D,E
RLCA
DEC D
JR aoga
LD (

N
BC),A

OUT (C),A
IN A,(03)
CP IF
JR NT,0945
JP 090e

At 0Atio:

FA
DE
BE
F9
DD
BD
F3
D7
57
CF
ER
AF

06 oB
SE 04
02
oC
02

090$ 	21 00 0A
090B 	16 00
090D DB 63
clipol? 	FE FF
0911 	st FA
0913 	15
0914 	20 PD
0916 	DB 03
me 14
0919 	23
091A BE
0915 	20 FB
091D FE NB
0911 	20 04
0921 	OE 05
0923 	11 so
0925 	FE AF
0927 	20 04
0929 	of 64
0925 	111 IS
092D IA
092E 5A
0121? 	OF
0130 	15
0931 	20 FC
0933 	CB 71
10935 	se 04
0937 	CB BF
0939 	IS 02
093B CB FF
693D 53
193E 07
0931 15
0940 	20 FC
0942 02
0943 	ED 79
0945 	DB 03
0947 	FE PF
0949 	20 FA
094E 	C3 01 09

04. These two locations are initially cleared in the first

6 lines of the program. Later, you will sea why we have

chr;sen registers B and C for this operation.

HI is the pointer for the byte table.

D is the count-register for the key.

The program inputs via port 03. looking for a key

press. Any value other than FF will exit from the loop.

A short delay is created via the D register to give the

pressure sensitive keypad switches a short period of

time to settle to a value that can be reed correctly.

Input this key value via port 03 to the accumulator.

The next 4 lines generate a value for D that will be the

same as the key. This Is done via a loop and

incrementing D until the key value compares with the

byte in the table will make D equal the key value.

The next 8 lines look for the STAR keyor HATCH key

and if either is pressed, C is loaded with either 06 or

04. This will allow the program to velvet to the

correct port via the instruction OUT (C),A Also
locations 0405 and 0A04 use the C register for

storage. In this way the C register serves a dual role

and some of the powerful instructions such ea

OUT (C),A can be employed_

Load A with the byte at location 0A05 or 0404.

Store the key value for later use.

The next 3 lines rotate the accumulator so that the

wanted bit Is rotated to the end of the register and

thus only one TEST will be required.

Look et the highest bit and jump if it is zero. Otherwise

execute next instruction.

At this line the bit will be 	and thus the program

resets it to '0' and a jump is performed.

The highest bit is SET via this instruction.

Load D with the key value in reedyness for rotating the

accumulator back to it previous position. RLCA Is a

single byte instruction that rotates the occult and

sets the carry flag. The bits don't enter the CARRY.

Store the resulting byte in memory.

Output the byte to either port 05 or 04.

Look at the input port and loop the next3 instructions

until the key has been released, This is a debounce

routine, essential to produce a clean key action.

Jump to the start of the main part of the program.

It.

26 TALKING ELECTRONICS No i4.

MICRO
COMP $59.95 COMPLETE

COMES WITH FREE
STORAGE BOX!!

A 3-CHIP Z-80
COMPUTER

The Morse Trainer is our first add-on
and will be covered in the next issue. It
is capable of picking up morse from a
comminications 	receiver 	and
displaying the message on the
displays. It separates the numbers
from the letters and indicates the end
of words. Speed of reception can he
adjusted from 5 words per minute {or
less) to about 17 words per minute.

T
O

 B
E

 R
E

L
E

A
S

E
D

COMPLETE MICROCOMP
MOUNTED ON RETEX CASE RA-1.

This is the second article on the Micro-
comp and by now we have whet a lot of
appetites.

Some constructors have gone way
beyond that covered in the first article
and investigated many of the remaining
programs in the EPROM.

One constructor even listed the entire
contents by using the LOOKING AT
DATA routine at 0200. There were a
couple of mistakes in his listing where he
forgot to change from PROGRAM to
DATA. This is one of the problems when
trying to disect a listing.

By now you will have some idea of how
the bytes appear in EPROM. They come
in a continuous string • without spaces or
identification as to the beginning or end
of a sequence. If you jump into the middle
of a program and look at a byte. you will
not know if it is an instruction, part of an
instruction or a piece of data. That's why
you must start at the beginning of a
listing.

Part II

MICROCOMP CASE $15.00

Kit of parts: $50.70
PC Board: $10.20
Complete: $59.95

When trying to disect a program, write
down the values, byte by byte and you will
soon see groups which you recognise.
From there you can place the others in
groups and start to see a program
emerging.

These values are called MACHINE CODE
values and are used by the micro directly.
It doesn't need spaces or stops and starts
as it is pre-programmed within and
knows exactly what to do.

The difficulty you would experience in
disecting a program is understandable.
You are nota micro and cannot keep track.
of the flow of the program. This is a very
difficult direction to work in. The way we
will be working is from I ❑EA•to-machine-
code-listing. This is the forward direction
and is much easier.

Most programs are made up of lots of
small building blocks and the quickest
way to learn about these is to study a few
programs.

MORSE TRAINER

$13.30complete

In this article we will be continuing with a
close study of each of the programs in the
EPROM but before we do this we have
designed a couple of games for those who
want to do a little programming
themselves.

If you have a TEC and either the non-
volatile RAM or EPROM burner, these
programs can be typed into memory and
transferred to the rnicrocomp for
execution.

As designed. the programs are run at
page ZERO however only a few changes
are required and they can be run at any
other location. The details of this are
included with the programs.

The two games are titled: TUG 0' WAR and
BLACK JACK. Alongside each is a flow
diagram showing what each part of the
program does. Also we have explained
each instruction with a simple sentence
to show how we converted each idea into
a computer instruction.

Getting back to the Microcomp, we have
described a few more of the 'ins' and
'outs' of computer design and especially
the tricks we used to simplify the circuit.

Notebook No. 3 has just been released
and it contains a number of pages on the
Microcomp design as well as Z-80
Machine Code values for assembly and
Disassembly. It also includes the
interpretation of each instruction and a
listing of computer terms. This will help
you with programming and the circuit
design pages will help you with input and
output decoding and how the Z-80
communicates with all the other chips.

TALKING ELECTRONICS No. 14 59

TUG 0'
WAR &

BLACK
JACK

TWO programs for the MICROCOMP.

h

These two programs bring together
the TEC computer. Non-volatile
RAM and Microcomp. They show
some of the techniques of
displaying. inputting and running a
rogram at a speed suitable for
uman involvement.

These games were developed on
the above equipment and you can
create similar programs or adapt
them to suit your own
requirements.

TUG 0' WAR
Instead of making a TUG 0' WAR game
from a kit. you can create an improved
version by producing a program and
running it on a computer.

Initially we saw this game in a popular
electronics magazine and liked the way it
worked.

It used a row of 15 LEDs and by pressing
one of two buttons. a single illuminated
LED would move towards you. Seven
LEDs were available for each player and
your opponent had the same opportunity
to make the LED travel towards himself.

The difficulty of play could NOT be
adjusted and a player would win when-
ever he pressed his button seven times
more than his opponent.

TUG 0' WAR PROGRAM:

In our version, we have made it
increasingly more difficult to reach the
end by weighing the table of increments.

The lowest value has only one
corresponding value in the table whereas
the highest value requires nine steps
before it will advance to WIN!

This can be seen by referring to the byte
table and counting the number of bytes
for each output value.

Not only does this program show you
some new techniques in programming
but will also save you a few dollars. if you
already have the items mentioned above.

In a similar way. lots of other ideas and
games can be produced and this will save
you the expense of buying special PC
boards and unusual chips.

Our version has nine steps and requires a
total of 45 pushes for one player to win
over his opponent.

This makes the game quite difficult and
you have to introduce quite a lot of
strategy to win.

DESIGNING THE PROGRAM

When designing a program, the first thing
you have to consider is the hardware
available. In our case this means the
program has to be designed around two
push buttons and two 7-segrnent
displays_ The row of 8 LEDs does not give
us sufficient scope.

The two displays can be used to display
numbers. letters, or individual segments.
We opted to display the numbers 0-9.

The rest of the effect lies in the program.

This is how we went about designing it:

When the game starts. the two displays
are illuminated with zeros. This requires a

cont. P. 62

The TUG 0 WAR program starts below
and continues on the next page. It
requires a table of 46 bytes for the display
and this is placed at COCO:

AT CD:

3F 7D
06 7D
06 7D
SB 7D
511 7D
5B 07
4F 07
a 07
4F 07
IF 07
66 07
66 07
66 07
66 7F
66 7F
bD 7F
613 	 712
6D 	 7F
bD 	 7F
6D 	 7F
6D 	 7F
7D 	 7F
7D 	 67

_O,

—

LD HL,00Co
LD DE,00Co
LD C,00

-P-LD A,(DE)
OUT (02),A
LD B,20
DJNZ 000D
XOR A
SET 7,A
ADD A, HL)
OUT

,
(ol at

aIN A ((ot
CP Co
JR

0000 	at CO 00 	Load Kt. with sun of table for Left Hand display
0003 	11 Co oo 	Load DE with start of table for Right Hand display
0006 	OE 00 	Load the BIT TESTING register with zero.
000d 	IA 	Load the accumulator with the first byte in the table.
0009 	D3 02 	Output this value to the latch.
ooOR 	06 10 	Load 0 with a value fora delay routine
ooOD 	10 FE 	Cleat° 32 loops of clerrementing register B
000F 	Al 	Zero the accumulator
ootO 	CB FF 	Set the highest BIT so that the LH display will IiiUM111410

0012 	06 	ADD the byte looked at by the HE register. to the accumulator.
0013 	D3 01 	Output to the latch

0015 	DB in 	Look at the switches
0017 	FE Co 	Compare CO with the accumulator to see if both switches are pressed.
oo 	20 11 	Jump if both switches are pressed
00111 	FE 40 	Compare the accumulator with 40 to see of 0 Is pressed
ooiD 	2Il 14 	J,,,,,,, if B is pressed
001F 	CB Si 	Reset bit 0 of the C register.
0021 	DB 	Look 01 	at the input pen

START -UP

MULTIPLEXES
2 DISPLAYS

LOOKS AT
BUTTONS

LOOKS AT
BUTTONS

•

ZoloiD
CP 40

- JR Z,0033
RES 0,C
IN A,(01) 'I-
CP CO
JR Z,002D-
CP SO
JR Z,0077-
MS I,C
LD 13,10 -I--
DJNZ 003F

-JR 0001

—!••

1

--P.

A

0013 	FE Co 	Compare the accumidelor with Coto see it both switches are pressed.
0023 	10 01 	Jump if both are pressed.
0027 	FE SO 	Compare the accumulator with 110 to see if A is pressed
ono 	1. 4C 	Jump it A is pressed.
130213 	CB 111 	Reset bit 1 of the C register
oo313 	of, to 	Load B with 10 lar a short delay.
002F 	to FE 	Create 18 loops of decrememing register 0.
0031 	16 DS 	Jump to start of multiplexing routine
0033 	CB di 	Test hit 0 to see d it is the first time 13 is detected.
0035 	20 EA 	Jump if not the first lime_

FIRST -al
DETECTION?

fr.
A -3-BIT 0,C

JR NZ,0035-

60 TALKING ELECTRONICS No 14.

• SET 0,C
V

0037 	CB Cl 	Set bit 0 of C before processing button B.
INC DE 4039 	13 	Increment pointer for RH display.
LD A,(DE) 003A 	to 	Load A with second byte In table.
CP 67 0038 	FE 67 	Compare the annum. with 67 to see if end of table has been reached.
JR NZ,061)- 003D 	20 IE 	Jump if end of table NOT reached. Increment if reached.

003F 	OE 10 	Load C with 10 for multiplexing time-length. --"LD C,so
*LD A,(DE) 0041 	IA 	Load the accumulator with data pointed to by DE.

OUT (0),A 0042 	D3 02 	Output to the latch.
LI) 11,0
DJNZ 0046 044

0044 	eb 10 	Load B with 10 for short delay.
to FE 	Decrement B 16 times.

XOR A
SET 7,A
ADDA,(HL)

00411 	AF 	Zero the accumulator.
0049 	CB FF 	Set the highest bit to turn on the LH display.
004B 	Sb 	ADD the byte pointed to by HI. to the accumulator.

OUT (02),A 00C 	D3 02 	Output to the latch.
LD 13,10 004E 	0 10 	Load B with 10 for short delay.
DJPIZ 0030 0050 	so FE 	Decrement B 16 times.
DEC C 051 	OD 	Decrement C.

—JR NZ,0041
LD Cao

005
	

to EC 	Jump if C not zero. Increment if C is zero.
0055

3 	
OE 10 	Load C with 10.

-XOR A 0057 	AF 	Zero A to Turn off RH display to creme BLINK.
OUT (02),A 000 	D3 02 	Output to the latch.
LD Rao 005A 	06 10 	Load B with 10 to create a short delay.
DJNZ 005C 0050 	10 FE 	Decrement B 16 times.
XOR A
SET 7A
ADDA,(HL)
OUT (02),A

005E 	AF 	Zero A.
0o0 	CB FF 	SET the highest bit of the accumulator to turn an the LH display.
0061 	Sb 	ADD the byte pointed lo by the HL pair. to the accumulator.
0062 	D3 Os 	Out put to the latch.

LD 810 0064 	06 10 	Load B with 10.
DJNZ 006 0066 	to FE 	Decrement B 16 times.
DEC C 0061 	oD 	Decrement C.

4—JR NZ, 0057 0069 	20 EC 	Jump if C not zero.
0068 	IS Di 	Jump to Van of BLINKING ROUTINE. JR 060

LD A (HL)S oo6D 	7E 	Load A with data byte pointed to by HL.
CP 3F 006E 	FE 3F 	Compare with 3111 to sea if LH display is zero.
JR NZ,00741 0070 	20 02 	Jump if not taro.

0072 	11 As 	Jump to start of program if zero.
0074 	111 	Decrement player A pointer.

JR 0015
DEC Hlial—U

0075 	9E 	Jump to start of program. JRo015
0077 	Cl 49 	TEST bit 1 of the C register. BIT 1,C
0071 	so HI 	Jump if bit 1 is SET. Increment to next Instruction If not let.
0711 	CB C9 	SET bit 1 of the C register.

JR NZ, oo211
SET I,C
INC HL 007D 	23 	Increment player A pointer.
LD A,(HL) 007E 	7E 	Load the dote byte into the accumulator.
CP 67 007F 	FE 67 	Compere the accumulator with 67.
JR NZ,00AE 0001 	0 2B 	Jump if the two are not the same. Go to next instruction if the same.

003 	of so 	The next 26 instructions produce e multiplexing effect on the
005 	IA 	two displays so that the LH display turns on and off in a

LD C,10
10-LD A,(10)

OUT (02),A 0046 	D3 01 	BLINKING pattern.
LD)1,10 000 	10 lo
DJNZ 01A 004.1. 	10 FE
XOR A 0010 	AF
SET 7A
ADDA,(HL)

001D 	CB FF
004F 	46

OUT (02),A 0010 	D3 01
LD 001 	06 10
DJNZ 0014 09 	10 FE
DEC C 006

4

—JR NZ,0045
LD C,10

0097 	EC
0091 	OE 10

This section is very nearly identical to the
instructions between 003F to 0068.

-0-LD A,(DE) 09B 	IA Refer to the above for the explanations.
OUT (02),A OOK 	Di 02
LB B,10 009E 	0 10
DJNZ ooAo 00/0 	so FE
XOR A 000 AF
OUT (03),A 0043 	Digi
LD RIO
DJNZ ooA7

00A5 	04 10
ooA7 	10 FE

DEC C 00/0 	OD
— JR NZ,009B 00AA so EF

NAC it D5 JR 003
LD A,(DE)-* ooAE 	lA 	Load the eccumulator with the value pointed to by D.
CP 3F 00AF 	FE 3F 	Compere the accumuletor with 3E to see it the RH display is sere.

00113 	10 03 	Jump if player B is zero. increment to next Instruction If not zero. JR NZ0qtin
JP corn— —lb- 0083 	C3 ID oo 	Jump to start of program.
DEC DE 0086 	sB Decrement player B pointer.
JP 00th 0087 	C3 21) 00 	Jump to sten of program.

+ INC B

IS 69?
	1-

..4---I DECREMENT
A

L FIRST
DETECTION? 	

t 	INC A

I 	ISA 92 1—

.—S—,

BLINKS

IS B ZERO?

DECREMENT

BLINKS

IS A ZERO?

TALKING ELECTRONICS No. 14 61

loop in which the value for each display is
looked after by a separate register pair.
The left hand display is looked after by the
HI. register pair and the right hand display
by the DE register pair.

This choice is goverened by the fact that
the HL pair has a larger number of op-
codes available to us and thus it is more
versatile.

You will see the need for this later.

Numbers produced on the right hand
display can be created on the left hand
display simply by turning on the highest
line at the same time. This is done by
adding TO' to the value of data. The same
effect can be created by SETTING bit 7 of
the accumulator and then ADDing the
value of the right hand display. This is
what we have done. The data required to
produce a number in the right hand
display has been added to the
accumulator after the highest bit has
been SET. with the result that the number
appears on the left hand display.

Before this can be done, there is one point
which must be remembered.

The accumulator must firstly be cleared
so that all bits are zero. SETTING a bit
and ADDing to the accumulator does not
clear out any initial junk.

Using these facts, and a short DJ NZ
delay, will produce a loop program which
will illuminate both displays.

Also in this loop we must include an
instruction to look at the input port and
detect 3 things:

We must detect if button A is pressed.
button B and also if both buttons are
pressed at the same time.

Detecting button A will cause the
program to branch to a sub-routine.
button B to another sub-routine and both
buttons will cause the program to jump
over the other branch-instructions.

When the micro jumps to either sub-
routine, there are 4 instructions which
must be taken into account.

Firstly it looks to see if it is the first time
the sub-routine has been jumped to
(during this press of the button). It does
this by checking the debounce BIT in the
C register. We must create a debounce
condition so that the displays will
increment only one byte in the table for
each press of the button. This is achieved
by resetting the BIT(s) in the C register
while executing the main program. When
a button is pressed, the micro goes to the
subroutine and looks at the particular bit
in question.

If it is in a RESET state, the micro runs
through the sub-routine and SETs the bit.
It then increments the pointer register to
look at the next byte in the table. It then
compares the value with 67 to see if the
end of the table has been reached. If it
has, it goes to a loop program which
flashes the winning display.

If the end of the table has not been
reached, the program looks at the
opposition value to see if it is zero. If it is
zero. the micro returns to the main
program. If the opposition is not zero, it
decrements the pointer register and
jumps to the main program.

The effect on the screen may or may not
be an increment or decrement. depending
on the position of the pointer registers.
however you can be assured the byte
table has been decremented and/or
incremented correctly.

All you have to do now is put these facts
into a machine code program.

When doing this. it is very helpful to use
arrows to incdicate where the program
jumps to. You can also put labels and
notes at various locations to indicate
what the program is doing. This will
assist you when debugging and tidying
up.

Study the program on the previous 2
pages and see how it's done.

0000000000000

BLACK JACK
This program is designed around Paul's
Black Jack in issue 11.

The concept of the program is to deal a
hand of random values exactly like
playing cards.

It then keeps a tally of your hand and
adjusts the total to your advantage when
one or more ACES are dealt.

It is the feature of the Ace being equal to 1
or 11 which adds interest to the game and
brings a little strategy into the program.

Apart from the normal requirements, the
program must keep track of an ace. When
one is included. BIT 7 of the C register is
SET. 	The C register is our TEST
REGISTER.

The computer keeps dealing cards until a
value over 21 is reached. It then looks to
see if an ace is included by testing BIT 7.
If this bit is SET, it subtracts ten from the
total, making the ace equal to one.

Further cards are dealt and once again a
score is kept. in an attempt to reach 21.

When exactly 21 is reached, the program
jumps to a routine which flashes '21' and
at the same time looks at the input port
for button B being pressed. If it is
pressed, the program returns to the start.

The other important feature to remember
when producing a program is TIMING.
By this we mean the length of time for the
things to be done. such as the numbers
appearing on the screen.

If they appear for too short a duration. it
will be annoying, A long duration will
slow down the game.

These periods are controlled by a delay
routine which is inserted into the program
to 'waste computer time'

The length of these delays depends on the
clock speed and since we have a very
slow clock frequency. we have delay
routines to match.

Our maximum clock speed is 35.000
cycles per second so that if we waste
35.000 clock cycles, we produce a delay
of 1 second.

The simplest way of producing a delay is
to use DJNZ The maximum DJ NZ delay
is produced by loading B with FF and this
wastes 13 x 255 cycles (3315 cycles) or
about 1/10th sec. Longer delays can be
obtained by using 2 DJNZ's and shorter
delays by decreasing the value of B.

The other way to create a delay is to run
through a loop which gradually
decrements a delay value. This type of
program is necessary when multiplexing
is required.

The only way of obtaining a suitable value
for the delay is to study some of the
examples.

If you are unsure, insert 'BO' and trim the
value during final testing. 'BD represents
a mid-value and you can increase or
decrease it later.

INDEXED ADDRESSING

Block Jack uses a table (located at the
end of the program) which does three
things. Firstly it determines the character
to appear on the right hand display, then
the character for the left hand display and
finally the equivalent hex value.

This requires 3 bytes which we have
grouped together to form a 'block'.

Even when the left hand display is not
showing a value. it is being accessed with
a zero output so that uniform illumination
is produced when a value such as '10' is
displayed.

To pick up the 2nd and 3rd byte in each
group, we have used INDEX ED
ADDRESSING.

This is a handy way of jumping down a
table without incrementing the register.

If you were to increment it, you would
have to decrement it before the start of
the next loop and this would involve extra
instructions.

62 TALKING ELECTRONICS No 14.

In our program, the register in charge of
the table is incremented only after a
multiplexing operation (which may
involve a number of passes of a loop).

When the register is incremented, it is
incremented 3 times so that it looks at the
first byte of the next group. That is the
1st, 4th, 7th 10th byte etc.

The 2nd and 3rd bytes of each group are
looked at via the indexing feature which
uses a displacement value. For instance
(IX + 01) looks at the second byte and (IX

02) looks at the 3rd byte.

RELOCATING THE PROGRAM

Although the program is designed for the
Microcomp and to be run at page zero. it
can be shifted to any other location by
simply changing all the absolute address
values.

PLAYER 'A' PLAYER 'B'

HL Register DE Register
Bit 1,C 	Bit 0,C

The diagram shows the two displays and
thei associated register pair. the
Debounce Is done in register C'.

There are two main types of addressing.
ABSOLUTE and RELATIVE. Relative
values refer to locations by using a
displacement value in the program and
whenever the program is shifted. these
values remain unchanged.

However absolute address values must
be changed whenever a program is
shifted as the values refer to specific
locations.

In our program, the absolute values
include the address of the tables and
jumps which are over 80 hex bytes away.
(Relative jumps can only cope with jumps
less than 80 hex bytes away. in either
direction).

The '5 CARD HAND' which wins 11 21 is not
obtained. Our program does not take this
Into account but It would be a simple matter
to make ft do so.

Here's the program; Type it on the TEC.
hold it in the nonvolatile RAM and play it
on the Microcomp.

At not
Each hex value produces a number from 0
to 9:

IF 0
06 	1
58
4F 1
66 4
6D 5
7D
07 	7
7F S
67 9

At 0110:
The first two bytes produce the 'CARDS'
and the third byte holds the value of the
card.

40
40
00

7F
00
08

II

5B 2 67 9
00 00
02 09
41
00

3 77
oo

A

03 oB
66 4 IE J
00 00
04 oA
6D S 3F so
at 04
05 oA
7D 6 3F so
00 06
Da OA
07 7 3F to
00 Ob
07 oA

AMIIMS11.1••

-0-XOR A 	 0000 AF Zero's the la—
registers LD IA 	 0001 ED 47

LD E
,
,A 	 0003 SF

LD C,A 	 0004 4F
LD IX 0110 	0005 DD It 10 01 -1131j-L-.41- MN A,(01) 	 0009 DB or
CP 40 	 0008 FE 40

—JR Z,0000 	 000D 211 Ft
—10•LD IY,0113 	 000F FD 21 13 01

LD H,oD 	 0013 24 oD
16LD A,(IX + oo) 	0015 DD 7E 00

Creates OUT (02),A 	0011 D3 Os
Multi- LD R,o0 	 osszA 06 00
plexing DJNZ ODIC 	00IC to FE
to show: XOR A 	 001E

— SET 7,A 	 OOIF CB FF —
ADD A, 1X + 01) 	0021 DD S6 01

looks for OUT (02 ,A 	0024 D3 02
button II IN Mot 	 0026 DB 01

CP 40 	 0021 FE 10
JR 7.100311— 002A st OF
LD 11,04 	 0020 06 04
DJNZ 002E 	002E to FE
INC IT 	 0030 FD 23
INC IT 	 0032 FD 23
INC IT 	 0034 FD 23
DEC H 	 0036 25

—JR NZ,00ls 	0037 20 DC
0039 IIII D4 —JR tooF

LD Da0 •41- 003B IS 30
-MD A,(11f + 00) 	003D FD 7E 00

Displays
NEW
Card lar
30 loops

OUT (02),A 	0040
LD 8,20 	 0042
DJNZ 0044 	 0044
XOR A 	 0046
SET 7 A 	 0047

D3 02
W. so
Is FE
AF
CH FF

OUT
ADDII

Rao

T +
,A 01)
	0049

02) 	 004C
PD 06 SI
DI 01

LD 004E 06 20
DJNZ NSs 0050 10 FE
DEC D 0052 15

—JR NZ,0031) 0053 20 ES

Zero the Accumulator.
The I register must be loaded via A. I reg. detects 2nd push of button.
Zero E Hog E is our tally register to detect '21' etc
Zero C Reg C is our TEST register for ACE detection.
Load IX with start of DISPLAY TABLE.
Outten 8 must not be pressed when micro passes this point otherwise
program will lump to start of routine. This prevent cheating if
the button is kept pressed
Load IY with start of table for displaying value of card.
H counts the number of groups of bytes 3n the table There are OD
Load the accumulator with the first byte in the table. 	 groups.
Output this value to the output latch.
Load B with a value to produce a short delay.
Create 8 loops of decrementing register B.
Zero the accumulator before advancing to the nest two operations.
SET the highest BIT in the acc. so that the LH display will illuminate.
ADD the value of the second byte in the table to the accumulator
Output the result to the latch. The LH display will illuminate.
Input the value on the switches to the accumulator
Compare the accumulator with AO'.
Jump if the accumulator is equal to 40.
Load B with 04 reedy fora short delay.
Create 4 loops of decrementing rag B to display the UI digit.
Incrementthe 17 register 3 times so that it 	at the start of thenext
group This register is our random number generator and increments
constantly, while the displays are displaying_
Register H will detect the end of the byte table.
Jump to displaying RH then LH digit. it H is not zero.
When H is zero. 11(and IX register go to start of table.
D will govern the length of time for displaying the random number.
The accumulator is loaded with the display value lor the modem No.
This value is outputted to port 02.
The RH display

will illuminatefor delaydetermined by the value of 8.

The accumulator is zeroed ready for the next two instructions.
Bit 7 is SET to turn on the LH display.
The value of the second byte in the group is added to the accumulator
and outputted to port 02.
The LH display is Illuminated for a period of time as determined by the
value of a.
o is decremented by one and the program loops again.
When 0 is zero. the micro advances to the neat instruction.

TALKING ELECTRONICS No. 14 63

Looks for

aver 21

BIT I,E
JR Z,0066
BIT 5,E
JR Z,ciobb
LD B4O6

INC11
E

DJNZ 0063
DEC A
	JR N2,0058

LD AMY + oo)
CP 77
JR NZ,0o72-1
SET 7,C
LD A,14
INC A
LD I,A
CP 02

-PLD D,Int 	

JR NC,00l7Di
JR 0009

XOR A
OUT2),A
LD B,FF
DJNZ 0084
LD HL,otoo
LD A,E
CP 21
JR Z,00D4 	
AND OF
ADD A,L
LD L,A
LD A,(HL)
OUT (o2),A
LD 8,10
DJNZ 0097
LD A,E
RRA
RRA
RBA
RRA
AND of
LD HL,oto0
ADD A,L
LD L,A
LD A,(HL)
SET 7,A
OUT (02),A
LD 13,01
DJNZ ooAC
DEC D

-JR NZ,00116
LD A,E
CP 22
JR NC,0ol19

-JP 0009 1
BIT 7,C 4--
JR Z,00C4
SUB to
LD E,A
RES 7,C
	JR 007D

XOR A.
OUT (023,A
LD 11,Er
DJNZ ooC9
DJNZ ooCB
DJNZ ooCD
DJNZ ooCF
JP 0000

?LD C,10 	
-!LD A,06

OUT (02),A
LD 8,10
DJNZ ooDC
LD A,DB
OUT (DMA
LD 13,10
DJNZ 00E4
DEC C

-JR NZ,00Db
XOR A
OUR (02),A
LIP B,FF

1._
DJNZ ooEE
IN A,(00
CP 40
JP 2,0000
JR 00D4

0059
0058
O058
oo5F
0061
0063
0064
0066
0067
0069
Gabe
oobE
0070
0072
0074
0075
0077
O079
007B
007D
007F
0080
0082
0084
0086
0089
octSA
008C
008E
0090
0091
0092
0093
0095
0097
0099
009A
0098
ao9C
009D
009E
ooAo
ooA3
o0/14
ooAS
0°10
00A8
ooAA
OOAC
OOAE
OOAF
0081
00B2
0084
00136
0089
oa88
oo8D
003F
ooCo
own
00C4
ooC5
0007
o0C9
ooC8
oaCD
ooCF
oollt
00D4
oollb
oaDS
ooDA
OODC
NOE
ooEo
ottE2
00E4
ooE6
00E7
00E9
ooEA
OOEC
OGEE
ooFo
00E2
o0 F4
00F7

FO 7E 02
IC
CB 48
28 09
CB 513
28 05
Oh 06
IC
ia FD
3D
20 EF
FD 7E 00
FE 77
20 02
CB F9
ED 57
3C
ED 47
FE 02
30 02
18 OC
16 60
AF
D3 02
06 FF
to FE
2t oo 01
78
FE 21
28 46
Eb OF
85
6F
7E
D3 02
06 10
to FE
7B
IF
IF
IF
IF
E6 OF
21 00 01
Sc
6F
7E
CB FF
D3 02
06 of
to FE
Is
20 Ds
78
FE 22
30 03
C3 09 00
CB 79
28 07
D6 to
SF
CB B9
IS B9
AF
D3 02
ob FF
to FE
to FE
to FE
10 FE
C3 00 00
OE io
3E 06
D3 02
06 to
to FE
38 DB
D3 02
06 to
to FE
OD
20 ED
AF
D3 02
06 FF
to FE
DB 01
FE 40
CA 00 oo
IS DB

LDA ,(IT + 02) 0055
-frINC E 	 0058

Prodi res
tally
value

Looks
for ACE

Looks for
2nd push

V

Alan ing
Period

Displays
TALLY
for 60
loops

1 	Subtract
10 if ACE
is present

4
OFF al
end or
game

117

BLINKS

21

Ionil A with Ow 3rd byte in the moult. We know the byte must have p
value of one or grooml and so we ban saltily INCroment E
Rellitster E Mout TALLY register Werequire it to add thovalues of the
muds and hold gut result m decimal lotrn The preteens conies whon
you add one to 9 The rim/rater will show OA We most convert 04 to len
Mist:an he thine by a OAR intimation or by toilworn We have opted

for software We detect OA viii bit. I and 3 Wing HIGH and then

trweninot the E register 6 times Each time the They register i
incremented (apart from the decimal aibusting loop). the accumulator
es deeremented and when the accumulator is zero. the program

Aolvances
toad the accumulator with the bot byte of the !Troup

compate 77 with the acctimulatOr. We are looking for an ACE
It the arm tt ttt Imor is not 77. Ilse num will pump to LII A,1 II tho
accumulator is la. the emotion will advance to the next instruction

told SET hit 7 rel the C register
rho I register comas the nuitthei of presses of Me B halloo We ore

looking tor 2 or more presses Si) that the ;Myatt° he demlayeri This is

the advarmiutt of Immo the CARRY command
the micro lumps when I is 2 or MORE
.intito to %LOT of program itiiinori B has been presrea once
Reinstoi 0 produces the time lot the hilly to appear
Blank the rlisptay
Output to latch
Load II with maximum delay cattle
Perform Fr logos 01 decrementeig regleter
Loire HI with start al etiolate 'JOUR),

Load the tally register into the armumulanr
Compare 21 with the accumulator
If assumulapu M 21. the micro tamps to SLINKING 21
II not 21 remove high nibble by ANDing with OF

in rontav on from addfeas above ADD 00 to acmnnm; toe
Load the result back inur L m that the micro looks al one of the
addrueses of Ow table Load the value it from into A
Output the byte to the latch
Load B with a low valise
Create 16 loops of decrementing regtster B
Load the tally remoter into the iliCCIIMillatar
Rotate the aacumulator sight. Off eCterels bringing dao 4 hits of the
HIGH nibble to occupy the 4 lower. places.

Permian the 8 hiali bits by ANDing with OF
Load the XL register with start of display table
ADD I. to accumulator 1ocreateanew value forLso that welookat one
of the addresses at Out table
Load the byte from the table Me the :accumulator
Sm bit 7 of the accumulator so that the LH display turns oil
Output this value to the latch
Load B with a short delay value
Create B loops of demernenting register B
Decrement D and go to start of inuatplexing loop When 0 is tura,

mcrelmint to next instruchon In program
Load the tally register into the accumulator
Compere with 22
If tally i 22 or MORE ient to nest instruction ncrem
Jump to Mart of program tally is less than 22. lump to BIT 7,C.
test bit 7 of rho C rammer to see if an ACE has beam dealt
Jump'if na ACE Increment d an ACE is present
Subtract Om horn tally. making ACE equal to ONE
Load the new tally into the hely register
Reset but 7 to show ACE has been turned into ONE
Junto to displaying new tally
Zero the accumulator
Output to latch lor a delay period cries! to 4 DJNZ s with B =FE) to
ifitlierite ENO OF GAME

Jump to start and re-load all 'mutters
Load C with 10 for 16 loops of multipimmg 1' ane '2
Load A with OB to creme' on RH display
Output this to latch
Ciente short delay
Decrement B to zero
Loud the accumulator with DB to create 7' in lH display
Output to latch.
Create short delay
Decrement 13 to zero.
Decrement and if notzero. jump to start of multiplexing the displays.

Lem A
Output to latch to turn off both displays
Load B with FF to produal a short delay for the OFF time
The only way of jumping out of "BLINKING 21' is to push button 8 or
reset the computer The Program Omuta from the sot of buttons and If
B s pressetf the telegram lumps to 0000. Otherwise tha program
keeps tootling

54 TALKING ELECTRONICS No 14.

Sw.
Positions: Address:

Name of

Program:

Before we continue our disection of the
program for the Microcomp, let us pause
for a discussion on a number of related
topics. These will help you to understand
how a micro system goes together and
how it functions.

PROGRAMMING THE 2732.

The 2732 in the Microcomp kit comes
ready programmed with a set of experi-
mental programs and only the lower half
of the ROM has been filled.

This leaves the upper halt vacant, for use
in any way you wish.

There are two ways in which the upper
half can be filled. One is by using an
EPROM programmer and burning the
locations yourself. The other is to write
the program and have someone else burn
the ROM.

Burning a program is only done after you
are thoroughly satisfied with its
performance, as it is very difficult (if not
impossible) to change the program. once
it is burnt. For this reason it is best to get
the program tip and running via a medium
which can be easily altered, as a program
quite often has to go through lots of
changes and modifications before you are
completely satisfied.

The most logical way is to use some form
of RAM memory, in which the locations
can be altered as many times as you like.
The only difficulty with RAM memory is it
will lose its contents when the power is
switched off. If the RAM is backed up
with a battery, the contents will be
retained.

This arrangement can then be used to
generate programs without the fear of
loss. should the computer be turned off.

The program can then be transferred from
the programming computer to the
Microcomp.

The Microcomp sees each tall of a 2732
as a separate 2k block of memory.

2732 PIN-OUT

Tho program-accessing routine at 0000
must be written for both the lower half
and upper half and this will enable you to
start at any address, providing it is an
even hex value.

Burning can be carried out on the TEC
EPROM BURNER and full details of this
project can be lound in issue 13.

Memory is divided into PAGES and each
page consists of 256 bytes. When
programming, all address values are
written in hexadecimal form and one page
contains FF bytes. See P. 16 of issue 11
for the hex table and details on under-
standing hex notation. 	A 1k block of
memory has 4 pages and a 2k memory
chip such as 2716 has 8 pages. A 4k
memory chip such as 2732 will hold 16
pages of bytes.

A program can range from only a few
bytes to many pages and to give you an
idea of the compactness of machine
code, the two previous games. TUG 0'
WAR and BLACK JACK. occipied about 1
page each. Obviously a more complex
game with a more complex display (such
as a video screen) would require more
instructions but one page has the
capacity to hold about 100 instructions.

This means a 2k ROM will hold about 8
simple programs

Programs are not fast to be produced and
it may take 10 to 50 hours to create a one-
page program. A 2k ROM may take
weeks or even months to fill!

Once you are satisfied with the
performance of a program, you are ready
to burn it into an EPROM.

Before this can be done there are two
things you should do.

Firstly you should determine where you
are going to place the program. This is
importart as it will be in a different
location to where it was being created
and the absolute address values will not
apply.

Often the program is created at address
0000 and all jump instructions relate to
this. Any address values which have
been defined are called absolute and
must be changed when the program is
shifted to a new location.

When you have determined the new
location, you should BLOCK TRANSFER
the program to the same address in the
non-volatile RAM. using the following
program:

at OCOO:

TO: address + t000H
From: address + 1000H
No of bytes.

For example. if you have produced a 148
byte program at 0000 in the non-volatile
RAM and need to shift it to 0280. here is
the Block Transfer program:

at °COO: 	11 SO 12
21 00 10
01 411 01
ED BO
C7

At the beginning of the RAM you
need a jump routine:

06 00
DB 01
n 00 00
6F
29
29
29
29
E9

This is entered at 0000 in the non-volatile
RAM. which is ADdress 1000 on the TEC
(to access the start of the expansion port
socket)

Now you must change all the absolute
address values (such as the start of a
table. a jump instruction etc.)

Change the switch on the non-volatile
RAM card to 'ROM' and switch the TEC
off. Transfer the non-volatile RAM to the
Microcomp and load '28' on the input
switches. Turn the comp on and push
reset. The program will run.

You should now remove all traces of the
lower program so that you are sure the
new one is the only one being run. This is
done on the TEC by loading FF into each
location of the old program

The program is now ready for transfer to
EPROM. You have confirmed its
operation and run it at its new location -
nothing more need be done.

Refer to the EPROM BURNER project in
issue 13 for the actual transfer procedure.

When you have completed a program and
burnt it into EPROM. it should be fully
documented by writing it out as shown in
Our examples.

It is important to use arrows to indicate
the jumps and even a block diagram
explaining what is happening at various
locations.

A description of the program including
which buttons are doing what. will also
help as it's very easy to forget how the
game is played. after a few months.

Give the program a name and fill out the
log below to assist in identification.

If you follow these rules you will he able
to use pans of the program when creating
new ideas and save generating every-
thing afresh. 11

21
01
ED Bo
C7

TALKING ELECTRONICS No. 14 65

RAM and ROM

RAM is the abbreviation for RANDOM
ACCESS MEMORY.

It is tempory storage memory in which
data is only retained while the power is
applied.

When the power is removed, the contents
are lost This is because data is stored via
a flip flop or single MOS transistor and
these require power (although very little)
for the data to be retained.

There are two forms of Random Access
Memory. STATIC and DYNAMIC.

Static Memory uses a flip flop for each bit
of information and this will hold the HIGH
or LOW as long as the power is connected
to the chip.

Dynamic Memory uses only a single MOS
transistor in which a charge on a
substrate indicates the presence of data.
Since this charge has the tendency to
leak away. it must be replenished every 2
milliseconds. This requires additional
circuitry and is inconvenient in a small
system: although it is the cheapest way
to purchase blocks of memory.

RAM is also called Read/Write memory
as it can be written into and read during
the process of executing a program.

A micro system which does not have any
RAM is called a dedicated system and is
limited to running a program contained in
ROM memory.

The need for RAM varies enormously
with the task. Sometimes you only need a
few bytes of RAM to store tempary
values and the same locations can be
written into again and again

Othertimes you need a large amount of
RAM to store a whole screen of
information.

With as little as one page (256 bytes) a
system can be designed to perform quite
complex tasks as the data can be updated
and written-over constantly.

The Z-80 requires only two very small
sections of RAM for it to become a
'thinking' computer. These two areas are
called SCRATCH PAD and STACK.

The scratchpad or BUFFER zone needs
only a few bytes where such data as
displays values are kept. This frees
registers for carrying out program
commands.

The other area is STACK and this is where
bytes are loaded (in pairs) so that the
contents of a particular register can be
saved. The stack is unusual in that it
grows downwards as more bytes are
added and it is essential to keep removing
bytes at the same rate as they are added
so that the stack does not grow too large.

The other peculiarfeature about the stack
is the access you have to its contents. It is
a LAST-ON FIRST-OFF arrangement and
only the top byte (and the next) is

accessible and this is another reason for
keeping the stack manageable.

The main purpose of the STACK is to free
registers for other operations and then be
able to re-load thorn with the value that
had been saved.

Our Microcomp does not have RAM
memory and thus the stack and scratch
pad features are not available.

The alternative to scratch-pad is to use a
register pair to hold 2 bytes of data and
this has been done in many of the
programs. This severly limits pro-
gramming as the working registers are
held-up as memory cells

Without a stack. programs have to be
designed differently and may take more
programming steps. but they work just as
well.

IX. IV. HL and DE register pairs and also
the alternate A. BC. DE and HL registers
can he used to get around the storage
problem.

Some of the programs for the Microcomp
show how the registers have been used in
this way.

ROM
ROM is Read Only Memory

This memory is used to store instructions
which do not have to be altered Data in
ROM remains fixed and stable. even
when power is removed It is permanent

There are different types of ROM
memory One is programmed by the
manufacturer and cannot be changed. the
other is erasable memory and can be
programmed by the chant It can also be
erased if the contents are not required. by
exposing to ultra violet light for about 15
minutes.

In the Microcomp project, a 2732
EPROM has been used. This is the most
economical size for the job and is capable
of holding 4k of information 	4k is
equivalent to 4096 bytes and would be a
very long program if it contained a single
program!

If we assume an instruction takes an
average of 2 bytes, the program will
extend for 2048 lines' A program of this
length would take many weeks to
produce and the number of things it could
do would be quite impressive

In the Microcomp. the 2732 is accessed
in two halves. This is done via a jumper.
The lower half contains a range of
programs which we are currently
investigating and by taking the jumper
lead to the lower pin on the PC board. the
upper half of the EPROM is accessed.

The upper half is blank and you can fill it
with programs of your own. The first 1 OH
bytes must contain a jump routine
identical with the lower half to allow you
to jump to the start of each program.

In the near future you will be able to send
in your EPROM for filling with additional
routines. The programs for the 'add-ons'

will be loaded into the upper half and
many of these are already finalized. Gut
firstly we want to fully explain the lower
half and get you aquainted with the
concepts.

One question we have boon asked is why
the Microcomp has only 11 address lines
whereas the 2732 requires 121

The answer is we are creating the 12th
address line via the jumper load. When
the 12th line is LOW. the lower 2k is
accessed. When the jumper is HIGH. the
upper 2k is accessed Since this is a
manual operation. a program cannot
cross the 2k border and routines in the
lower half cannot be accessed by those in
the upper section. (If you wish to cross
the 2k boundary. place the jumper on
A11).

Because of out arrangement. the 2732
can be considered as two separate 2k
blocks. each of which is equivalent to a
2716 EPROM In fact you can use 2716's
without the need for any modifications.

Each 2k block is addressed in
hexadecimal notation. It starts at 0000
and goes to 07FF. The next 2k starts at
0000 and finishes atOFFF. There are 8
pages in 2k and those are: Page O. 1, 2. 3,
4. 5. 6 and 7. Each page contains FF
bytes as explained previously.

All address values. data values and Jump
Relative values are Hex values and you
need to think in HEX notation when
writing Machine Code programs.

Using the Microcomp will familiarize you
with hex and encourage you to think in
this notation.

BASIC vs MACHINE CODE

Everyone has heard much about BASIC.
It introduced many of us into the world of
MICFOCOT paters and it deserves its
reputation for being the best language for
teaching computers to beginners

And true enough. Basic has enabled
beginners to perform tasks which would
have been absolutely impossible
otherwise.

But basic isn't the solution to all
programming. When you need a simple
program for sequencing or timing. you
don't need basic. When you need high-
speed graphics, you don't use Basic. And
when you want to design your own
system. you can't include Basic.

In fact you don't use any high level
language at all. You use only the codes
which the microprocessor understands:
and these are called MACHINE CODES.

That's the language or instruction set we
are teaching. MACHINE CODE or
MACHINE CODE PROGRAMMING.

With Machine Code you can perform all
the operations and effects available to the
Basic programmer except you have to
create them all yourself.

66 TALKING ELECTRONICS No 14•

Remember that all the work and skill put
into compiling the set of Basic
instructions would represent years of
effort and we would never be able to
attain this level of development via a
simple model.

For us. we will have to be satisfied with
starting at the beginning and learning
some of the simplest forms of
programming. Even these will achieve an
amazing variety of effects and you will be
quite impressed with the results.

We are not rubbishing Basic but let's soy
it is completely removed from the field we
are covering. Machine code is is up to
10.000 times fast and takes up to 500
times less memory. But Most impressive
is a Machine code system can be created
without any external assistance. You
become the master designing your own
system and only requiring a list of
Machine code instructions for you to be
able to complete anything from a
sequencer to a robot.

HOW TO START PROGRAMMING

All programs start with an idea. The idea
may be vague at first or you may be lucky
enough to know exactly what you want to
achieve.

Vague or concrete. the way to start
programming is by getting a sheet of
paper and jotting down notes.

Start with sketches. scribbles and bits of
data.

Put a date on the sheet and think up a
name for the project. Names and labels
help identify and strengthen your ideas.

These jottings will look feeble when you
look back on them, but at the beginning
they form the groundwork on which to
build. Its the only positive way of getting
the facts together.

Put down all you know and all you want to
do, then go away and sort it over in your
mind.

Your brain can actually put things
together much better aper you have
cleared it first by writing down all the
preliminaries.

Don't be afraid to use paper. It will take
about 6.10 pages to produce one page of
finished work.

At first the best idea is to use parts of
existing programs and modify them to
suit. Later you can think about creating
complete programs of your own.

Lastly. don't be disappointed if the
program doesn't work first go. We have
trouble with all of ours. They rarely work
first time.

But that the wonderful part about pro-
gramming. The micro picks up your
mistakes and fails to operate.

When this happens. you can spend hours
trouble-shooting the fault.

The best advice in this situation is to give
the program to a friend aquainted with
programming and ask him to check it. A
fresh mind is more able to spot a silly
mistake,

If you don't have anyone in this category,
you will have to work through it yourself.

If the displays fail to light up. you will not
know how far through the program the
processor has gone.

Start at the beginning and look for the
first OUT command. Immediately after
this instruction place a HALT command.
This will let you know if the micro has
travelled this far through the program.

If the display still fails to light up. you will
have to investigate each of the steps and
instructions very carefully. Work back-
wards through the program using the
DISASSEMBLY codes on the back of
issue 12 (and also in Notebook No 3) and
make sure you get the same instructions
as in the original production of the
program.

Next check the JUMP and JUMP
RELATIVE values to confirm that the
microprocessor is actually landing on the
address intended. Read the section on
Jump Relative in issue 12 of TE. because
these are the trickiest bytes to add to a
program. Remember. they are the LAST
bytes to be inserted as you need to count
the number of bytes between the present
address and the address to be jumped to.

Machine Code programming
allows you to create your own
system • with pen, paper and
op-codes.
A**********

When creating a program. you will not
know the value of a displacement byte
initially and it is important to put a line in
place of the byte thus: 	 so that it
can be inserted later. This line lets you
know that one byte must be counted
when working out the displacement
values.

If the display still fails to illuminate. you
can create your own display value by
loading the accumulator and outputting it
to the display and then adding a HALT
instruction. This is a last resort! and lets
you know how far the program is
progressing.

I hope you don't have troubles of this
complexity but if so. this will get you out.

Start with simple programs and get your
ideas flowing. It's not as difficult as you
think to convert ideas into visual effects
and its very rewarding to see them
running.

When writing a program for the
Microcomp, you start at address 0000.
This is where the processor naturally
starts when the reset button is pressed.

It can then be shifted to a higher location
and a jump routine used to access it.

Creating a program which RUNS takes a
certain amount of skill. By 'runs' we mean
it completes one pass of the program and
displays the appropriate information on
the displays. After you get it to run you
can concentrate on adjusting the values
of timing to achieve the most pleasing
effects.

But the main problem is getting the
program to run and we have already
mentioned how to get into the program
and force it to display. There are a couple
of other points which we forgot to
mention and they involve the placing of
tables,

Tables should be placed well away from
the program so that you don't run out of
room. When everything works perfectly.
they can be moved up and the pointers
changed accordingly.

The idea is to get everything into a
compact block and relative addressing
uses less bytes than absolute addressing.
so use it whenever possible. . Also
remove any MOPS and any holes or
spaces. Closing up a program and
neatening it up takes time but it makes it
much more presentable in the end.

• 00 • Oil • • • • • •
We will now continue with the programs
in the monitor. explaining each and every
instruction and how the program is
intended to work.

FROM INPUT PORT TO B Lin
This routine is located at 0290 and is
addressed by switching the switches ON
thus-

0 0 0 0 0
O 0 0

This program is very handy for checking
the operation of the computer in the early
stages. This may be too late for some
constructors. but for those with a
problem in the displays, it will help locate
the fault.

The program checks each line of the input
port and outputs it to the displays.

Each time you turn an input switch ON.
the corresponding LED. in the row of 8
LEDs. will be illuminated.

If this does not happen, you can trace
through the particular line and locate the
fault.

The program at 020 contains 6 bytes.
That's all, just 6 bytes! It inputs the data
on the input port and loads it into the
accumulator. It then outputs it to port 2 to
turn on the appropriate LEDs and then
jumps back to the start of the program.

TALKING ELECTRONICS No. 14 67

etc.

LD A,00
INC A
OUT (02),A
DJNZ esCs
DJNZ 02C7
DJNZ osC9
JR 02C2

02C0
02C2
0203
02C3
OSCS
OZCO
O2CB

3E 00
3C
D3 02
to FE
10FE
10 FE
Is F3

tr

•
tr

tr

tr

•

*

tr

Create these on the 7- egmen s displays.

.re•mme.

IJ
I

CI

1:1

0

This means it is rapidly looping around
the program and will update the displays
as soon as the input values are changed.

The program can also be used to compare
between the row of 8 LEDs. the 7-
segment display(s) and the 4x4 matrix.

Experiment by inputting a hex value and
see the effect you get on each of the
displays.

In this way you can create any effect you
want on the 4x4 (within limits).

Prove the following:

81
	

01

AOI co 182
	

201 40 102

901 	184
	

101 	104

88
	

08

Adding '80' to a value will make the
display jump to the 10's display. Note
that 80 by itself does not turn on ANY
display.

Button 'A' is connected to 80 and will
make the figures jump from one display to
the other.

3. The 4x4 matrix has been wired so that
each column is turned on by a LOW value.
These values are: 01. 02.04. and 08. This
will cause all the LEDs to come on. Each
of the rows can be turned OFF and this is
done via the values 10. 20. 40 and 80.

There are some limitations as to what
combinations of LEDs can be turned on
and this is something you must be aware
of.

Experiments:
Create these effects by using the input
switches:

• • • .4
• • 4 11
11 • • 4
4 4 4 •

• • 4 •
• • • 4

4 • 4 •

• 4 • •

(al (10 MI (di

Create these effects on the 4x4 matrix:

• input values via the switches.

This will enable you to see the effects on
the display without having to manually

• The accumulator is required for two
• functions. It outputs the value of the

count and then looks to see if a switch is

• pressed. That why we need another
register to hold the value of the count. so
that the accumulator can be loaded with

•
other information. Thus the C register has
been used for temporary storage.

The program contains two small loops
• and the micro is constantly executing the

tr 	top one when button A is not pressed and
the lower one when the button is
pressed. The micro jumps from one loop
to the other during the time when the
button is travelling from one state to the
other.

3E 00
4F
DB 01
CB
21 FA
79
3C
4F
D3 02
DB 01 -n
CB 7F
SO FA
111 ED -211•!--

This is a very simple way of creating a
debounce condition and prevents more
than one count being registered on each
press of the button.

AUTO INCREMENT (fast)

This program is lona ed at 02C0 and lets
you sit back and watch the displays

0 0 0 0 0
0 0 0

'nc amen automatically. You will be
'nterested o know that the program
akes 256 s eps before it repeats!

Compare the effect on the row of 8 LEDs
with the 4x4 and seven segment displays.

Notice that they produce entirely
dal erent effects due to the placement of
the LEDs and this can be remembered
when designing displays for advertising

02A0 a 00 Load the accumulator with zero.

	

02A2 4F 	Load zero into C.
02A3 DB Ot Input the value on the switches to the accumulator.
02A5 CB 7F Test BIT 7 of the accumulator to see it button A is pushed.
01A7 as FA Jump to 1A3 a NOT pleSied co to 2A, when pressed '
02A9 79

	

111AA 3C 	
Load C into the accumulator. accumulator.

	

4F 	
Increment the accumulator

02AC D3 02
Load the answer. ma the TALLY register 'C'.
Output the accumulator to the displays.

02AE DB 01 input the swathes to the accumulator.
0250 CB 7F Test BIT 7
0282 20 AA - — 	Jump ID SAS it A is p eeeee d co to OM when released
02B4 10 ED Jump to 2A3.

•

O

*

O

tr

FROM INPUT PORT TO BIM

V4Attu 	0290 DB 	Looks at input switches and places the value in the accumulator
OUT (12 tat 0292 D3 02 Outputs accumulator to the latch
JR 0290 	0294 UFA Jumps to start of program.

From this program you will see:
1. The value of each LED in the row of
LEDs corresponds to a switch. The
lowest value is 01. then 02. 04. 08. 10.
20. 40, 80. and this can be confirmed by
the values written on the PC board.
2. The value of each switch also
corresponds to a segment in the 7-
segment display. Turn on various
switches and see the effect(s).

* = 'ON'
• • • • 	•
• • • •

•
* itt *

•

•
tr

•
r.

INCREMENT via BUTTON A

This program at 02A0 increments the
display each time button A is pressed

0 0 0 0 0
0 0 0

LD A.00
LD C.A
IN A,(01)
BIT 7,A
JRLD Z 02A3

INC A
LD
OUT (02),A
IN A,(111)
BIT 7,A
JR NZ ORAE
JR 011433

68 TALKING ELECTRONICS No 14.

0 0 0
0 0 0 0 0 02F0

The 	first 	instruction 	loads 	the
accumulator with zero. You will notice
this address is not used again by the
program. Thus we call it a START-UP
value. The accumulator is then
incremented on each pass of the program
and the value outputted to the latch. The
next three instructions are DJNZ's in
which the B register is decremented to
zero during each instruction. After the 3
DJ NZ's the program jumps to 02C2 and
outputs the next higher value.

AUTO INCREMENT (variable)

This program is located at 02D0 and the
speed with which the computer

0 0

0

0

0 0 il i 0

completes one cycle depends on the
setting of the input switches.

AUTO DECREMENT
LD 02E0 	3,E ao Load the accumulator with zero.

DEC A 02E2 3D Decrement the accumulator.

OUT (02),A ozE3 D3 02 Output the accumulator to the latch

DJNZ 02Es
DJNZ ozE7

02E5
02E7

to FE
to FE

Decrement register '8'. FF loops,

DJNZ 02E,
JR 02E2

02E9
otEB

to FE
IS F5 Jump to spin of program.

0200

AUTO DECREMENT (variable]
This routine is located at 02F0 and
decrementes the display when button A is
pressed. It has a fixed rate of
decrementing and is not variable.

LD E,FF 02F0 1E FF Load the COUNT HOLD register with FF.
LD A,E 0251 7R Load the Co int Hold 	egi tar into the accumulator.
OUT (82),A 02F3 D3 02 Output the accumulator to the latch.
DJNZ 02F5 02F9 to FE Create a short delay with the B register.
IN A,(01) 02F7 DB 01 Input the hank of switches to the accumulator.

Bit 794 02F9 CB 7F Test bit 7 of the accumulator to see if A is pressed.
JR Z,02F2 82FB 28 F2 Jump to 02F2ifit is not pressed. Go to next line if pressed
DEC E 02FD ID Decrement register E.
JR oat o2FE IS F2 Jump to 02F2.

LD D,01 OIDO 16 01 Load the TALLY register with 01.
IN A,(ol) 02D2 DB 01 Input the switch value to the accumulator.
LD CIA 02D4 4F Load the accumulator into 'C' far the delay value.
LD A,D 02D5 7A Load the TALLY into the accumulator.
OUT (02),A 0206 D3 02 Output the tally value to the displays.
DEC C 02D1 OD Decrement register C
JR NZ °YDS 02D9 20 FD Jump to 0208 if register C is riot zero
INC D 02DB 14 Increment the tally register.
JR 02D2 *WC IS F4 Jump to the start of the program_

counter. The bes effect o decrementing
cart be eon on the 8 LEDs. Adjust the
speed control to view the effect in slow
motion.

This is not quite correct. however, as you
will find out for yourself.

Load the value 01 and compare it with 00.
00 is a much longer delay and it appears
to be as long as FF! In fact this is the
case! The longest delay is produced when
a register is loaded with 00 since the first
operation to be performed on the register
is to decrement it. The result is FE and
that's why it takes FF loops to bring it to
zero.

The program is designed to start with an
output value of 01 and increment auto-
matically to FF. The ON time (the delay
time) is adjustable via the setting on the
input switches.

Note: We don't have any control over the
values appearing on the screen. just the
speed of the increment.

'D' is the tally register and holds the value
to be displayed on the screen. so that the
accumulator can be used for other things.

'C' is the delay register and it is
decremented very similar to a DJNZ
statement, where FF produces the
longest delay and 01 the shortest delay.

AUTO DECREMENT

By changing one byte of the program at
02C0. we produce a decrementing

0 0 0 et
0 0 0 0

02E0

4x4 DISPLAY
As the name sugges s, the program at
0300 is designed for the 4x4 DISPLAY. It

0 0 0 0 0 0

0 0

will produce a most no interpretable
effects on ei her of the other displays.

The routine we have presented is only just
the start of what you can do with a set of
LEDs in an array. Our 4x4 can be
multiplied-up many times to produce an
enormous array of LEDs or globes and
obviously the ultimate is to produce a
video screen with coloured globes to
duplicate a TV. But the cost of this kind of
venture is enormous as the parts alone
would cost a fortune and the time taken
to wire it up would be too much for an
individual constructor.

That's why we have concentrated on a
manageable module.

One of the decisions you have to make
when outputting to LEDs. is the method
of turning them ON. One is to connect
each output of a latch directly to a LED.
The other is to multiplex the display and
scan it. The multiplex method uses the
least number of chips and is obviously the
cheaper.

The relative merits of each will be
covered in future articles and for the
moment we will study the effects which
can be produced with a display
connected in MULTIPLEX mode.

The program at 0300 is an OUTPUT
ROUTINE in which a value is loaded from
a table into the accumulator and
outputted to the display. The display
remains illuminated for a delay period and
then the next byte is picked up from the
table. This is done until all the bytes have
been used.

When the end of the table is reached, the
program starts again. This is repeated for
8 loops and then the micro advances to
the second part. This is identical to the
first except for the byte table. It has
entirely different values and the effect is
completely different. At the conclusion of
the second byte-table, the micro jumps
back to the start of the program and the
first pattern is outputted.

The speed of presenting a pattern is
controlled by the clock and the inbuilt
delay value. The delay is fixed but the
clock can be adjusted to slow-down or
speed-up the effect.

0300

TALKING ELECTRONICS No. 14 69

LD BIOS
	LDHLI03311

LI) Cu
—'-DEC C

JR Z,o3u) 	
LD A,(HL)
OUT (02),A
INC HL
LB DE,00110

[DEC DE
LD A,D
OR E
JR NZ,opt

—JR 0307
	DJNZ 0302

LD BAB
► LD FIL,030

LD
C

JR Z,0332 	
LD A,(HL)
OUT (02),A
INC I.
LI) DE,00So

[DEC DE
LD A,D
OR E
JR NZ, 032B
JR 0321
	DJNZ 031C
	JR 0300

0300 	06 0$
0302 	21 SS 03
0305 	ME IS
0307 	oD
0300 	20 OE
030A 7E
0308 	D3 02
0300 23
030E 	Il SO 00
0311 	IB
0312 7A
0313 B3
0314 	20 FB
0316 	IO EF
0311 	to ES
031A 	06 OS
0310 	21 50 03
031F 	OE 20
0321 OD
0322 	21 OE
0324 7E
0325 	D3 02
0327 	23
0320 	11 00 00
0328 1B
032C 7A
032D By
032E 	20 FB
0330 	10 EF
0332 	to ES
0334 	IS CA

B is the COUNT REGISTER for the number of loops in the first program

Load HL with the address of the start of the BYTE TABLE
Load C with the number of bytes for the program (There are 24 bytes 1
Decrement the number of bytes remaining in the table to detect the end of table.
If no bytes remain. decrement the number of loops and start program again
Load the accumulator with the byte pointed to b the HL register parr

Output this value to port 2
Increment HL to point to the next byte in the table

Load DE with a short delay value.
Decrement DE
Load D into A.
Logically OR the accumulator with E to see when BOTH D and F arezeto

Jump to 0311 II the answer is NOT ZERO
Jump to DEC C and repeat for the second byte in the table

Decrement the number of loops and start the byte table again
Load 8 with 8 for the second part of the program

This part is identical with that above
except the byte table is longer and
located at a different address When
El loops of this part have been
executed the program jumps to the

top program and the cycle repeats.

O 0
• •
• •
O 0

6F

• •
O 0
O 0
O 0

8F

• •
O 0
• •
O 0

AF
• •
• •
O 0
O 0

CF

• •
• •
• •
O 0

EF

O
•
•
O

O
O
O

O
O

•
O
O

•
•
O

At o3311: At 03926

Ot CF
02 3F
04 CF
OS 3F
EF 96
DF FF
BF 96
7F FF
03 33
OC CC
03 C3
oC 3C

oF BS D4
FF DS Di
oF ES)12
FF E4 134
OF El D4
FF El D2
OF DI 112
FF Ilt B4
71 	71
72 	72
74 74
75 84

O O O 0 O
O O O 0 O
O O O 0 O
O
	

• • •
IF

O O O 0 O
O O O 0 O
• • • • •
O • • • •

3F

O o
• •
O 0
0 •

O 0
• •
O 0
• •

5F

O
•
O

An almost unlimited number of pattern
and affects can be produced on the 4x4.
However not every combination can b
displayed due to the limitations of how
the LEDs are accessed.

This means you will have to learn how to
access the LEDs and get the patterns you
want.

To turn on a LED. the cathode end must
be taken to earth and the anode to
positive.

This is the hex value required to
illuminate an individual LED:

To access the LEDs we have separated
the output latch into two halves with the
4 lower bits connected to the anodes and
the 4 upper bits to the cathodes.

The following diagrams give you the
values required to turn ON one or more
LEDs:

ALL ON "OF"
ALL OFF "Fr' or "00".

LEGEND:

0 = ON.

• = OFF.

O O 0
O O 0
O O 0
O O 0

OF
O O 0
O O 0
• • •
O O 0

2F
O O 0

• •
O O 0
O O 0

4F

O 0 0 0 O
• • • • •
• • • • •
0 • • It •

7F

• • • • •
O 0 0 0
0 • • 9

O 0 0 0
O
O

9F

• • 0 • •
O 0 0 0

O • • • •
• 0 • • •

BF
• • • • •

• • • • •
O 0 0 0

O 0 • 6 •
DF

• • • • •
• • • • •
• • • • •
• 0 • • •

FF

70 TALKING ELECTRONICS No 14.

01143
03F2
0314
03F7
03FA
03FB
03FC
03FD

3E 01
ED 47
11 FF FF
21 FF FF
2B
7C
Bs
C3 sA 04

Segment 'A' will illuminate after a delay period.
Save the 'mar in the I register (Not pan of IX)
Load DE with the maximum value
Load HL with the maximum value.
Decrement HL.
Load register H into the accumulator.
Logically OR the OMITS/111W with L.
Jump to address 040“

045A Cs FA 03
045D 1I3
045E 7A
043F B3
0460 C2 F7 03
0463 ED 57
0463 D3 02
0467 3C
0464 ED 47
046A C3 F4 03

If register If end L are not tem, jump to MA.
When HL [the inner loop) is zero. decrement DE.
Load register 0 31110 the accumulator.
Logically OR the accumulator with register E
II result is not zero. JUMP to OUT and DEC HU
When both HL end DE are zero, limo is UN
Load the TALLY register into A and output it.
Inclement A.
Load the new tally into the TALLY register.
Load the register pairs and sten again!

If you don't want all the LEDs in a row to
be illuminated, refer to the diagrams on
this page for the hex value needed to
illuminate an individual column or
column(s).

To use these values select from the first
16 diagrams to give the rows) and from
the following 16 diagrams for the
column(s).

0 • • • • 0••
0 • • • • 0••
0 • • • • 0••
0 • • • • o••

01 02
0 0 • • ••0•
0 0•• ••0•
00•• ••0•
00•• ••0•

03 04
0•0• • 00•
0•0• • 00•
0•0• • 00•
0•0• • 00•

05 06
0000 •••0

000• •••0

000• •••0

000• •••0
07 08

08•0 • 0•0

0••0 • 0•0

0••0 • 0•0

0••0 • 0•0
09 OA

00•0 ••00
00•0 ••00
00•0 ••00
00•0 ••00

013 DC
0•00 • 000
0•00 • 000
0.00

00
• 000

01
0•00 • 000

0 0 0 0
00 0 0 OF
0 0 0 0

0 0 0 0

When the two diagrams are placed on top
of each other, the LEDs that are common
to both, will be illuminated. Due to the
sinking and sourcing limitations of the
output latch, all the LEDs in the 4x4 can
not be illuminated at the same time.

Brightness can be improved by turning off
the 7-segment display by shorting the
base and emitter leads of the driver
transistor together with a jumper lead.
This transistor is directly below the
second display and is the middle
transistor.

VERY LONG DELAY
This routine. at 03E0 is particularly
unusual. Not only is it a very long duration

0 0

0 0 0 0 0 0

delay bu is shows that a p ogram can be
split up and placed in two different parts
of memory. and still run.

And this is what we have done.

Half the program is located at 03P0 and
the other half at atisA. This makes the
Micro jump up and down in ROM as it
executes the program.

The jumping back and forth does not
occupy many clock cycles but it does
increase the overall time by about 5%.

We calculated the time delay to be so
long that you may never see the display
increment! This is due to the low clock
speed. At 70k Hz. the Z-80 is operating far
below its normal rate and a delay like this
introduces many millions upon millions of
clock cycles.

WHY 00 WE NEED DELAYS?
Delays are very important in micro
programs. Due to the high speed of
the execution of machine code

LD Ain
ED I,A
LD DE,FFFF
LD HLIFFFF
DEC HL
LD A,H
OR L
JP 045A

JP NZ,03FA
DEC DE
LD A,D
OR E
JP LD NZ,

A
03F7

,1
OUT (02),A
INC A
LD I,A
JP 03F4

instructions, some parts of the program
must be slowed down so that humans can
be involved. This may be for the video
aspect, so that the eye can see what is
being outputted on a display or for the
audio side, so that we can detect tones
and beeps.

Delays are also needed to give a
SUSPENSE EFFECT for games of chance
or strategy to give the impression that the
computer is taking time to think.

Or for a video game, to create rates-of-
movement for objects moving across the
screen.

The delays we are talking about are
PROGRAM DELAYS or SOFTWARE
DELAYS. They are produced when the
micro 'wastes time'. The simplest way of
wasting time is to fill a register pair with a
large number and gradually decrement it
to zero.

By decrementing a single register. the
maximum number of loops which can be
executed is 256. Each 1000 may take 20
clock cycles and at the normal running
frequency of a system (about 1 MHz). the
delay time will be very short. By using a
REGISTER PAIR. the time can be
increased 256 times. The delay becomes
more noticeable and will be about 2
seconds.

If we require longer delays we can add
another register-pair and increase the
delay to more than 131,000 seconds!

When the system is operating at only
70k Hz. the delay time turns into hours.
days and months!

There is one point to note here: When a
micro is performing a very long delay. the
entire computer time is being taken up
with a COUNT DOWN sequence and this
means the micro will not be updating
information on the displays or looking at
the input port.

If you require other operations to be
attended to. they must be included in the
loop, as can be seen in the clock program
at 0630.

TALKING ELECTRONICS No. 14 7

When we use two register pairs to create
a very long time delay, we do not place
one pair after the other as this would only
double the time delay. We place them ON
TOP of each other so that the effect is
MULTIPLICATION. This means one pair
is INSIDE the other and we say it is
HIDDEN or NESTED. This arrangement
gives rise to the term NESTED LOOP.
This is what we are creating in this
section.

The simplest method of increasing the
delay is to add the instruction: 10 FE.
This will have the effect of adding 256
cycles to the delay time. This is a DJNZ
instruction and operates with the B
register. The advantage of a DJNZ is it
does not affect the accumulator. In the
Microcomp we do not have any RAM and
we cannot save the accumulator via a
PUSH operation since we do not have any
STACK. Thus it's an advantage not to
alter the contents of the accumulator.

DJNZ loops are not nested loops but are
additive and require the B register to be
zero at the start of the delay routine to
create the longest delay. At the end of a
DJNZ the B register is zero and this is
ideal for the next DJNZ.

DJNZ's can be grouped thus:

DJNZ FE zo FE
DJNZ FE to FE
DJNZ FE to FE
DJNZ FE to FE
DJNZ FE so FE

0 • 9 COUNTER
The first counter we are going to study is
a 0-9 UP COUNTER. This is located at
address 0370 and will show us how to

0 0 0

0 0 OtO •

output numbers on o the display and how
the INCrement operation is performed.

The main fact to remember with the
program is the computer is NOT adding
numbers. It is simply going through a
table of values and it is the values it
fetches that create the increments on the
screen.

The table could be designed to produce
letters or symbols and we would lose the
effect of incrementing.

The requirements of a counter are these:

The computer must detect when a button
is pressed and distinguish it from other
buttons. In our design button A
corresponds to BIT 7 and button B to BIT
6. of the accumulator.

The program must be running or
LOOPING at all times ready to instantly
pick up an input value.

Because the program is running at high
speed. we must include a DEBOUNCE
feature to prevent more than ONE
COUNT being registered when a button is
pressed.

With these facts in mind. we have
produced the 0-9 COUNTER.

The program contains 2 loops. One is
executed when button A' is NOT pressed
and the other when the button is
PRESSED. We also have to detect when
the end of the BYTE TABLE is reached.

0 - F COUNTER
This routine, at 0390. increments the
display each time button A is pressed.

0 0 0 0

0 0 0 •

The ma n program for producing the
letters on the display is located at 03A8
and the micro jumps to this address via
the instruction JR 03A0. The main
program is also used by the A -1 0 • F
counter and shows how the same table
and output program can he accessed by
two different START-UP ROUTINES.

LDC 110 0390
LD DE,o3DF 0392
LD HL,0390 0395
JR 03A0 0391

A - Z. 0 F COUNTER
This counter is located at 03A0 and

0 0 0 0

0 0 0 0

produces the lette s A • F and hex values 0
• F on the disp ay via button 'A'.

LD CIA
LD DE,03C5

IN A,(01)
sir 7,A
JR

C Z DEAD

OUT (02),A

BIT 7A
JR NI,0302

JR 03AS

LB HL,03A0

IN
LD LADE)

IN A,(61)

DEC C

	

JR Z,03BD 0358
	IS EB

	

o3AS 	DB 01
°IAA CB 7F
03AC ze FA
o3AE 13
o3AF IA

	

0382 	DB Os

	

0354 	CB 7F

	

03E9 	20 FA

	

03Bil 	oD

	

03139 	28 02

	

03Ao 	of 2A

	

03A2 	11 C5 03

	

03A5 	21 Ao 03

	

0350 	D3 02

03RD E9 JP (HE)

Tho 3 counters in this section Lisa the table at
03C6.The 0-9 counter uses only those bytes
corresponding to 0-9 Tho 0-F counter uses
bytes from 0 to the end of the table

The A , Z.0-F counter uses all the tebill

In addition, the 0-F counter uses nto:d el the A-
Z, 0-F program and that s why it bas only 4
instructions

At 03Cit

A 77 V IC
7C 4E

C 39 w 4C
D SE 6E

B

E 79 1B
F 71 0 3F

3D 1 06
H 76 2 5B

04 3
J 1E 4 66
K 72 5 OD
I. 31 7D
X 47 6 07

N
37 • 7F
3F 67
73 A 77

Q 47 B 7C
33 C 39

S ID D SE
T
U

71
3E

E 71
71

By now you will be aware that certain
combinations of hex values produce
letters and numbers on the display.

Use the program at 0290 to produce the
numbers 0 9 and letters A F. by
switching ON the correct switches. Use
the output display values on P68 to assist
you in this. Add the value on the switches
and compare with the table et 03C6.

of 10
II DF o3
2190 03
it of

0 • 9 COUNTER
LD CleA
LD DE,e3DF
IN At(01)
BIT 7,A
JR 40375
INC DE
LDArE)
OUT 12),A
IN A,
BIT 7 A

DEC
JR

 C
NZ,037F

JR Z•0370
JR 0375

0370
0371
0375
0377
0379
037E
037C
037D
037F
0311
0313

One
0311e

of oA
tt DF 03
DB et
CB 7F
MI FA

IA
D3 01
DB OI
CB 7F
a FA
oD
2/I ES
10 EB

Register C is the counter tor the BYTE TABLE There are ten bytes
The DE register pair is loaded with the met-address or the byte table
The input latch is looked at and the value it holds is placed into the accumulator.
The only line (or BIT) which is tested Is bit 7 This Is the Bth line and rs button A.
II rt is HIGH lor SET) the program advances. If it Is LOW for RESET), it goes to. IN A.(01I.
INCrement the DE register pair to look at address MO.
The byte al 0380 is placed in the accumulator
Output this byte to the display-
Look at the input port
Test bit 7 el the accumulator
Jump to address 113713 if button A is pressed When button is mimed. advance to next line.
Decrement the BYTE COUNT register.
Pend of table is reached. JUMP to mart of program. If not reached. go to 4375.

72 TALKING ELECTRONICS No 14.

66

7D
07
7F
67

Register E holds the present COUNT VALUE in decimal form.
Load E into the accumulator so that it can be operated upon.
Mask off the 4 HIGH ORDER bits. In other words. remove them.
Load HL with the start of the BYTE TABLE that produces the display numbers.
Add The stan of the byte table to the accumulator.
Load the accumulator into L to produce a new pointer value.
Load the accumulator with the byte pointed to by the HL register pair.
Output this value to port 2.
Load E into the accumulator again. this time to produce the 10's value.
Shift the bits in the accumulator one place to the right.
Shift the bits in the accumulator another place to the right.

Mask the 4 HIGH ORDER bits so that they are effectively removed,
Load HL with the start of the byte table.
Add the value of L to the value in the accumulator.
A new pointer value is created.
Load the accumulator with the byte pointed to by the HL register pair.
SET bit 7 of the accumulator to '1' to turn on the 10's display.
Output the value of the accumulator to the latch.
Input the value on the switches to the accumulator.
TEST hit 7 to see if button A is pressed.
If it is zero. pump to 024*. If it pressed,increment to next instruction.
Load E into the accumulator. ready for an INCrement operation.
Increment the accumulator.

17 	Decimal adjust the accumulator. This means an A will be changed into 10.
Save the new count value by loading it into the E register.
Jump to 0431.
From 0422. the program jumps to this address and tests for button B.
If not pressed. the program jumps to 0402. If pressed. the program increments.
Load the COUNT REGISTER into the accumulator.
Decrement the accumulator.
Decimal adjust the accumulator. This will change a zero into a 9.
Save the count value by loading it into the E register.

tE oo
7B
ES OF
it Eo 03
85
6F
7E
D3 az
7B
iF
IF
IF
IF
ES of
21 E003
as
bF
7E
CB FF
D3 02
DB 01
CB 7F
18 06
7B
3C

SF
18 08
CB 77
28 D4
7B
3D
27
5F
7B
Eft OF
21 Eo o3
85
6F
7E
1302
7B
IF
IF
IF
IF
E6 OF
21 Ea 03
85
6F
7€
CB FF
D3 02
DB 01
CB 7F
20 DE
CB 77
20 DA
IS Al

The remainder of the program keeps both
displays illuminated by looping from 0432 to
0436 while either of the buttons remains
pressed. As soon as the button is released. the
program jumps back to 0402 and executes the
top loop.

00 • 99 COUNTER

Counters and counting are a very
important part of electronics. Business
and industry needs counting. Whether it
be to keep track of money or
components, it needs to know the
answers.

The counter program at 0400 shows the
basics of how a counter operates and
how the COUNT VALUE can be held in a
single register pair.

Functions such as INCREMENT.
DECREMENT and RESET can also be
included. The most involved part of the
program is debouncing the switches, to

LD E,00 	 0400
LD A,E 	 0402
AND OF 	 0403
LD HL,o3Eo 	0405
ADD A,L 	 0408
LD L,A 	 0409
LD A,(HL) 	040A
OUT (01),A 	04011
LD A,E 	 040D
RRA 	 040E
ERA 	 040F
ERA 	 0410
RRA 	 0411
AND OF 	 0412
LD HL,03Eo 	0414
ADD A,L 	 0417
LD L,A 	 0418
LD A,(HL) 	0419
SET 7,A 	 041A
OUT 02)4 	041C
IN A,(01) 	 041E
BIT 7 A 	 0420
JR ZIo42A 	0422
LD A E 	 0424
INC A 	 0425
DAA 	 0426
LD E,A 	 0427
JR 0432 	 0428
BIT 6,A 	 042A
JR Z,0402 	042C
LD A,E 	 042E
DEC A 	 042F
DAA 	 0430
LD E,A 	 0431
LD A,E 	 0432
AND of 	 0433
LD HL,O3EO 	0435
ADD A,L 	 0438
LD L,A 	 0439
LD A,(HL) 	043A
OUT (02),A 	043B
LD A,E 	 043D
ERA 	 043E
RRA 	 043F
ERA 	 0440
ERA 	 0441
AND of 	 0442
LB HL,03Eo 	0444
ADD A,L 	 0447
LD L,A 	 0448
LD A,(HL) 	0449
SET 7 A 	 044A
OUTi02),A 	044C
IN A, m; 	 044E
BIT 7,A 	 0450
JR NZ,0432 	0452
BIT ItIA 	 0454
JR NZ,o432 	0456
JR 0402 	 0458

prevent the count automatically
incrementing if the button is kept
pressed.

0 0 0 0 0 0 0

O

0400

The program basically consists of two
loops. The top loop is executed when the
buttons are NOT pressed and the lower
when either of the buttons is pressed.

This is necessary to keep the displays
illuminated while at the same time
preventing 	the 	programfrom
incrementing the displays if a button is
kept pressed.

at 03E0:

3F
06
SB
4F

TALKING ELECTRONICS No. 14 73

04F5 7E
0416 DI 02
o4FS 06 oA
04FA to FE
041C 23
o4FD 7E
o4FE D3
050o 06 oA
0502 10 FE
0504 23
0505 7E
0506 D3 02
opt 	06 oA
050A to IF
one 2B
0500 2D
050E 15
050F 20 E4
0511 AF
0512 D3 02
0514 DB 01
0516 CB 7F
0518 20 FA
051A

Load A with the value pointed to by HL

Output the value to port 02

Load B with a short delay value.

Create a short delay with register B.

Paint to next display address

load the value pointed to by HL into A
Output to port 02.

Load B with re short delay value.
Create a short delay with register B

Inc HL to look at next address

Load value pointed to by HL in the accumulator.

Output to port 02

Load register B with a short delay value
Decrement register 13 to zero.

Dec HL to look at sten of display table

Decrement multiplex miaow loop counter.
Loop again it D is not zero.

Zero the accumulator and output to port 02 to

blank the display.

Look at the output pon to see if button A is NOT

pressed before re•sterting the DICE program.
Loop is A is pressed.

C3 70 04 Jump to start of DICE pregnant

DICE
The DICE Program at0470 introduces a
few more programming skills.

0 0 0 0

0 0 0 0

The fi st o these is a RANDOM
NUMBER GENERATOR. Random
numbers are almost impossible to
generate via a computer due to it being a
very predictable machine. The only
reliable way to get a random number is to
introduce the human element.

This is what we have done in this
program.

At the start of the program a running LED
routine moves a single LED around the
4x4 matrix. The ON time for each LED is
created by a delay routine that uses the
abd C registers. The C register is loaded
with 6 and decrements to zero. Each time
this is done, the B register is
decrementod and when it reaches zero.
the LED jumps to the next location.

The random number is generated in the C
register and we can exit from the program
with a value remaining in C. Since C is the
inside loop of the delay it is decrementing
very fast and it is not possible to predict
what value C will contain.

If it were the outside loop it would be a
different matter. Players would gradually
get to understand that pressing et the
beginning of cycle would generate a low
number and at the end of a cycle. a high
number.

Owing to the unpredictability of the
human reaction, an even spread of
numbers from 1 to 6 is created with our
routine.

The second feature of the program is the
COMPARE and BRANCH.

After the random number has been
obtained, a number of flashes are created
on the screen and then the accumulator is
compared with the random number
before jumping to the display routine.

This routine is a very simple multiplexing
routine in which three bytes are outputted
for a period of 80 cycles.

The program then detects that the input
button has been released and jumps to
the start of the program.

If a button-check was not made, the
same number would appear on the
displays due to a constant number of
cycles insuring in the program for each
game.

At 04D3:

71
72
74

BS
DS

—

—*LB
LD

—*LD

DloC
HL,o4D3
A,(HL)

(02),A
HL

B,15
C,ob
Mot) /—

7,A

00447750
0472

0476
0478

0479
0478
047D
0471

21 D3 04 	HI. will point to the byte table address
71E6 OC 	C is the byte table COWIEEli for the Mot

A is loaded with thevalueof the first byte in the table.

D3 02 	The accumulator is outputted M pore 02

23 	 The byte table pointer in incremented

06 15 	Load B with 15. for a delay value of 21 loops

OE 06 	Load C with 6. for the dice values. 0.6

DB 01 	Input front The input port to the accumulator.

CB 7F 	Check to see il button A has been pressed

20 OA
oD 	

If pressed. lump out of the delay mutate

Devilment legister C

20 F7
10 F3 	

If C Is not m.o. lump up. II C zero. advance

15 	

Decterneet B and of not zero. Jump up

28 ES 	
Decrement the byte Haile register D

18 ES 	
When D H ewe lump to an of penman

Load 0 with 6 for six flashes of the display.

3E OF 	

II not zero. continue DELAY ROUTINE

16 06

D3 02 	
Load A to turn on the whole Axe display

10 FE 	
Output to port 02
Register B is elecremented to create a Malty

a FF
D3 02 	

load A with a value to turn axe OFF

10 FE 	
Output to pert 02.
Create a Mina delay with register B

15 	Decrement the gosh-count rimester

20 Fl 	Loop

16 80 	
far 6 flashes

Load D toe 80 loops for multiplexing routine

79 	 Load our random number into the accumulator.

21 a 04 	larad HL with address of table for multiplex routine.

FE CI 	Compare the accumulated with I

CA F5 04 If me accumulator n 1 Jump to multiplex routine

21 E3 04
FE 02
	load HL with Han address for displaying '2

Compare the accumulator with 2

CA F5 04 	If accumulmor is 2. jump to multiplex r1/ 11111111,

21 FA 04 	Load Ill with start-address for displaying 3
FE 03
CA Fe 04 If

Compam liccumulator with 3

aecumulator M 	 to 3. lump 	multiplex routine

ad 04 	Lo 	HI with stare nddress for displaying 'et F 21 E 04 	
Compare the accumulator with 4

CA 15 04 	II accumulator is 4. lump to multiplex runtime

Load HL with stars-address for displaying "6 we weir 0. 	re rt

FE

l 	w
OS

CA 15 04
Compare accumulator with 5

a accumulator is 5. pump to multiplex routine.

21 EF 04 	Load HL with start-address for displaying 6.

FE 06
CA 15 04

Compare accumulator with 6
Jump to multiples routine rs accum is 6

9 E4

OUT
INC
LD

r

LD
IN
BIT
JR
DEC
JR
DJNZ
DEC

—JR

NZ,o4SD
C

NZ,o47D—
047E

D
Z,0470
0475
DM, 4

0481
0453
0484
0486
0488

0439
042B —JR

LD
*LD

OUT
DJNZ
LD
OUT
DJNZ
DEC

LD
LD

CP of

-JR ta,o4IF

LD IlL,04E0

A„oF
(02),A

0493
A,FF

(02),A
0499

D

%Bo
A,C

40451
HL,04E3

HL104E6

too5F
HL,o4E9

HL,o4EC

Z10451

LD HL,04EF

JP Z,o4F5

0480
048F
0491
0493
0495
0497
0499
04013
049C
049E
04A0
04A1
04A4
04A6
04A9
04AC
04AE
0481
04B4
04116

O4BC
04B

048E
0044E41

04C6
04C9
04CC
04CE

4—JP
LD
CP 02

4—.113
LD
CP 03

41—JP Z,
LD
CP 04

4--JP Z,045F
LD
CP 05

46— JP Z1 0415

CP 06
41—

A lump value must be found and the micro lumps to the multiplexing routine below and
produces o display an the as that n similar to the spots on the face of a dice The routine
runs for 80 loops makes sure button A is not pressed. then jumps to the start of tho DICE

52 52 52
00 84 54
58 58 58

El
E4
ES
El
DI
B1

P LD A,(HL)
OUT (oz),A
LD BAA
DJNZ O4FA
INC HL
LD A,(HL)
OUT (02),A
LD B4OA
DJNZ 0502
INC HL
LD A,(HL)
OUT (02),A
LD B4OA
DJNZ 050A
DEC HL
DEC HL
DEC D

— JR NZ, 04F5
I 	XOR A

OUT (02),A
IN A,01
BIT 7,A
JR NZ,0514
	JP 0470

At 04E0:

B4
00
00

0,09,an,
D2 	72
oo 	B4
78 	De

74 TALKING ELECTRONICS No id.

PC ARTWORK:

NON-VOLATILE RAM

I L

PC ARTWORK:

-1 	 TF

CONTINUITY
ata
 4)41Cq

0CLoo.0070

1111 124.° TE TER 	0- 	4 ''.°--"-m-g)
rTEC

xTAL
OSCILLATOR

1111111111j118-1

1111111k.

I-

*CAR ALARM
* ULTIMA

(A 1 km TRANSMITTER), .*4
*SPEECH MODULE t.• 4"

a

K

* FM RADIO

* DAT BOARD
	

* ORGAN

N
Oo ao
gi

#12

ROMCS®
$3.00
$4 60Nz

line no 15

Completed DAT board displaying
"TALKING ELECTRONICS." See the DAT
board article starting on P. 47, and
LCD article on P.52. Read the whole
TEC article before starting anything!

TEC TALK
This page is for TEC owners. Through
this, we can conduct a foram on the
uses and future of the TEC. As we can-
not reply to every letter sent in, we will
attempt to answer letters of common
interest through this page.
When writing in, put your letter on a

seperate page if you are ordering kits
etc. This helps us file things in some
son of reasonable order.

SENDING IN PROGRAMS
VIA TAPE

We are looking forward to readers
sending programs to us. There aren't
any in this issue due mainly to the
shortage of space_ Hopefully, issue 16
will contain several pages or more.
A big factor in deciding weather or not

we pulistl a "reader send-in" is the way
the program is sent to us.
If you do have something to send, here

is what we want you to do.
Provide us with a copy of the pmgrani

Save it on tape with a crystal speed of
half 3.58MHz. Put your name and ad-
dress on the tape so we can send it back,
if requested.
We also need documentation on the

prop-am. Write what it does and where
it runs in memory and include any notes
you may have generated. The first thing
we will do is disassemble it and load it
into our IBM clone. Here we can format
it for publishing.
For the sake of our disassembler,

please, if you can, put tables at the end
of the program code and write down
where the tables are located. This way
we can use our HEX dump routine and
tack the tables on at the end of the code.

JMON UP-GRADES
JMON has been designed to be up-
graded without losing software com-
patibility.
Sonic likely changes are the removal of
the low speed tape save (unless there is
a storm of protest). This will decrease
the software overhead in the tone
routine and even-up the period meas-
urement. The result will be an increase
in the tolerance of different TEC fre-
quencies and different tape speeds. This
should make it possible to freely inter-
change half 3.58M1-lz and half 4.?vIliz
tape software as well as allowing poorer
quality tape players to be used.
The single stepper, which has no effect
on the MONitor at all, may be shifted to

a more specialized ROM to in-
crease the stepper's abilities.
The keyboard and LCD RST's
will not be changed, so any
routine you write using these
will run on future up-grades.
The same cannot be said if you

directly call into JMON. So don't do it!
ISSUE 15 CONTENT

Missing from the TEC section are two
usual features. The reader send-ins and
tutorial section.
The reason for this is mainly due to lack
of room. Already the TEC section is the
largest ever and the material left over
will be a good start for issue 16.
A different direction is planned for

issue 16. The basic lay-out will be two
MAJOR add-ons and the rest of the
article will be filled with programs
(mine. and yours, so send them in).
There are a couple of reader send-ins
that we intend to publish, so if you have
sent something in already, we haven't
just tossed it in the bin!

JIM's PACKAGE
This package is centered

around JNION. The main
feature is a complete line-
by-line disassembly of
the JMON ROM. I hope
that, with careful study,
you will be able to look at
any instruction and un-
derstand its role.
My programming style
is very optimized.
Generally my programs
arc short and to the
point, This does make
them a little difficult to
read but at the same time
by studying and learning
my ideas, your own
programming abilities
will be improved.
If the role of every in-

struction escapes you,
you will still learn impor-
tant concepts and a better
way to do some things.

I wish I had a Jim's
package when I was just
starting out!
The package will be 20

pages long as this is the
limit of our collating
photocopier. If there is
enough room, some other
notes and programs will
be included.
It is a pity that such a

listing was not available
for the earlier MONitors.

Because Jim's package contains every
byte in JMON, you can actually hum
your own JMON ROM.
Keep in mind that this means typing in

2k worth of program and one mistake
will ruin the whole MONitor.
If you feel up to it then go to it. We

don't mind you doing this ONCE for
YOUR OWN USE.
This offer does not apply to schools or

commercial buyers.
If you don't wish to try to type out

JMON, I present you with this offer:
Purchase and pay for JMON and Jim's

package together, and save $3.50.
This means the total price for both is

$27.50 instead of $31

ISSUE 16 and the TEC
Most of issue 16's TEC pages have

been allocated and about half of these
are already finished.
If you have some thing for us, don't

waste time if you want the chance to see
it in print.

- Jim

TALKING ELECTRONICS No. 15 17

INTRODUCTION
A discussion on Talking

for the TEC

JMON is a big step ahead for the TEC.

Some of the contents of JMON are: a
highly improved Monitor Program, a
versatile Tape Storage Program,
software for driving a liquid crystal dis-
play, a Menu Driver for utilities, a
Perimeter Handler, User Reset Patch,
Single Stepper and Break Pointer with
mgisterdisplay software, and simplified
access to utilities and user routines.

JMON also uses indirect look-up
tables stored in RAM. This idea leaves
the door open for many possibilities.

All the above and more is contained in
2k bytes.

The following is a description of the
major blocks in the ROM.

THE MONITOR PROGRAM
To support new features added to the

TEC, a new interactive monitor
program has been written. The new
monitor is, by itself, a considerable
upgrade over previous monitors and
when combined with other software in
the monitor ROM, gives great features
for the TEC user.

Major improvements have been made
in the MONitor software, to allow
quicker entry and editing of code. This
has been achieved by adding such fea-
tures as auto key repeat and auto incre-
ment. If you add the LCD, its larger dis-
play and cursor control software open
up a second level of improvement.

THE TAPE SOFTWARE
The TAPE SAVE facility is versatile

and reliable.
Some of the functions include: 300

and 600 baud tape SAVE, auto execu-
tion, LOAD selected file, LOAD next
file, LOAD at optional address, TEST
tape to memory block and TEST tape
effect sum. Both tests may be combined
with other options.

The tape software uses the universal
MENU driver and perimeter handler.
These routines allow easy selection of
cassette functions (e.g. Load. Save, etc.)
and easy passing of variables to the tape
software.

Electronics latest monitor
computer

Article and monitor by
Jim Robertson

The tape software contains check-sum
error detection that allows the user to
know if the load has failed. A check-
sum compare is performed after every
page (256 bytes) and also after the
leader is loaded. This means the user
does not need to wait until the end of a
load or test for error detection.

Each full page to be loaded, tested or
saved, is displayed on the TEC LED
display. Up to 16 pages are displayed.

Upon completion of a tape operation,
the MENU is re-entered with an ap-
propriate display showing:-END -S
(END SAVE); PASS CS (CHECK
SUM); PASS Tb (TEST BLOCK);
PASS Lid (LOAD); FAIL CS (CHECK
SUM); FAIL Tb (TEST BLOCK);
FAIL Ld (LOAD).

The one exception is when an auto ex-
ecute is performed after a surressful
load.

The tape software will display each
file as it is found and also echo the tape
signal.

LIQUID CRYSTAL
SOFTWARE

This software is called from the
monitor program. It is possible to de-
select this software to allow the liquid
crystal display to perform a user-
defined purpose while the monitor is
being used.

The Liquid Crystal Display is being
accessed as a primary output device to
the user during the execution of the
monitor. Eight data bytes are displayed
at a time and a space between each for
the prompt (it appears as a "greater
than" sign). Four digits in the top left
hand corner show the address of the first
byte.

In the bottom left hand comer is a cur-
rent mode indicator and this lets you
know which particular mode JMON is
in. E.g. Data mode, Address mode etc.

The prompt points to the next location
to have data entered, or if at the end of
the 8 bytes being displayed, the prompt
parks at the top left corner indicating a
screen change will occur on the next

data key press. This allows revision
before proceeding.

It is possible to use the monitor with
only the LCD unit, the only drawback
being the actual current value of the ad-
dress pointer is not displayed (the value
shown in the address portion of the LED
display). However this is only minor.

MENU DRIVER
This is a universal routine used to

select various utilities routine from
JMON. It is already used by the tape
software and the utilities ROM. It may
also be easily used by the TEC user.

The Menu Driver displays names of
functions in the TEC LED display. The
number of different names is variable
and may be user defined. It is possible
to step lanyard and backward through
these names.

A 3-byte jump table with an entry for
each name provides the address of the
required routine. A jump is performed
upon "GO."

To have a look, call up the cassette
software by pressing SHIFT and ZERO
together. If you have not titled a shift
key, the cassette software can be ad-
dressed by pressing the address key,
then the plus key, then zero.

To move forward through the MENU,
press "+". To move backward. press
-". Notice the automatic FIRST-TO-

LAST, LAST-TO-FIRST wrap around.

Pressing "GO" will take you into the
perimeter handler.

PERIMETER HANDLER
Like the Menu Driver, this is a univer-

sal program and may be easily used by
the user.

This routine allows variables to be
passed to routines in an easy manner.
The variables are typically the start and
end address of a block of memory that
is to be operated on. such as a load, shift,
copy, etc.

A 2-character name for each 2-byte
variable is displayed in the data display
while the actual variable is entered and
displayed in the address display.

The number of variables may be from
I to 255 and is user definable.
The data display is also user definable.

It is possible to step forwards and back
through the perimeter handler in the
same fashion as the MENU driver.

When a "GO" command is received,
control is passed to the required routine

18 TALKING ELECTRONICS No. is

TALKING ELETIOCG COMM

MAZE

via a 2-byte address stored at 0888 by
the calling routine.

The SINGLE STEPPER and
BREAK POINT handler.

A single stepper program can be im-
portant when de-bugging a program. It
effectively "runs" the program one step
at a time and lets you know the contents
of various registers at any point in the
pm gram.

If you have ever produced a program
that doesn't "run", you will appreciate
the importance of a single stepper.
Many times, the program doesn't run
because of an incorrect jump value or an
instruction not behaving as the
programmer thinks.

The single stepper runs through the
program one instruction at a time and
you can halt it when ever you wish. By
looking at the contents of the registers,
you can work out exactly what is hap-
pening at each stage of the program.

The single stepper operates by access-
ing a flip flop connected to the Mask-
able Interrupt line of the Z-80. It can be
operated in the manual mode, in which
a single instruction is executed after
each pres of the "GO" key. In the auto
mode. 2 instructions are executed per
second.

BREAK POINTS
Break points work with groups of in-

structions. They allow register ex-
amination in the same way as a single
stepper. The advantage of break points
is that there is no time wasted stepping
slowly through a program. This is par-
ticularly important as some programs
contain delay loops and they may take
weeks to execute at aiz!

Break points arc one of the most effec-
tive ways to debug a program!

STARTING WITH JMON
JM ON is straight forward to use. Some

new habits must be learnt, however they
are all quite easy.

NI ON has 4 modes of operation. They
are:

DATA MODE, ADDRESS MODE,
SHIFT MODE and FUNCTION
MODE.

The data address and shift modes are
not new but have been, in pan, changed
in their operation. The function mode is
new to the TEC and I am sum you will
find it useful. Below is a description of
each mode.

THE DATA MODE
The data mode is used to enter, ex-

amine and edit, hex code into RAM
memory. It is identified by one or two
dots in the data display and the word
"DATA" in the bottom left hand corner
of the LCD display. It is similar to the
data mode on all previous MONitors.

The data mode has a sub-mode called
AUTO INCREMENT. This is a default
setting, meaning that it is set to auto in-
crement on reset. The user may turn off
the auto increment sub-mode if desired.

When in the auto increment mode, the
current address pointer in the address
display is automatically pre-incre-
mented on each third data key press.

A SINGLE DOT in the RIGHT-
MOST LED display indicates the cur-
rent address will be incremented
BEFORE the next nibble received from
the keyboard is stored.

This allows the user to review the byte
just entered. If an incorrect nibble is
entered, the internal nibble counter
MUST BE RESET by pressing the AD-
DRESS KEY TWICE. Then two nib-
bles may be entered at that location.
This is a slight annoyance at first, but it
is a small price to pay for such a power-
ful feature as auto increment!

After two nibbles have been entered,
the prompt on the LCD is. IM-
MEDIATELY updated and points to the
next memory location, or in the case of
the last byte on the LCD, the prompt
PARKS AT THE TOP LEFT CORNER
signifying an entire screen update
UPON THE NEXT DATA KEY
PRESS.

This allows the user to revise the
entered code before continuing.

You must be in the data mode to per-
form a program execution with the
"GO" key. (Actually, you can be in the
SHIFT mode also.)

Because of the auto key repeat, and
"auto increment", it is possible to fill
memory locations with a value by hold-
ing down a data key. This may be use-
ful to fill short spaces with FF's or
zero's.

Because the LCD prompt is advanced
immediately after the second nibble
being entered while the LED display is
advanced on the third nibble received,
the "+" key will advance only the LED
display while the "-" key will shift the
LCD prompt back two spaces, if either
are pressed immediately after the
second nibble is entered. This may seem

strange but is the result of a clever
design which allows for revision of
entered code on either display before
proceeding.

ADDRESS MODE
This is identified by 4 dots appearing

in the address display of the LED dis-
play and "ADDR" in the LCD bottom
corner.

The address key is used to toggle in
and out of this mode.

TEC INVADERS
AND MAZE

These two games come on a 10
minute tape with instructions and a
detailed diagram of the "invaders"
screen showing the various charac-
ters.

The instructions are bask but suf-
ficient. One VERY IMPORTANT
omission is the &OS is connected to
PORTS 5 and 6 for both games.

Both games are very entertaining
but invaders suffers a little by the
limitations of the 8x8.

However it does impose a chal-
lenge and you can constantly improve
on your score.

Maze dose not suffer one bit by the
limits of the Rx8. In fact the 8x8 is
perfect for the Maze. The scrolling
effect has to be seen to be appreciated.

Maze is a game to keep you oc-
cupied for hours.

See Camerons tape #1 on P. 39.

TALKING ELECTRONICS Na 19 19

The address mode will be entered by
an address key press from either the data
or function mode. An address key
pressed while in the address mode will
result in a return to the data mode.

While in the address mode, data keys
are used to enter an address while the
control keys (+, -, GO) are used to enter
die function mode. No auto zeroing has
been included, therefore 4 keystrokes
ate required to enter any address.

SHIFT MODE
This mode allows easy manual use of

the tumor. The shift works by holding
down the shift key and at the same time,
pressing a data key.

The monitor must be in the data mode
and only data keys work with the shift.

Sixteen functions are available but
only ten have been used in this monitor.

The shifts are:
Shift-zero: Cassette MENU is dis-

played-
Shift-one: Cursor back one byte.
Shift-two: Stan single stepper at cur-

rent address.
Shift-four. Cursor forward 4 bytes.
Shift-five: Break from shift lock (see

function mode).
Shift-six: Cursor back 4 bytes.
Shift-seven: Enter register examina-

tion routine.
Shift-eight: Cursor forward 8 bytes.
Shift-nine: Cursor forward I byte.
Shift-A: Cursor back 8 bytes.

Note that I, 4, 6 and 9 form a cross and
8 and A form an arrow and each is posi-
tioned to correspond to their cursor
movement.

Keys 1 4, 6 and 9 move the cursor
LEFT, RIGHT, UP AND down on the
LCD.
Key "A" shifts the screen back to

display the previous eight bytes.
Key "8" shifts the screen forward

eight bytes.

When editing a program, the shift
enables fast movement through the
memory. Data entry is achieved by
releasing the shift key.

The shift mode is not identified ex-
plicitly on either display.

THE FUNCTION MODE
This has been provided to enable a

quick way to call commonly used
routines. Only three keystrokes are re-
quired invoke up to 48 different
routines.

The function mode is broken up into 3
sections.

They are: Function select-I, Function
select-2 and Function select-3.

Each is identified by a single dot in the
address display: right-most for function
1. second right for function 2 and third
right for function 3. On the LCD dis-
play, the functions am identified by: Fs
- 1. Fs - 2. or Fs - 3 in the bottom left
COMM

Fs - I Fs-2 and Fs-3 are entered FROM
THE ADDRESS MODE by pressing
the "+" key for Fs-1, tbe "-" key for Fs-
2, the "GO" key for Fs-3.

It is possible to swap between sections
without coming out of the current func-
tion mode by pressing the required func-
tion select key. After entering the re-
quired section, A DATA KEY IS THEN
USED TO SELECT ONE OF SIX-
TEEN ROUTINES

The address of these routines are
stored in a look-up table.
SECTION-1 - the SHIFT-LOCK

FEATURE.
Section-I is selected FROM THE AD-

DRESS MODE by pushing the "+" key.
The keys 0, 1, 2, 4. 5, 6, 7, 8, 9 and A
then have the functions as listed in the
shift mode. (Key 5 has the function of
returning to the data mode.)

Cursor control routines return back to
section-I to enable continuous cursor
movement (shift-lock).

The look-up table for the jump addres-
ses for section-I is at 07E0.

SECTION-2
Section-2 is selected from the address

mode by pushing the "-" key. This is un-
used by any existing software and is
available to the user.

HERE'S HOW TO USE IT:
Using the section-2 is very easy. All

that is required is to enter the ad-
dress(es) of the required routines in a
table. The table begins at 08C0. The first
two bytes at 08C0 correspond to the

zero key in section 2. While the second
two (08(2) correspond to key one etc.

Here is a short program as an example:
08CO: 00 09 04 09 08 09
(These are the addresses of the

routines).

0900: 3E EB 18 06 3E 28 18 02
0908: 3E CD D302_ 3E01 D301

0910: 76 C9
Now push ADdress, "-", "0" and the

routine at 0900 will be CALLED from
the MONitor. Reset the TEC and try
ADMess, "-", "1" and ADdress. "-", 2.
Because these routines are CAI .1 RD

from the MONitor, you may use a return
(RET, C9 or RET NZ etc.) instruction
to re-enter the MONitor in the same
state as you left it. e.g. in the function
select-2 mode.

SECTION -3
This has been reserved for the utilities

ROM at 38011. The table finSection-3 is
at 3820.

USING THE
SINGLE

STEPPER
Getting the single stepoc in work is

simple enough, honey,. there is some
skill required to understand its limita-
tions and knowing how to :,void them.

To start with, you need a program that
you require to be SINGLE STEPPED.
This program may be anywhere in

memory except in the lowest 2k (the
MON ROM).

This is because the MON ..elect line is
used as part of the timing_ You nny call
into the MON ROM hut only i he it rst in-
struction will single dep. and when
returning out of the Rt tM. the next in-
struction will also not he stepped.
(However they will be exruuted at nor-
mal speed.)

Programs that use the T Firs keyboard
requite careful attention as you cannot
step them in the nomtd way. This is be-
cause there is no way to distinguishing
between key-presses for the single step-
per and those for the subject program.

This reduces the usefulness of the
single stepper a little however thought-
ful software design enables a fair degree
of flexibility and this problem may be
side-stepped.

20 TALKING ELECTRONICS Na if

The key use of the single stepper is as
a de-bugging aid. When you are writing
programs. effective use of the single
stepper usually requires that while writ-
ingyourprograms, you allow for the use
of the single stepper by leaving room to
place one byte instructions that turn ON
and OFF the single stepper.

Programs using the keyboard may be
stepped by turning OFF the stepper.
This allows areas requiring use of the
keyboard to run in real time while other
areas may be single stepped. This ap-
plies only to programs that use the
keyboard routines provided inside
JMON.

The only disadvantage here is that
after completing yourprogram you may
have NON lefl.(from where you
blanked over the single stepper control
bytes).

The keyboard controls for the single
stepper are as follows:

To start single stepping from the cur-
rent address, this is what to do: From the
data mode. press shift-2. This will start
the single stepper. The lust instruction
will be performed and the address will
he displayed as "PC" (Program
Count..rr) on the single stepper. To ex-
amine the registers, mess "+". The left
two rubbles correspond to the high order
byte :cut in the case of register pairs, the
leti-haul register. You may go back-
wards also by pressing "- ". The
register•.: displayed are : PC, AF, BC,
DE. I-IL. IX, IY, AF', BC', DE', HL'
and SP, in this order.

.rtep the next instruction. press GO.
You can also step continuously at about
Thy by pressing any data key.

WIKat in the auto step mode. you can
stop d any time and examine the
mgisten by pressing "+" or "-", or bring
it back to the manual mode by pressing
GO.

The adrInms key resets back to the
MONitor unconditionally. The control
bytes for the single stepper an, as. fol-
lows:

To stop single stepping in a program:
F3 (disable interrupt).

To restart in a program: EF (restart
28). This causes a restart to 0028 where
a routine passes the start address (which
is actually the return address of the res-
tart 28 instruction) to the single stepper.
It also enables the interrupts and then
returns to the next instruction which is
then single stepped.

'This SINGLE STEPPER is only a first
model. Hopefully, when more room is

available, some improvements can be
added. One improvement on the
"cards," is allowing it to be interfaced
with a utilities ROM. This ROM will
extend the display capabilities, allow
editing while stepping and to disas-
semble on the LCD each instruction as
it is stepped. If you have any ideas or re-
quirements, write in and tell us.

BREAK POINTS
Break points are locations in a

program where execution is stopped
and the registers are examined in the
same fashion as the single stepper. The
advantages over single stepping include
real time execution and less or no con-
trol bytes in a program. They also usual-
ly allow much quicker fault finding.

As a trade-off move, only a simple (but
effective!) form of break-point is avail-
able with JMON. This allows for more
MONitor functions and also eliminates
the need for extra hardware.

Mom complex methods automatically
remove the break-point control byte and
re-insert the correct op-code and allows
re-entry to the program.

USING JMON BREAK-
POINTS

Break points are achieved by using a
rescan 38 instruction. The op-code for
this is FF and all that is required is for it
to be placed where ever you require
your break point.

Before running your program, make
sure the TEC is reset to 0900. This is
necessary to clear the auto-repeat on the
stepper/break-point register display.
(Flus is explained in the LCD section).

Simply run your program as normal.
When the break point is reached, the
register display routine is entered. The
value of the program counter display
WILL NOT BE VALID on the first oc-
curring break unless you provided die
address of the break point at 0858. This
minor flaw was unavoidable without
considerable additional software which
would have "eaten" memory like there's
no tomorrow!

If you allowed for break commands in
your program, you may then have mul-
tiple breaks and step to the next break
with the GO key.

However if you placed a break com-
mand over an existing instruction then
no further breaks will be valid and you
should never try multiple breaks in this
case AS YOU MAY CRASH THE
MEMORY.

In the above case make a note of the
contents of the registers and return to the
monitor via the address key and then ex-
amine memory locations, if required.
(You may enter the register examim-
bon routine via shift-7). Further breaks
should be done by removing the exist-
ing break and placing it where required
and re-executing the program from the
start.

Some other good ideas are to load the
stack away from the MONitor's RAM
area. (08F0 is good but make certain
that 08FF does not contain AA - as this
prevents the MONitor rebooting its
variables on reset and your stack may
have accidentally crashed these vari-
ables.) Also, if you are using the LED
display scan routine in the MONitor
ROM, shift your display buffer to 08F0
by putting this address into 082C/2D.
Now you can examine your stack and
display values after returning to the
MONitor.

There is a conditional way to cause
breaks. To do this requires a condition-
al jump relative with FF as the displace-
ment. If the condition is met, the jump
is made and jumps back onto the dis-
placement which then becomes the next
op-code! Remember this as it is a very
useful idea You cannot continue on
with multiple breaks after a break
caused by this method.

Break points are a quicic way to debug
a program. It is very important that you
familiarize yourself with them. They
have been the single most important
programming aid used when writing
most of.INION and the utilities ROM.

SUMMARY:
Clear the auto-repeat via the reset.

: Use FF to cause a break
: PC not valid on first break.

: For multiple breaks, provide
spaces for the break control byte.

: Shift slack and display buffer
(optional)

: Use FF as displacement for con-
ditional breaks.

Finally, make sure you write down
when, where and why, each time you in-
sen a break-point.

ACKNOWLEDGMENT
Thanks to MR. C PISTRIN of Traral-

gon VIC. His SINGLE STEPPER
program for the MON- I ft inspired me
to include one in JMON and provided
me with a circuit for the hardware sec-
tion. 	See page 47 for the circuit

TALKING ELECTRONICS Ns IS 21

THE TAPE SYSTEM
This discussion covers all

tape save and its

TEC CONSIDERATIONS
The tape software works on any type

of TEC, the only consideration is the
various different dock speeds.

The following description generally
applies to TEC's with a crystal oscil-
lator that is fitted with a colour burst
(3.58MHz) crystal and divide-by-two
stage.

If you are still using a 4049 based os-
cillator, the tape system will work ok,
but it will be very important to note the
TEC clock speed when saving as the
TEC must be set to the same speed when
re-loading. Another problem can be the
drift in frequency over a temperature
range and the different oscillator fre-
quencies between TEC's.

When saving a tape, the best idea is to
wind the clock up to full speed, and then
turn back the speed control pot one
quarter of a turn. This will allow you
compensate for speed drift if ever re-
quired.

The tape also works very reliably with
a 4MHz crystal and divide by two stage,
however a tape written using a
3.58MHz oscillator cannot be loaded by
a TEC that uses a 4MHz oscillator, and
vice versa.

If you are sending programs into TE
on tape, they must be recorded with the
3.58MHz crystal. (divided by two).

The tape system has been extensively
tested and found to be very reliable
under a wide range of conditions. We
don't expect you to have any trouble in
getting it to work reliably for yourself.

LET'S BEGIN
To start with, you need a JMON

monitor ROM as the tape software is in-
side this ROM.

Secondly, you will need a cassette re-
corder with both "rnic" and "ear" sock-
ets. Any audio cassette player of
reasonable quality should be ok,
provided it has the two sockets men-
tioned above.

We have tested more than six types,
and found them to be quite suitable.

Thirdly, you will need to have con-
structed the cassette interface on the
LCD interface board and have made up
the two connecting cables, with 3.5mm
plugs on each end Finally you will need

the areas needed to use the
various options.

a new C60 or C90 cassette of the better
quality types, such as TDK or Sony. We
found the cheap tapes from the junk
shops or supermarkets to be unreliable.
(Some of them didn't work AT ALL, so
don't take the chance).

Now connect the "talc" on the tape re-
corder to the "tape out" from the TEC
and "ear" socket to the "tape-in" on the
TEC. (It's a good idea to mark the cables
between the recorder and the TEC to
prevent incorrectly connecting the
leads).

Insert a tape and we are ready to learn
how to operate the system.

HOW TO OPERATE THE
TAPE SYSTEM.

We will start by saving a few bytes at
0900. Enter at 0900 the following: 01 02
03 04 05 06 07 08 09 QA.

OK. Now connect up the tape recorder
as described above and call up the tape
software by pushing shift and zero at the
same time or Address, "+","0" consecu-
tively.
The TEC display will now show

"SAVE-H" and this is the heading for
SAVE at HIGH SPEED. Now select
this by hitting "GO"

The display will now have a random
two-byte value in the address display
and "-F' in the data display. The "-F' in
the data display is for the file number,
while the address number is just junk
from the RAM. You can enter a file

number by pressing the data keys. Enter
anything you want. The numbers you
enter will shift across in the same
fashion as when entering an address on
the MONitor. Then when you have
entered a file number, press the "+" key.
The data display will now show "-S".
This is where you enter the start of the
block you wish to output. Enter 0900,
and then press "+". The data displays
now show "-E." This is where you enter
the address of the last byte of the block
to be saved.

Enter 090A and press ''+". The next
data display is "-Cu". This is the OP-
TIONAL AUTO-GO address, this is al-
ways set to H-e-q-, by the software as this
is its NON-ACTIVE slate. i.c. NO
AUTO-GO upon a re-load. ANY other
value entered here will result in an
automatic execution upon a SUCCESS-
FUL LOAD AT THE AD-
DRESS ENTERED HERE.

We don't require auto execution, so
leave this at F1-H-.

Now press play and record on the tape
recorder and wait for the clear plastic
leader to pass if at the start of a tape. In-
cidentally, it is not a good idea to
remove this leader as has been advised
in another magazine, as it proiects the
tape from stretching and possibly break-
ing, when rewound.

When the tape is right, press GO. The
display will blank and a continuous tone
will be heard from the speaker. After a
few seconds the tile information 	be
outputted and then a period of high fre-
quency tone. This "middle sync," tone is
to cover the time that the filename is dis-
played when re-loading.

22 TALKING ELECTRONICS Na 15

After the high tone, the code will be
outputted and also a digit will appear on
the TEC LED display. This is the num-
ber of COMPLETE pages to be saved.
In this case it will be zero.

A point to raise here is that if you ever
accidentally enter a start address that is
HIGHER than the end address, when
GO is pressed, the software will detect
this and display "Err-In". In this case
Push "+" or "-" to go back to the
perimeter handler where you can cor-
rect the en-or.

When the code has been saved, a short
end tone will be heard and then the
menu will re-appear with "-END-S",
meaning end of save.

Once the code has been saved, rewind
the tape.

To re-load the tape press the "+" key
and you will see "SAVE-L" on the dis-
play, then "TEST-BL", "TEST-CS",
then you will come to "LOAD-T" (for
load tape). Note that there is no "TEST-
I? or "TEST-L" for low and high
speeds as the test and load routine will
load either speed automatically.

Press GO. The data display shows "-
F" for file number. This will be as you
left it when you saved. When loading or
testing from tape, the file number here
determines which file will be subject to
the selected operation. If you enter
ITTF Ikre, the next file found will be
used, regardless of its file number.

For now, we will leave it as it is.

Next push "+". The data display will
show "-S", meaning Start address. This
is always set to 1-1-1-1, by the software.
The start address allows you to option-
ally load a file or test a file at an address
different to the one on the tape, (which
is the address from which it was saved).
To demonstrate its operation and to
make it a more convincing trial, we will
enter OAOO. The file will now be loaded
at OAOO. If you press the "+" key again,
you will be back at the file name. ('This
last point demonstrates the program-
mable number of "windows" feature of
the perimeter handler. It was set up for
2 "windows" by a short routine entered
from the Menu driver before passing
control to the Perimeter handler,
remember that there was 4 "windows"
when you saved the file).

Now press GO.

The display will blank. Now start the
tape playing. The sound from the tape
will be echoed on the TEC speaker.
Soon the leader will be heard and it

should sound as crisp as when it was
saved. If not, experiment with the
volume. The interface allows fora wide
variation of volumes but 3/4 volume is
a good place to start.

After the leader has passed, the file
name is loaded and should appear on the
display. If it was not correctly loaded,
"FAIL-Ld" will appear. In this case ex-
periment with the volume and retry.
After a few seconds the file name disap-
pears and the number of complete pages
to load are displayed on the middle
digit_ The code is now being loaded.

The code is loaded very quickly and
hopefully a "PASS-IA" will appear. If
not, re-try with a different volume set-
ting. After you have successfully
loaded, hit reset and ADdress OA00 and
01, 02 etc. will be found.

If ynu are unable to get a successful
load after many attempts, then skip
ahead to the trouble shooting section.

Now we have a successful load, we
will experiment with the TEST BLOCK
function.

Change a byte in the OAOO block. Now
call up the tape software (Shift-0, or
ADdress, "+" 	select "TEST-BL",
and LEAVE Ill* at the optional start.
("-S") Then rewind the tape and play it
back like you did when loading.

At the end of the test, the display
conies back with "PASS-TB". Now do
this again, but this time enter 0A00 at
the optional start and H-Ft. for the file.
This will demonstrate the load/test next
file feature.

Because OAOO has been entered in the
optional start "window", the test will be
between tape and the code at OAOO.

Rewind the tape and press ''GO" on the
TEC, then play the tape.

Because a byte has been changed, the
test this time will fail and the display
will show "FAIL-TB."

Use the test-block feature whenever
you wish to compare a tape file with a
memory block or test that a save opera-
tion was successful.

If ever revising software on a tape of
which you do not have a copy in
memory, use the test checksum (TEST-
CS) to ensure that the file is good. By
use of die "LOAD NEXT FILE" feature
(Ittit, in the file number window) you
can go through a tape completely,
checking each file.

THE "AUTO-GO"
To use the Auto-GO feature, you must

enter the required GO address WHEN

YOU SAVE THE FILE. The go address
is entered under the "-G" data display.

Experiment with the following:

0900: 21 10 09 11 00 08 01 06

0908: 00 ED BO CD 36 08 18 FB

0910: 6F EA C6 EB E3 ER.

Save this as described above, but this
time enter 0900 under the "-S" heading,
0921 under "-E", and 0900 under "-G".

Now re-load it and if the load is suc-
cessful, the program will start automati-
cally and an appropriate display mes-
sage will appear.

USING THE TAPE SYSTEM.
The primary use for your tape save

system is as a mass storage device for
your files.

Files may be saved and loaded as
described previously, the important ad-
dition here is good paper-work habits. It
is very important to keep a log of your
files or you will quickly forget what you
have, where it is located, and you will
end up writing over your files!

Your log system must include iden-
tifying each cassette and the side of the
tape, the files on the cassette in the cor-
rect order, how many of each file, the
date and any notes on the file. If your re-
corder has a tape counter facility, it
makes good practice to record the read-
ings from this, so that files may be
quickly found anywhere on the tape.

Also a great aid is to log approximate-
ly the location of each file e.g. half-way,
30 seconds from rewind from end etc.

Apply the above idea to the start of
vacant area on the tape also

Another very good way to use the tape
system is as a "RUNNING LOG",
where a whole side of a cassette is used
to save a developing program, stage-by-
stage. If you crash your program, you
can re-load it back from tape. A good
idea here is to use the high byte of the
file number as the program identifica-
tion and the low byte as the progressive
count or version number on the tape.

When you have a final version, then
save that on a permanent cassette. The
"RUNNING LOG" cassette can then be
used over and over.

Once again, paper work is very impor-
tard. Make sure you document any dif-
ferences between successive files. This
may help later in de-bugging. Also, al-
ways include the date and time as this
will give a chronological order to your
work.

TALKING ELECTRONICS N.. 15 23

If you are wondering how many dines
you should save a file, and at what
speed, the answer really depends on the
reliability of your system.

The major factors in reliability are
your tapeplayer and ranntequality and
how well you constructed your inter-
face. If any of these are borderline, the
system may work but you may have a
higher than normal failure rate. Our
tests show reliability at better than 98%
on saves of 2K blocks. Different casset-
tes and players were used over many
months and rarely did a fault creep in.

You can test yoursystem out by saving
the monitor 10 times on each speed and
then perform a BLOCK TEST. You
should get at the very least, 17 out of 20
passes. If not, some trouble-shooting
may be required. If you get 19 or 20 you
could probably get away with high
speed saves and not have to worry about
checking them on your running log. For
permanent storage, a good system is a
high speed save, then two low speed
saves and check each afterwards.

The low speed save should be more
reliable than the high speed save as the
low speed save will tolerate the oc-
casional hiccup. However, this extra
reliability does not cover all possible
causes of failure, e.g. problems related
to frequency or bandwidth restrictions
of your tape player as the period is not
changed only the ratio of pulses.

Finally, a file that is absolutely neces-
sary to be retrieved from tape must be
stored on two tapes. This provides a
double back-up facility against acciden-
tal erasure or damage.

"OH NO!" IT DOESN'T
WORK.

If your tape system fails to work cor-
rectly, then check the interface board or
better still, have a friend check it.

Eliminate any problem and re-try.
If problems still exist, test the cassette

player with a normal pre-taped audio
tape. The music should sound nonnal
and not flutter. If it flutters, the tape
player is due for a service or replace-
ment, or if battery operated, the batteries
may be flat.

Various sections may be eliminated by
listening to the tape signal. If the signal
saved on the tape sounds ok when
played back on the player, but is not
heard on the TEC, check the input sec-
tion of the interface board and also the
"E" output of the player with a pair of
Walkman-type headphones.

It is possible that the volume output is
not high enough to be amplified on the
interface board.

This is very unlikely though on ordi-
nary tape players but we found this to be
the case with our VZ-200 data cassette
player.

If no signal is getting to the TEC and
everything else seems to be ok, test the
input buffer by setting the tape software
to load and taking the input high and low
with a jumper lead.

The LEI) on the speaker should echo
the inverse of the input. If not, shift the
jumper to the collector lead of the input
transistor and repeat the process.

If the speaker LED now toggles, the
input transistor is faulty.

If not, investigate the latch chip. Make
sure all the pins am well soldered and
the feed-throughs are connecting
properly.

If the tape signal is heard, in the TEC
speaker, but the file number is not
recognised, loaded correctly, or the tape
fails to load the data blocks consistent-
ly, try a better quality cassette tape. If
problems persist, try a different player
as the signal may be distorted or not
have enough amplitude.

If you still can't get it to go, a repair
service is available for $9.00 plus $230
postage.

RUNNING OLD
PROGRAMS WITH JMON
Most old programs will run with

'MON without to much alteration.
For most, they will only need to be

relocated from 0800 to 0900 and that's
all. Those that use old MON-1 routines
such as the running letter program or the
tune player can't, of course, run with
JMON.

Of those which use the keyboard, most
can be easily altered but some require a
complete overhaul.

These ones listed below cannot run on
JMON, or require more extensive chan-
ges that those presented here:

SPIROID ALIENS, HALILOVIC'S
PIANO, BIG BEN CHIMES, WIN-
NERS CALL, YOU'RE DEAD
FUNERAL DIRGE, TOCCATA, THE
STRIPPER, ADDING AUTO
REPEAT, AUTO RETURN AND
STOP, AUTO MOVEMENT AND
HALT, THE ROMMED PRINTER
SOFTWARE and SPACE INVADERS
SHOOTING.

Those not mentioned should run ok if
re-located to 0900 and the mods listed
below are done, if required. These mods
apply only to routines which use the
keyboard.

TEC KEYBOARD THEORY
Basically the keyboard usage of ear-

lier routines is broken up into two types:
Those which halt and wait for a input via
the interrupt, and those which intialize
the input buffer (the interrupt vector
register or I register) and read it "on the
fly."
The first type may again be broken

into two groups. Those which explicit-
ly read the value from the input buffer,
with a LI) A,I instruction (ED 57), and
those which assume the input to be in-
side the Accumulator after the interrupt
has occurred. (Remember the earlier
MON-1 series did not save the ac-
cumulator during the NMI routine but
instead returned with the input key
value inside the accumulator. A dis-
astrous state of affairs)!!

JMON
The specially-provided routines in

JMON will work for all the above types,
the only difference being the way you
alter the program in question. Here's
how to alter the routines:
To up-date any type which uses a

HALT instruction (76H) as pail of the
keyboard input section. change the
HALT instruction (76H) to a RST 08
(CF).

The RST 08 routine SIM UL.ATES the
halt instruction by first looping until NO
key is pressed then looping until a key
IS pressed.

After a key press is received the input
value is masked to remove unwanted
bits and stored in the input buffer, (the
interrupt vector register). in identical
fashion to the old interrupt nail ine.
Now if the halt instruction is im-

mediately followed by a LU. l) A.1 (ED
57), you may leave it as it is or remove
it as it is not required any more as the
input value is returned in A.

If a program doesn't have a HALT in-
struction but uses the keyboard, then
look for the LOAD A,I instruction (ED
57). Change this to a RST 20 (E7) and
place a NOP over the unused byte.
Notice that this IS NOT the same RST
instruction as above.

Be careful not to mistake the LOAD
A,I (ED 57) with a LOAD I.A (ED 47)
otherwise you program may get upset
and go on strike.

24 TALKING ELECTRONICS No. 15

Programs which have neither a HALT
or LD A,I instruction cannot be altered
by any of the above methods because
they enter a continuous loop and require
the interrupt to form an input value into
the accumulator. A classic example of
this is the "space invaders shooting" on
page 14, issue 14. This above loop is lo-
cated at 0821. (while you're looking at
this, grab a pen and change the byte at
0812 from 02 to 01, at least it will run
correctly with MON-1)! All the above
types are among those listed as not
being suitable for modificationvia these
methods.

FINALLY
If you find a program which doesn't

work (we haven't tried them all) or
something else interesting, please write
and let us know.

USING THE KEYBOARD IN
YOUR PROGRAMS

The new keyboard set-up is no more
difficult to use now than before. In ac-
tual fact it is easier and requires less
bytes than before thanks to the use of the
RST instructions.

Four RST's are provided to handle the
keyboard in different ways. The first
RST we shall look at is RST 08 (CFH).
This RST is a "loop until a NEW key
press is detected" routine. If you refer to
the section on running old programs,
you will see that this RST is used to
simulate/replace the HALT instruction.
(You know how to use it Already!)

An important feature of this RST is
that it ignores any current key
PRESSED, that is if a key is being
pressed when this RST is performed, it
will not be recognized. This mimics the
NMI which only recognized a key press
once. (This is why the auto-repeat fea-
ture could not be done with the
keyboard hooked up to the NMI).

When this RST detects a valid key
press, it inputs the value from the key
encoder and masks the unwanted bits
and stores the input in the interrupt vec-
tor register (as did the MON- I series).
The input value is also returned in the
accumulator. The shift key can not be
read from this (or any other MONitor
keyboard routine) as the shift input bit
(bit 5) is masked off.

Here is an example of its use:
0900 CF RST 08
0901 FE 12 CP 12
0903 20 04 JR NZ,0909

0905 3E EA LD A,EA
0907 18 06 JR 090F
0909 FE 01 CP 01
090B 20 F3 JR NZ,0900
090D 3E 28 LD A,28
090F D3 02 OUT (02),A
0911 3E 01 LD A,01
0913 D3 01 OUT (01),A
0915 18 E9 JR 0900
The first thing you should notice when

you enter and run the above, is that the
"go" key is not detected when the
routine is first started, even though it is
being pressed. This is because the first
part of the RSTloops until the key being
pressed is released. The RST then loops
until a new key press is detected. When
the RST returns, the input value is both
in the interrupt vector register and the
accumulator. The rest of the routine
tests for either a 01 or "GO" key and out-
puts to the display.

Use this RST when ever you want the
TEC to go "dead" and wait for a key
press.

The second RST is RST 10 (D7). This
is similar to the fust RST but has one
very important difference. The dif-
ference is that this RST DOES NOT
wait for a key being pressed to be
released before returning. While this is
not as likely to be used as much as the
first RST, it does have some good uses.
Any program which requires some ac-
tion to take place while them is a key
pressed, but do nothing when there is
not, may make good use of this RST.
Some possible uses include random
number generation on the time the key
is held down: count while a key is
pressed: turn on a relay while a key is
pressed etc. As you can see, this RST
simulates momentary action switches.

This RST exits with the input stored in
the same fashion as the above RST.

The third RST is RST 18 (DF). This is
a LED scan loop and keyboard reader.
The scan routine will scan the 6 TEC
LED displays once with the display
codes addressed by the address at 082A.
(0800 is stored here by JMON. You can
leave it as it is, just store what ever you
want at 0800 before using this RST).
After the scanning routine is done, the
keyboard routine is called. The
keyboard routine is actually called from
RST 20. What happens is this. After the
scan has been called from the RST 18,
the program continues on at 0020,
which is the start address for RST 20. So
the RST 18 is the same as RST 20 EX-
CEPT THAT RST 18 CALLS

FASTSCAN. Therefor the description
below applies to BOTH RST 18 AND
RST 20.

This keyboard routine is very intel-
ligent and is able to detect several dif-
ferent conditions.
One important feature is that it

"remembers" if it has already detected
the one key press and it ignores it if it
has. This provides us with a "ONE AND
ONLY ONE" key recognition for each
key press. Each key press is "recog-
nized" on the first detection.

The key is checked for a FIRST KEY
PRESS" by the use of a flag byte. When
the routine is entered AND NO KEY IS
PRESSED, this flag byte is CLEARED.
When a key is detected, the flag byte is
checked. If zero, the key is accepted as
a "FIRST KEY PRESS." The flag byte
is then set to stop further "validating"
of the same key press. The input value
is then masked and returned in the Ac-
cumulator (only).

If the flag byte IS NOT CLEAR, then
the key is not recognized as "valid."

Careful consideration was giving to
the interaction of the MONitor and user
routines so that the "GO" command
from the MONitor WILL NOT BE
TREATED AS THE FIRST KEY
PRESS of a user routine. (This was
achieved by using the same flag byte for
both JMON and any user routine).

HOW TO INTERPRET THIS
RST

If a key is recognized as a "FIRST
KEY PRESS" then the ZERO FLAG
will be set to its active state (a logic I)
and the MASKED KEY INPUT will be
returned in the accumulator.

If the key is NOT valid then the ZERO
FLAG will be clear AND the ac-
cumulator WILL HAVE ALL ITS BITS
SET (FF).

(FOR ADVANCED PROGRAM-
MERS)

In addition to the zero flag being con-
ditionally set, the RST 20 (E7) also sets
the carry conditionally, according to the
following conditions:

If there is a key pressed then the carry
will be SET REGARDLESS of whether
it is a "first key pressed" or NOT. If NO
key is pressed then the carry is cleared.
This allows you to interpret the

keyboard the way you want, while still
giving you the convenience of using the
RST to do some of the work.

Jim's section corn P 47.

TALKING ELECTRONICS Na IS 25

WMT

STROBE

RESET

CUE

40

1001

TEST

1.1

Speech Module
Add speech to your TEC! 	by Craig Hart

SCUT

SPEECH MODULE CIRCUIT

Sotabar

Since the dawn of time, Colin has been
fascinated by electronic speech syn-
thesis, so it was with immense joy that
we discovered the SP0256A- AL2
speech chip. This chip is a universal
speech unit that can be made to speak
almost any English wont. The price was
cheap and the interface was minimal, it
was just too good to pass up! So I took
took up the project and this is the result.

The module is interfaced to the TEC,
and the TEC controls what is said. The
only requirement is that you have a crys-
tal oscillator, as the module requires a
3.58MHz clock signal from the unit.
Demonstration programs have been in-
cluded for testing and simple word se-
quencing, and these programs will show
how the unit is accessed.

This is the ideal companion project to
go with the I/0 board, and a robot
created out of the two projects will
cause a real stir if it speaks a comment
in response to what it is sensing in its
environment.

The module is connected via an 8 way
ribbon cable and 4 flying leads. The
ribboncable picks up DO-D5, and the 5v
supply. The other 4 leads connect to
STROBE 05, WAIT, RESET, and CLIC.
Note that only the lower six bits of the
data bus are used by the speech chip.

The reasons for this will be explained
later.

OPERATION
The operation of the unit is straight

forward, but it is important to under-
stand its operation so that you can use it
once you have built it. The SP0256A-
AL2 is made to speak by sending it a
series of ALLOPHONES. An allophone
is the smallest individual sound that the
unit can speak. Words and sentences ate
formed by outputting a series of al-
lophones, one after the other.

Each allophone is assigned a number
and this number is loaded into the chip
via the TEC data bus, then the ALD line
is pulled low (by strobe line 05).

The SPO now commences to speak the
allophone and indicates so by pulling
the WAIT line low, halting the TEC
until the module is ready for more data.
The BC557 is turned on hard by this and
the LM386 amplifier is switched on.

Sound is clocked out of the unit at a
rate determined by the CLOCK line. For
normal speech this is 3.58MHz. Sound
is filtered by an R-C network, to make
the sound more "human like" and
amplified by the LM386.

PARTS LIST

All resistors 1/4W 5%
1 - 1k Brown Black Red
1 - 82k Grey Fled Orange

1 - 10k trimpot.

1 - 47n greencap
2 - 100n monoblock.
2 - 4u7 electrolytic.
1 - 10u electrolytic.
1 - 100u electrolytic.

1 - BC557 transistor.
1 - LM386 amplifier IC.
1 - SP0256A-A1.2 Speech IC.
1 - 8 pin IC socket.
1 - 28 pin IC socket.

1 - 8 ohm speaker.
4 - PC pins.
4 - PC pin connector&
1 - 20 cm length 14 way

ribbon cable.
1 - 24 pin DIP header.
1 - 10 cm length 2mm heatshrink

tubing.

1 - 'SPEECH MODULE' PC board.

20 TALKING ELECTRONICS No. 15

41-. "I CO) (1.1 re.) (-441 in)

When speech output ceases, the wait
line goes HIGH, and the TEC is able to
continue processing. In doing so, the
BC557 is switched off and thus the
LM386's power supply is switched off.
The reason for doing this is due to the
high input impedance of the chip; it is
prone to picking up stray noise. The
most common noise source is the scan-
ning of the LED displays! This results
in an uncomfortable buzz when the unit
is not speaking and by switching the
power to the amplifier this has been
eliminated.

THE ALLOPHONE SET
The SPO has little intelligence about

what you want it to speak. You cannot
simply feed it a word, and have it say the
correct pronunciation in every case.
(Although other chips do have this
capability) Instead you, the program-
mer, must translate each word into the
appropriate allophone(s) for that word.
There are 64 individual allophones, and
each sounds different. In these 64 al-
lophones, there am 5 pauses of various
lengths, corresponding to word and sen-
tence breaks.

By consulting the Allophone refer-
ence table you can look up what you
think the right sequence is then play
around with different pronunciations of
the same basic letter, until you reach the
best sounding word. It can be a tedious
process, but many common words have
been pre calculated and a list appears at
the end of the article, along with the
table of individual allophones.

Take a sample word : ALARM Sound
out the word slowly, letter by letter.
Now look for a matching sound in the
list. Write down your guess and
progress through the word. Where you
have two or more choices, pick the al-
lophone of the appropriate length. For
alarm, I chose AA LL AR MM, or 18
2D 3B 10. Add a pause to the end and
the terminating byte 04 FF. Plug the
data into the test program at 0910 and
nin it.

It sounds a little cut-off in the first 'a',
so try a longer 'A' i.e. AX (OF) and try
again. Enter OF at 0910 and run the
program again. Sounds better now
doesn't it!

By following this method, you should
be able to come up with any word within

a short space of time. Remember, the
secret is to sound each letter and syllable
out and then search for the best al-
lophone of the group. The sample word
provided gives you a context in which
the allophone is used. This is useful
when deciding between TTI and Tf2
etc.

We also discovered that it was much
easier to produce an understandable
word if you used the slang way of saying
it. The speech module always produces
the same type of sound for any given
allophone, so if you stick to spelling
only, then the words always come out
very strange. If you use slang then you
will find that the resulting word is much
easier to understand.

A perfect example of this came up
when we first started work on the
project. We bought our first sample chip
from Tandy. It came with a list of words
and full specification data. When the
project was working, we started trying
some given examples, and although the
examples were recognizable, they were
not very clear. Then Ross said to try the
slang pronunciation. Voila! perfect. The
words which were before just average
became clearer and much more recog-
nizable.

This diagram will make it easy to wire up
the speech module. Connect the 12 leads
as shown, to the lands on the underside
of the board. The clock line (cik) goes to
pin 8 of the 74LSO4 on the crystal
oscillator board.

2,11

..,

'
•4:YCI
‘' 	

L

fr.

3 -4%! 	' 4 	I
.3 	•

	

! 	I
t _„„.;

r 	 8pKR
g g

m*g
m
 oopc000noul itIt maisom,ofoul

t (jricESS

•=irctiallialtaKdratcwortierel.

TALKING ELECTRONICS No. IS 27

+ BC657

47n 	F10 moo a
-4--,0_,F'386 c +0 a•Ond

vx 5

04+ ; 	 c°Clk
2 	1N° kW 8°
0

SP0256—AL2

—1K—

D3
D4

St
Watt
	 Rat

TE

TEST PROGRAM

0900 21 10 09 LD HL,0910
0903 7E 	LD A,(HL)
0904 FE FF CP FF
0906 28 05 JR 10900
0908 D3 05 OUT (05),A
090A 23
	

INC HL
09013 18 F6 JR,0903
090D 76
	

HALT
090E 18 FO JR,0900

0910 OD 17 17 02 2A OC 2C 04
0918 04 2A OF 10 00 31 16 OD
0920 33 04 04 FF

0910 1B 07 2D 35 00 36 07 2F
0918 04 06 00 IA 10 00 12 13
0920 00 OD 13 03 13 03 37 13
0928 03 08 18 10 09 31 16 11
0930 33 04 04 04 38 20 00 30
0938 OC ID 37 09 13 32 04 FF

HL= Points to start of table.
Get next Allophone.
End of table ?
Yes, HALT.
Speak allophone.
Next allophone.
Say next ...
EOT, stop until key pressed.
Key pressed, say again.

Your allophones are entered
from 0910 onwards.
this says 'TALKING COMPUTER'

Here is another greeting
message.

The TEC introduces itself
herel

PAUSES AND REPEATING
ALLOPHONES

The five pauses are worthy of a
separate mention. You must always
pause after a word, to make the SPO
stop talking. Use a PA1 or a PA2.
Use PA3 or PA4 between senten-
ces. Refer to the following table for
when to use PAI, PAZ and PA3
DURING words.
PA1 Before BB, DD, 00 and J1-1.
PA2 Before some BB, DD, GG and

JH.
PA3 before PP, TT, KK, and CH.

Begin by inserting the resistors. Solder
them in and cut their leads short. Next
insert the Capacitors, observing polarity
with the Electrolytics.

Insert and solder the trimpot, then
finally the transistor. Turn the trimpot
fully towards the SPO - this is hill
volume and should be set here until
testing is complete.

Check to see that you have a BC557
and insert it according to the 'D' on the
overlay. Lastly insert die two IC sockets
and plug the chips in, being careful to
orientate pin one with the mark on the
PC and avoid touching the pins of the
SP0256A.

The pin out of the SPO-256-Al2
allophone chip.

Strip 6 wires from the ribbon cable,
then connect the remaining 8 between
the data lines and the DIP header. Con-
nect power with the last Iwo strands.
Follow the diagram and you can't go
wrong. Separate 4 of the remaining
wires into individual lengths and solder
into the 4 remaining holes nn the
module.

Attach a matrix pin connector to the
other end of each wire for connection to
the TEC. Plealshrink each civinector
with the tubing supplied. A note on
heatshrinking: Don't skip this section
because you think it's a wa,te of time or
too hard to do. licatsticinking the con-
nectors strengthens them aid the wire is

The speech board is very simple. Don't
forget you will need the crystal oscillator
project to get the 3.58MHz clock line.

A repeating allophone is one which
can be spoken twice and flow along.
i.e. EY EY produces 'AY pause AY',
while FF FF produces one long 'FM'.
Only 10 of these 64 allophones are
repeatable like this. They are: IH EH
AE UH AO AX AA FF TH & SS. Use
these allophones In preference to
long limed syllables like SH in SHirt,
WE in tWEnty, or SH in leaSH.

CONSTRUCTION
Although a simple project, care

should be taken to ensure that a
good fob is done, so do not rush. Lay
all the parts out in front of you on a
piece of paper or cardboard (Not the
High - Low shagpile of the living
room!) and check to see that you
have been supplied with everything.

28 TALKING ELECTRONICS Na 15

much less likely to break off. If you
always melt the wim when shrinking
over a candle, then try using the BAR-
REL not the tip of your soldering iron.
This gives you a better controlled heat
source and a neat job can be done on
those small connections.

The last two lengths of wire connect to
the speaker. Wire these up and the board
is complete. Now for connection to the
TEC. You will need to have your crystal
oscillator inserted. If you do not current-
ly own a crystal oscillator, you must
purchase one with a 3.58MHz crystal. lf
you Italie a different frequency crystal
fitted, it must be around 3.2 - 4.0MHz
otherwise the sound will be too high or
low pitched. A 2MHz or 8MHz crystal
will not suffice.

Insert a PC pin in port 5 pad, a second
pin in the board for the WAIT line, and
a third pin in the hoard for the RESET
line. Most users will already have done
so, but if not. see the wiring diagram for
the three pin locations.

The other pin you will have to connect
as best you can. To tap the 3.5M112
signal DO NOT conned to pin 6 of the
Z30. This is because the crystal's fre-
quency is divided by two before reach-
ne the TEC board. Instead. solder a PC

pin onto pin 8 of the 74LSO4 on the
crystal oscillator PC. This is the
3.5MHz clock output.

TESTING
Plug everything together and power

up. If your TEC locks up or the unit
makes strange sounds, remove power
and go to the section on troubleshoot-
ing. Your TEC should star up as nor-
mal, with the unit deadly quid. Enter the
TEST PROGRAM and you should be
greeted with a message. Listen carefully
and let your hearing adjust to the metal-
lic pitch. If all you can hear is junk,
check your program. then if still no go,
proceed to the troubleshooting section.

If the test program produces recog-
nisable output, try the other examples
and then try making up a few words of
your own. You will soon find that you
can say just about any word, once you
get the right allophones.

There can be hours of fun even getting
it to correctly pronounce your name.
'Paul' is easy enough, but what about
You zopolous'?? or even common

words like 'construction' and
'calculator?? With such a versatile
unit, the sky's the limit.

ALLOPHONE REFERENCE
TABLE

NUMBER ALLOPHONE DURATION
SAMPLE

00 	PAI 	10 ms 	PAUSE
01 	PA2 30 nu PAUSE
02 	PM 50 ms PAUSE
03 	PA4 100 ms PAUSE
04 	PM 200 ms PAUSE
05 	OY 	420 ms Boy
06 	AY 	260 ms Sky
07 	EH* 70 ms 	End
08 	KK3 120 ms Comb
09 	PP 	210 ms Pow
OA 	MI 	140 ms Dodge
OB 	NN I 	140 ms Thin
OC 	IH* 	70 ms 	Sit
OD 	TT2 	140 ms To
OE 	RR I 	170 ms Rural
OF 	AX'' 70 ms 	Succeed
10 	MM 	180 ms Milk
11 	TTI 	100 ms 	Part
12 	DM 290 ins They
13 	IY 	250 ms See
14 	EY 	280 ms Beige
15 DD1 Toms Could
16 	UW1 100 ms To
17 	AO* 	100 ms Aught
18 	AA* 	100 ms Hot
19 	Y Y2 180 ms Yes
IA 	AE 	120 ms Hat
IB 	HHI 	130 ms He
IC 	BBI 	80 ms 	Business
1 D 	TH* 	180 ms Thin
1E 	Una 	100 ms Book
lF 	UW2 260 ms Food
20 	AW 	370 rim Out
21 	DD2 160 ms Do
')l
	

GG3 	140 ins Wig
23 	VV 	190 ms Vest
24 	GUI 	80 ms 	Got
25 	SH 	160 ms Ship
26 	ZH 	190 ms Anne
27 	RR2 	120 ms Brain
28 	FE' 	150 ms Food
29 	KK2 190 ms Sky
2A 	KKI 	160 ms Can't
2B 	ZZ 	210 ms Zoo
2C 	NG 	220 ms Anchor
2D 	LL 	110 ms Lake
2E 	WW 180 ms Wool
2F 	XR 	360 ms Repair
30 	WH 200 ins Whig
31 	YY I 	130 ms Yes
32 	CH 	190 ms Church
33 	ERI 	160 ins Fir
34 	ER2 300 ms Fir
35 	OW 240 ms Beau
36 	DH2 240 ms They
37 	SS* 	90 tits 	Vest
38 	NN2 190 ms No
39 	HH2 180 ms Hoe

3A 	OR 	330 ins Store
3B 	AR 290 ms Mann
3C 	YR 	350 ms Clear
3D 	GG2 40 ms Guest
3E 	EL 	190 ms Saddle
3F 	BB2 50 ms 	Business

* = Repeating Allophone.

BASIC DICTIONARY

0 	2B 3C 35
1 	30 OF OB
2 	OD 1F
3 	36 27 13
4 	28 17 17 27
5 	28 06 23
6 	37 OC 29 37
7 	37 37 07 07 23 OC OB
8 	14 11
9 	38 06 OB
10 	OD 07 07 OB
11 	13 2D 07 23 34 OB
12 	OD 2E 07 3E 01 23
13 	1D 330D 130B
14 	28 17 27 OD 13 OB
15 	280C 280D 130B
16 	37 OC 29 37 OD 1308
17 	37 37 07 07 23 OC OB

OD 13 OB
18 	14110D 130B
19 	38 06 OBOD 130B

A
Alarm
Alex
Alexandra

All
Am
Amateur
An
And
April
Are
At
August

14
OF 2D 3B 10
1A 2D 07 29 37
1A 2D 07 29 37 1A OB
15 27 OF
17 17 2D
1A10
1A 101A 113133
1A OB
1A OB15
14 01 09 OE OC 2D
38
1A OD
171E 220F 3711

B
Baby
Bathe
Bather
Be
Becky
Bee
Beer
Beth
Birthday

Bite
Blank
Bob
Bread

3F 13
01 3F 14 01 3F 13
3F 14 36
3F 14 36 33
3F 13
3F 07 29 13
3F 13
3F 3C
01 3F 07 1D
01 3F 33 10 01 21 07
14
01 3F 06 03 11
01 3F 2D lA OB 0229
01 3F 18 18 01 3F
1C 27 07 07 00 15

TALKING ELECTRONICS Na 15 29

Brett
Brother
Buy
By
Byte
Bytes

C
Calendar

Calling
Cat
Check
Checked
Checker
Checkers
Checking
Checks
Clock
Close
Clown
Collide
Computer

Cookie
Correct

Corrected

Correcting

Correct

Crane
Crown

01 3F 27 07 03 11
01 3F 27 OF 1D 33
3F 18 06
3F 18 06
01 3F 06 03 11
01 3F 06 03 11 al

37 37 13
2A 1A 1A 2D 07 OB 01
21 33

08 17 3E 2D OC 2C
2A lA 02 OD
32 07 07 02 29
32 07 07 02 29 OD
32 07 07 02 2A33
32 07 07 02 2A 33 28
32 07 07 02 2A OC 2C
32 07 07 02 2A 37
2A 2D 18 18 02 29
2A 2D 35 37 37
2A 2D 20 OB
08 OF 2D 06 36
2A OF 10 09 31 16 11
33
08 1E 2A 13
2A 34 07 07 01 29 01
11
2A 34 07 07 01 29 01
OD OC 01 15
2A 34 07 07 01 29 01
OD OC 2C
2A 34 07 07 01 29 01
11 37
08 27 14 OB
2A 27 20 OB

D
	

21 13
Data
	

21 18 18 01 11 33
Date
	

21 14 02 OD
Daughter
	

21 17 OD 33
Day
	

01 21 14
December 15 13 00 37 07 30 10

33
Dennis
	

21 07 OB 00 37
Disk
	

21 OC 37 37 29
Divided
	

21 OC 23 06 01 21 OC
01 15

Do
	

03 21 16 1F
Drive
	

21 27 06 36
Drives
	

21 27 06 36 2B

E
	

13
East
	

13 37 11
Eight
	

14 11
Eighteen
	

14 11 0013 013
Eighty
	

14 00 11 13
Eleven

	

	
13 2D 07 23 34 OB

Emergency 13 10 33 OA 07 OB 37
13

Engagement 07 07 00 OB 24 14
01 OA 10 07 07 OB 01
02 OD

Engages 	07 07 00 013 24 14 01
OA OC 28

Engaging

Enrage
Enraged

Enrages

Enraging

Error
Extent

Exterminate

F
Father
February

Fifteen
Fifty
Fir
Five
Fool
Force
Four
Fourteen
Forty
Freeze
Freezers
Friday
From
Frozen

G
Glenn

H
Happy
Has
Have
Hello
Hertz
How
Hundred

Idiot

In
Input
Is
It

J
January
John
Julie
July
June

K
Karen

07 07 00 OB 24 14 01
OA OC 2C
07 OB OE 14 01 OA
07 OB OE 14 01 OA 01
15
07 OB OE 14 01 OA OC
28
07 OB OE 14 01 OA OC
2C
07 07 27 00 33
07 2A 37 OD 07 07 013
OD
07 29 37 OD 33 10 OC
00 14 OD

07 07 28 28
28 38 12 33
28 07 1C 00 19 1F 34
13
28 OC 28 OD 13 28
28 OC 28 OD 13
28 34
28 06 23
281E 1E 2D
28 3A 37 37
28 17 17 27
28 17 27 OD 13 OB
28 17 27 OD 13
28 28 OE 13 28
28 28 OE 13 2B 33 213
28 27 06 01 21 14
28 27 18 10
28 28 OE 35 2B 07 OB

OA 13
01 22 2D 07 2C

14 01 02 32
39 lA 09 13
11316 1A 2B
1B 18 1A 23
1B 07 2D 35
39 39 34 11 2B
39 20
39 OF OF OB 01 21 27
0000 0015

06
00 01 21 OC OC OC OF
11
OC OB
000B00091E 11
OC 2B

OC 03 11

OA 07 14
OA 1A OB 1F 31 34 13
OA 18 OB
OA 31 3E 13
OA 1F 2D 06
2A 1F OB

2A 07 14
2A 1 A 27 00 07 OB

Kilo
Know
Kristy

L
Live

M
March
Mark
May
Memory
MHz

Minute
Minutes
Modem
Monday
Month
Mother
My

N
Name
Naughty
Nine
Nineteen
Ninety
No
November

0
October
Of
On
One
Or
Our

P
Past
Penelope

Penny
Point

R
RAM
Rebecca

Ross

S
Saturday

September

Seven
Seventeen

Seventy

2A OC 2D 35
38 35
08 27 OC 37 11 13

07 07 3E
20 13 23

07 07 10
10 3B 32
10 38 29
10 14
10 07 10 18 27 13
10 07 24 OF 39 39 34
11 28
10 00 013 OC 02 OD
10 00 OB OC 02 OD 2B
10 35 01 21 07 10
10 OF OF OB 01 2114
10 OF OB 1D 10
10 OF 36 33
10 06

07 07 013
38 14 10
38 17 17 02 11 13
38 06 OB
38 06 OB OD 13 013
38 06 OB OD 13
38 35
38 35 00 23 07 10 1C
33

35
18 29 GO 11 35 1C 33
18 23
18 OB
30 OF OB
3A
20 33

09 13
09 3B 37 OD
01 02 09 07 OB 07 2D
35 09 13
01 02 09 07 08 13
09 05 OB 11

3B
2701 lA to 10
OE 33 3F 07 02 08
3B
OE 18 37 37

07 07 37 37
37 37 1A 02 OD 33 21
14
37 07 09 11 07 10 1C
33
37 37 07 07 23 OC OB
37 37 07 07 23 OC OB
OD 13 OB
37 37 07 07 23 OC OB

0 	2A 31 1F

30 TALKING ELECTRONICS No. 15

Sister
Six
Sixteen

Sixty
Son
Sound
South
Space
Speech
Statement

Sunday

T
Talker
Talking
Television

Ten
Test
Testing
The
There
Thirteen
Thirty
This
Thousand
Three
Thursday
Tim
Time
To
Today
Tuesday
Twdve
Twenty
Two

U

Vision

Want
Wednesday
What
Who
With

X

Y
Year
Yes
You
Your

Z
Zero

OD 13
37 37 OC 37 OD 33
37 OC 29 37
37 OC 29 37 OD 13
OB
37 OC 29 37 OD 13
37 OF OB
37 20 OB 15
37 37 20 1D
37 09 14 37
37 09 13 32
37 01 11 14 01 11 10
07 OB 11
37 37 OF OF OB 02 21
14

OD 13
OD 17 17 01 29 33
OD 17 17 02 2A OC 2C
OD 07 2D OC 23 00 37
OC 18 OB
OD 07 07 OB
OD 07 37 01 11
OD 07 37 01 11 OC 2C
12 13
36.07 2F
1D 33 OD 13 OB
10 33 OD 13
12 OC 37
10 20261A OB 15
36.27 13
1D 34 2B 01 21 lA 14
OD IC 10
OD 06 10
OD 1F
OD 1F 21 14
OD 31 2B 01 21 14
OD 2E 07 3E 01 23
OD 2E 07 OB OD 13
OD 1F

311F

23 13
23 OC 26 OC OC 18 OB

21 OF 01 3F 3E 1F
2E 18 OB 02 11
2E 07 07 OB 28 01 21 14
30 18 02
39 1E 1F
30 OC 1D

11

07 07 02 29 37 37

2E 06
19 3C
19 07 37 37
191F
19 3A

28 07 02 15
26 13 27 35

IF IT DOESN'T WORK
If your speech unit does not work,

DON'T PANIC. Firstly, check your
wiring. Most errors are in wiring, caus-
ing the TEC to lock up. Look for ob-
vious faults like shorts, dry joints, com-
ponents of wrong value or orientation.
Check that your chips are inserted cor-
rectly - pin one of each chip faces
AWAY from the off-board wires.

If you bought your parts from all over
the place, make sure you get a
SP0256A-AL2 device. Other suffix
numbers are not acceptable.

Check that the trimpot is turned all the
way towards the SP0256A - full
volume. You can temporarily short be-
tween the collector and the emitter of
the BC557, to turn the amplifier on
fully. This should produce a lot of hiss,
and touching pin 3 of the LM386 should
pro-duce a buzzing sound.

Check that you have +5v on each chip,
and that the SPO's reset pin (pins 2 and
25) are normally HIGH, and that they
follow the reset pin of the Z80 (pin 26).

If all you get is garbage then you
probably have the data lines wired
around the wrong way. Check against
the wiring diagram, and have a friend
check it as well. Look for pins bent up
under the SPO and not connecting with
the IC socket. Check the program
through and make sure that you are
sending it the correct data.

If you are totally lost, give us a call.
Sometimes we can solve a problem
straight away, and most times within a

few minutes. If all else fails, we offer a
repair service. Costs are:

Basic repair $ 7.00
SP0256A replacement $15.00
Postage $ 3.00

If your SP0256A-AL2 is damaged,
you will be charged extra due to its high
replacement cost

MODIFICATIONS
If you don't intend to fit a crystal os-

cillator to your TEC, you can put a crys-
tal on the speech board. Simply fit the
crystal across pins 27 and 28 of the
SP0256A. Then fit a 27p between pin
27 and ground, and a 27p between pin
28 and ground. This enables the SPO's
internal oscillator. We did not include
this on the basic board because we
wanted to keep the price as low as pos-
sible, in order to counter balance the
cost of the SP0256A. We reasoned that
most people will change over to JMON,
therefore purchasing a crystal oscillator
anyway.

If you find that you are using long
silent periods between words, you may
find that you can hear an annoying click
from the speaker as the LM386 gets
switched. This is because the IOu
capacitor is too low in value. Increase
this capacitor to 22u or 47u and the
problem should go away.

If you need to make the output louder,
change the 4u7 between pins 1 and 8 of
the LM386 to 10u. This increases the
gain of the LM386 to 200.

TALKING ELECTRONICS No 15 31

EPROM PROGRAMMER REVISITED
	

Parts $2.30

Circuit diagram showing all corrections and modifications

CIRCUIT DIAGRAM
CORRECTION

A mistake has been made with the
circuit diagram on page 20 in issue 13.

The 100k resistor between pins 8
and 1 of the 4011 does not exist on the
board and pin 8 is actually directly
connected to the ROM SELECT
LINE. his not coupled through the I On
capacitor (via the 100k mentioned
above) as shown.

CIRCUIT UP-GRADES
If your EPROM programmer is

working ok and you're completely
satisfied with its performance, perhaps
it is best left alone. There are two
modifications though, that are HIGH-
LY RECOMMENDED:

The first is the 100k resistor on the
left-hand side of the EPROM socket
(next to a diode) SHOULD BE
REDUCED to 10k. This will allow for
far more reliable readings (if yours
doesn't read at all or very poorly, then
this will almost certainly fix it).

The second is a don greencap is
connected across the 100k resistorneict
to the EPROM socket on the right-
hand side of the board (when looking
at it from the top).

This 10n greencap is to prevent
spikes from damaging the EPROM.

There are some other very handy
mods to make. This next one will make
it possible to read from 2732 (4k
EPROMs) without having to slide the

32 TALKING ELECTRONICS

switch across. The BIG advantage of
this is that it is possible for the software
to read from the 2732 just after you
have programmed each location. The
software can then diagnose a failure
and re-try or abort quickly. The
software routine is provided below
which will do this for either a 2716 or
2732.

Three additional pans are required
for this mod. They are two IN 4148
diodes and a 10k resistor.

The first diode is soldered between
the DIP-HEADER and the EPROM
socket. The cathode (the end with the
band on it) is soldered to pin 18 of the
DIP-HEADER and the anode is
soldered to pin 18 of the EPROMsock-
et Next, the track running between pin
18 of the EPROM socket and the mid-
dle of (program 2716 read 2732)/pro-
gram 2732 switch is cut. The anode of
the second diode is soldered to the pin
18 side of the cut and the cathode is
soldered onto the middle terminal of
the switch. One end of the 10k resistor
is soldered to the anode side of the
second diode (the end connected to pin
18). The other end of the resistor is
soldered to ground.

Once you have fined this modifica-
don, it may be tested by fining a 4k
RUM into the socket and addressing
1000. You should be able to read the
contents regardless of the position of
the read/program 2732 switch. The
high/low switch is still used to select

No. 15

PARTS LIST
(For all mods)

2 - 10k

1 - I On greencap
I - 100n greencap

2 - 1N4148 diodes
- 3v9 Zener diode

1 - DPDT switch
1 - 10cm tinned copper wire
1 - lOcm hook-up wire

which half of the EPROM you wish to
read and the reathprogr.un switch is
used to select the type of EPROM you
wish to pmgram.

The next mod is a little inure in-
volved but is an important one if you
wish to re-program some of the
EPROMs supplied by TE.

The programming requirements of
some types of more modem (but now
obsolete) EPROMs am not compatible
with the current set-up of the EPROM
programmer. This mod allows the
EPROM programmer to be used with
a wider variety of EPROMs. The mod
does this by switching the program-
ming voltage from 25v to 2 I v and
reduces the pmgnunming pulse from
50mS to 10mS.

The parts required for this mod are:
one DPDT switch, one 10n greencap,.
one 100n greencap, a 3v9 zener diode

cont. P 45 	

	from P. 32.
and some hook-up wire. To start,
mount the switch on the bottom of the
PCB by drilling two holes and wrap-
ping tinned copper wire around the
switch (see photo). Next cut the track
between the output of the 24v regulator
and the transistor switching block_ The
bottom middle terminal of the switch
is connected to the transistor side of the
cut. Connect the bottom right-hand
side temiinal to the regulator output
and aLso solder the cathode end of the
zener to this junction. The anode end
of the zener is soldered to the bottom
left-hand side of the switch_ The zener,
which is connected between the
regulator and the high voltage switch-
ing section, drops the programming
voltage by about 4v.

This completes the voltage switch-
ing section. Below is the programming
pulse length mod.

The photograph
on the right
shows how the
pa?1s on our proto-
type are mounted.

The description
of the parts place-
ment in the text,
corresponds to
this photo.

Remove the 100n greencap on the
CX1ICII1C left-hand side of the board
(top view), Solder one end of the new
100n to the top right-hand side of the
sw it 	Take the I On cap and solder
one side of this to the top left-hand side
of the switch. The other ends of the
caps arc soldered together and a
jumper is also soldered onto this junc-
tion. The juniper is then soldered to pin
3 of the 4011_ Another jumper is
soldered between pin 6 of the 4011 and
the top middle terminal of the switch.

When the switch is in the right-hand
position (top view), the EPROM
programmer is set up for the modern
21v/I OrnS EPROMs.

One of these types of EPROM is
being supplied by TE. It can be iden-
tified by the following markings:

TMS
2732A-2511,
LH E XXXX (DATE CODE)
To increase the reliability of the

programmer, another mod is sug-
gested. Follow the track from the ROM
select line to where it joins the 10n cap.

Cut both the tracks that join to the cap
at this junction. Then run a link from
the ROM select input pad to pin 8 of
the 4011. Now nin a jumper from the
wait pin to the now isolated end of the
greencap.

This mod slightly delays the
programming pulse to the EPROM by
triggering it from the wait line, not the
input ROM select line.

The software for burning EPROMs
provided in issue 13 is only very basic.
There is one VERY IMPORTANT
ADDITION to make to the issue 13
software. After you have loaded BC,
DE and HL, as described in issue 13,
add the following:

XOR A (An
LD 1,A (ED 47)
JUMP 0700 (C3 00 07)

These instructions stop the noise on
the expansion port which is a result of
several TEC design oversights.

The following software is designed
to be burnt into either a MON-1 or
MON-2 EPROM al 0700.

The software is JUMP TO with the
"from address" in HL, the "to address"
in DE and the number of bytes in BC.

Before it attempts to bum into the
EPROM, it checks that the area to be
programmed contains only FF's. If not,
the routine displays an "F", for FULL
in the data display and halts. You may
continue on and bum the EPROM by
hitting "GO". Each location is checked
after it is burnt and if not correct, it is
reprogrammed several more times
before being aborted_ The routine then
displays "E" for ERROR.

You must do the "read 2732" mod
to program 2732 EPROMS.

An added feature to this software is
that it Hashes the address being
programmed on the TEC display.

EPROM BURNING
0700 AF
0701 ED 47
0703 CD 90 07
0706 7E
0707 12
0708 D5
0709 D9
070A DI
070B CB 9A
070D D5
070E 01 FO OF
0711 C5
0712 CD 5A 07
0715 7B
0716 CD 5A 07
0719 7A
071A CD 5A 07
071D CI
071E 01 10 00
0721 C5
0722 CD 6E 07
0725 CI
0726 013
0727 78
0728 B I
0729 20 F6
072B DI
072C lA
072D D9
072E BE
072F 20 08
0731 23
0732 13
0733 OB
0734 78
0735 B1
0736 20 CE
0738 C7
0739 C5
073A 01 05 00
073D CB DA
073F 7E
0740 12
0741 10 FE
0743 CB 9A
0745 IA
0746 BE
0707 20 03
0749 Cl
074A 18 E5
074C 013
074D 20 EE
074F CI
0750 3E C7
0752 D3 02
0754 3E 01
0756 D3 01
0758 76
0759 C7
075A F5
075B CD 63 07
075E Fl
075F OF

SOFTWARE
XOR A
LD I,A
CALL 0790
LD A,(HL)
LD (DE),A
PUSH DE
EXX
POP DE
RES 3,13
PUSH DE
LD BC,OFFO
PUSH BC
CALL 075A
LD A,E
CALL 075A
LD A,D
CALL 075A
POP BC
LD BC,0010
PUSH BC
CALL 076E
POP BC
DEC BC
LD A,B
OR C
JR NZ,0721
POP DE
LD A,(DE)
EXX
CP (HL)
JR NZ,0739
INC HL
INC DE
DEC BC
LD A,B
OR C
JR NZ,0706
RST 00
PUSH BC
LD BC,0005
SET 3,D
LD A,(HL)
LD (DE),A
DJNZ,0741
RES 3,D
LD A,(DE)
CP (HL)
JR NZ,074C
POP BC
JR 0731
DEC C
JR NZ,073D
POP BC
LD A,C7
OUT (02),A
LD A,01
OUT (01),A
HALT
RST 00
PUSH AF
CALL 0763
POP AF
RRCA.

TALKING ELECTRONICS Na 15 45

0760
0761
0762
0763
0765
0768
0769
076A
0768
0760
076D
076B
0771
0773
0775
0776
0778
0779
0778
0771)
077E
0780
0781
0782
0783
0785
0786
0788
0789
078A
0788
078C
078D
078E
078F
0790
0791
0792
0794
0795
0797
0799
079A
079B
079C
0790
079F
07A0
07A1
07A2
07A4
07A6
07A8
07AA
07AB

OF 	RRCA
OF 	RRCA
OF 	RRCA
E6 OF 	AND OF
21 BO 07 LDHL,07B0
85 	ADD AA.
6F 	LD L,A
7E 	LD A,(HL)
02 	LD (BC),A
03 	INC BC
C9 	RET
21 FO OF LD HL,OFF0
06 06 	LD 8,06
OE 01 	LD C,01
7E 	LD A,(HL)
D3 02 	OUT (02),A
79 	LD A,C
D3 01 	OUT (01),A
OE 40 	LD C,40
OD 	DEC C
20 FD 	JR NZ,077D
07 	RLCA
4F 	LD C,A
AF 	XOR A
D3 01 	OUT (01),A
23 	INC HL
10 ED 	DJNZ,0775
C9 	REF
FF 	RST 38
FF 	RST 38
FF 	RST 38
FF 	RST 38
FF 	RST 38
FF 	RST 38
FF 	RST 38
D5 	PUSH DE
C5 	PUSH BC
CB 9A 	RES 3,D
IA 	LD A,(DE)
FE FF 	CP FF
20 09 	JR NZ,07A2
13 	INC DE
OB 	DEC BC
78 	LD A,B
B1 	OR C
20 F5 	JR NZ0794
CI 	POP BC
Dl 	POP DE
C9 	RET
3E 47 	LD A,47
D3 02 	OUT (02),A
3E 01 	LD A,01
D3 01 	OUT (01),A
76 	HALT
18 P2 	JR 079F

07130 EB 28 CD AD 2E A7 E7 29
EF 2F 6F E6 C3 EC C7 47

PRINT-2 AND PRINT-3
SOFTWARE

With the changes to the keyboard hand-
ler routines in both MON-2 and JMON, an
up-dated painter ROM has been produced.

The new software is burnt into the same
ROM at higher locations. When MON-2
was releaaed, an up-dated ROM called
print-2 was included in the printer interface
kits. This gave you the same routines with
an altered keyboard section. It was also a
little more fancy as it showed the start ad-
dress on the LED display as you typed it in.
Unfortunately, Print-2 did not include a
"dump suing at 0900" routine to replace the
dump from 0800 which is now unusable as
MON-2 uses 0800 for its variable storage.

With the advent of JMON, the same
arrangement has been used. The JMON
printer routines are located higher again. so
in the one ROM you have the printer
software for all three MONitors. The list
marine for JMON is an improvement on
both earlier software packages, as JMON's
routine uses the perimeter handler to allow
you to enter both a START and END ad-
dress. Print-3 includes a "dump from 0900"
routine which can be used with MON-2.

The ROM with the JMON routines in it
is called PRINT-3 and is supplied with the
printer interface as standard.

IMON's hex dump routine is at 1A20,
the typing routine at IAA° and the "dump
string at 0900" routine is at tACO.

Below is a dump of PRINT-3. Bum the
additional section(s) in PRINT-1/2 ROM.

The graphic demonstration routines in
PRINT-1 will wodc with all MONitors.

1800 3E OD D3 06 3E OA D3 06
76 ED 57 17 17 17 17 57

1810 CD 50 18 76 ED 57 82 57
CD 61 18 76 ED 57 17 17

1820 17 17 5F CD 50 18 76 ED
57 83 5F CD 61 18 C3 49

1830 18 3E OD D3 06 3E OA D3
06 7A CD 5D 18 7A CD 61

1840 18 7B CD 50 18 78 CD 61
18 06 08 3E 20 D3 06 IA

1850 CD 513 18 lA CD 61 18 13
10 Fl C3 31 18 IF 1F IF

1860 1F 21 6C 18 E6 OF 85 6F
7E 03 06 C9 30 31 32 33

1870 34 35 36 37 38 39 41 42
43 44 45 46 FF FF FF FF

1880 21 00 08 7E FE FF 20 05
3E 11 D3 06 C7 D3 06 23

1890 18 Fl FF FF FF FF FF FF
FF FF FF FF FF FF FF FF

18A0 21 C3 18 7E FE FF 28 05
D3 06 23 18 F6 06 OA 21

1880 CF 18 7E FE FF 28 05 D3
06 23 18 F6 10 Fl 3E 11

18C0 D3 06 C7 OD OA OA OA OA
OA OA 12 43 30 OD FF 49

1800 2C 44 33 32 30 2C 30 OD
40 31 32 30 2C 30 OD 44

18E0 38 30 2C 2D 31 36 30 OD
4D 32 32 30 2C 2D 38 30

1810 OD 44 31 36 30 2C 20 38
30 2C 31 34 30 2C 2D 31

1900 36 30 2C 32 30 30 2C 2D
31 36 30 OD 4D 31 35 30

1910 2C 2D 31 32 30 OD 44 32
30 30 2C 2D 31 32 30 OD

1920 4D 33 32 30 2C 20 38 30
OD 44 32 36 30 2C 2D 38

1930 30 2C 32 34 30 2C 20 31
36 30 2C 33 30 30 2C 2D

1940 31 36 30 OD 4D 33 36 30
2C 2D 31 32 30 OD 44 34

1950 30 30 2C 20 31 32 30 OD
40 34 36 30 2C 20 38 30

1960 OD 44 34 34 30 2C 2D 31
36 30 OD 4D 32 2C 2D 32

1970 OD 43 33 OD FF FF FF FF
FF re FF FF FF FF FF FF

1980 76 ED 57 E6 OF 17 17 17
17 57 76 ED 57 E6 OF 82

1990 D3 06 18 EC FF FF FF FF
FF FF FF FP FF FF PF FF

The next block is the PRINT-2
additions:
19A0 76 3A ED 08 E6 0F 17 17

17 17 57 76 3A EO 08 E6
1980 OF 82 D3 06 19 1A FF FF

FF FF FF FF FF FR FF FF
19C0 3E op D3 06 2E .27. R:3 06

3E 29 21 D8 u8 OE U6 77
19110 23 10 FC CD 00 IA 32 DO

08 CD 00 IA 22 D1 79 CD
19E0 00 IA 32 DA OR Cri 00 lA

32 DB 08 CD D9 n1 CD 89
19F0 02 50 59 C3 31 19 FF FE

FF FF FF FF FF FF FF FF
IA00 3E FF 32 E0 09 rr; AO 02

3A 80 08 FE FF 2,1 F6 E6
1A10 OF C6 FF CD ho fll 116 01

C9 FF FF FF FF FF FF FF

Below is PRINT-3 additions:

1A20 21 34 1A 11 80 09 01 OA
00 ED BO 21 00 00 22 9C

1A30 08 C3 44 00 00 On 3E IA
99 08 00 01 50 IA 04 A7

1A40 04 C7 04 813 FF FF FF FF
FF FF FF FF FF FF FF FF

1A50 3E OD D3 06 2A 98 08 7C
CD 82 IA 7D CD 82 IA 06

1A60 08 C5 3E 20 D3 06 7E CD
82 LA 23 Cl 10 F3 3E 00

1A70 D3 06 3E OA D3 06 ED 58
9A 08 25 87 ED 52 El 38

1A80 D6 C9 F5 OF FF OF OF CD
88 lA Fl 86 OF C6 90 27

1A90 CE 40 27 D3 06 C9 FF FF
FF FF FF FF FF FF FF FF

lAA0 CF E6 OF 07 07 07 07 57
CF E6 OF 82 D3 06 18 FO

lABO D3 06 18 EC FF FF FF FF
FF FF FF FF FF FF FF FF

TACO 21 00 09 7E FE FF 20 05
3E 11 D3 06 C7 D3 06 23

lADO 18 Fl FF FF FF FF FF FF
FF FF FF FF FF FF FF FF

TE

46 TALKING ELECIIMMICS No. 1g

THE DAT BOARD
The Display And Tape Board 	• by Jim

• Iva

4
A 4 	1L

1

L

0 1

?.LM Lila Oltscl Canna
Ile

07
Ce

01

5

tee

52 5•

241274 	•
1.14
0.•••• I3 N '

Castes Ism 0— 11 Rn a v.. ti:41.miiktic
IOW 1

"'

NOM Tin 15.40121 	4171- •1 0 	
CI 0.3. 2
	 11111M•111,21101

e.

12 20

52 611

IIC 547
00

5•

Port
10

Stmt *out

•
t. 	-

This board will change the way you
prugrani for ever. The DAT BOARD is
perhaps the most vital addition to the
TEC ever. Not just a pan time "add on,"
but rather a permanent addition to your
TEC.
Once you start using it, we think you'll
agree.
The Towne 'DAT' is an acronym for Dis-
play And Tape. While others brawl over
"their" DAT. (have you seen one?), we
have quietly slipped in the back door
with our version.

The DAT BOARD provides these func-
tions:
* I 6x2 LCD display.
• Cassette tape I/O interface.
• Single stepper module.
• 5 Buffered and latched input bits.
• 1 Inverter for general use.
• Diode clipped input line. (For RS232
input)
* MON select switch.

PORT 3
Port 3 addresses an input latch. Below
is a break-down of the bits on port 3.

BIT#
0 	- 	Serial in
I 	- 	input I

a

12

DAT BOARD

2 - input 4
3
	

input 2
4 - input 5
5 - input 3

The above are the inputs from the
74CI4.

6 - key pressed signal.
7 - Tape input.

CONNECTION
Up until now, TEC add-on's have been
connected via the expansion port. We
wished to avoid this as there are too
many devices cluttering up this area al-
ready. The search was on for a better
place to put our new board. We decided
upon the blank area left of the eprom,
because it is common to all TEC's and
has up until now not been used by any-
thing else.

But there's nothing to connect to there!
I hear you say. Well not quite, Simply
solder a cut-up I.C. socket onto the links
and you have an (almost) instant data
buss socket. The DAT BOARD has a set
of feed downs that push into the sockets
and serve the dual purposes of connec-
tion and fixation.

Ina Santo nr C 	II

r- - - - PM171. 277e
7;

1-114 (-)Th 	I

• r

5tes
Cam1/•
a—

2

5r

100

PARTS LIST
1 - 100R
1 - 47013
4 - 10k
1 - 10k mini trimpot

1 - 100p ceramic
2 - 10n greencaps
3 - 100n greencaps

1 - BC 547
1 - 74LS373
1 - 74LS74

1 - 5mm LED (for trimpot handle)
2 - 3.5mm sockets
1 - 20 pin IC socket
2 - 14 pin sockets (one to cut-up)
1 - 20cm 12 way ribbon cable
1 - 50cm figure-8 shielded cable
1 - 1.2 metres hook-up wire
4 - 3.5mm mono plugs
1 - 100cm tinned copper wire
1 - Female matrix connector
3 - 32mm x 2.5mm bolts
9 - 2.5mm nuts
1 - 16 character x 2 line LCD'
1 - DAT PG Board

'Don't Forget: The LCD display can
be bought separately.

11 	•

TALKING ELECTRONICS Na 15 47

The feed downs are simply lengths of
stiff wire soldered to the underside of
the P.C. that extend about 1 to 1.5 cm
down to push into the I.C. sockets.
The fixing of the DAT BOARD is also
aided by three "stand offs," in the form
of three bolts with nuts to tighten against
the board. These may extend through
the TEC board if you want as there is no
track work underneath.

CONSTRUCTING THE DAT
BOARD
Originally, the kit of pans for the DAT
BOARD was going to be supplied in
two sections. We have changed our
min' dssince, but have decided to present
these construction notes unchanged.
The fiat thing to do, is to fit ALL the
links, regardless of what section you are
constructing.
If you have already built the TAPE and
keyboard section and/or are now con-
structing the LCD/SINGLE STEPPER
interfaces then skip ahead to the respec-
tive notes. Once you have built the
LCD section skip back to the notes on
inserting the feed downs, stand-offs and
control buss leads.

THE TAPE AND LATCH
SECTION
Most the components for the TAPE
SECTION are fitted on the bottom left
corner of the board. The exceptions
being a 100n greencap, that goes on the
middle left of the board, the latch chip
and its socket. Ht these in the order you
prefer and then solder a short piece of
tinned copper wire in the hole marked
"SP."
This is where the female matrix connec-
tor will slide on. If you are wondering
why we recommend a piece of tinned
wire instead of a male matrix pin, the
reason is that the force needed to push a
female over a male matrix pia is far to
great to be healthy for the TEC or DAT
PCBs. (The keyboard is destructive
enough). The tinned wire can be finned
again to give just the right fitting
diameter, if required.
After fitting all the components, cut the
length of hook-up wire into 4 equal sec-
tions. Strip and tin each end of all the
lengths. Solder two pieces to the ground
strip next to the tape in and tape out pads
on the DAT BOARD. The other ends of
these wires solder to the top tags of the
3.5mm sockets.

Solder the two remaining wires to the
tape in and tape out pads. The other ends
are soldered to the DIAGONALLY OP-
POSITE tags on the 33mm sockets.
Keep track of which socket the w ires are
joined to, and mask them accordingly.
Drill two holes large enough for the
3.5mm sockets in the back or side of the
RETEX case and fit the sockets in place.
Strip the ends of the shielded cable and
twist the shield into one strand. Remove
the covers of the 3.5mm plugs and slide
them onto the figure 8 cables, so they
are back to back. Solder the shields to
the larger tags on the plugs. The middle
conductor is soldered to the smaller
tags. Do this for each of the four ends.
Solder a 5cm piece of hook-up wire on
the 1K resistor which connects the out-
put latch to the speaker transistor. The
wire is soldered on the LATCH SIDE of
the resistor. The other end of the wire is
soldered to the female matrix connector.
This matrix connector slides over the
pin marked SP on the DAT BOARD.
Now you are ready to instil the feed
downs.

INSERTING THE FEED
DOWNS
The feed down are made of stiff tinned
wire of about 2cm length. The easiest
way to solder these is to solder a con-
tinuous length in each hole, and then
trim it down afterwards. Do this for all
the feed downs and try to get them
straight us possible.
The feed downs plug in to a cut-up IC
socket soldered across the links near the
EPROM. The socket is soldered where
the links form a straight line as they dis-
appear into the TEC PCB. (See
diagram). If you want, you may make
the feed downs longer, remove the links.
and permanently solder the DAT
BOARD in place. Of course, you will
need to put jumpers beneath the board
to replace the missing links. This arran-
gement will provide a far more reliable
circuit connection. Make sure you have
finished the board COMPLETELY
before you do this, as you will not be
able to solder underneath the board
afterwards.

CONNECTION OF THE
CONTROL LINES
There are 10 control lines that are
soldered to the bottom of the TEC
board. A 20 an 12 way ribbon cable is
used to make all the connections. The
ribbon cable is soldered to a row of pads
on the DAT BOARD about 2.5cm

below the top edge. The ribbon cable is
soldered to the BOTTOM SIDE of the
DAT BOARD and then drops down be-
tween the TEC board and the RETE)(
case (if you have one).
All the connections to the DAT
BOARD are printed on the solder side
of the board while the connections to the
TEC are made as per the wiring
diagram.
The two 3.5 nun sockets for the tape
in/out are mounted in either the back or
side of the RETEX CASE If you do not
have a case then the sockets can be con-
nected with short pieces of wire and left
"Boating." We do not recommend that
you drill holes in:either the TEC or DAT
boards for the sockets. This is to save the
expensive TEC board from the exces-
sive force involved in plugging and un-
plugging the leads. The best idea is to
hold the sockets when inserting the
leads.

THE STAND-OFFs
In addition to the feed downs. three bolts
act as stand-offs. The beau of these bolts
sits on the TEC boanl or, if you wish,
you may drill into the board :all feed the
bolts up through the board. If you have
the original TEC- I board with the 8212
latch chips, the top bolt will not be able
to be feed through the hoard as there is
track work associated unit the (now
aborted) on-board tape interface and
battery backed RAM.
If you have drilled the holes, then feed
the bolts up from the bottom of the TEC
and lock each in place with a nut. A
second nut is screwed clown to about
lcm off the TEC board on each bolt.
This sets the height of the DAT
BOARD. The DAT BOARD is then
placed over the two bolts aid a third nut
is tightened onto the DAT BOARD.
Ilya' to not wish to drill into your TEC,
which is quite understandable, then
place a nut on each bolt and wind it
down to about tan from the head. Poke
the bolts through the the hole in the
DAT BOARD and tighten down the
second nut.
Next, insert the board and note how high
it is off the MC. Ideally it should be 1.5
to 2crn off the board. Trim the feed
downs until you are happy with the
height Adjust the stand-offs until they
all sit neatly on the TEC board. Finally,
a blob of blu-tack can be used to secure
the top stand-off on to the board. This
will help keep the DAT BOARD square
on the TEC.

48 TALKING ELECTRONICS No. is

TESTING THE
LATCH/TAPE INTERFACE
The latch is easily tested by running up
JMON. If the keyboard works then the
latch is obviously working. You can test
each hit of the latch by taking the
remaining inputs to ground, These pins
am connected to pins 2,4,6,8 and 12 on
the 74CI4 socket and also pin 3 of the
latch chip itself. Make sure that you
don't have the 7404 fitted as this may
damage the chip.
The following program will echo the
latch on the LED display:

0900 3E 3F D3 02 DB 03 E6 3F
0908 D3 01 C3 00 09

To lest the tape, refer to the pages an
using the tape system that show how to
use and trouble shoot the tape interface.

THE SINGLE
STEPPER/LCD
INTER FACES
if you are constructing this section
before the tape/latch section, you will
need to make a modification to the TEC.
The mud is to add a 4k7 resistor between
pin 15 a i the 4049 and pin 10 of the Z80.
The purpose of this mod is to route the
DATA AVAIL ABLE SIGNAL to the
DATA BUSS. Without this, JMON is
unable to mad the keyboard. (This mod
is described numerous times throughout
this issue). The LCD interface consists
of just four components. They are a D
flip flop. a 100p cap. a (GOR resistor and
a 1.01/4 trimpot. The D flip flop, (that was
spare) is configured to act as an IN-
VERTER!! This design saved us from
having to use another chip.
The single stepper interface simply uses
one half of a dual D flip flop!

CONSTRUCTION NOTES
These 2 interfaces am simple to con-
struct. Just take care with the orientation
of the 74.574 chip. If you have a spare
LED on hand then you can solder it onto
the uimpot to use as a knob (one is
provided in the kit).

FITTING THE LCD
Place the LCD FACE DOWN on the
work bench and feed a 5cm length of
tinned copper wire into each hole on the
LCD. Solder the wires in place and then,
starting at one end, trim the wires to
form a ramp. This helps you to insert the
14 wires one-at-a-time into the DAT
BOARD. The DAT BOARD edge con-

nector is placed at the top of the DAT
BOARD and the LCD overhangs the
board like a verandah.
Insert the LCD into the DAT BOARD
as best you can. A second person with a
pair of tweezers could help tremendous-
ly in getting each wire down its hole.
After you have fitted the wires into their
holes, position the LCD to the height
you want. This should be about I cm to
1.5cm, and carefully solder it in place.

TESTING THE LCD
After you have finished construction
and wired the DAT BOARD to the TEC
as shown in the wiring diagram, you're
ready to go. Fit the board in place and
turn the 10k trimpot clockwise when
looking at it fmm the left. Turn it as far
as it goes. then turn it back just slightly.
This sets the contrast level and if it is not
approximately at the position described
above, nothing will appear on the LCD.
If you have JMON then fit it into the
EPROM socket and power up the TEC.
All things being equal, the display will
show the following:

0900>xx xx xx xx
Data xx xx xx xx

If not, the most likely cause is that one
of the data lines is not getting to the dis-
play. The easiest way to check this is to
type in the following:

0900 3E 55 D3 04 C7

AFTER you have entered this, connect
a jumper between port 4 and the wait
line of the Z80. When you have done
this, hit go.
The TEC should go "dead." Now, with
a logic probe, test the edge connector of
the LCD. Starting from the right, the
logic levels should be: H, L, H, L, H, L.

AND L
If not, then check all the connections
and retry until right. If the connections
are right, but there is nothing on the dis-
play, check the voltage on pin three of
the LCD. This voltage should be in the
range of 0.5v to Iv. Adjust the trimpot
until you measure this voltage.
Still no luck? Turn off the TEC, hold
reset down and turn the TEC back on
while still holding down the reset. The
top row of the LCD should be dark and
the bottom line should be light. If not
then there maybe no power getting to
the LCD, the contrast voltage may be in-
correct (but you have already checked

this), or the display has been damaged.
they are all tested before they leave TB).
If the top line is dark when power is ap-
plied but the display does not respond
when reset is released, then put your
logic probe on pin 6 of the LCD. Hold
down the "+" key and watch the logic
probe. Pin three should pulse HIGH
each time the TEC beeps. If not then
check that you have the wire going to
port 4 in the correct place. Check the
track work around the 74LS74 chip and
the chip itself.
If pin 6 seems ok then check that the
100p cap is fitted as this is VERY IM-
PORTANT. Pin 5, the rive line, should
always be pulsing. Check this with the
logic probe.
The only other line left to test is the
register select (RS). This line is address
7 and the easiest way to check this is
with a continuity tester. If the LCD
clears when power is applied, but noth-
ing appears on the LCD, then it is odds-
on that the cause is address 7 not being
wired correctly.

TE REPAIR SERVICE
Stilt can't get it going? Check it all
through again, keep in mind that the
most likely cause is a mistake in your
wiring. As a VERY last resort (after
ringing us) send it in and we'll see what
we can do.
Our repair fee is $9.00, plus $2.50 for
post and handling. This includes re-
placement of all parts except the LCD
(that was tested before leaving us).
Before you send it in, remove the con-
trol buss wires (the ribbon cable) from
the DAT BOARD. Pack it up securely
and send it down. If you want the tape
section tested leave the 3.5mm sockets
connected.

TESTING THE SINGLE
STEPPER
This is easy. With JMON fitted, enter
this at 0900:

0900: 00 00 00 00 00 C3 00 09

Now, press shift 2. The single stepper
will show 0900 PC. Press any data key
and the single stepper will cycle
automatically. The occasional clicking
you (may) hear is a result of the interac-
tion of the interrupt response cycle and
the decoding of the 74L5138 decoder
chip.
If the single stepper doesn't work, then
check your wiring as it is doubtful that
the 74LS74 chip is faulty.

TALKING ELECTRONICS Na 15 40

16 CHARATER

2 LINE LCD

-100R-

DAT BOARD
1 	im°

TE 	PEED DOWNS I

in LOW 0, r-4-1
trot 	.1

a —'C 81 'w
SP • 10n

4K7

ion -10K-
OUT -10K-
-47130

IN 	o

n § 6 6 Tt •
'80547

100n =I
7415373

•
2

• OUT

ton
••• • ••

74C14
40108

111111

WHAT THE LCD
INTERFACE DOES
The LCD is designed to directly inter-
face to microprocessors. Unfortunately
there are two main types of
microprocessor buss timing and the
LCD is designed for the wrong type (as
far as we are concerned). In order to get
the LCD to interface to the Z80, a little
bit °goggling with the inning 'weeded.
The find problem is the the LCD re-
quires an active HIGH Enable signal.
This has been achieved by inverting the
PORT 4 I/O select line. This inverting
is done by the spare D flip flop on the
DAT BOARD. By looking at the
TRUTH TABLE for the 74LS74, I
found that it was possible to configure
It as an inverter if l used the CLR pin as
the DATA input!
To cut a long story shod, the idea
worked. Eureka!
The next problem is the LCD requires
R/W to be stable on the falling edge of
the E signal. If you look at the 7.80
throng, you will see that the R/W line
and the IORQ change state simul-
taneously. By the time that IORQ has
gated port 4 and the port 4 signal has
been inverted, the R/W line will actual-

ly change (slightly) before the E line on
the LCD!
To overcome this problem, a simple RC
network has been placed on the R/W
line. This RC delay holds the R/W line
stable while the E line goes low. The
time we are talking about here is just a
fraction of a microsecond, but that is all
it takes for the chips in the LCD to ac-
cept or reject the in-coming signals.
Mother problem is that the LCD re-
quires 2 ports to communicate with the
Z80. It also wants to decode the second
port itself. This is a common requite-
ment of many peripheral devices, and
the solution provided here is also useful
for all these.
To give the LCD its second port, and let
it decode it for itself, address line 7 has
been presented to the LCD. This means
that the second port is decoded (by the
LCD) on port 84.

DISPLAY CONTRAST
The LCD requires an external voltage to
set the contrast level.
The contrast of LCDs varies with
temperature and viewing angle. To
allow for this, the LCD has an external
contrast control. The contrast is control-
led by adjusting the voltage on this pin.

This is the function of the 10k trimpot,
that is wired as a voltage divider.

OPTIONS
Several optional extras can be added to
the DAT BOARD. Below is a descrip-
tion of each:

MON SELECT SWITCH
When you add the DAT BOARD, there
may not be enough room between the
board and the EPROM to fit your MON
select switch. If this is the case,
provision has been made to fit the
switch to the DAT BOARD. Simply in-
stall the dotted link and move your
switch to the dotted switch position on
the DAT BOARD. Run a wire between
the pin marked 'ROM P21 and pin 21
of the EPROM.

SERIAL INPUT
The SERIAL INPUT (SI)
This input is for a serial signal, or a
RS232 level signal from a printer or
RS232 device. This input clips the sig-
nal, which can be +/-15V to +/-25V, to
safe logic levels.
This signal winds up as DO on the
7415373.

THE 74C14
This has been added to increase the ver-
satility of the DAT BOARD. Some pos-
sibilities far it include a touch sensitive
qwerty key pad, an external time
reference, a thermistor controlled oscil-
lator for temperature measurement or
just buffered inputs. Nothing permanent
has been planned for it, it is mainly for
experimentation. We are open to your
ideas!

THE DIRECT CONNECT
PIN
This is located between the transistor
and the 6 x 1M resistors. The purpose of
this pin is to allow direct connection be-
tween two TECs. One TEC can down
load to another through the tape
software or a serial communication
program. (1 have a 9600 Baud routine
that also talks to IBM's and com-
patibles).

THE UNUSED INVERTER
The input for the unused inverter is the
right most matrix pin on the bottom
right-hand side of the DAT BOARD.
The output is the matrix pin directly
above it.

50 TALKING =CTRONICS Na IS

110W THE TAPE CIRCUIT
WORKS
There's not much to describe about the
tape circuit as all the hard work is done
by software. The output section consists
basically of an AC coupled LOW PASS
filter with some attenuation on the end
to prevent the digital level voltage from
Over driving the cassette players input.
The input section is just a simple AC
coupled common emitter transistor
amplifier with the base heavily biased
on. The bias on the transistor is impor-
tant as this ensures that the software is
able to read a steady logic 0 when no
(AC) input is present.

HOW THE SINGLE
STEPPER INTERFACE
WORKS
The single stepper INTERFACE works
by interrupting the Z80 after each in-
struction. The interrupts are generated
from a D flip flop on the DAT BOARD.
Each time the Z80 fetches the first byte
of an instruction a special signal called
MI is generated. This Ml is used to
clock the ROM CS line into the D flip
flop. The Q-bar output of the flip flop is
connected to the INTerrupt pin. This
means that anintemmt will be requested
on every instruction fetch unless the in-

struction was fetched from the MONitor
ROM.
It is important to prevent interrupts
while executing in the MONitor ROM.
If we don't, then an interrupt will occur
just after it is re-enabled, at the end of
the stepper routine. Immediately fol-
lowing the El (enable interrupt), is a
RETum. If an interrupt occurs on this
RETtun, then the stepper routine is re-
invoked and each time this RETum is
reached, the program loops back to the
stepper routine forever! I (If it wasn't for
this problem we would not require any
external hardware at all). 	•

DAT

TOP RIGHT
Bottom side of the DAT
board with the feed-
downs fitted.

TOP LEFT
Diagram showing how
the cut-up IC socket is
mounted on the links.

LEFT
Wiring diagram show-
ing where the "flying
leads" from the under-
side of the DAT board
are connected to the
TEC.
Note that the diagram
DOES NOT show the
wires leaving the DAT
board In the correct
order, only the correct
places on the TEC
board. Use the labels
on the underside of the
DAT board for the cor-
rect DAT wiring posi-
tions.

r

7 - 	 1 	11 	;If 	 rf
7_11_0 	_t_ _1_ —2111(1

	

6 I 6 	! 	[1 	
c.; 	 " .21 & 	

dr)
-.

!GI
TALKING ELECTRONICS Na is 51

i I — - , • i 	— 	 —

t 	0 5 0 0 	
4_44.4111i

4 r•- -r 	1 - 	alt0 •
?1,;.}?4:', 	 fritcy _cy-_—_4;frkzfe' 	r! 4 -1 	I 	

;r if 6 I 	I 	Ell if(..47 	I I I

46- —EINE •

• . 	 CI•

	

--_Zvi I 	 t=r.

F: — -
1;

1'\' 1,r..71!!1 	 r4 TEC I A/0.4:,

THE LIQUID CRYSTAL
DISPLAY by Jim.

INSIDE THE DISPLAY
The display has three internal registers

though which all communication is done.
These are the registers:

THE DATA REGISTER
The data register Is a read or write

register to which all DISPLAY DATA (in
ASCII format) and BIT MAPPED
PROGRAMMABLE CHARACTERS me
sent. This DATA register acts as a TEM-
PORARY BUFFER between the inter-
nal DISPLAY RAM or CHARACTER
GENERATOR RAM (both described
below) and the host computer (our TEC).

Characters may also be read from this
register.

Internal operations transfer data be-
tween this register and the internal RAM
(or between RAM and this register). This
register Is located on port 84H.

THE INSTRUCTION (or
CONTROL) REGISTER

The instruction register receives all in-
struction bytes. ALL bytes sent to this
register will be interpreted as CONTROL
by the LCD. This is a WRITE ONLY
register and Is decoded on port 04.

THE ADDRESS
COUNTER/BUSY FLAG

Bit 7 of this register Is used as the busy
flag. After EVERY operation it goes
HIGH to Indicate that the display is not
ready to perform ANY type of additional
operation yet. As soon as the display
becomes on line" again, it will go LOW.

The lower 7 bits are the current ad-
dress of the Internal cursor. All read or
write operations occur between the data
register and the address held in this
register.

This register is READ ONLY. (The
ADDRESS COUNTER is set or altered
by instructions sent to the INSTRUC-
TION REGISTER and then transferred
into THE ADDRESS REGISTER by an
INTERNAL operation). This register is
located on port 04 with the control
register. Internal decoding gates the
R/W line to select between each
register.

As well as the registers, the display
contains both RAM and ROM. Below is
a description of the Internal memory in-
side the LCD.

THE DISPLAY RAM
All the display information sent to the

DATA REGISTER is transferred Into the
DISPLAY RAM by an Internal operation.
This RAM can hold 80 bytes of display
information. While the LC b may only dis-
play 32 characters at a lime, the extra
bytes allow for the display to be shifted
or can serve as general purpose storage
RAM. An unusual feature of the display
RAM is that the address from the last
location on the top line (27H) to the ad-
dress on the bottom line (40H) IS NOT
CONSECUTIVE.

THE CHARACTER
GENERATOR ROM

This ROM contains 192 different 5x7
dot matrix characters. These include full
upper and lower case Alphabet charac-
ters, numbers, maths symbols, Greek
and Japanese characters.

All of the most used characters are
here. Any type of character we need that
is not there, can be made up on the
CHARACTER GENERATOR RAM.

THE CHARACTER
GENERATOR RAM

The CHARACTER GENERATOR
RAM allows us to define up to 8 different
characters of our choice. The format of
each is a 5x8 dot matrix with the cursor
making up the 8th row. Any or all can be
displayed together on different pails of
the LCD and also may appear in several
places at once. We can use this to make
games characters.

GETTING SOME-
THING ON THE
LCD

Using the LCD is easy because it con-
tains its own Intelligent' chips which do
all the hard work for us. From JMON,
putting anything on the LCD is VERY
easy because the LCD has been set-up
by JMON.

JMON sets the LCD to shift the cursor
right after each entry. You cannot see
the cursor as it has been turned off by
the software in JMON.

To aid with the experiments below, put
FF at 0821 (the LCD will stop changing
after the first F) and AA at 08FF. These
disable the LCD from the MONitor (the
FF at 0821) and Mop the MONitor re-

booting its variables on a reset (the AA
at 08FF). The MONitor will reset to 0A00
to remind you that the variables have not
be re- booted on reset. (Unless a key
was held down while reset was pushed,
In which case you must again put FF at
0821 and AA at 08FF).

Ok, lets start by putting the letter L on
the screen.

Firstly we must clear the screen and
send the cursor home. This may be done
by one instruction - 01. We output this to
the control register on port 04. Before we
can output to the LCD we must waft until
it is ready. Because this is required to be
done frequently, the RST 30 instruction
has been used to do this to us. The RST
30 reads the LCD busy flag and loops
until It goes LOW.

Ok lets type this in:

CIA00 F7 	RST 30
OA01 3E 01 	LO A.01
0A03 D3 04 	OUT (04).A
0A05 76 	HALT

Reset, Go

The display will go blank and the (in-
visible) cursor will return to home (top
left-hand corner). The 01 instruction sets
all the display RAM locations to 2014
(space). The 01 instruction doesn't af-
fect any previous mode setting or dis-
play options (discussed below).

Now enter this with the RST over the
HALT at 0A05:

0A05 F7 	RST 30
0A06 3E 4C 	LD A,4C g(L)"
CA08 D3 84 	OUT (84),A,
OAOA 76 	HALT

Reset, Go

The letter L appears in the lop left
Corner.

Ok, now as before, put this in with the
RST over the HALT:

0A0A F7 	RST 30
0A0B 3E 43 	LD A,43 "(C)"
OAOD D3 84 	OUT (84),A
OAOF F7 	RST 30
0A10 3E 44 	LD A.44 "(D)"
0Al2 D3 84 	OUT (84),A
0A14 76 	HALT

Reset, Go
The above section outputs two more

bytes to the DATA REGISTER.
Until now we have just been using a

simple method to output data. This has
shown us the basic way to talk to the
LCD. Now that we have come this far
and teamed the basics, we'll advance to
something more useful.

The code below will output a word onto
the bottom line of the LCD. The display
DATA will be held In a table at OBOO.

52 TALKING ELECTRONICS No. 15

	

F7 	RST 30
3E CO LD &CO

	

D3 	04 	OUT (04),A
01 84 06 LD BC,0684
21 00 OB LD HL,OBOO

	

F7 	RST 30
ED A3 OUT!

	

20 	FE1 	JRNZ 0A1F

	

76 	HALT

08004D 41 53 54 45 52

To set the cursor to the bottom line we
output 80 to the instruction register (bit 7
sets the cursor address entry) + 40
(wtrich is the actual address of bottom
left display) . CO.

The OUTI instruction is new to our
repertoire. Ws operation Is to output the
byte addressed by HL to the port ad-
dressed by C. HL is then incremented
and B is decremented. It B becomes
ZERO the ZERO FLAG is set and the
operation is complete. This instruction
can output up to 256 bytes at a time.

Because we need to check the busy
flag we loop back to the RST 30 until all
the bytes have been done. If we didn't
need to check the busy flag we could
have used the OTIR instruction which
automatically repeats itself until B.O.

All the above is done with the cursor
switched oft. For the next section we
want to have the cursor on. To switch on
the cursor output OE to the instruction
register on port 04.

	

DAGO F7 	RST 30

	

0A01 3E 	OE 	LD A,OE

	

0A03 D3 	04 	OUT (04).A

	

0A05 76 	HALT

	

0A06 C7 	RST 00

Now les see what does what on the
display.

Using the above routine, output the
bytes below one at a time, to port 04 and
HALT between each. (leave what's on
the display there).

Check the function of each on the table
of controls.

18 10 10 10 02 14
14 10 OC OF 08 OC

Good luckll

SETTING THE ENTRY
MODE

The display may be configured to per-
form several different functions UPON
EACH DATA BYTE ENTRY. They are:

1 INCREMENT CURSOR ADDRESS
after storing Inputted data byte (06H).
This is our normal mode.

2 DECREMENT CURSOR ADDRESS
after storing input (04).

3 SHIFT THE DISPLAY RIGHT after
entry (05).

4 SHIFT THE DISPLAY LEFT after
entry (07).

Each mode is selected by outputting
the byte shown to port 04.

Once the entry mode is set It IS ONLY
CHANGED BY ANOTHER ENTRY
MODE SET COMMAND. None of the
other control bytes will alter the entry
mode.

The shift on entry feature (05,07) has
been found to be difficult to use and even
appears to contain design bugs.

You may experiment with It but we
won't be using it in these notes.

The CURSOR DECREMENT may
come in handy sometimes but it's more
likely to be useful to processors which
move blocks of data around In a more
limited way to the Z80.

RUNNING WORDS ON
THE LCD

Running words along the LCD is also
simple because the LCD'S intelligent
chips do most the work for us again. Our
job is to enter the words we want to scroll
(up to 16 characters per line for this
routine) and send shift commands
each time we want a shift.

The routine below is entered in 3 sec-
tions. Each section is a logical progres-
sion and increases the programs
abilities. You can look at the instructions
in each section and compare it to what
the section does. This way you can learn
how to put blocks together to use the dis-
play any way you want. Before entering
the code below put FF at 0821 and M
at 08FF as described before.

Enter this and INCLUDE the NOPS
and the table at 0000 then run it:

0A00
0A02
0A04
0A05
0A07
0A09
DADA
OAOC
OAOE
OAOF
OA' 0
OA' 1
0Al2
°Al 3
°Al 4
°A17
OM A
OA1C
0A1D
0A1F
0A20
0A22
0A24
0A25
0A28
OA2A

3E 01
	

LD A,01
D304
	

OUT (04),A
F7
	

RST 30
3E 06
	

LD A,06
03 04
	

OUT (04),A
F7
	

RST 30
3E OC LO A,OC
D304
	

OUT (04),A
F7
	

RST 30
00
	

NOP
00
	

NOP
00 	NOP
00 	NOP
00 	NOP
01 84 10 LD BC,1084
21 00 08 LD HL,OBOO
F7 	RST 30
ED A3 OUR
20 FB JRNZ 0A1A
F7 	RST 30
3E CO LD A,C0
D3 04 OUT (04)A
F7 	RST 30
21 30 OB LD HL,013.30
0610 	LD 8,10
F7 	RST 30

0A20 ED A3 OUTI
0A2D 20 FB JRNZ 0A2A
0A2F 76 	HALT

0800:54 41 4C 4B 49 4E 47 20
0808:20 20 20 20 20 20 20 20

(TALKING)
OB30: 45 40 45 43 54 52 4F 4E
OB38: 49 43 53 20 20 20 20 20

(ELECTRONICS)

This will put "TALKING• on the top line
and "ELECTRONICS" on the bottom line
of the LCD and stop. Study the above
section and see If you can work out the
role of each instruction.

Now well add the shift section. Enter
this with the first "NOP" over the last
-HALT" and run it:

NOP
NOP
LD A,18
OUT (04)A
LD BC,6000
DEC BC
LD A,B
OR C
JRNZ 0A38
JR 0A31

The above code loads the shift instruc-
tion (18H) Into the accumulator and out-
puts it to the control register on port 04.

As you can see it shifts the display, but
this method is not very good if we want
to shift only a few characters as we must
wait for them to be shifted through the
entire display RAM before they reap-
pear. To overcome this we can count the
number of shifts and reset the display
with a 02 command, as soon as all the
letters have been shifted outside the dis-
play. The 02 instruction resets the dis-
play from shift WITHOUT CHANGING
the contents of the DISPLAY RAM,
CHARACTER GENERATOR RAM, or
the CONTROL MODE. Because we
would like the words to shirt across the
entire display and re-appear as soon as
they have all gone, we must load the
words just outside the screen to the right
The following additions make the words
start shifting into the display from right-
to-left.

Ok, Now enter the following, AT THE
ADDRESSES SHOWN:

OAOF 3E 90
	

LD A,90
0A11 D3 04
	

OUT (04),A
0A13 F7
	

RST 30

0A22 3E DO LD A,D0

The above instructions set the DIS-
PLAY RAM ADDRESSES to the RAM
locations just right of the screen. The ad-
dress of the top line is 90 and the ad-
dress of the bottom line is DO. (Actually

0A14
0A15
0A17
0A19
0A1C
0A1F
0A20
0A22
0A24

OA2F 00
0A30 00
0A31 3E 18
0A33 D3 04
0A35 01 00 60
0A38 013
0A39 78
0A3A B1
0A3B 20 FB
0A3D 18 F2

TALKING ZLICTROMCS No. is 53

these are the addresses +80H, the SET
ADDRESS instruction).

0A2F 1618 	LDD, 1B

(The D register Is our shift counter).

0A3D 00 	NOP
0A3E 00 	NOP
0A3F 15 	DEC D
0A40 20 EF JRNZ 0A31
0A42 3E 02 	LD A,02
0A44 D3 04 OUT (04),A
0A48 F7 	RST 30
0A47 18 E6 JR 0A2F

The last group makes up the shift
counter and resets the display when the
counter reaches Zero. When the 02
command is received by the LCD the
display is returned to its NORMAL posi-
tion. This means that the Inputted data
Is returned to WHERE IT WAS
ENTERED Gust right of the screen).
Now, when the next shift command is
received, the letters starttoshift left back
on to the screen.

QUESTION:
Why don't we need to wait for the

BUSY flag to go low after the shift in-
struction?

if you wish to change the number of
characters to be shifted, you may do so
by putting your new characters at 01300
for the top line +and at OB30 for the bot-
tom line. Unused locations should have
20 (space) inserted until 16 locations are
filled. (From 01300 to 01310 and from
OB30 to OB40). The value of the loop
counter loaded into D at 0A2F should
also be changed. The value of the loop
counter is best set to 10H + the number
of letters occurring in the longest line.

e.g. For the the example above:
ELECTRONICS .11 (OBH) Letters.

So add OBH + 10H . 113H.
So 1BH is loaded into Dat 0A2F.
To understand the above formula bet-

ter, try1C and 1A and see the result.
FINAL NOTES
The slow response of the LCD detracts

from the effectiveness of the shifting a
little but by experimenting with the delay
at 0A35 you should be able to Beta good
compromise between speed and display
clarity.

The above shifting method is just one
of dozens of ways we could have used.
A more complex program could shift in-
formation across and out one end and
load new information in the other to
create a running Information display.

Use the blocks In this program and the
others to make up your own display
routines. If you come up with something

interesting, write in. We would love to
see what you've come up with.

DESIGNING YOUR OWN
CHARACTERS

You can have up to eight different
characters stored in a character-gener-
ator RAM. Each character is displayed
on the screen when it is addressed in the
display RAM. The addresses are be-
tween 0-7. The user-defined characters
are made up of an 8x8 matrix (only 5
columns are displayed, the cursor
makes up the 8th row.)

To set up a character, B bytes are out-
putted to the character- generator RAM.
The first byte makes up the top row (only
the 5 lower bits are displayed). The
second byte makes up the second row
etc.

Before sending the 8x8 character (ac-
tually a 5x8 character), the entry mode
must be set (if not already) to address-
Increment with no display shift (06) and
a set character RAM address operation
must be done.

The control byte for this is 40+ the ad-
dress of the first byte of each character-
matrix. E.g: 40, 48, 50 for characters 1,
2, 3 etc.

Once a character is set up, It is dis-
played by placing its address in the DIS-
PLAY DATA RAM. Before doing this the
DISPLAY RAM must be selected via 80
+ address

OK, let's put our own character on the
LCD.

0A00 F7
	

RST 30
0A01 3E 01
	

LD A,01
0A03 D3 04
	

OUT (04),A
°ADS F7
	

RST 30
0A06 3E 40
	

LD A,40
0A08 D3 04
	

OUT (04),A
DADA 01 84 08 LID BC,0884
OAOD 21 00 013 LD HL,OBOO
0A10 F7
	

RST 30
OA11 ED A3 OUTI
0A13 20 FB JRNZOAI0
0A15 F7
	

RST 30
0A16 3E80
	

LD A,80
0A18 D3 04
	

OUT (04),A
DA1A F7
	

RST 30
OMB 3E-00
	

LD A,00
°AID D3 84
	

OUT (84),A
0A1F 76
	

HALT

01300:

11, OA, 04, 11, OA, 04, 11, OA

Experiment with the values in the table
and see how it all goes together. By In-
creasing the value loaded into B, to
10(hex) (at °AOC) a second character
may be programmed at the same time.
The table for the second character will
start at 0808. This will be displayed
when a 01 is written into the DATA
DISPLAY REGISTER. Experiment and

see if you can get 8 characters appear-
ing In several places at once on the dis-
play.

MYSTERY EFFECT

The routine below produces a very in-
teresting effect It uses the PROGRAM-
MABLE CHARACTER GENERATOR to
produce 8 different characters some of
which are displayed several times. We
won't tell you the effect, we'll let you type
it in and see for yourself. You won't be
disappointed!

The program consolidates much of
whatwe have teamed abourdriving' the
LCD. If you experiment further and add
a shift to it then it will be a complete
revision of what we have covered in
these pages.

Now that you know how to use the
LCD, start writing some programs that
use it. If you come up with something in-
teresting don't hesitate to send it in to
TE. We would be very interested in
some simple animation or an adventure
game or anything that others would be
interested in seeing. Go to iti

°A00 F7 	RST 30
0A01 3E01 	LD A.01
0A03 D3 04 	OUT (041,A
0A05
	

FIST 30
0A07 3E 06 	LD A.06
0A08 D3 04 OUT 04
DADA 21 00 08 LD HL.0600
OAOD 01 84 10 LDBC,1084
0A10 F7 	RST
0A11 ED A3 OUTI
OA13 20 FB 	JRNZ 0A10
0A15 F7 	RST 30
0A16 3E 40 	LD A.40
°A18 D3 04 	OUT (04).A
OA1A 21 20 OB LD HL,0820
0A1D 06 40 	LD 8,40
°At F F7 	RST 30
0A20 ED A3 OUTI
0A22 20 FE! 	JRNZ 0A1F
0A24 F7 	RST 30
0A25 3E CO LD A,C0
0A27 133 04 	OUT (04),A
0A29 21 10 OB LD HL.01310
0A2C 06 10 	LD 8,10
0A3E F7 	FIST 30
0A3F ED A3 OUTI
0A31 20 FB JRNZ 0A3E
0A33 76 	HALT

01300: 20 4D 49 52 52 4F 52 20
0E108: 49 4D 41 47 45 21 20 20
0810:20 00 01 02 02 03 02 20
01318: 01 00 04 05 06 07 20 20
0B20:00 11 11 11 15 15 1 B 11
OB28: 00 OE 04 04 04 04 04 OE
0830: 00 11 12 14 1E 11 11 1E
0B38: 00 OE 11 11 11 11 11 OE
0840: 00 11 11 1F 11 11 11 OE
0B48:00 OF 11 11 17 10 11 OE
0050:001F10101E 10101F
0858:00 04 00 00 04 04 04 04

14 TALKING ELECTRONICS No. 15

CONCLUSION

This concludes this issues instalment on
the LCD.
Study the previous notes carefully and
get to !mow the LCD fully. There is
enough information here for you to

write routines using the LCD and we
would like to see some ideas sent to us
for issue 16.
The LCD will be supported further in
issue 16 and if all goes well, we will
have a cheap, full alpha-numeric key-
board with supporting software. I am

working towards the stage were you can
anotate your routines and send the ten

and the routine in on tape. We can then
load them into our desk top publisher.
Don't forget if you have any good ideas
or questions about the TEC, send them
in to 'TEC TALK"
	 •

Below Is the table of LCD control bytes. Use these in conjunction with the Previous notes

Code
Function

Execu-
tion
time

Instruction
RS 0.074/- DOI DRG Das DBE3 DB3 OB2 OBI DOD

(1) Display clear o o o am o o i
Clears all display and returns cursor to
home position (address 0) 144 ni

(2) Cursor Home o 0 0 0 0 0 o o I•
Returns cursor to home position. 	Shifted

- display returns to home position and DD
RAM contents do not change.

1.64 rns

(3) Entry Mode Set o 0 0 0 0 0 0 I VD S

Sets direction of cursor movement and
whether display will be shifted when data
is written or read

4811s

(4) Display ON/OFF

control
oo 0 0 0 o loco

Turns ON/OFF total display (D) and cursor
(C), and makes cursor position column start
blinking (B)

40 11s

(5)CursorfDisplay Shift oo am sic rut • .
Moves cursor and shifts display without
changing DD RAM content 4 ps

(6) ;unction Set
I

l

0 0 0 0 1 Di. I • • •
Sets interface data length (DL)

40 11.5

- (7) CG 	RAM 	Address

Set
0 0 0 I AcG

Sets CG RAM address to start transmitting
or receiving CG RAM data 40 115

(8) DC. 	RAM 	Address
Set

o 0 1 ADD

Sets DD RAM address to start transmitting
or receiving DD RAM data 40 115

(8i SF/Address Read o I BF AC
Reads BF indicating module in internal
operation and AC contents (used for both
CG RAM and DO RAM)

Ops

(IC) Data Write to CG
RAM or DD RAM I o Write Data

Writes data into DO RAM or CG RAM
40 ps

II I) Data 	Read 	from
CG RAM or Do
RAM

i I Read Data
Reads data from DO RAM or CG RAM

40 115

• : Invalid bit M. 1 : Increment C - 1 : Cursor ON FUL 	1 : Right shift

AcG 	CG RAM address liD = 0 : Decrement C : Cursor OFF R/L 	0 : Left shift

A00 : OD RAM address

S 	1 : Display shift .1 : Blink ON DL • 1 : 8 bits

S 	0 No display shift - 0 : Blink OFF DL 	0 : 4 bits

D • 1 : Display ON S/C. 1 : Display BF 	: Internal operation

D - 0 : Display OFF shift in progress
S/C A. 0 : Cursor

movement
BF • 0 : Instruction can be

accepted

TALKING ELECTRONICS Na is 55

MAGIC SQUARE NH
This is a fun game for the 8x8 that will
have you amused and frustrated for
hours.
The object is to light up the outside
square of the 8x8. The game is made up
of three 2x2 boxes of LEDs with a space
between each. This makes full use of the
8x8 to display a playing field that is ac-
tually 3x3.
Nine keysare used to play the game and
each key corresponds to a group of
LEDs on the display.

TO SET UP
This game, like JMON. requires EITHER
a 4k7 resistor between the NM1 (pin 17
of the Z-80) and D6 (Pin 10 of the Z-80)
OR the LCD expansion board with the
Input chip fitted on port 3.
The 8x8 is fitted to ports 5 and 6 with the
port select strobe of the left-hand latch
going to port 6.
This Is very Important! (once you master
the game, try swapping them over, this
will Invert the playing field and gives you
a mirror Image to work with).
The 8x8 is placed with the LEDs above
the latch chips.
It is important to fit the 8x8 before typing
in the code or at least hold down the
reset if you have already entered the
code, by using your third hand.
MAGIC SQUARE has been written to
run with the TEC crystal oscillator how-
ever it will work with the 4049 oscillator
but the tones will be lower pitched.

TO PLAY
Type in the code and save it if you have
a tape system. Now address OCOC and
press GO. The code is placed at 0000
to allow Simon and Magic Square to be
saved, loaded and played together
(however they do not require each
other). (Unfortunately Simon has been
held over to issue 16 because of the
shortage of space in this issue).
After starting the game, a random pat-
tern appears. By pressing the game
keys, the playing field will change. Each
key has a particular effect that remains
constant throughout the game. The ef-
fects of each key is for you to work outl
The keys used for the game are:4, 5, 6,
8, 9, A, C, D and E.
As you can see, these make up a 3x3
box pattern on the keyboard.
Go to iff The object of the game Is to light
up the outside border with the centre
OFF.
A fair point to add Is that it is always
possible to do this regardless of the
starting pattern - believe it or not!

by Jim Robertson
When (HI) you finally succeed, your effort
will be greeted enthusiastically on the
8x8. The game may be re-started by
hitting the GO key.

HOW THE SOFTWARE
WORKS

Three random numbers are generated
from the time it takes to release the GO
key and also from the refresh register.
The three lowest bits of these three
bytes are used to form a 3x3 matrix. The
top 5 bits are ignored.
All processing, pattern changing and
testing is done on this 3x3 matrix. After
processing, this matrix is converted to its
equivalent 8x8 display and then
scanned. A loop is used to scan the 8x8
and read the keyboard until a key Is
detected.
When any key Is detected for the first
time, a flag byte remembers this and the
program will ignore any subsequent
pushes.
This allows each key to be processed
just once. When no key is pressed, the
flag is cleared to allow the next key to be
processed.
When a key Is pressed and allowed as
a "FIRST KEY' press, it is checked for a
corresponding table entry. If no cor-
responding value Is found, the key is
ignored. This is how the unwanted keys
are masked.
After a key has been validated a table
entry 9 bytes higher is accessed. This
entry is a byte that will be exclusive-
ORed with the first byte of the 3x3 matrix.
A second byte 9 bytes higher again con-
tains the low order byte of the address
of the 3x3 matrix entry. The first byte is
now EX ORed with the matrix byte and
the result stored as the new updated
matrix byte. This is how the patterns are
changed.
The above process is repeated for the
second and third matrix bytes. The exact
same process described above is used.
The entry for the second byte is 9 bytes
higher than the first and the address 9
higher again.
The same convention Is used for the
third entry. This convention allows a loop
to be used for all three matrix bytes. This
loop is located at 0049.
After the above process, the 3x3 is
checked for the required box pattern. If
correct, the pattern Is convened to its
8x8format and flashed with accompany-
ing tones.
If the pattern is not complete, the pro-
gram loops back to the main playing
loop.

A routine at OCAB converts the 3x3 to
8x8 display format. This routine is called
after all the required processing has
been performed on the 3x3 matrix. This
routine is a loop that gets each 3x3
matrix byte, calls another routine to con-
vert each matrix bit to two 8x8 bits and
spacing, then stores the result twice and
adds a blank line.
The last blank line is ignored by the scan
routine and the result is an 8x8 format.
At OCC4 a loop converts one bit to two
and adds spacing. This is done by shift-
ing the matrix bit into the carry and if the
carry is clear, the two 8x8 bits are left
clear and shifted twice for the 2x2 box
bits and once for the space between.
If the carry is set, the 2x2 box bits are set
by rotating the SET CARRY into the 8x8
byte and also setting bit 7 beCore rotat-
ing. This will then set the cane alter the
first rotation, ready for the second rota-
tion. The third rotation clears tl se space
bit. After this is done three times, the 8x8
byte is rotated back to remove tne last
unwanted space before returning.

THE TONE ROUTINE
The tone routine is located at L,CD8. The
duration of the tone period is in D while
the cycle count is In E. The ''KEY
PRESS' beep uses this value loaded
info DE while other tones such as the
restart tone load DE before calling the
tone routine.

SCAN ROUTINE
The scan OCE7 is a straighofcrward
multiplex routine except that it scans
backwards. This allows the axe to be
right-way-around while keeping the rest
of the program straight forward (other-
wise the 8x8 buffer would need to be
loaded backwards).

*Magic Square" contains a number
of very valuable "building blocks*
that tan be used in your own
programs. It can stand studying for
many hours to see how the various
operations have been achieved.
The fully documented program is
presented on the next two pages
and you should add your own notes
alongside Jim's to help you under-
stand what Is happening at each
step.

Colin Mitchell.

`55 TALKING ELECTRONICS Na 15

MAGIC SQUARE PROGRAM
0000
00O3
0004
0006
0008
OCOA
OCCIC
OCOD

11 00 00
13
DB 03
CB 77
28 F9
ED 5F
82
32 40 OD

LD DE.0000 Random number generated
INC DE 	by the duration It takes
IN A,(03) 	program.
Bir 6,A
JR Z,00O3
LD A,R 	The value of the refresh
ADD A,D 	D register is added
LD (0D40),A E register is added

the player to release the

register is loaded into the

key at the start of the

accumulator.
as the first value.

second value.
to the accumulator and stored
(with carry) and stored as the

°C10 8B ADC A,E 	Registers are added to the accumulator and shifted to produce the
0C11 32 41 OD LD (0041),A third random number. This is also stored.
0014 82 ADD A,D
0C15 83 ADD A,E
0016 07 RLCA
0017 32 42 OD LD (0042),A

MAIN 	0C1A CD AB OC CALL OCAB 	Call 3x3 to 8x8 conversion routine.
PLAYING 0C1D CD E7 OC CALL OCE7 	Call scan.
LOOP 	0020 DB 03 IN A,(03) 	Test for key press.

0022 CB 77 BIT BA 	If bit 6 on port 7 HIGH then no key is pressed.
KEY 	0C24 28 06 JR Z,OC2C 	Jump if key pressed otherwise clear 'key pressed" flag and loop until
PRESSED 0026 AF XOR A 	key pressed. Otherwise clear.

0027 32 43 OD LD (0043),A 	"key pressed" flag.
0C2A 18 Fl JR °CID 	Loop until key pressed.
0020 3A 43 OD LD A,(0043) 	Test "first key press" flag.
002F 87 OR A
0030 20 EB JR NZ,OC1D Jump if key already pressed, otherwise set key pressed flag
0032 3E FF LD A,FF
0034 32 43 OD LD (0D43),A
0037 21 00 OD LD HL,ODOO 	HL = base of valid key table.
0C3A 01 09 00 LD 80,0009 	BC = number of valid key entries
0C3D DB 00 IN A,(00) 	Get nput value from encoder chip
003F EB 1F AND 1F 	mask unwanted bits
0C41 ED B1 CPIR 	block compare with increment.
0043 20 D8 JR NZ,OC1D 	NZ means no right entry. After all values tested, ignore key.

KEY 	0045 CD D8 OC CALL OCD8 Key valid. Call key pressed beep.
VALID 	0C48 2B DEC HL Decrement HL as CPIR Increments it before testing the zero flag.

0049 11 09 00 LD DE,0009 	DE = table Index.
0040 06 03 LD 83) 	Set B for 3 loops. One for each matrix byte.
004E 19

.(0
L,IDE ADD H 	Get value to EX-OR with matrix.

0C4F 7E LD NHL) 	Save in A.
0050 19 ADD HL,DE Calculate address of low byte of matrix byte and put in HL.

PUSH HL 0051 E5 Save for later.
0052 6E Set HL to matrix byte address.
0053
0054

AE
77

LD LtLi
XOR HL 	Toggle
LD (H) 	as updated

bits and store
byte matrix

0055 El POP HL 	Recover HL
0056 10 F6 DJNZ,004E 	Loop for 3 bytes.
0058 21 40 OD LD HL,OD40 	Check for box pattern. (I-IL) = first matrix byte.
005B 7E LD A,(HL)
0C5C E6 07 AND 07 	Remove unwanted bits
005E FE 07 CP 07 and test for 7(111)

Jump 0060 20 B8 JR NZ,OC1A to main playing loop if not 7, otherwise
0062 23 INC HL 	Test second matrix byte.
0063 7E LD A,(HL)
0064 E6 07 AND 07
0066 FE 05 CP 05 	Test for 5, (101)
0068 20 BO

23
JR NZ,OC1A 	Jump if not, otherwise
INC HL 	do third matrix 0C6A

00613 7E LD A,(HL) 	byte which should
0060 E6 07 AND 07 	be equal
DCBE FE 07 CP 07 	to 7 (111)
0070 20 A8 JR NZ,OCIA 	Jump if not box pattern.

PATTERN 0072 CD AB 00 CALL OCAB 	Pattem right so call 3x3 to
DONEI 	0075 11 30 00 LD DE,0030 	8x8. Load DE with win tone

0078 CD DB OC CALL OCDB and call tone routine.
0C7B 06 03 LD B4O3 Set B for 3 flashes.
0C7D 05 PUSH BC 	and save count
0C7E
0080

16 10 LD D,10 	D = scan counter
CALL OCE7 	Call scan. 	 MEM CD E7 OC

0083 15 DEC D 	Loop until D = 0
0084
0086

20 FA
AF

JR NZ,0CI30
XOR A 	Clear display. 	 MDE

0087 D3 06 OUT (06).A
0089 CD D8 00 CALL. OCD8 	Call beep.
0080 01 00 15 LD BC,1500 	Load BC with off time
0C8F 08 DEC BC 	and delay. 	TALKING ELECTRONICS Ns Is 57

40 40 40 40 40 40 40

01 41 41 41 41 41 41

00 01 03 42 42 42 42

OD/0: 01 00 40

OD20: 02 01 03

OD30: 00 02 07

0090
0091
0092
0094
=95
0097
0C9A
OC9C
0C9E
OCAO
OCA2
OCA5
OCAS

OCAD
OCAB

00
OCB

60
3

0CB4
0065
OCB8
OCB9
OCBA
OCBB
OCBC
OCBD
OCBE
OCBF
OCCO
OCC1
OCC3

1 TO 3 BIT 0004
CONVER- 0CC7
SION 	OCCB

OCCA
OCCC
OCCE
OCDO
OCD2
OCD4
OCD6
OCD7
OCDS
OCDB
OCDC
OCDE
OCDF
OCE1
OCE3
OCE4
OCE6

SCAN OCE7
OCEA
OCEC
OCED
OCEF
OCFO
OCF2
LICF4
OCF6
OCF7
OCF8
OCF9
OCFB
OCFD
OCFF

TABLES:

78
B1
20 FB
Cl
10 Ea
CD E7 OC
DB 00
E6 1F
FE 12
20 F5
11 80 00
CD DB OC
C300 OC
06 03
21 40 OD
1150 OD
C5
7E
CD C4 OC
12
13
12
13
AF
12
13
23
C1
10 FO
C9
01 00 03
OF
3002
CB F9
CB 11
CB 11
CB 11
10 F3
CB 19
79
C9
1150 50
AF
D301
42
10 FE
EE 80
1D
20 F6
C9
21 57 OD
0680
7E
D3 05
78
D3 06
0640
10 FE
28
47
AF
D3 06
CB 08
30 ED
C9

LD A,B
OR C
JR NZ,OC8F
POP BC
DJNZ 0C7D
CALL OCE7
IN A,(00)
AND 1F
CP 12
JR NZ,OC97
ID DE,0080
CALL 0CD8
JP OCOO
LD 8,03
LD HL,OD40
LD DE,OD50
PUSH BC
LD A.(HL)
CALL OCC4
LD (DE),A
INC DE
LD (DE ,A
INC DE
XOR A
ILD (DEA

DE
INC HL
POP BC
DJNZ OCB3
RET
LD BC,0300
RRCA
JR NC,OCCC
SET 7.6
RL C
RL C
RL C
DJNZ OCC7
RR C
LD A,C
RET
LD DE,5050
XOR A
OUT (01),A
ID B,D
DJNZ OCDF
XOR 80
DEC E
JR NZ,OCDC
RET
LD HL.OD57
LD B,80
LD A,(HL)
OUT (05)A
LD A,B
OUT (06)A
LD B,40
DJNZ OCF4
DEC HL
LD BA
XOR A
OUT (06).A
RRC B
JR NC,OCEC
RET

Recover flash loop counter
and loop for flashes.
Call scan.
and loop continuously
looking for the GO key
to be pressed.
Jump If GO not pushed.
Load DE with restart tone
Call tone.
Restart game.
B loop counter set for 3 conversions.
HL 	address of 3x3 matrix.
DE 	8x8 buffer.
Save loop counter.
Get matrix byte.
Call 1 to 3 bit conversion.
Save first display

byte twice
and then
add
a blank line
increment to next display buffer.
Increment HL to next matrix byte.
Recover loop counter.
Repeat for 3 bytes.
done.
B - 3 loops. C Is cleared ready to receiver display byte.
Rotate matrix byte to set or clew carry.
Jump NC to shift C 3 places
else set bits 1 and 2 of C with SET CARRY and
bit 7
rotate C left
Last rotation inserts space
do for 3 loops
remove last space
place result in A.
done.
D. period E - loop counter
Clear A.
Sound out to speaker.
Delay for tone
period.
Toggle bit 7,A (speaker bit)
Decrement loop counter.
Loop until zero.
Dorm.
HL 	end of 8x8 buffer.
B scan bit output byte.
Output first display
byte to port 5
then output scan bit
to port 6,
short multiplex
display delay
Decrement HL to next display byte
replace scan bit in B.
clear accumulator and
output to port 6.
Shift scan bit loop until scan bit
falls into carry
then return.

3x3
to
8x8
MATRIX
TO
DISPLAY
FORMAT

BEEP

TONE

ODOO: 04 05 06 08 09 OA OC OD OE 06 04 0007 02 00 03

4040 06 04 02 07

41 41 41 00 04 06 El
42 42 42 42 42 II

58 TALKING ELECTRONICS Na is

DRIGS
How many times have you flipped

through a magazine in the vain hope of
finding an interesting article? As you
thumb through the pages, the hopes are
dashed and firwny you come to the last

PeAlre you find an article of untold wit
and interest to make the purchase of the

worthwhile.
I hope this Isn't the present case but

now that you have reached the end I
want to summarise all that's happened
In the TE world and bring together the
ptojects in this Sue.

Fits ywe have the CAR ALARM. It has
a range of features to rival anything on
the market and can be built for under
$100. ff you have a car worth saving, this
alarm will keep your mind at rest.

The TEC article is quite large in this
issue as a result of JIm's tireless effort.
Some readers, not interested in the
TEC, will think it goes on for too long. But
one of the biggest criticisms of
worthwhile projects in other magazines
Is the lack of back-up and support.

Generally the project extends over an
issue or so and Is never heard of again.
Ail Moss who build it up are left high and
dry with little understanding of Its full
potential.

Not so with the TEC. We have gone a
full circle looldng for other microproces-
soesto rival the Z-80. But after spending
thousands of dollars and hundreds of
hours we have come to the conclusion
that the Z-80 la the best (overall) and
cheapest on the market.

With this we have no hesitation in
bringing you pages of assistance in
designing and developing programs in
Z40 code and ft Is our firm belief the the
Z-80 will be around for years to come.

The two new projects for the TEC are
the DAT board and Speech board.

The DAT board is a boon for program-
mers as ft allows programs to be written
and analysed one step at a time via a

eittrirerboaPrdrc=1;flaces the TEC to
a tape recorder to allow the storage of
programs in a very convenient form.

The software to drive the DAT board
and the tape interface is contained In
Jim's new MONitor ROM called JMON.

JMON is the result of 9 months con-
tinuous refinement and hundreds of dif-
ferent versions have been created over
that time. The end result Is certainly a
very good MONitor package.

Because JM014 Is a considerable ad-
vancement over MON 2„ if you are build-
ing the computer from scratch you
should start with MON 1E2 and go
through the experiments contained in
Omega, 11; 12, 13, and 14.

One eserfiel add-on for the TEC is
the NON VOLATILE RAM (issue 13) and

If you would like to create a matrix of 64
pixels, the 8x8 is a must.

After these you can build the DAT
BOARD arid appreciate its wide range of
capabilities.

In the TEC article we have supplied a
game program called MAGIC SQUARE

It can be typed in and played on the 8x8
display. MAGIC SQUARE Is fully docu-
mented and it is hoped that you will
appreciate how the routine works as
much as you enjoy the game.

MAGIC SQUARE will have you baffled
for hours. Once you work out how to get
the square out, see it you can work out
how the program works!

Once you have typed it In, it can then
be saved on tape and recalled later.

If the TEC computer has grabbed you,
a documentary package is available
from Jim for 615.00 plus $2.50 postage.
In this you get a full line-by-line explana-
tion of how all the JMON routines work.
As Jim put it, he hopes that you can
understand the purpose of every Instruc-
tion. Also if you purchase this package.

Drigs is
the

dregs!
you help Jim offset his costs on develop-
ing JMON and the DAT BOARD etc.

There are also some other notes on
programming in the package and will
prove to be more beneficial than buying
a $25 book on the Z-80 by a
'bandwagon' publishing Co.

11 you have really been bitten by the
bug, you can buy a program tape with
two TEC games, written by Cameron
Sheppard. The first program is called
MAZE and Is played on the 8x8. It con-
sists of a 27x30 playing field and the aim
is to get out. This will keep you occupied
for weeks!

The other game Is "TEC invaders' and
is a bit like Space Invaders on a smaller
scale.

These programs came as a result of
co-operation between Jim and
Cameron. it all started when Cameron
came into TE some years ago with his
TEC INVADERS At the time the pro-
gram waster to long to be published and
the best efforts of Cameron and myself
were unable to shorten it. One day Jim
found the program and thought it would
be a good program to put onto tape. Jim
rang Cameron and they formed an
agreementtogether.

Jim provided Cameron with a tape sys-
tem and Cameron did some work re-
quired to add the finishing touch.

The rest is history,
To go over the TEC projects once

again: DAT BOARD and PC I3 is $55.35
or $16.35 if you want just the tape and
single stepper facilities without the LCD.
Speech is $27.25, JMON is $16.00.
Jim's package is $15.00, Cameron's
tape is $6.50, Jim's EPROM program-
mer up-date is $2 30 These are all es-
sential if you want to get Into program-

mNext
ing.

we have a beginners project (al-
though the soldering requires a fair de-
gree of skill). it's an Organ along the
lines of a stylus organ and is great fun to
play. It looks most impressive when built
up and is Ideal as a gift for the budding
Beethoven.

A miniature FM radio has been a con-
stant request from readers who have
constructed one of our FM bugs. It's
small enough to be hidden and allows
you to create your own FM link.

And finally we have the FM bug that
everyone's been waiting for. Our 1km
bug, the ULTIMA. Its a sneak preview of
out next bugging book -Security
Devices: Once the word got out that it
had been developed. we started selling
kits! Now It's available for everyone and
provided you are careful, you can experi-
ment and achieve ranges of 1km and
more.

The articles for Security Devices are
nearly ready for final page-making and
they should be going to the printer very
soon.

Apart from the lkm bug and FM radio,
we have included 6 other security-re-
lated projects to add to our range.

Many of these are not available on the
market while others cost hundreds, if not
thousands of dollars. (Take for instance
the Pen bug. It sells for over $3,000 on
the commercial market!)

You can save a fortune by building
things yourself and at the same time.
learn how its all done.

Look out for this book, as well as future
issues of the magazine at your local
newsagents or send for a subscription
and be assured you don't miss a copy.

ISSUE 16
We hope to see both issue 16 and 17

out in '89. Issue 16 should not be too far
off as we have have numerous articles
left over from this one.

Jim is designing an expansion board
for the TEC. The board was to be
presented in this issue but it became
clear that there just wasn't the room.
Jim's board increases the memory b
20k. 8k of this is a battery backed
There is an on-board "intelligent'
EPROM programmer that when not
being used to read and program
EPROMS, can be used as 20 general
inpuVoutput lines.

So we come to the end of another
packed issue. So full that we didn't have
any room for the adverts. Ahl Such is life.
A magazine without advertising.

74 TALKING•ELECTIWMCS No. IS

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112
	Page 113
	Page 114
	Page 115
	Page 116
	Page 117
	Page 118
	Page 119
	Page 120
	Page 121
	Page 122
	Page 123
	Page 124
	Page 125
	Page 126
	Page 127
	Page 128
	Page 129
	Page 130
	Page 131
	Page 132
	Page 133
	Page 134
	Page 135
	Page 136
	Page 137
	Page 138
	Page 139
	Page 140
	Page 141
	Page 142
	Page 143
	Page 144
	Page 145
	Page 146
	Page 147
	Page 148
	Page 149
	Page 150
	Page 151
	Page 152
	Page 153
	Page 154
	Page 155
	Page 156
	Page 157
	Page 158
	Page 159
	Page 160
	Page 161
	Page 162
	Page 163
	Page 164
	Page 165
	Page 166
	Page 167
	Page 168
	Page 169
	Page 170
	Page 171
	Page 172
	Page 173
	Page 174
	Page 175
	Page 176
	Page 177
	Page 178
	Page 179
	Page 180
	Page 181
	Page 182
	Page 183
	Page 184
	Page 185
	Page 186
	Page 187
	Page 188
	Page 189
	Page 190

