
I

GLOSSARY
CURRENT EDITING LOCATION (082E)
THIS IS THE ADDRESS THAT IS USUALLY DISPLAYED IN THE ADDRESS SECTION ON THE TEC LED
DISPLAY. IT IS THE ADDRESS THAT IS SUBJECT TO MODIFICATION BY JMON.

MONITOR CONTROL BYTE (MCB) (082B)
THIS BYTE CONTAINS THE INFORMATION OF THE CURRENT WORKING STATE OF JMON. THE INFORMATION
HELD IN THIS BYTE IS:
1 - THE CURRENT MODE OF JMON.
E.G. DATA, ADDRESS OR FUNCTION (NOT SHIFT AS SHIFT IS TESTED AND HANDLED DURING THE DATA
KEY HANDLER ROUTINE). BITS 4 AND 5 ENCODE THE CURRENT MODE IN THE FOLLOWING WAY. BOTH
BITS ARE LOW FOR THE DATA MODE, BIT 4 IS HIGH FOR THE ADDRESS MODE, BITS 4 AND 5 ARE HIGH
FOR THE FUNCTION MODE. BIT 4 IS CALLED THE ADDRESS/FUNCTION BIT AS THE SOFTWARE ONLY
NEEDS TO TEST THIS BIT TO FIND IF EITHER THE ADDRESS OR FUNCTION MODE IS ACTIVE. BIT 5
IS THE FUNCTION MODE ENABLED BIT.
2 - THE NUMBER OF THE CURRENT FUNCTION I.E. 1,2 OR 3.
THIS IS ENCODED IN BITS 2 AND 3. IF NO FUNCTION OR FUNCTION-1 IS ENABLED THAN BOTH BITS
ARE LOW. IF FUNCTION-2 IS SELECTED THEN BIT 2 IS HIGH AND BIT 3 IS LOW. IF FUNCTION-3 IS
SELECTED THEN BIT 3 IS HIGH AND BIT 2 IS LOW.
3 - THE NUMBER OF NIBBLES ENTERED
THIS IS ENCODED IN BITS 0 AND I. IF NO NIBBLES HAVE BEEN ENTERED IN THE CURRENT EDITING
LOCATION THEN BOTH BIT ARE LOW. IF ONE NIBBLE HAS BEEN ENTERED THEN BIT 0 IS HIGH AND
BIT 1 IS LOW IS TWO NIBBLES HAVE BEEN ENTERED THEN BIT 0 IS LOW AND BIT 1 IS HIGH. JMON
USES THESE BITS WHEN DECIDING ON THE AUTO-INCREMENT FEATURE. BITS 6 AND 7 ARE NOT USED.

DISPLAY BUFFER ADDRESS - (082C/D)
THE CONTENTS OF 082C/D POINTS TO THE LOCATION IN MEMORY OF THE 6 BYTE DISPLAY BUFFER
(0800 FOR.JMON AND 0806 FOR THE STEPPER). THE DISPLAY BUFFER ADDRESS POINTS TO THE LOWEST
ADDRESS OP THE DISPLAY BUFFER WHICH CONTAINS THE LOW ORDER DATA DISPLAY BYTE.

KEY PLANT
THE KEY PLANT IS A FAKE KEY STROKE THAT MAY BE GENERATED BY THE "DURING SCAN/KEY LOOP"
USER PATCH. THE PLANT ALLOWS JMON'S MONITOR FUNCTIONS TO BE SOFTWARE CONTROLLED E.G. YOU
MAY WISH TO VIEW THE CONTENTS OF MEMORY BYTE BY BYTE. WITH THE KEY PLANT YOU CAN SET JMON
UP TO AUTOMATICALLY INCREMENT THE CURRENT EDIT LOCATION EVERY FEW SECONDS.
THE PLANT IS IDENTIFIED BY THE USER PATCH STORING THE REQUIRED KEY VALUE IN, AND SETTING
BIT 7 OF THE INPUT KEY BUFFER (0820).

AUTO KEY STATUS BYTE (082A)
THIS BYTE HOLDS THE INFORMATION REQUIRED FOR THE AUTO KEY REPEAT SECTION. THE INFORMATION
HELD IN THIS BYTE IS EITHER ONE OF THE FOLLOWING:
A "NEXT KEY DETECTION WILL BE A FIRST DETECTION" SO JMON WILL PROCESS THE KEY IMMEDIATELY
(BIT 7 HIGH). A TIMER (BITS 0-6) THAT COUNTS ,A DELAY FOR THE AUTO- REPEAT TIMING.

KEY PRESS FLAG {0825)
THIS FLAG IS USED TO REMEMBER IF THE ONE KEY PRESS HAS ALREADY BEEN DETECTED AND PROCESSED.
THIS PREVENTS THE SAME KEY BEING PROCESSED EACH TIME THE SOFTWARE FINDS THAT IT IS PUSHED.
THIS IS THE WAY IT WORKS:
THE KEY PRESS FLAG IS ZEROED BY THE JMON DEFAULT VARIABLES AND THIS FLAGS A "NO KEY
PRESSED" STATE. WHEN A KEY IS DETECTED THEN THIS FLAG IS TESTED AND IF ZERO THEN THE KEY
IS ACCEPTED AS A FIRST KEY PRESS. IN THIS CASE THE KEY PRESS FLAG IS THEN SET TO FF TO
REMEMBER THAT THE KEY PRESS HAS BEEN DETECTED. IF A KEY IS DETECTED AND THIS FLAG BYTE
IS NOT ZERO, THEN THE KEY IS IGNORED. WHEN THE SOFTWARE FINDS THAT NO KEY IS BEING PRESSED,
THEN THIS FLAG IS CLEARED TO ALLOW THE NEXT KEY PRESS DETECTED TO BE PROCESSED.
THIS FLAG IS USED BY THE RST 08, RST 10 RST 18 AND RST 20 KEYBOARD ROUTINES AS DESCRIBED
IN ISSUE 15 TALKING ELECTRONICS AND ALSO THE STEPPER SOFTWARE.
THE AUTO KEY REPEAT ROUTINE DOES NOT USE THIS FLAG BYTE, DO NOT CONFUSE THIS FLAG WITH
THE AUTO KEY STATUS BYTE WHICH IS USED BY THE AUTO KEY REPEAT SECTION.

TAPE FILE INFORMATION BLOCK
THIS IS A 12 BYTE BLOCK THAT CONTAINS THE FOLLOWING INFORMATION:
THE START ADDRESS OF THE BLOCK, THE NUMBER OF BYTES IN THE BLOCK, THE FILE NUMBER AND AN
OPTIONAL GO ADDRESS OR FFFF IF OPTIONAL GO IS DISABLED. THE OTHER 4 BYTES ARE NOT USED
AT THIS STAGE.
THIS BLOCK IS OUTPUTTED AND INPUTTED TO AND FROM THE TAPE ON EACH TAPE OPERATION.

"NEXT PC" BUFFER
THIS IS A TEMPORARY PLACE TO SAVE THE RETURN ADDRESS WHICH IS THEN USED AS THE ACTUAL PC
VALUE FOR THE NEXT INSTRUCTION STEPPED.

FORCED HARD RESET
THIS IS ACHIEVED BY HOLDING DOWN A KEY WHEN RELEASING THE RESET. THE HARD RESET CAUSES
JMON TO RE-BOOT ITS VARIABLES AND ALSO MASK OFF ALL THE USER PATCHES (EXCEPT THE RESET
PATCH). THE MAIN PURPOSE OF A FORCED HARD RESET IS TO RECOVER THE TEC IF A USER PATCH
ENTERS A CONTINUOUS LOOP.

a
CORRECTE12,1V185

AT THE START OF JMON, HL IS SAVED IN ITS SINGLE STEPPER PUFFER AND THE SOFT RESET DISPLAY
VALUE IS PLACED IN THE CURRENT EDIT LOCATION BUFFER. THE ROUTINE THEN IS CONTINUED AT
0068.

0000 22 6E 08 LD (086E),HL ;SAVE HL PART OF REGISTER SAVE
0003 2A 28 08 LD HL, (0828) ;GET SOFT RESET INITIAL EDIT
0006 18 63 JR 006E ;LOCATION AND CONTINUE AT 006B

RST 08 AND RST 10 (CF AND D7)
THESE TWO COMBINE TOGETHER TO SIMULATE A HALT INSTRUCTION. THIS
THE CURRENT (IF ANY) KEY PRESS IS RELEASED (RST 08), AND THEN
PRESS IS DETECTED (RST 10).

0008 E7 RST 20 ;TEST FOR KEY PRESS
0009 28 FD JR 2,0008 ;LOOP IF KEY PRESSED
000B 00 NOP ;ELSE
000C 00 NOP ;MOVE
000D 00 NOP ;TO
000E 00 HOP ;NEXT
000F 00 NOP ;RST
0010 E7 RST 20 ;TEST FOR KEY AGAIN
0011 20 FD JR NZ,0010 ;LOOP IF KEY NOT PRESSED
0013 E6 1F AND IF ;MASK OF JUNK BITS
0015 ED 47 LD I,A ;STORE IN INTERRUPT REGISTER
0017 C9 RET ;DONE

RST 18 (DF) AND RST (20)

IS DONE BY LOOPING UNTIL
LOOPING UNTIL A NEW KEY

RST 18 CALLS THE LED SCAN ROUTINE ONCE THEN MOVES ON INTO RST 20 THAT THEN CALLS A KEYBOARD
READ ROUTINE.
THE KEYBOARD MUST BE READ CONTINUOUSLY OVER A PERIOD OF TIME, AS THE DATA AVAILABLE SIGNAL
(BIT 6, PORT 3) (USUALLY) PULSES, WHEN A KEY IS PRESSED, IN TIME WITH THE KEY ENCODER
CHIP'S SCANNING. IF THE KEY BOARD IS READ ONLY ONCE EVERY SECOND, THEN THE SOFTWARE MAY
(AND PROBABLY) WILL TARE SEVERAL SECONDS TO DETECT THE KEY.
THE NUMBER OF READ CYCLES FOR THE KEYBOARD IS LOADED INTO B.

0018 E5
0019 D5
001A CD 36 08
'001D D1
001E El
001F 00
0020 C5
0021 06 20
0023 CD AD 06
0026 Cl
0027 C9

PUSH HL
PUSH DE
CALL 0836
POP DE
POP HL
NOP
PUSH BC
LD B,20
CALL 06AD
POP BC
RET

;SAVE HL
;AND DE
;CALL SCAN ROUTINE
;RECOVER DE
;AND HL
;NEXT RST
;SAVE BC
;B = NUMBER OF KEYBOARD SCAN LOOPS
;CALL KEY READER/VALIDATER
;RECOVER BC
;DONE

RST 28 (EF)
START STEPPING FROM THE INSTRUCTION FOLLOWING THE RST 28

0028 E3
0029 22 58 08
002C E3
002D FR
002E C9
002F FF

EX (SP),HL
LD (0858),HL
EX (SP),HL
EI
RET
EST 38

;GET RETURN ADDRESS FROM THE STACK
;PUT IN "NEXT PC" BUFFER
;FIX UP STACK
;ENABLE INTERRUPTS
;STEPPING WILL OCCUR AFTER RETURN
;SPARE

RST 30 (177)
TEST THE BUSY STATE OF THE LCD AND LOOP WHILE BUSY

0030 DB 04
0032 07
0033 38 FR
0035 C9
0036 FF
0037 FF

RST 38 (FF)
INTERRUPT HANDLER

0038 C3 12 03
003B FF
003C FF
003D FF
003E FT
003F FF

IN A,04
RLCA
JR C,0030
RET
RST 38
RST 38

JP 0312
RST 38
RST 38
RST 38
RST 38
RST 38

;READ STATUS BIT FROM LCD
;PUT IN CARRY
;LOOP IF LCD BUSY
;DONE

;JUMP TO STEPPER ROUTINE
;UNUSED

If 	 VI

FOR STEPPER AND BREAK-POINTS

0040

JUMP

FF 	 RST 38

TABLE FOR EXTERNAL SOFTWARE TO USE JMON ROUTINES

0041 C3 DD 03 JP 03DD ;MENU GATE
0044 C3 79 04 JP 0479 ;PERIMETER HANDLER ENTRY
0047 C3 ED 03 JP 03ED ;SOFT MENU ENTRY
004A C3 9F 06 JP 06V ;ERR-IN ENTRY
004D C3 B6 05 JP 0586 ;PASS/FAIL/MENU
0050 C3 A3 04 JP 04A3 ;SOFT PERIMETER HANDLER ENTRY
0053 FF RST 38 ;RESERVED
0054 FF RST 38
0055 FF RST 38
0056 FF RST 38
0057 FF RST 38
0058 FF RST 38
0059 FF RST 38
005A FF RST 38 H

005B FF RST 38
005C FF RST 38
005D FF RST 38

SHIFT-2 ROUTINE
THIS STORES THE CURRENT EDIT LOCATION IN THE "NEXT PC" BUFFER. THE INTERRUPTS ARE THEN
ENABLED AND THE PROGRAM JUMPS TO THE USER ROUTINE TO BE STEPPED. STEPPING OCCURS AT THE
CURRENT EDIT LOCATION (CEL).

005E 2A 2E 08 	LD HL,(082E) ;PUT CURRENT EDIT LOCATION IN
0061 22 58 08 	LD (0858),HL ;"NEXT PC" BUFFER
0064 FE
	

RI 	 ;ENABLE INTERRUPTS
0065 E9
	

JP (HL) 	;START STEPPING

NMI HANDLER

0066 ED 45
0068 FF
0069 FF
006A FF

(IMMEDIATE RETURN)

REIN
RST 38
RST 38
RST 38

;IGNORE NMI
;RESERVED
;FOR
;A JUMP

CONTINUATION OF MONITOR

006B ED 56 IM 1 ;SET INTERRUPT MODE 1 FOR STEPPER
006D 22 2E 08 LD (082E),HL ;STORE SOFT RESET INITIAL CEL
0070 21 76 00 LD HL,0076 ;LOAD HL WITH RE-ENTRY ADDRESS
00V3 C3 18 03 JP 0318 ;JUMP TO SAVE REGISTERS

RE-ENTRY POINT AFTER SAVING REGISTERS

0076 31 20 08 LD SP,0820 ;SET STACK
0079 CD F7 02 CALL 02F7 ;CALL RESET PATCH HANDLER
007C E7 RST 20 ;LOOK FOR FORCED HARD RESET
007D 28 07 JR Z,0086 ;JUMP KEY PRESSED TO HARD RESET
007F 3A FF 08 LD A,(08FF) ;CHECK HARD/RESET FLAG
0082 FE AA CP AA ;FOR AA
0084 28 1C JR Z,00A2 ;JOMP TO SOFT RESET IF AA

HARD RESET
MONITOR DEFAULT VARIABLES ARE RE-BOOTED AND USER PATCHES MASKED OFF.

0086 21 OF 07 LD HL,070F ;LOAD HL WITH START OF JMON DEFAULT
0089 11 20 08 LD DE,0820 ;VARIABLES ROM TABLE
008C 01 2B 00 LD BC,002B ;DE IS THE RAM DE(stination)
008F ED BO LDIR ;AND BC THE COUNT: MOVE TABLE
0091 06 03 LD B4 O3 ;MASK OF THE THREE USER PATCHES
0093 3E C9 LD A,C9 ;BY PUTTING A RETurn AT THE FIRST
0095 12 LD (DE),A ;LOCATION OF EACH
0096 13 INC DE
0097 13 INC DE
0098 13 INC DE
0099 10 FA DJNZ,0095
009B CD D5 06 CALL 06D5 ;INITIALIZE/TEST FOR THE LCD
009E AF XOR A ;CLEAR HARD/SOFT
009F 32 FF 08 LD 	(08FF),A ;RESET FLAG

THIS SECTION IS THE SOFT RESET SECTION. IT IS ALSO PART or THE HARD RESET SECTION.

00A2 2] 00 38
00A5 7E
00A6 FE C3
00A8 CC 00 38
OOAB CD 3C 08
OOAE AF
OOAF 32 2B 08

LD HL,3800
LD A, (HL)
CP C3
CALL Z,3800
CALL 083C
XOR A
LD (082B),A

;TEST FOR JMON UTILITIES ROM

;AND CALL ITS RESET ROUTINE
;IF REQUIRED
;CALL RESET TONE ROUTINE
;CLEAR MONITOR CONTROL BYTE
;0 = DATA MODE, NO NIBBLES ENTERED

EACH TIME A KEYBOARD INPUT OR USER PATCH "PLANT", IS PROCESSED, THE PROGRAM JUMPS BACK
TO HERE SO THE DISPLAYS MAY BE UP-DATED.

00B2 2A 2E 08
00B5 ED 4B 2C 08
0089 CD 30 08
ODBC 7E
OOBD CD 33 08
0000 CD 39 08
00C3 CD 42 08

LD HL, (082E)
LD BC,(082C)
CALL 0830
LD A, (HL)
CALL 0833
CALL 0839
CALL 0842

;GET CURRENT EDIT LOCATION (CEL)
;AND DISPLAY BUFFER ADDRESS
;AND CONVERT CEL TO DISPLAY CODE
;AND THEN CONVERT CONTENTS OF
;CEL TO DISPLAY CODE
;CALL THE SET DOTS ROUTINE
;CALL SCAN/KEY/LCD/PATCH ROUTINE

THE SECTION BELOW IS EXECUTED WHEN EITHER A KEY OR KEY "PLANT" IS DETECTED IN THE
SCAN/KEY/LCD/PATCH ROUTINE ROUTINE

0006 2A
00C9 4F
COCA 3A
OOCD CB
OOCF 47
OODO 79
00D1 20
00D3 FE
00D5 20

"+" KEY

00D7 23

2E 08 	LD HL,(082E)
LD C,A

2B 08 	LD A,(082B)
67 	BIT 4,A

LD B,A
LD Ar C

2F 	JR NZ,0102
10 	CP 10
OC 	JR NZ,00E3

INC HL

;POINT HL TO CURRENT EDIT LOCATION
;PRESERVE INPUT KEY IN C
;GET MONITOR CONTROL BYTE (MCB)
;TEST FOR ADDRESS OR FUNCTION MODE
;STORE MCB IN B
;GET INPUT KEY BACK IN A
;JUMP IF ADDRESS OR FUNCTION MODE
;TEST FOR "+"
;JUMP IF NOT TO TEST FOR "-"

;ADD 1 TO CURRENT EDIT LOCATION

HANDLER- (WHEN IN DATA MODE ONLY)

COMMON CEL AND MCB UP-DATER
SEVERAL SECTIONS JUMP HERE TO STORE AN UP-DATED CEL AND CLEAR THE NIBBLE COUNTER.

00D8 22 2E 08
	

LD (082E),HL ;STORE CEL
00DB 78
	

LD A,B 	;GET MCB

COMMON MCB UP-DATER
SOME KEY HANDLER SECTION THAT DON'T REQUIRE.A NEW CEL (OR HAVE ALREADY STORED IT) JUMP
HERE.

OODC E6
OODE 32
00E1 18
00E3 FE
00E5 20

FC
2B 08
CF
11
03

AND FC
LD (082B),A
JR 00B2
CP 11
JR NZ,00EA

;CLEAR NIBBLE COUNTER
;STORE MCB
;JUMP BACK TO UPDATE DISPLAY
;TEST FOR "-"
;JUMP IF NOT TO TEST FOR "GO"

"-" KEY HANDLER (WHEN IN DATA MODE ONLY)

00E7 2B
	

DEC HL
	;DECREASE CEL ADDRESS BY ONE

00E8 18 EE
	

JR 00D8
	

;JUMP TO COMMON CEL AND MCB UP-DATER
ODEA FE 12
	

CP 12
	

;TEST FOR GO
OOEC 20 14
	

JR NZ,0102
	

;JUMP IF NOT TO TEST FOR "AD"

"GO" HANDLER (WHEN IN DATA MODE

OGEE 3A 23 08 	LD A,(0823)
00F1 FE AA 	CP AA
00F3 28 05 	JR Z,00FA
00F5 2A 2E 08 	LD HL,(082E)
00F8 18 03 	JR OOFD
00FA 2A 28 08 	LD HL,(0828)
00FD 11 45 08 	LD DE,0845
0100 D5 	 PUSH DE
0101 E9 	 JP (HL)

ONLY)

;TEST FOR ALTERNATE GO ADDRESS
;IF (0823)=AA
;JUMP IF SET FOR ALTERNATE GO ADDR
;ELSE GET CURRENT EDIT LOCATION
;SKIP ALTERNATE JUMP ADDRESS FETCH
;GET ALTERNATE GO ADDRESS
;PUT RETURN ADDRESS ON STACK

;START USER EXECUTION

TEST HERE FOR ADDRESS KEY. IF THE KEY PRESSED IS NOT THE ADDRESS KEY, THEN A JUMP IS
PERFORMED. OTHERWISE THE ADDRESS KEY IS PROCESSED.

0102 FE 13 	CP 13 	;TEST FOR ADDRESS KEY

0104 	20 OP JR N2,0111 ;Julz, ir NOT TO DATA KEY HANDLER
0106 78 LD A,B ;GET MONITOR CONTROL BYTE (MOB)
0107 CB 68 BIT 5,B ;TEST FOR FUNCTION MODE AND JUMP TO
0109 20 02 JR NZ,010D ;CLEAR FUNCTION MODE BITS IF SO
010B EE 10 XOR 10 ;ELSE TOGGLE ADDRESS MODE BIT
0100 E6 D3 AND D3 ;CLEAR ALL FUNCTION MODE BITS
010F 18 CB JR OODC ;LOOP BACK TO COMMON MCB UP-DATER

A TEST FOR ADDRESS/FUNCTION MODE IS DONE. 	IF IN ADDRESS OR FUNCTION MODE A JUMP IS
PERFORMED.

0111 78 LD A,B ;GET MCB
0112 CB 67 BIT 4,A ;TEST FOR ADDRESS OR FUNCTION MODE
0114 20 25 JR NZ,013B ;JUMP IF EITHER MODE

A TEST FOR SHIFT IS DONE AND A JUMP IS PERFORMED IF IN THE SHIFT MODE TO THE FUNCTION/SHIFT
HANDLER.

0116 DB 00 	IN A,00 	;TEST FOR THE SHIFT KEY
0118 CB 6F 	BIT 5,A 	;AND JUMP IF SHIFT IS PRESSED
011A 28 34 	JR Z,0150 	;TO THE FUNCTION HANDLER

ANY TIME A DATA KEY IS PRESSED WHILE IN THE DATA MODE, IT IS PROCESSED STARTING HERE.

011C 78 LD A,B ;GET MCB
011D E6 03 AND 03 ;MASK IT DOWN TO BYTE COUNTER
011F FE 02 CP 02 ;AND TEST FOR TWO NIBBLES ENTERED
0121 78 LD A,B ;INPUT KEY VALUE BACK IN A
0122 20 OE JR NZ,0132 ;JUMP IF NOT READY FOR AUTO INC
0124 F5 PUSH AF ;SAVE MCB
0125 3A 27 08 LD A,(0827) ;TEST AUTO INC MASK
0128 B7 OR A ;IF NOT ZERO THEN JUMP AS USER
0129 20 04 JR NZ,012F ;HAS SWITCHED OFF AUTO INC MODE
012B 23 INC HL ;ELSE INCREMENT CEL BEFORE ENTERING
012C 22 2E 08 LD (082E),HL ;NEW NIBBLE AND STORE NEW CEL
012F Fl POP AF ;RECOVER MON CONTROL BYTE IN A
0130 E6 FC AND FC ;CLEAR BYTE COUNTER (BITS 0 AND 1)
0132 3C INC A ;ADD ONE TO NIBBLE COUNTER
0133 32 2B 08 LD (082B),A ;STORE IT
0136 3A 20 08 LD A,(0820) ;GET INPUT KEY FROM INPUT BUFFER
0139 18 11 JR 014C ;JUMP TO ENTER IT

TEST HERE FOR A CONTROL KEY WHILE IN EITHER THE ADDRESS OR FUNCTION MODE AND JUMP TO
ENCODE THE FUNCTION NUMBER BITS (2 AND 3 OF MCB). IF NOT A CONTROL KEY, THEN TEST FOR
THE FUNCTION MODE AND JUMP TO FUNCTION JUMP CONTROL IF SO, ELSE SERVICE DATA KEY FOR
ADDRESS MODE.

013B 3A 20 08
013E CB 67
0140 20 2F
0142 CB 68
0144 20 OA

LD A,(0820)
BIT 4,A
JR NZ,0171
BIT 5,B
JR NZ,0150

;GET INPUT KEY FROM INPUT BUFFER
;TEST FOR CONTROL KEY (+,- OR GO)
;JUMP IF CONTROL TO FUNCTION ENCODER
;TEST FUNCTION MODE
;JUMP IF SO TO FUNCTION JUMP CONTROL

DATA KEY PRESS WHILE IN THE ADDRESS MODE

0146
0149
014E
014C
014E

21 2E 08
ED 6F
23
ED 6F
18 91

LD HL,082E
RLD
INC HL
RLD
JR 00E1

;POINT HL TO CEL BUFFER
;AND SHIFT IN THE NEW NIBBLE
;AND MOVE THE OTHERS ACROSS
;THIS RLD USED BY DATA MODE ALSO
;JUMP (VIA A JUMP) TO UP-DATE DISPLAYS

FUNCTION AND SHIFT JUMP CONTROL
BITS 2 AND 3 OF THE MONITOR CONTROL BYTE (MCB) ARE THE FUNCTION IDENTIFIER BITS.
IF BOTH ARE ZERO THEN EITHER FUNCTION 1 IS SELECTED OR NO FUNCTION IS SELECTED. BECAUSE
THIS IS THE ALSO THE NO FUNCTION MODE ENABLED STATE, THE SHIFT KEY, WHICH DOES NOT AFFECT
THE MONITOR CONTROL BYTE, WILL ALSO WILL INVOKE FUNCTION 1. (THEREFORE THIS ROUTINE DOES
NOT NEED TO TEST FOR THE SHIFT KEY).
IF BIT 2 IS HIGH THEN FUNCTION 2 IS SELECTED AND IF BIT 3 IS HIGH THEN FUNCTION 3 IS
SELECTED.
DURING THIS ROUTINE, HL IS LOADED TO THE BASE OF THE REQUIRED JUMP TABLE MINUS TWO BYTES
(ONE ENTRY). THIS IS BECAUSE THE OFFSET PROVIDED FROM THE KEYBOARD HAS BEEN INCREMENTED
BY ONE. THIS SAVES TESTING FOR ZERO INPUT WHICH WOULD NOT ALLOW THE TABLE ACCESSING TO
WORK CORRECTLY. THE REQUIRED BASE IS FOUND BY EXAMINING THE STATE OF THE BITS 2 AND 3 OF
THE MONITOR CONTROL BYTE (MCB) AND LOADING HL ACCORDINGLY.
AS EACH ENTRY IS TWO BYTES LONG, THE TABLE POINTER (THE VALUE INSIDE HL), IS INCREMENTED
TWICE FOR EACH DECREMENT OF THE INPUT VALUE (FROM THE KEYBOARD). WHEN THE REQUIRED TABLE

5

ENTRY IS FOUND, 	IT IS PUT INSIDE EL 	(VIA_ DE) AND THE ROUTINE JUI-fPS TO DART OF TEE "CC"
KEY ROUTINE TO CREATE A RETURN ADDRESS ON THE STACK AND EXECUTE THE SELECTED ROUTINE.

0150 78 LD A,B ;PUT MONITOR CONTROL BYTE IN A
0151 E6 OC AND OC ;MASK IT DOWN TO FUNCTION BITS
0153 21 DE 07 LD HL,07DE ;JMON FUNCTION JUMP TABLE BASE -2
0156 28 OA JR 5,0162 ;JUMP IF FUNCTION 1 OR SHIFT
0158 21 BE 08 LD HLX8BE ;LOAD HL WITH USER TABLE -2
015E FE 04 CP 04 ;TEST FOR FUNCTION 2
015D 28 03 JR 5,0162 ;JUMP IF FUNCTION 2 (USER FUNCTION)
015F 21 1E 38 LD HL,381E ;OTHERWISE MUST BE FUNCTION 3
0162 3A 20 08 LD A,(0820) ;GET INPUT KEY FROM INPUT BUFFER
0165 3C INC A ;ADD ONE IN CASE IT WAS ZERO
0166 47 LD B,A ;PUT IN B TO USE AS A LOOP COUNTER
0167 23 INC HL ;LOOK THROUGH TABLE
0168 23 INC HL ;FOR RIGHT JUMP VECTOR
0169 10 FC DJNZ,0167
016B 5E LD E, (HL) ;PUT IT IN HL
016C 23 INC HI, ;VIA DE
016D 56 LD D, (HL)
016E EB EX DE,HL ;JUMP TO CREATE RETURN ADDRESS AND
016F 18 8C JR OOFD ;EXECUTE SELECTED ROUTINE

FUNCTION NUMBER ENCODER
THIS SECTION ENCODES THE FUNCTION IDENTIFIER BITS (BITS 2 AND 3) IN THE MONITOR CONTROL
BYTE (BITS 2 AND 3) THEN SETS THE FUNCTION ENABLE BIT (BIT 5).
THE FUNCTION IDENTIFIER BITS ARE DERIVED FROM THE LEAST TWO SIGNIFICANT BITS OF THE INPUT
CONTROL KEY (+, -, AND GO). THESE ARE SHIFTED LEFT TWICE TO ALIGN THEM TO THE FUNCTION
SELECT BITS (BITS 2 AND 3) IN THE MCB. THE INPUT CONTROL KEY IS IN THE ACCUMULATOR ON
ENTRY AND THE MONITOR CONTROL BYTE (MCB) IN B.

0171 E6 03 AND 03 ;MASK DOWN CONTROL KEY
0173 07 RLCA ;SHIFT IT LEFT TWICE TO ALIGN BITS 0
0174 07 RLCA ;AND 1 TO FUNCTION IDENTITY BITS IN MCB
0175 F6 20 OR 20 ;SET FUNCTION MODE ENABLED FLAG
0177 4F LD C,A ;SAVE IN C
0178 78 LD A,B ;GET CURRENT MCB
0179 E6 D3 AND D3 ;CLEAR ANY PREVIOUS FUNCTION BITS
'017B B1 OR C ;MERGE TOGETHER
017C 32 2B 08 LD 	(082B),A ;STORE MCB
017F 18 CD JR 014E ;JUMP VIA JUMPS TO UP-DATE DISPLAYS

THIS IS THE SCAN/KEY/LCD/PATCH ROUTINE. THIS ROUTINE LOOPS SCANNING THE LED DISPLAY AND
SERVICING THE "DURING LOOP" USER PATCH UNTIL A KEY PRESS IS VALIDATED BY THE AUTO-KEY
REPEAT SECTION. THE INPUT KEY IS RETURNED IN- THE ACCUMULATOR AND IN THE INPUT BUFFER AT
0820 WITH THE ZERO FLAG SET AND CARRY CLEARED.
THREE PATCHES ARE SUPPORTED IN THIS ROUTINE. THEY ARE A PATCH BEFORE LOOP, A PATCH DURING
THE LOOP AND A PATCH AFTER A VALID KEY PRESS.
THE "PLANT" IS A VALUE INSERTED INTO THE INPUT BUFFER (0820) BY THE DURING LOOP PATCH.
THE "PLANT" VALUE IS IDENTIFIED BY BIT 7 OF THE INPUT BUFFER BEING SET. BIT 7 IS RESET
BEFORE RETURNING TO SERVICE THE PLANT.
THIS ROUTINE USES A BYTE AT 082A, CALLED THE AUTO KEY STATUS BYTE AS A FLAG AND TIMER
TO GENERATE THE AUTO REPEAT DELAY.

0181 CD 48 08 CALL 0848 ;CALL LCD ROUTINES
0184 CD 4B 08 CALL 084B ;CALL PRE-SCAN USER PATCH
0187 CD 36 08 CALL 0836 ;CALL SCAN
018A CD 4E 08 CALL 084E ;CALL USER "DURING LOOP" PATCH
018D 21 20 08 LD HL,0820 ;TEST KEY INPUT BUFFER BIT 7 FOR A
0190 CB 7E BIT 7,(HL) ;"PLANT" INSERTED BY USER DURING
0192 CB BE RES 7,(HL) ;PATCH: RESET BIT 7 RETURN TO
0194 CO RET NZ ;SERVICE "PLANT" IF BIT 7 NOT ZERO
0195 E7 RST 20 ;TEST FOR KEY PRESS VIA RST 20
0196 21 2A 08 LD HL,082A ;SET HL TO POINT TO AUTO KEY STATUS
0199 38 04 JR C,019F ;JUMP IF A KEY IS PRESSED
019B 36 80 LD 	(HL),80 ;ELSE SET AUTO KEY STATUS TO
019D 18 E8 JR 0187 ;NO KEY STATE AND CONTINUE LOOP
019F CD CA 06 CALL 06CA ;CALL UNIVERSAL KEY INPUTTER
01A2 CB 7E BIT 7,(HL) ;TEST AUTO KEY STATUS FOR FIRST KEY
01A4 20 10 JR NZ,01B6 ;JUMP IF SO TO SET LONG KEY DELAY
01A6 35 DEC (HL) ;ELSE COUNT DOWN KEY DELAY
01A7 20 DE JR NZ,0187 ;LOOP IF NOT READY FOR KEY REPEAT
01A9 36 OC LD 	(HL),OC ;ELSE SET SHORT TIME DELAY BETWEEN
O1AB CD 51 08 CALL 0851 ;KEYS: CALL USER "AFTER KEY" PATCH
O1AE CD 3F 08 CALL 083F ;CALL KEY TONE
01B1 AF XOR A ;SET ZERO FLAG AND CLEAR CARRY

01E2 3A 20 08
	

LD A, (0820) 	;PUT INPUT KEY IN A
0]E5 C9
	

RET 	 ;PEE RETURN FOR KEY SERVICE
01B6 36 70
	

LD (HL),70 	;SET KEY TIMER FOR LONG DELAY
01B8 18 Fl
	

JR 01AB 	;JUMP TO SERVICE PATCH, TONE ETC.

THIS IS THE LED SCAN ROUTINE.

01BA 06 20 	LD B,20
O1BC 2A 2C 08 	LD HL,‘(082C)
O1BF 7E 	 LD A,(HL)
01C0 D3 02 	OUT (02),A
01C2 78 	 LD A,B
01C3 D3 01 	OUT (01),A
0105 06 40 	LD B,40.
01C7 10 FE 	DJNZ,01C7
01C9 23 	 INC HL
O1CA 47 	 LD B,A
O1CB AF 	 XOR A
01CC D3 01 	OUT (01),A
O10E CB 08 	RRC B
01D0 30 ED 	JR NC,O1BF
01D2 D3 02 	OUT (02),A
01D4 C9 	 RET

;B IS THE SCAN BIT
;GET ADDRESS OF DISPLAY BUFFER
;GET FIRST BYTE
;AND OUTPUT IT TO SEGMENTS
;GET SCAN BIT
;OUTPUT IT TO COMMONS
;CREATE SHORT
;DELAY IN B
;INCREASE HL TO NEXT DISPLAY BYTE
;GET SCAN BIT BACK IN B
;CLEAR THE LAST PORT OUTPUTTED TO
;TO PREVENT "GHOSTING"
;SHIFT SCAN BIT ACROSS TO NEXT
;COMMON: WHEN SCAN BIT FALLS INTO
;CARRY SCAN IS TERMINATED: CLEAR
;PORT 2 AND RETURN

THIS ROUTINE CONVERTS HL TO DISPLAY CODE AND STORE THE DISPLAY CODE IN A BUFFER POINTED
TO BY BC.

01D5 7C
	

LD A,H
	

;PUT H IN A
01D6 CD 33 08
	

CALL 0833 	;CONVERT A TO DISPLAY CODE
01D9 7D
	

LD A,L
	

;NOW DO FOR L

THIS SECTION CONVERTS THE BYTE IN A TO TWO DISPLAY BYTES.

O1DA F5 	 PUSH AF
01DB 07 	 RLCA
O1DC 07 	 RLCA
O1DD 07 	 RLCA
O1DE 07 	 RLCA
O1DF CD E3 01 	CALL 01E3
01E2 Fl 	 POP AF
01E3 E6 OF 	AND OF
01E5 11 DO 07 	LD DE,O7D0
01E8 83 	 ADD A,E
01E9 5F 	 LD E,A
O1EA 1A 	 LD A,(DE)
O1EB 02 	 LD (BC),A
O1EC 03 	 INC BC
O1ED C9 	 RET

;SAVE A
;SHIFT MSN TO LSN PLACE
;FOR NIBBLE AT A TIME CONVERSION

;CONVERT FIRST NIBBLE
;RECOVER A TO CONVERT SECOND NIBBLE
;MASK OF HIGH NIBBLE
;SET DE TO BASE OF CONVERSION
;TABLE: ADD A TO BASE
;UPDATE POINTER
;GET DISPLAY CODE
;STORE IN DISPLAY BUFFER
;INCREMENT DISPLAY BUFFER POINTER
;NIBBLE CONVERSION DONE

SET DOTS
THIS ROUTINE SETS THE DOTS IN THE DISPLAY BUFFER. IF IN ADDRESS MODE THEN 4 DOTS ARE SET
IN THE ADDRESS DISPLAY BUFFER, IF IN A FUNCTION MODE, THEN ONE DOT IN THE ADDRESS DISPLAY
- RIGHT MOST FOR FUNCTION 1 SECOND RIGHT FOR FUNCTION 2 AND THIRD RIGHT FOR FUNCTION 3.
IF IN THE DATA MODE THEN 2 DOTS IN THE DATA DISPLAY BUFFER OR ONE DOT, ON THE RIGHTMOST
DISPLAY, IF TWO NIBBLES HAVE BEEN ENTERED AND IN THE AUTO-INCREMENT MODE.

OlEE 06 02
	

LD B4 O2
	

;SET B FOR 2 DOTS
01F0 2A 2C 08 	LD HL,(082C) ;PUT DISPLAY BUFFER IN HL
01F3 3A 2B 08 	LD A,(082B)
	

;GET MONITOR CONTROL BYTE (MCB)
01F6 CB 67
	

BIT 4,A
	

;TEST FOR ADDRESS OR FUNCTION MODE
01F8 28 1A
	

JR Z,0214
	

;JUMP IF NOT TO DO DATA DOTS
01FA CB 6F
	

BIT 5,A
	

;TEST ONLY FOR FUNCTION MODE
01FC 20 08
	

JR NZ,0206 	;JUMP IF FUNCTION MODE
01FE 06 04
	

LD 13,04
	

;ADDRESS MODE SO SET B FOR 4 DOTS
0200 CB E6
	

SET 4,(HL) 	;SET DOT IN DISPLAY BUFFER
0202 23
	

INC HL 	;NEXT LOCATION
0203 10 FR
	

DJNZ,0200 	;DO 4 TIMES
0205 C9
	

RET
	 ;DONE

0206 05
	

DEC B
	;FUNCTION MODE: SET B FOR ONE DOT

0207 CB 5F
	

BIT 3,A 	;TEST FOR FUNCTION 3
0209 20 06
	

JR NZ,0211
	;JUMP IF FUNCTION 3 TO ADD HL+1

020B CB 57
	

BIT 2,A
	

;TEST FOR FUNCTION 2
020D 20 01
	

JR NZ,0210
	;JUMP IF FUNCTION 2 TO ADD HL+2

020F 23
	

INC HL 	;INCREMENT HL TO POINT TO THE
0210 23
	

INC HL 	;REQUIRED DISPLAY BYTE
0211 23
	

INC HL

0212 18 PC JR 0200 ;JUMP TO SET DOT
0234 23 INC HL ;DATA MODE: HL NOW POINTS TO SECOND
0215 4F LD C,A ;LEFT MOST DISPLAY BUFFER: SAVE MCB
0216 3A 27 08 LD A, (0827) ;IN C: TEST AUTO INCREMENT ENABLE
0219 B7 OR A ;FLAG
021A 20 F3 JR NZ,020F ;JUMP IF NO AUTO INCREMENT TO SET BOTH
021C CB 49 BIT 1,C ;DATA DOTS: TEST BYTE COUNTER FOR 2
021E 28 EF JR Z,020F ;NIBBLES: JUMP IF NOT TO SET BOTH DATA
0220 23 INC HL ;DOTS: ELSE SKIP DOT ON ONE DISPLAY
0221 05 DEC B ;AND DECREASE DOT COUNT FROM 2 TO 1
0222 18 EB JR 020F ;JUMP TO ADJUST HL AND SET DOTS

MASKABLE RESET TONE ROUTINE
IF 0822 IS NOT ZERO THEN NO TONE

0224 CD 3F 08 	CALL 083F

MASKABLE TONE ROUTINE

;CALL TONE

0227 3A 22 08 LD A,(0822) ;TEST SOUND MASK
022A B7 OR A
022B CO RET NZ ;NO TONE IF NOT ZERO
022C OE 40 LD C,40 ;LOAD C WITH PERIOD
022E 2E 31 LD L,31 ;LOAD L WITH NUMBER OF CYCLES
0230 AF XOR A ;CLEAR A
0231 D3 01 OUT 	(01),A ;OUT TO SPEAKER
0233 41 LD B,C
0234 10 FE DJNZ,0234 ;DELAY FOR PERIOD
0236 EE 80 XOR 80 ;TOGGLE SPEAKER BIT
0238 2D • DEC L ;DECREMENT CYCLE COUNT
0239 20 F6 JR NZ,0231 ;LOOP UNTIL ZERO
023B C9 RET ;DONE

LCD ROUTINE
IF 0821 IS NOT ZERO, THEN LCD HAS BEEN MASKED OFF BY EITHER THE USER OR THE LCD
INTIALIZER/TESTER ROUTINE AND NO ACTION IS TAKEN ON THE LCD. THE RST 30 (F7) IS USED
EXTENSIVELY TO TEST AND WAIT FOR THE LCD BUSY FLAG. THROUGHOUT THESE NOTES, THE INVISIBLE
INTERNAL CURSOR ON THE LCD IS
REFERRED TO AS THE PROMPT.

REFERRED TO AS THE CURSOR, WHILE THE ">" ON THE LCD IS

023C 3A 21 08 LD A,(0821) ;TEST LCD MASK
023F B7 OR A
0240 CO RET NZ ;NOT ZERO = LCD NOT REQUIRED OR FITTED
0241 3E 80 LD A,80 ;SET LCD CURSOR TO HOME
0243 D3 04 OUT 	(04),A
0245 F7 RST 30 ;WAIT UNTIL LCD READY
0246 CD 53 02 CALL 0253 ;CALL SET-UP AND OUTPUT FIRST LINE
0249 3E CO LD A, CO ;SET CURSOR TO BOTTOM LINE
024E D3 04 OUT 	(04),A
024D F7 RST 30 ;WAIT
024E CD 5A 02 CALL 025A ;CALL ROUTINE TO OUTPUT BOTTOM LINE
0251 18 33 JR 0286 ;JUMP TO PROMPT ROUTINE

SET-UP
MODIFY CURRENT EDIT LOCATION ADDRESS IN HL SO THAT IT POINTS TO A BYTE AT AN ADDRESS
ENDING IN EITHER 0 OR 8.

0253 2A 2E 08
0256 7D
0257 E6 F8
0259 6F

OUTPUT A LINE

LD HL,(082E)
LD A,L
AND F8
LD L,A

;GET CEL AND PUT LOW BYTE IN A
;THEN MASK OFF THE 3 LOWEST BITS
;AS THE ADDR OF THE FIRST BYTE ON
;THE LCD WILL END WITH 0 OR 8

025A CD 6C 02 CALL 026C ;CALL "HI TO ASCII OUTPUT"
025D 06 04 LD B4 O4 ;SET B FOR 4 BYTES ON A LINE
025F 3E 20 LD A,20 ;LOAD A WITH ASCII SPACE
0261 D3 84 OUT 	(84),A ;CHARATER AND OUTPUT IT
0263 F7 RST 30 ;WAIT
0264 7E LD A,(HL) ;GET BYTE TO DISPLAY
0265 CD 71 02 CALL 0271 ;CONVERT AND OUTPUT IT
0268 23 INC HL ;POINT TO NEXT BYTE
0269 10 F4 DJNZ,025F ;DO FOR 4 BYTES
026E C9 RET ;DONE

CONVERT HL TO ASCII (VIA CONVERT A) AND OUTPUT IT

02_T 2E 0(JR Z,02C7
02C1 ED A3 	OUTI
02C3 F7 	 RST 30
02C4 20 FB 	JR NZ,02C1
02C6 C9 	 RET
02C7 06 03 	LD B4 O3
02C9 CD Cl 02 	CALL 02C1
02CC 7A 	 LD A,D
02CD E6 03 	AND 03
02CF C6 31 	ADD A,31
02D1 18 AF 	JR 0282

;JUMP IF FUNCTION MDDE TO OUT 3 BYTES
;OUT (HL) TO (C) B=B-1
;HL=HL-Fl: WAIT FOR LCD BUSY FLAG
;LOOP UNTIL B=0
;DONE
;ONLY THREE BYTES FOR FUNCTION MODE
;CALL THE OUTPUT ROUTINE ABOVE
;PUT MCB (SHIFTED RIGHT TWICE) IN A
;MASK IT DOWN TO GET JUST THE FUNCTION
;NUMBER BITS: ADD ASCII "1"
;JUMP TO OUTPUT FUNCTION NUMBER

IQ

-END OF MONITOR ROUTINES- (EXCEPT KEYBOARD READER AT 06AD)

LCD PROMPT MOVING ROUTINES. (SHIFT AND FUNCTION 1)
THESE ROUTINES ALTER THE CURRENT EDIT LOCATION ADDRESS AND STORE IT IN ITS BUFFER. WHEN
THE RETURN IS DONE, JMON IS RE-ENTERED AT 00B2 (VIA THE SOFT RE-ENTRY JUMP AT 0845, THE
ADDRESS OF WHICH HAS BEEN PLACED ON THE STACK BY PART OF THE "GO" ROUTINE).

02D3 11 04 00 LD DE,0004 ;DE= +4
02D6 2A 2E OH LD HL,(082E) ;PUT CEL IN HL
02D9 19 ADD HL,DE ;ADD TO GET NEW CEL
02DA 22 2E 08 LD (082E),HL ;STORE IN CEL BUFFER
02DD C9 RET ;DONE
02DE 11 FC FF LD DE,FFFC ;DE= -4
02E1 18 F3 JR 02D6 ;JUMP TO ADD
02E3 11 FF FF LD DE,FFFF ;DE= -1
02E6 18 EE JR 02D6 ;JUMP TO ADD
02E8 11 01 00 LD DE,0001 ;DE= +1
02EB 18 E9 JR 02D6 ;JUMP TO ADD
02ED 11 08 00 LD DE,0008 ;DE+ +8
02F0 18 E4 JR 02D6 ;JUMP TO ADD
02F2 11 F8 FF LD DE,FFF8 ;DE= -8
02F5 18 DF JR 02D6 ;JUMP TO ADD

RESET PATCH CHECKER.
TESTS FOR PATCH REQUIREMENT AND UP TO THE FIRST 256 BYTES OF THE PATCH ROUTINE. THE
CHECKSUM FEATURE ENSURES A WAY TO CHECK THAT THE PATCH OR PATCH VARIABLES HAVE NOT BEEN
CORRUPTED BY A SYSTEM CRASH, OTHERWISE YOU MAY NEVER REGAIN CONTROL OF THE COMPUTER UNLESS
YOU TURN IT OFF, (AND LOSE THE CONTENTS OF YOUR MEMORY - YOU CANNOT RECOVER IT BY A FORCED
HARD RESET AS THE USER PATCH IS EXECUTED BEFORE THE FORCED HARD RESET TEST). (A FORCED
HARD RESET IS WHEN A KEY IS HELD DOWN WHEN THE RESET KEY IS RELEASED).
IF YOU HAVE A NON VOLATILE MEMORY AT 0800 THE SITUATION WOULD BE ABSOLUTELY HOPELESS
WITHOUT THIS CHECKER ROUTINE.
A VARIABLE CAR BE PASSED TO YOUR PATCH ROUTINE IN THE "C" REGISTER. TO DO THIS THE VARIABLE
IS PLACED AT ADDRESS LOCATION

02F7 3A BO 08 	LD A,(08B0)
02FA FE AA 	CP AA

08B3.

;TEST FOR RESET PATCH REQUIRED

02FC CO RET NZ ;RETURN IF NOT
02FD ED 4B B3 08 LD BC,(08B3) ;PUT NO OF BYTES IN B VARIABLE IN C
0301 2A B1 08 LD HL,(08B1) ;START IN HL
0304 AF XOR A ;CLEAR A
0305 86 ADD Ar (HL) ;ADD CHECKSUM
0306 23 INC HL
0307 10 FC DJNZ,0305 ;UNTIL B=0
0309 21 B5 08 LD HL,08B5 ;POINT TO REQUIRED CHECKSUM
030C BE CP (HL) ;TEST FOR EQUAL
030D CO RET NZ ;ABORT IF NOT
030E 2A B6 08 LD HL,(08B6) ;ELSE GET START ADDR
0311 E9 JP (HL) ;AND DO RESET PATCH

STEPPER ROUTINE
THE STEPPER ROUTIN E IS BROKEN UP INTO SEVERAL SECTIONS. THE FIRST IS THE REGISTER SAVE,
WHERE ALL THE Z80 USER REGISTERS ARE STORED IN MEMORY.

0312 22 70 08
	

LD (0870),HL ;STORE HL IN ITS REGISTER STACK SPOT
0315 21 44 03
	

LD HL,0344
	

;LOAD HL WITH RETURN ADDRESS

MONITOR JUMPS TO HERE ON RESET TO PRESERVE USER REGISTERS.

0318 22
031B 2A
031E 22
0321 ED
0325 El

60 08
58 08
68 08
73 7E

LD (0860),HL
LD HL,(0858)
LD (0868),HL

08 LD (087E),SP
POP HL

;STORE RE-ENTRY ADDRESS IN BUFFER
;GET ADDRESS OF INSTRUCTION JUST
;STEPPED AND PUT IT IN "NEXT PC"
;BUFFER: SAVE STACK POINTER VALUE
;GET RETURN ADDR, THIS 1S THE ADDRESS

0326 22 56 OS LD 	(0656),HL ;OF NEM PYTE TO STEP: STORE IN
0329 31 7E 08 LD SI', 087E ;"NEXT PC" BUFFER: LOAD REGISTER DU1•'
032C 08 EX AF,AF' ;STACK: PUSH ALTERNATE REGISTERS
032D D9 EXX ;FIRST
032E E5 PUSH HL ;SAVE ALL REGISTERS
032F D5 PUSH DE
0330 C5 PUSH BC
0331 F5 PUSH AF
0332 FD E5 PUSH IY
0334 DD E5 PUSH IX
0336 08 EX AF,AF'
0337 D9 EXX
0338 3B DEC SP
0339 3B DEC SP
033A D5 PUSH DE
033B C5 PUSH BC
033C F5 PUSH .AF
033D 2A 60 08 LD HL,(0860) ;RE-ENTER CALLING ROUTINE VIA
0340 E9 JP 	(HL) ;THE ADDRESS IT SUPPLIED AT 0860
0341 31 6A 08 LD SP,086A ;SHIFT 7 ROUTINE'START (REG DISPLAY)

THE REGISTERS HAVE BEEN SAVED. NOW THE DISPLAY AND KEYBOARD HANDLER IS SET UP. THE STACK
IS DECREMENTED BY TWO TO POINT TO THE "PC" BUFFER. THE ADDRESS IN THE "PC" BUFFER IS THE
ADDRESS OF THE INSTRUCTION JUST STEPPED.
THE NUMBER OF THE FIRST REGISTER (1 FOR "PC") IS PUT INTO THE CURRENT REGISTER NUMBER
BUFFER.

0344 21 06 08
	

LD HL,0806 	;CREATE NEW DISPLAY BUFFER
0347 22 2C 08
	

LD (082C),HL ;
034A 3B
	

DEC SP 	;DECREASE SP BY 2 TO POINT TO THE
034B 38
	

DEC SP 	;"PC" BUFFER

WHEN UP-DATING THE DISPLAY, THE ROUTINE MAY JUMP BACK TO HERE IF THE FIRST DISPLAY IS
REQUIRED.

034C 3E 01 	LD A,01
	

;SET UP FOR THE FIRST REGISTER (PC)
034E 32 5A 08 	LD (085A),A ;DISPLAY

OR HERE IF IT HAS ALTERED THE CURRENT REGISTER NUMBER IN ITS STORAGE LOCATION (085A).

0351 3A 5A 08 	LD A,(085A) 	;DISPLAY LOOP STARTS HERE

HL IS LOADED WITH THE STACK POINTER VALUE, (WHICH POINTS TO THE "PC" BUFFER), MINUS TWO.
THE TWO IS SUBTRACTED BECAUSE AN EXTRA TWO WILL BE ADDED TO HL DURING THE REGISTER BUFFER
CALCULATOR (IMMEDIATELY BELOW) AS THE NUMBER OF THE FIRST REGISTER IS 1 AND NOT ZERO.

0354 21 FE FF 	LD HL,FFFE
0357 39 	 ADD HL,SP
0358 23 	 INC HL
0359 23 	 INC HL
035A 3D 	 DEC A
035B 20 FB 	JR NZ,0358

;HL=-2
;HL=SP-2
;INCREMENT HL TO POINT TO THE
;CURRENT REGISTER BUFFER
;INDICATED BY THE NUMBER IN A

HL NOW POINTS TO THE CURRENT REGISTER BUFFER. THIS SECTION PUTS THE REGISTER(S) CONTENT(S)
INTO HL AND CONVERTS IT TO DISPLAY CODE AND STORE THE DISPLAY CODE IN THE DISPLAY BUFFER.

035D 7E
035E 23
035F 66
0360 6F
0361 ED
0365 CD

LD A, (HL)
INC HL
LD H, (HL)
LD L,A

4B 2C 08 LD BC,(082C)
30 08 	CALL 0830

;GET 16 BIT VALUE
;AND PUT IT
;BACK INTO
;HL
;PUT DISPLAY BUFFER ADDRESS IN BC
;CALL HL TO DISPLAY CODE ROUTINE

THIS SECTION
ARE STORED IN
BUFFER.

CALCULATES THE ADDRESS OF THE REGISTER NAME FOR THE DATA DISPLAYS. THESE
A TABLE. THE REQUIRED REGISTER NAME IS THEN TRANSFERRED TO THE DISPLAY

0368 3A 5A 08 LD 	(085A) ;GET REGISTER NUMBER
036B C5 PUSH BC ;PUT NEXT DISPLAY BUFFER
036C D1 POP DE ;LOCATION INTO DE(stination)
036D 01 02 00 LD BC,0002 ;BC IS THE NUMBER OF DATA DISPLAYS
0370 21 92 07 LD HL,0792 ;HL=THE BASE OF THE NAME TABLE
0373 09 ADD HL,BC ;ADD TO HL 2 FOR EACH
0374 3D DEC A ;REGISTER NUMBER TO ACCESS THE
0375 20 FC JR N2,0373 ;CURRENT REGISTER NAME
0377 ED BO LDIR ;MOVE REGISTER NAVE INTO LAE

TEE SCAN AND KEYBOARD ROUTINE ARE NOW CALLED (VIA THE RST 18). IF A VALID KEY IS PRESSED,
THEN THE ZERO FLAG IS SET WHEN THE RST RETURNS.

0379 DF
	

RST 18 	; SCAN/KEY READ RST
037A 21 24 08
	

LD HL,0824 	;(HL)=AUTO STEP CONTROL/TIMER BYTE
037D 28 08
	

JR Z,038A 	;JUMP IF VALID KEY PRESSED

NO KEY IS PRESSED SO THE ROUTINE CHECKS FOR THE AUTO REPEAT MODE ENABLED FLAG (BIT 7 AUTO
STEP CONTROL/TIMER BYTE, ZERO IS AUTO STEP ENABLED) AND DECREMENTS THE COUNTER IF IT IS.
IF THE COUNTER REACHES ZERO, THEN IT IS RELOADED AND THE ROUTINE JUMPS TO RECOVER THE
REGISTERS AND STEP THE NEXT INSTRUCTION. IF NOT IN THE AUTO MODE OR THE COUNTER DOES NOT
REACH ZERO, THEN THE ROUTINE LOOPS BACK TO SCAN THE DISPLAY AND WAIT FOR EITHER A KEY
PRESS OR FOR THE COUNTER TO REACH ZERO.

037F CB 7E
	

BIT 7,(HL) 	;TEST FOR AUTO INCREMENT JUMP IF NOT
0381 20 F6
	

JR NZ,0379
	;ENABLED TO SCAN/KEY READ LOOP

0383 35
	

DEC (HL) 	;DECREMENT COUNTER: LOOP TO
0384 20 F3
	

JR NZ,0379
	;SCAN/KEY READ UNTIL COUUT=0

AT THIS POINT THE AUTO-STEP DELAY HAS REACHED ZERO AND IS RELOADED WITH THE DELAY VALUE.
A JUMP IS THEN DONE TO RECOVER THE REGISTERS AND STEP THE NEXT INSTRUCTION.

0386 36 30
	

LD (HL),30 	;RESET AUTO STEP DELAY, JUMP TO RECOVER
6388 18 22
	

JR 03AC 	;REGISTERS AND STEP NEXT INSTRUCTION

KEY PROCESSING STARTS HERE
THE AUTO-STEP IS DISABLED AND THEN THE KEY IS IDENTIFIED AND HANDLED.
THE AUTO-STEP WILL BE RE-ENABLED IF THE KEY PRESSED IS A DATA KEY.

038A 47 LD B,A ;SAVE KEY
038B 36 FF LD (HL),FF ;SET AUTO STEP CONTROL/TIMER BIT 7
038D 21 5A 08 LD HL,085A ;THUS DISABLING THE AUTO REPEAT MODE
0390 78 LD A,B ;POINT HL TO CURRENT REG No. BUFFER
0391 FE 10 CP 10 ;PUT INPUT IN A,TEST IT FOR "+"
0393 20 08 JR NZ,039D ;JUMP IF NOT TO TEST FOR "-"

"+" KEY HANDLER
THE CURRENT REGISTER NUMBER IS INCREMENTED AND THEN CHECK TO SEE THAT IT HAS NOT EXCEEDED
THE HIGHEST REGISTER NUMBER (OC). IF IT HAS, THE ROUTINE JUMPS TO RESET THE CURRENT
REGISTER NUMBER WITH 1, OTHERWISE IT JUMPS TO THE DISPLAY LOOP.

0395 34 INC (HL) ;INCREMENT REGISTER NUMBER
0396 7E LD A, (HL) ;AND CHECK TO SEE IF IT LARGER
0357 FE OD CP OD ;THAN HIGHEST REG No. 	(OC): IF LOWER
0399 38 B6 JR C,0351 ;THAN OD JUMP TO DISPLAY LOOP ELSE
039B 18 AF JR 034C ;JUMP TO SET REGISTER NUMBER TO 1
039D FE 11 CP 11 ;TEST FOR "-"
039F 20 07 JR NZ,03A8 ;JUMP IF NOT

"-" HANDLER
ONE IS TAKEN FROM THE CURRENT REGISTER NUMBER AND THEN IT IS CHECKED FOR ZERO. IF IT
BECOMES ZERO, THEN THE CURRENT REGISTER NUMBER IS SET TO THE HIGHEST REGISTER NUMBER (OC)
TO WRAP-AROUND TO DISPLAY THE LAST REGISTER.

03A1 35 	 DEC (HL)
03A2 20 AD 	JR NZ,0351
03A4 36 OC 	LD (HL),OC
03A6 18 A9 	JR 0351

TEST FOR "GO"

;SUBTRACT 1 FROM REGISTER NUMBER
;JUMP IF NOT 0 TO UP-DATE DISPLAY
;ELSE SET TO LAST REGISTER
;AND UP-DATE

03A8 FE 12 	CP 12
03AA 20 1A 	JR NZ,03C6

;TEST FOR "GO" AND JUMP IF NOT
;TO TEST FOR "AD" OR DATA KEY

"GO" KEY
THE GO KEY CAUSES STEPPING EXECUTION TO CONTINUE.
BEFORE STEPPING IS CONTINUED THOUGH, THE KEYBOARD IS READ AND THE PROGRAM LOOPS UNTIL
ALL KEYS ARE RELEASED. THIS IS TO SEPARATE KEY PRESSES MEANT FOR THE STEPPER AND THOSE
FOR THE ROUTINE BEING STEPPED. ONCE ALL KEYS ARE RELEASED, ALL THE REGISTERS ARE POPPED
OF THE REGISTER DISPLAY STACK, THE STACK IS RESTORED TO ITS "REAL" POSITION AND THE
INTERRUPTS RE-ENABLED. THE RETURN ADDRESS FOR THE ROUTINE BEING STEPPED, STILL THERE ON
THE TOP OF THE REAL STACK, IS USED AS THE RETURN ADDRESS.

03AC E7 	 RST 20 	;WAIT UNTIL ALL KEYS ARE RELEASED
03AD 28 FD 	JR Z,03AC 	;BEFORE RESTARTING

12

03AF El
03E0 Fl
0361 Cl
0362 D1
0363 El
03B4 DD El
03B6 FD El
0368 08
0369 D9
03BA Fl
03BB Cl
03BC D1
03BD El
03BE 08
03BF D9
03C0 ED 7B
03C4 FB
03C5 C9

TEST FOR

03C6 FE 13
03C8 20 01
03CA C7

FOP EL
rot AP
POP BC
POP DE
POP HL
POP IX
POP IY
EX AF,AF'
EXX
POP AF
POP BC
POP DE
POP HL
EX AF,AF'
EXX

7E 08 LD SP,(087E)
EI
RET

CP 13
JR NZ,03CB
RST 00

;RECOVER ALL
;REGISTERS
;IN
;THE
;REVERSE
;ORDER
;TO
;HOW
;THEY
;STORED

;AND STACK POINTER
;RE-ENABLE THE INTERRUPTS
;RET TO STEP NEXT INSTRUCTION

;TEST FOR "ADDR" KEY
;JUMP IF NOT TO ASSUME DATA KEY
;RETURN TO MONITOR

'3

IIAD It KEY (RETURN TO JMON)

DATA KEY HANDLER (ENABLE AUTO STEP)

03CB 3E 20
	

LD A,20 	;SET AND ENABLE AUTO STEP IN THE
03CD 32 24 08
	

LD (0824),A ;CONTROL/TIMER BYTE (BIT 7 LOW, 20
0300 18 A7
	

JR 0379 	;CYCLES): JUMP TO DISPLAY LOOP

-END OF STEPPER-

START OF MENU
MENU IS SET-UP FOR TAPE ROUTINE HERE
THE VARIABLES ARE MOVED FROM ROM TO RAM AND THE DISPLAY BUFFER IS SET TO 0800.

03D2 21 7C 07
03D5 11 80 08
0308 01 18 00
03DB ED BO
03DD 21 00 08
03E0 22 2C 08

LD HL,077C 	;LOAD HL WITH START OF TAPE
LD DE,0880 	;VARIABLES: DE IS RAM DE(stination)
LD BC,0018 	;BC IS THE COUNT
LDIR 	 ;SHIFT VARIABLES
LD BL,0800 	;PUT DISPLAY BUFFER AT 0800
LD (082C),HL ;

MENU DISPLAY LOOP STARTS HERE
THE MENU ENTRY NUMBER (MEN), HOLDS THE NUMBER OF THE CURRENT MENU ENTRY ON THE DISPLAY.
ALL ACTIONS OF THE MENU DRIVER CENTRE AROUND THIS BYTE.
THE DISPLAY ON THE TEC LED DISPLAY IS GENERATED BY SHIFTING BOTH THE DATA AND ADDRESS
DISPLAY CODES INTO THE RAM DISPLAY BUFFER.
ALL THE POSSIBLE DATA AND ADDRESS DISPLAY CODES ARE STORED IN SEPARATE TABLES IN ROM,
THE BASE OF EACH IS ADDRESSED BY THE CONTENTS OF MEMORY LOCATIONS 0895 (DATA TABLE), AND
0893 (ADDRESS TABLE).
THE FIRST MENU ENTRY IS DENOTED BY A ZERO VALUE IN THE MENU ENTRY NUMBER (MEN). THIS
MEANS THAT THE POSSIBLE ZERO CONDITION MUST BY DETECTED AND THE TABLE ENTRY CALCULATOR
SECTION SKIPPED OVER. WHEN ACCESSING THE DISPLAY TABLES, THE MENU ENTRY NUMBER IS
DECREMENTED UNTIL ZERO AND EACH TIME AN OFFSET EQUAL TO THE LENGTH OF EACH TABLE ENTRY
(4 FOR ADDR AND 2 FOR DATA TABLES) IS ADDED TO THE POINTERS.
AFTER THE REQUIRED ENTRIES ARE FOUND, THEY ARE MOVED INTO THE RAM DISPLAY BUFFER.

03E3 3A
03E6 ED
03EA 2A
03ED 01
03F0 B7
03F1 28
03F3 09
03F4 13
03F5 13
03F6 3D
03F7 20
03F9 E5
03FA D5
03FB 11
03FE ED
0400 El

8F 08 	LD A,(088F)
5B 95 08 LD DE,(0895)
93 08 	LD HL,(0893)
04 00 	LD BC,0004

OR A
06 	JR Z,03F9

ADD HL, BC
INC DE
INC DE
DEC A

FA 	JR NZ,03F3
PUSH HL
PUSH DE

00 08 	LD DE,0800
BO 	LDIR

POP EL

;GET MENU ENTRY NUMBER (MEN)
;DE POINTS TO DATA DISPLAY TABLE
;HL POINTS TO ADDR DISPLAY TABLE
;BC IS BOTH AN INDEX OFFSET AND
;BYTE COUNTER (USED BELOW): TEST
;A AND SKIP CALCULATOR IF ZERO
;ADD 4 TO HL TO POINT TO NEXT ADDR
;DISPLAY AND 2 TO DE FOR NEXT DATA
;DISPLAY
;DO UNTIL A=0

;SAVE ADDR POINTER (not required)
;AND DATA POINTER
;SHIFT ACROSS ADDR DISPLAY
;TO 0800 (BC=0004 FROM ABOVE)
;POP DATA DISPLAY ADDR INTO HL

itf

0401 OE 02
	

LD 0,02 	;SET BC TO SHIFT DATA DISPLAY BYTES
0403 ED BO
	

LDIR
	

;SHIFT THE BYTES TO DISPLAY RAM
0405 El
	 POP HL 	;CLEAN UP STACK

THIS SECTION CAMS THE SCAN/KEY/LCD/PATCH ROUTINE.
WHEN A KEY IS DETECTED A KEY HANDLER ROUTINE IS CALLED. THIS KEY HANDLER IS COMMON TO
BOTH THE MENU DRIVER AND THE PERIMETER HANDLER AND IS DOCUMENTED ON FURTHER.
IF THE "GO" KEY WAS PRESSED, THE ZERO FLAG WILL BE SET WHEN THE COMMON KEY HANDLER RETURNS
AND THE ROUTINE JUMPS TO THE GO HANDLER. IF NOT, THEN A (UNUSED BY JMON) ROUTINE (AT
0897) IS CALLED AND FINDS AN IMMEDIATE RETURN.
THE RETURN INSTRUCTION WAS PLACED AT 0897 WHEN THE TAPE'S MENU VARIABLES WERE SHIFTED
FROM ROM TO RAM (SEE 0793).
A JUMP THEN LOOPS BACK TO THE MAIN DISPLAY LOOP TO UP-DATE THE DISPLAYS IN CASE OF A NEW
MENU ENTRY NUMBER (MEN) BEING PROVIDED BY THE KEY HANDLER.
THE GO HANDLER IS A SIMPLE TABLE ENTRY CALCULATOR THAT USES THE MENU ENTRY NUMBER TO
INDEX THROUGH A TABLE OF THREE BYTE JUMPS. LIKE THE DISPLAY CALCULATOR, THE ZERO POSSIBILITY
IS TESTED FOR AND THE CALCULATOR SECTION IS SKIPPED OVER IF ZERO. WHEN THE REQUIRED TABLE
ENTRY IS POINTED TO BY HL, IT IS THEN JUMPED TO VIA JP (HL), AND THE TABLE ENTRY„ITSELF
BEING A 3 BYTE JUMP THEN JUMPS TO THE SELECTED MENU ENTRY'S ROUTINE.

0406 CD 42 08 	CALL 0842 	;CALL SCAN/KEY/LCD/PATCH ROUTINE
0409 21 8F 08 	LD HL,088F 	;POINT HL TO MENU ENTRY NUMBER
040C CD B2 04 	CALL 04B2 	;CALL COMMON KEY HANDLER
040F 28 05 	JR Z,0416 	;JUMP IF KEY WAS "GO" ELSE CALL TO
0411 CD 97 08 	CALL 0897 	;RETURN INSTRUCTION (UNUSED BY JMON)
0414 18 CD 	JR 03E3 	;LOOP TO MAIN DISPLAY LOOP

MENU "GO" KEY HANDLER

0416 2A 91 08 LD HL,(0891) ;POINT HL TO BASE OF JUMP TABLE
0419 3A 8F 08 LD A,(088F) ;GET MENU ENTRY NUMBER
041C B7 OR A ;TEST FOR ZERO
041D 28 06 JR 2,0425 ;SKIP CALCULATOR IF ZERO
041F 23 INC HL ;FIND JUMP VECTOR FOR THE CURRENT
0420 23 INC HL ;MENU HEADING
0421 23 INC HL
0422 3D DEC A
0423 20 FA JR NZ,041F
0425 E9 JP (HL) ;AND JUMP TO THE REQUIRED ROUTINE

PERIMETER HANDLER SET-UP ROUTINES FOR THE TAPE SOFTWARE
WHEN GO IS PRESSED IN THE MENU HANDLER, ONE OF THE IMMEDIATE FOLLOWING ROUTINES IS EXECUTED
(WHEN THE MENU IS WORKING WITH THE TAPE SOFTWARE). THESE ROUTINES SET-UP THE VARIABLES
FOR THE MAIN TAPE FUNCTIONS (SAVE, TEST CS, TEST BL AND LOAD). THE TWO TESTS AND THE LOAD
ROUTINE IS BASICALLY THE ONE ROUTINE, EXCEPT THAT EACH HAS ITS OWN PRIVATE SIGN-ON BYTE.
LATER YOU WILL SEE THE THE ROUTINE TO LOAD OR TEST IS BASICALLY THE SAME AND THIS "SIGN-ON
BYTE" SEPARATES THE DIFFERENT FUNCTIONS AT THE CRITICAL STAGE.
THE COMMON SECTION FOR THE LOAD AND TESTS, SETS THE PERIMETER HANDLER TO HAVE TWO WINDOWS,
ONE FOR THE FILE NUMBER AND ONE FOR THE OPTIONAL START ADDRESS. IT ALSO SETS THE OPTIONAL
START WINDOW TO FFFF (NO OPTIONAL START ADDRESS BY DEFAULT) AND PUTS THE EXECUTING ADDRESS
OF THE LOAD/TESTS ROUTINE IN THE PERIMETER "GO" JUMP ADDRESS BUFFER.
THE SAVE SET-UP SETS THE NUMBER OF WINDOWS TO 4 AND STORES THE EXECUTING ADDRESS OF THE
SAVE PREAMBLE ROUTINE IN THE PERIMETER "GO" JUMP ADDRESS BUFFER (0868).
THE 4 TAPE SAVE WINDOWS ARE: THE FILE NUMBER, THE START, THE END AND THE OPTIONAL AUTO
GO ADDRESS.
ALL THE ABOVE ROUTINES HAVE A COMMON SET-UP AREA. THIS COMMON AREA STORES THE ROUTINE'S
JUMP ADDRESS, IN HL, AND THE NUMBER OF WINDOWS, IN A, BOTH PROVIDED FROM THEIR OWN
DEDICATED SECTION. THE COMMON AREA ALSO CLEARS THE "ACTIVE WINDOW NUMBER" TO ZERO SO THAT
THE PERIMETER HANDLER WILL BE ENTERED WITH THE FIRST WINDOW (FILE NUMBER) SHOWING.

"LOAD" SET-UP

0426 AF 	 XOR A 	;CLEAR A FOR LOAD SIGN-ON BYTE

COMMON AREA FOR LOAD AND TESTS

0427 32 8A 08 LD (088A),A ;SAVE SIGN-ON BYTE IN BUFFER
042A 3E 01 LD A,01 ;LOAD A WITH NUMBER OF WANTED
042C 21 FF FF LD HL,FEFF ;WINDOWS -1 (2 WINDOWS): SET
042F 22 9A 08 LD (089A),HL ;OPTIONAL START WINDOW TO FFFF
0432 21 31 05 LD HL,0531 ;LOAD HL WITH "GO" ADDR OF LOAD/TEST
0435 18 OD JR 0444 ;ROUTINE: JUMP TO STORE HL AND A

"TEST BLOCK" SET-UP

0437 3E 02 	LD A,02 ;2=TEST BLOCK SIGN-ON BYTE

15
O43!; IF EC
	

10_27
	

;0101.1; 	 C01:._!;; ANBA

"TEST CHECKSUM" SET-UP

043B 3E 03
043D 18 FA

SAVE SET-UP

043F 21 50 04
0442 3E 03

LD A,03 	;3=TEST CHECKSUM SIGN-ON BYTE
JR 0439 	;JUMP TO TEST/LOAD COMMON AREA

LD HL,0450 	;POINT HL TO START OF SAVE PRE-AMBLE
LD A,03 	;SET UP FOR 4 WINDOWS

COMMON AREA FOR ALL SET-UPS

0444 22 88 08
0447 32 87 08
044A AF
044B 32 66 08
044E 18 23

LD (0888),HL ;STORE HL AND A
LD (0887),A
XOR A 	;SET MEN TO FIRST WINDOW (FILE NUMBER)
LD (0886),A
JR 0473 	;JUMP TO PERIMETER HANDLER

SAVE ROUTINE PRE-AMBLE
THE SAVE PREAMBLE FITS IN BETWEEN THE PERIMETER HANDLER AND THE ACTUAL SAVE ROUTINB. THE
PURPOSE OF IT IS TO SHIFT ACROSS THE FILE NUMBER, THE START ADDRESS AND THE OPTIONAL GO
ADDRESS. IT ALSO CALCULATES THE LENGTH OF THE BLOCK AND TRANSFERS IT ACROSS TO THE TAPE
FILE INFORMATION BLOCK WHICH IS OUTPUTTED TO THE TAPE.
IF THE END IS LOWER THAN THE START THE ROUTINE WILL JUMP TO DISPLAY "Err -In".

0450
0453
0456
0459
045C
045D

2A 9E
22 AA
2A 9A
22 A6
EB
2A 9C

08
08
08
08

08

LD
LD
LD
LD
EX
LD

HL,(089E)
(08AA),HL
HL,(089A)
(08A6),HL
DE,HL
BL,(089C)

;SHIFT OPTIONAL GO TO OUTPUT BUFFER

;SHIFT START ADDRESS OF BLOCK
;TO TAPE FILE OUTPUT BUFFER
;PUT START OF BLOCK IN DE
;GET END OF BLOCK IN HL

0460 B7 OR A ;CLEAR CARRY
0461 ED 52 SBC HL,DE ;CALCULATE NUMBER OF BYTES IN
0463 23 INC HL ;BLOCK (DIFFERENCE +1)
0464 DA 4A 00 JP C 004A ;JUMP IF CARRY TO "Err-In"
0467 22 A8 08 LD (08A8),HL ;STORE COUNT IN FILE INFO OUTPUT
,046A 2A 98 08 LD HL,(0898) ;SHIFT FILE NUMBER TO
046D 22 A4 08 LD (08A4),HL ;TAPE FILE INFO OUTPUT BUFFER
0470 C3 FO 04 JP 04F0 ;JUMP TO SAVE OUTPUT ROUTINE

FINAL TAPE SET-UP BEFORE THE PERIMETER HANDLER. THIS PLACES FFFF IN THE OPTIONAL GO WINDOW
BEFORE ENTERING THE PERIMETER HANDLER.

0473 21 FF FF 	LD HL,FFFF 	;PUT FFFF IN OPTIONAL GO WINDOW
0476 22 9E 08 	LD (089E),HL

PERIMETER HANDLER
THE PERIMETER HANDLER ROUTINE IS SIMILAR TO THE MENU DRIVER. THE MAYOR DIFFERENCES ARE
LISTED BELOW:
THE PERIMETER HANDLER CREATES ITS OWN ADDRESS DISPLAY CODES BY CONVERTING THE CONTENTS
OF THE ACTIVE WINDOW TO DISPLAY CODE AND THEREFORE DOES NOT REQUIRE A TABLE OF ADDRESS
DISPLAY CODES.
ANOTHER DIFFERENCE IS THE ADDRESS OF THE ROUTINE TO BE EXECUTED ON A "GO" PRESS IS SUPPLIED
BY THE CALLING ROUTINE. THEREFORE THE PERIMETER HANDLER DOESN'T REQUIRE A JUMP TABLE AND
ASSOCIATED CALCULATER.
THE ONLY OTHER MAYOR DIFFERENCE IS THAT THE PERIMETER HANDLER HAS ITS OWN BUILT IN DATA
KEY HANDLER WHILE THE MENU DOES NOT.
THE FRONT SECTION BELOW CALCULATES THE ADDRESS OF THE ACTIVE WINDOW AND THE ADDRESS OF
THE DATA DISPLAY FROM THE DISPLAY TABLE.
THE MENU ENTRY NUMBER FROM THE MENU DRIVER HAS AN EQUIVALENT HERE. IT IS THE ACTIVE WINDOW
NUMBER AND IS USED IN IDENTICAL FASHION.

0479 3A 86 08 LD A,(0886) ;GET NUMBER OF ACTIVE WINDOW
047C 2A 84 08 LD HL,(0884 ;GET ADDRESS OF FIRST (FILE) WINDOW+1
047F ED 5B 82 08 LD DE,(0882 ;GET BASE OF DATA DISPLAY TABLE
0483 B7 OR A ;TEST ACTIVE WINDOW NUMBER FOR ZERO
0484 28 07 JR Z,048D ;SKIP CALCULATOR IF ZERO
0466 13 INC DE ;FINE CURRENT DATA DISPLAY
0487 13 INC DE ;AND WINDOW
0488 23 INC HL
0489 23 INC HL
048A 3D DEC A
048B 20 F9 JR N2,0486

THE ADDRESS+ or TEL ACTIVE 	IS CALCULLT LT:, IT IS E,TMED IN A DUE E ET: (Al
088C). EACH TIME A DATA REY IS PRESSED, HI IS LOADED FLOE THIS BUFFER AND THEREFORE POINTS
TO THE ACTIVE WINDOW. THE DATA CAN THEN BE SHIFTED INTO THE ACTIVE WINDOW TMEEDIATELY.
0480 22 8C 08 	LD (088C),HL ;STORE ACTIVE WINDOW ADDRESSil

BELOW THE DATA DISPLAY BYTES ARE PUT INTO THE DATA SECTION OF THE DISPLAY BUFFER VIA HL.

/6

0490 EB
0491 7E
0492 23
0493 66
0494 6F
0495 22 04 08

EX DE,HL
LD A, (HL)
INC HL
LD H, (HL)
LD L,A
LD (0804),HL

;PUT DATA DISPLAY ADDRESS IN HL
;GET RIGHT-HAND DISPLAY BYTE IN A
;AND LEFT-HAND IN H
;PUT RIGHT-HAND BYTE IN L
;HL HOLDS THE DATA DISPLAY BYTES
;STORE DATA DISPLAY IN BUFFER

BELOW THE 16 BIT CONTENTS OF THE ACTIVE WINDOW ARE CONVERTED TO DISPLAY CODE ARE PLACED
IN THE ADDRESS SECTION OF THE DISPLAY BUFFER.

0498 EB
0499 7E
049A 2B
049B 6E
049C 67
049D 01 00 08
D4A0 CD 30 08

EX DE,HL
LD A, (HL)
DEC HL
LD L, (HL)
LD H,A
LD BC,0800
CALL 0830

;GET ACTIVE WINDOW ADDRESS FROM DE
;AND TRANSFER ,
;THE 16 BIT CONTENTS OF THE ACTIVE
;WINDOW INTO HL
;READY TO COVERT TO DISPLAY CODE
;BC=DISPLAY BUFFER START
;CALL CONVERSION HL TO DISPLAY CODE

THE DISPLAY BUFFER IS NOW SET-UP AND THE SCAN/KEY LOOP IS CALLED. WHEN A KEY IS PRESSED,
A COMMON KEY HANDLER IS CALLED.
THE COMMON KEY HANDLER DOES ALL THE REQUIRED PROCESSING FOR THE "+", "- " AND "AD" KEYS.
IF EITHER THE "GO" AR A DATA KEY IS PRESSED, THEN THE HANDLER RETURNS WITH THE FLAGS SET
TO SIGNIFY THESE KEYS.
IF "GO" IS PRESSED THEN THE ZERO FLAG IS SET AND THE "GO" HANDLER BELOW IS EXECUTED IF
A DATA KEY IS PRESSED THEN THE ZERO FLAG IS CLEAR (NOT ZERO) AND CARRY FLAG IS CLEAR THE
DATA KEY HANDLER IS EXECUTED IF THESE CONDITIONS ARE MET.

04A3 CD 42 08
04A6 21 86 08
04A9 CD B2 04
04AC 20 16
04AE 2A 88 08
04B1 E9

CALL 0842
LD HL,0886
CALL 04B2
JR NZ,04C4
LD HL,(0888)
JP (HL)

;CALL SCAN/KEY/LCD/PATCH ROUTINE
;POINT HL TO ACTIVE WINDOW NUMBER
;CALL COMMON KEY HANDLER
;JUMP IF NOT GO KEY TO TEST FOR DATA
;OR CONTROL KEY: ELSE GET JUMP ADDRESS
;STORED BY SET-UP AND GO

COMMON KEY HANDLER
BECAUSE THE PERIMETER HANDLER AND THE MENU DRIVER ARE VERY SIMILAR, THEY ARE ABLE TO
SHARE A COMMON KEY HANDLER.
THE ACTION OF THE KEY HANDLER IS AS FOLLOWS:
IF THE "AD" REY IS PRESSED, THEN THE RETURN ADDRESS IS POPPED OFF THE STACK AND A RETURN
IS DONE TO THE CALLING ROUTINE (USUALLY JMON). IF THE "GO" KEY IS PRESSED, THEN THE ZERO
FLAG WILL BE SET AND A RETURN DONE. IT IS THEN UP TO THE CALLING ROUTINE TO SERVICE THE
"GO" KEY.
A DATA KEY WILL BE FLAGGED BY SETTING THE CARRY FLAG AND CLEARING THE ZERO FLAG. LIKE
THE "GO" KEY, THE CALLING ROUTINE MUST DECIDE WHAT IT IS TO DO WITH THE DATA KEY (THERE
IS A BUILT IN DATA KEY HANDLER FOR THE PERIMETER HANDLER).
IF EITHER THE "+" OR "-" KEYS ARE PRESSED THEN A SPECIAL ROUTINE IS CALLED. THIS ROUTINE
WILL ALTER THE CURRENT NUMBER OF THE ACTIVE WINDOW OR MENU ENTRY. THE RESULT IS THAT WHEN
THE DISPLAY IS UP-DATED, THE DISPLAYS WILL BE SHIFTED TO EITHER THE NEXT DISPLAY FOR "+"
OR TO THE PREVIOUS ONE FOR "- " AND WRAP-AROUND IF REQUIRED.

0422 FE 10 CP 10 ;IS THE KEY
0484 28 18 JR Z,04D1 ;JUMP IF SO TO "+" HANDLER
04B6 FE 11 CP 11 ;IS IT "-"
04B8 28 17 JR Z,04D1 ;JUMP IF SO TO "-" HANDLER
04BA FE 13 CP 13 ;IS IT "AD"
04BC 20 02 JR NZ,04C0 ;JUMP IF NOT TO TEST FOR "GO"
04BE El POP HL ;CLEAN UP STACK
04BF C9 RET ;RETURN TO JMON (OR CALLING ROUTINE)
04C0 FE 12 CP 12 ;IS IT "GO"
04C2 3F CCF ;CLEAR CARRY IF NOT IF GO C=1 Z=1
04C3 C9 RET ;IF DATA SET Z=0 C=0: RETURN

BELOW IS THE PERIMETER HANDLER DATA KEY HANDLER/DISCRIMINATOR
IF THE KEY WAS "+" OR "-" THEN IT HAS ALREADY BEEN HANDLED AND THIS CONDITION
BY THE CARRY BEING SET. IN THIS CASE, A JUMP IS DONE BACK TO THE MAIN BODY
THE DISPLAY OTHERWISE THE DATA KEY VALUE IS SHIFTED INTO THE ACTIVE WINDOW.

04C4 38 B3 	JR C,0479 	;JUMP IF KEY WAS "+" OR "-
04C6 2A 8C 08 	LD HL,(088C) ;POINT HL TO ACTIVE WINDOW+1

IS FLAGGED
TO UP-DATE

0404 2E 	 DEC EL 	;TO= TO LOW CI= EYIL
04C ED 6F 	RLD 	 ;SHIFT IN DATA KEY VALUE
04CC 23 	 INC HL 	;AND SHIFT OTHER NIBBLES
04CD ED 6F 	RLD 	 ;ACROSS
04CF 18 A8 	JR 0479 	;JUMP BACK TO UP-DATE DISPLAY

THIS ROUTINE IS CALLED FROM THE COMMON KEY HANDLER IF EITHER "+" OR "-" HAVE BEEN
PUSHED.
THIS ROUTINE WILL EITHER INCREMENT OR DECREMENT THE MEMORY LOCATION ADDRESSED BY HL FOR
THE "+" AND "-" KEY RESPECTIVELY. HL WAS LOADED BY THE CALLING ROUTINE TO POINT TO ITS
MAIN CONTROLLING BYTE. THIS IS EITHER THE CURRENT MENU ENTRY NUMBER (MENU DRIVER), OR
THE ACTIVE WINDOW NUMBER (PERIMETER HANDLER), BOTH OF WHICH HAVE BEEN DESCRIBED PREVIOUSLY.
AFTER INCREMENTING OR DECREMENTING (HL), THIS ROUTINE THEN CHECKS THAT THE VALUE IN (HL)
IS NOT GREATER THAT THE BYTE AT HL+1 (WHICH IS THE MAXIMUM NUMBER OF DISPLAYS LESS 1).
KEEP IN MIND, IF IT UNDERFLOWED FROM ZERO IT WILL BECOME FF AND BE HIGHER THAN (HL). THIS
SECOND BYTE (AT HL+1) IS THE NUMBER OF ALLOWABLE DISPLAYS-1 AND WAS PROVIDED BY THE ROM
TABLE FOR THE (TAPE) MENU DRIVER, AND PROVIDED BY THE PERIMETER HANDLER SET-UP ROUTINES
(REFER TO 042A AND 0442).
IF THE FIRST BYTE BECOMES HIGHER THAN THE SECOND, THEN THE ROUTINE CHECKS TO SEE WHICH
KEY WAS PRESSED. IF THE "+" KEY WAS, THEN (HL) IS CLEARED. THIS WILL CAUSE MENU OR
PERIMETER HANDLER TO SHOW ITS FIRST DISPLAY WHEN RE-ENTERED.
IF THE KEY WAS "-", THEN THE MAXIMUM NUMBER OF DISPLAYS-1 (WHICH IS THE SAME AS THE NUMBER
OF THE FINAL DISPLAY) IS TRANSFERRED INTO (HL) (THE NUMBER OF THE CURRENT DISPLAY). THIS
WILL CAUSE THE LAST DISPLAY TO BE SHOWN WHEN THE MENU DRIVER OR PERIMETER HANDLER IS
RE-ENTERED.
IF THERE IS NO UNDERFLOW OR OVERFLOW THEN THE ROUTINE RETURNS JUST AFTER IT HAS EITHER
INCREMENTED OR DECREMENTED THE CURRENT NUMBER OF THE MENU ENTRY NUMBER OR ACTIVE WINDOW
NUMBER.
WHEN THE MENU DRIVER OR PERIMETER HANDLER ARE RE-ENTERED, THEY WILL SHOW THE NEXT DISPLAY
FOR "+" OR THE PREVIOUS FOR "-" AND WRAP-AROUND AUTOMATICALLY IF REQUIRED.

04D1 4F 	 LD C,A 	;SAVE INPUT KEY VALUE IN C
04D2 23 	 INC HL 	;PUT MAX NUMBER OF DISPLAYS-1
04D3 46 	 LD B, (HL) 	;IN B
04D4 2B 	 DEC HL 	;RESET HL TO POINT TO CURRENT NUMBER
04D5 OF 	 RRCA 	 ;WAS KEY "+" OR "-"? BIT 0 WILL TELL
04D6 7E 	 LD A,(HL) 	;PUT CURRENT NUMBER IN A
04D7 38 02 	JR C,04DB 	;JUMP IF KEY WAS "-"
04D9 3C 	 INC A 	;INCREASE A BY 2
04DA 3C 	 INC A
04DB 3D 	 DEC A 	;DECREASE A BY ONE
04DC 04 	 INC B 	;ADD 1 TO MAX NUMBER-1: IS CURRENT
04DD B8 	 CP B 	 ;NUMBER EQUAL OR GREATER THAN MAX?
04DE 30 05 	JR NC,04E5 	;JUMP IF SO TO UNDER/OVERFLOW HANDLER
04E0 77 	 LD (HL),A 	;ELSE STORE UPDATED CURRENT NUMBER
04E1 AF 	 XOR A 	;SET ZERO FLAG
04E2 3D 	 DEC A 	;CHANGE ZERO FLAG TO 0
04E3 37 	 SCF 	 ;AND SET CARRY
04E4 C9 	 RET 	 ;DONE
04E5 CB 41 	BIT 0,C 	;TEST FOR "+" OR "-"
04E7 20 03 	JR NZ,04EC 	;JUMP IF "-" TO SET CURRENT NUMBER
04E9 AF 	 XOR A 	;TO LAST DISPLAY: ELSE SET FIRST
04EA 18 F4 	JR 04E0 	;DISPLAY: JUMP TO STORE NEW NUMBER
04EC 05 	 DEC B 	;CORRECT MAX NUMBER-1
04ED 78 	 LD A,B 	;SET A TO LAST DISPLAY NUMBER
04EE 18 FO 	JR 04E0 	;JUMP TO STORE LAST DISPLAY NUMBER

THIS IS THE TAPE OUTPUT ROUTINE
THE ACTION IS AS FOLLOWS:
A LEADER OF LOW FREQUENCY TONE IS OUTPUTTED FOLLOWED BY THE FILE INFORMATION BLOCK.
AFTER THE FILE INFORMATION BLOCK IS OUTPUTTED, SEVERAL SECONDS OF HIGH FREQUENCY MIDDLE
SYNC IS OUTPUTTED. THE TIME IT TAKES TO OUTPUT THE MIDDLE SYNC IS USED BY THE TAPE INPUT
ROUTINE TO DISPLAY THE FILE NUMBER.
THE DATA TO BE SAVED ON TAPE IS BROKEN UP INTO BLOCKS OF 256 BYTES AND OUTPUTTED WITH A
CHECKSUM AT THE END OF EACH BLOCK. A COUNTER IS SHOWN ON THE TEC LED DISPLAY THAT SHOWS
HOW MANY COMPLETE BLOCKS LEFT (UP TO 16 BLOCKS).
IF THERE IS AN ODD SIZE BI,OCK, IT IS OUTPUTTED AS THE LAST BLOCK.
AFTER ALL THE BLOCKS HAVE BEEN OUTPUTTED, AN END OF FILE HIGH FREQUENCY TONE IS OUTPUTTED.

04F0 21 00 30 	LD HL,3000
04F3 CD 80 06 	CALL 0680
04F6 21 A4 08 	LD HL,08A4
04F9 06 OC 	LD B4 OC
04FB AF 	 XOR A
04FC CD 4B 06 	CALL 064B
04FF 21 00 50 	LD HL,5000

;HL HAS NUMBER OF LEADER CYCLES
;CALL LOW TONE
;HI IS START OF FILE INFORMATION BLOCK
;LOAD B WITH NUMBER OF BYTES TO BE
;OUTPUTTED: ZERO A FOR CHECKSUM
;CALL OUT BLOCK
;LD HL WITH MID SYNC CYCLE COUNT

C502 CDe. OC
	

CALL 0CE,4 	;CALL EIGH TONE
0505 2A A6 OE 	LD KL,(08A6) ;LOAD HL WITH START OF OUTPUT BLOC?'

OUTPUT LOOP STARTS HERE
THE DISCUSSION BELOW ON THE BYTE COUNTER AND BLOCK FORMATION APPLIES TO THE TAPE INPUT
LOOP ALSO. THE TAPE INPUT LOOP DESCRIPTION WILL REFER YOU BACK TO THESE NOTES.
THE BYTE COUNT IS PUT INTO BC AND THEN A ROUTINE TO CONVERT B (THE TOTAL NUMBER OF FULL
BLOCKS TO BE OUTPUTTED) TO DISPLAY FORMAT AND OUTPUT IT IS CALLED.
THE CONVERSION ROUTINE ALSO TESTS B FOR ZERO. IF B IS NOT ZERO, THE ROUTINE RETURNS WITH
THE ZERO FLAG CLEAR (NOT ZERO) AND THE HIGH ORDER BYTE OF THE BYTE COUNT IN B IS DECREMENTED
BY ONE AND STORED IN ITS BUFFER. THIS COUNTS DOWN THE BLOCKS. B IS THEN ZEROED SO THAT
A FULL BLOCK (256 BYTES) WILL BE OUTPUTTED ON RETURNING.
IF THE HIGH ORDER BYTE OF THE BYTE COUNT (IN B) IS ZERO (NO FULL BLOCK OF 256 BYTES) THEN
C (THE LOW ORDER BYTE OF THE COUNT) IS TRANSFERRED INTO B AND THE ZERO FLAG IS SET.
THE CONVERSION THEN RETURNS WITH THE NUMBER (IF ANY) OF REMAINING BYTES IN B.
AFTER THE CONVERSION ROUTINE HAS RETURNED, A JUMP IS DONE IF THE ZERO FLAG IS CLEAR
(DENOTING A NOT ZERO STATE). THIS JUMP SKIPS AHEAD TO SAVE THE FLAGS AND OUTPUT ONE FULL
BLOCK.
IF THE ZERO FLAG IS SET, THEN THE ROUTINE BELOW CHECKS TO SEE IF THE LOW ORDER BYTE (FROM
C) THAT HAS BEEN PLACED IN B, IS ZERO. IF THE LOW ORDER BYTE IS ZERO, THEN ALL THE BYTES
HAVE BEEN OUTPUTTED. THE ROUTINE THEN JUMPS TO DISPLAY "—END—S".
IF THE LOW ORDER BYTE OF THE COUNT IS NOT ZERO THEN THE ZERO FLAG IS SET AND SAVED ON
THE STACK BEFORE WHAT ARE NOW KNOWN TO BE THE LAST IS OUTPUTTED.
BEFORE THE DATA IS SENT TO THE TAPE, A SHORT HIGH TONE SYNC IS OUTPUTTED TO COVER THE
SOFTWARE OVERHEAD OF THE TAPE INPUT ROUTINE, AND A IS ZEROED TO BE USED AS THE CHECK—SUM.

0508 ED 4B A8 08
050C CD C9 05
050F 20 05
0511 78
0512 B7
0513 28 11

LD BC,(08A8)
CALL 05C9
JR NZ,0516
LD A,B
OR A
JR Z,0526

;LOAD BC WITH NUMBER OF BYTES
;CALL ROUTINE TO DISPLAY BLOCK COUNT
;AND TEST LENGTH: JUMP IF FULL BLOCK
;TO OUTPUT: TEST LOW BYTE OF COUNT
;IN B IS ZERO AND JUMP TO DISPLAY
;"—END—S" IF SO

THE XOR A INSTRUCTION BELOW SETS THE ZERO FLAG TO SIGNIFY THAT THE BLOCK ABOUT TO BE
OUTPUTTED IS THE FINAL BLOCK. THE ROUTINE WILL THEN DISPLAY "—END—S" (AFTER A SHORT END
SYNC TONE).

0515 AF
	

XOR A
	

;SET ZERO FLAG
,0516 F5
	

PUSH AF 	;AND SAVE ON STACK

AT THIS POINT IF THE ZERO FLAG ON THE STACK IS CLEAR (NOT ZERO STATE), THEN AFTER THE
CURRENT BLOCK IS OUTPUTTED, THE ROUTINE WILL LOOP BACK TO START OF THE OUTPUT LOOP TO
SEE IF THERE IS ANY MORE BYTES TO BE OUTPUTTED.

0517 D9 EXX ;SWAP REGISTERS
0518 21 14 02 LD HL,0214 ;LOAD HL FOR SHORT BURST OF
051B CD 84 06 CALL 0684 ;HIGH TONE
051E D9 EXX ;SWAP BACK REGISTERS
051F AF XOR A ;ZERO A FOR CHECKSUM
0520 CD 4B 06 CALL 064B ;CALL OUTBLOCK
0523 Fl POP AF ;RECOVER FLAGS AND JUMP IF
0524 20 E2 JR NZ,0508 ;THERE MIGHT BE MORE TO OUTPUT

ALL BLOCKS HAVE BEEN OUTPUTTED SO FINISH WITH A SHORT END TONE AND SET—UP END DISPLAY
"—END—S".

0526 21 00 10 	LD HL,1000 	;LOAD HL WITH SHORT END TONE
0529 CD 84 06 	CALL 0684 	;CALL HIGH TONE
052C 3E 05 	LD A,05 	;LD A TO INDEX "END—S DISPLAY
052E C3 E6 03 	JP 03E6 	;JUMP BACK TO MENU

THIS IS THE START OF THE TAPE INPUT SECTION.
THE ACTION HERE IS TO DETECT A VALID LEADER BY COUNTING 1000H CYCLES OF LOW FREQUENCY
TONE. AFTER THIS HAS BEEN DETECTED, THE ROUTINE WAITS UNTIL IT DETECTS THE START BIT OF
THE FILE INFORMATION BLOCK. THE BLOCK IS THEN LOADED IN AND A CHECK—SUM COMPARE IS DONE.
IF AN ERROR IS DETECTED, THE ROUTINE JUMPS TO DISPLAY "FAIL —XX", OTHERWLSE THE FILE
NUMBER IS CONVERTED TO DISPLAY FORMAT AND DISPLAYED FOR A FEW SECONDS.

0531 01 00 10 	LD BC,1000
0534 CD 30 06 	CALL 0630
0537 38 F8 	JR C,0531
0539 OB 	 DEC BC
053A 78 	 LD A,B
053B B1 	 OR C
053C 20 F6 	JR NZ,0534
053E 06 00 	LD B4 OC

;LOAD BC TO COUNT 1000 CYCLES
;CALL PERIOD
;LOOP UNTIL LOW TONE IS DETECTED
;COUNT LONG
;PERIODS
;IF BC REACHES ZERO THEN IT IS
;ACCEPTED THAT A VALID FILE FOLLOWS
;LOAD B TO INPUT 12 BYTES AND

0540
0543
0546
0548
054B
054D
0550

21 A4
CD 30
30 FB
CD E7
20 54
01 00
2A A4

08
06

05

08
08

LD HL,08A4
CALL 0630
JR NC,0543
CALL 05E7
JR NZ,05A1
LD BC,0800
LD Ht,(08AA)

;POINT HL TO FILE INFO BLOCK INPUT
;BUFFER: CALL PERIOD
;AND WAIT FOR LOW TONE TO END
;CALL INBLOCK TO GET FILE INFO BLOCK
;JUMP NOT ZERO TO FAIL LOAD ROUTINE
;LOAD BC TO POINT TO DISPLAY BUFFER
;PUT FILE NUMBER INTO HL

0553 CD 30 08 CALL 0830 ;CONVERT HL TO DISPLAY CODE
0556 3E 47 LD A,47 ;PUT "F" IN DISPLAY BUFFER
0558 32 05 08 LD 	(0805),A ;FOR "FILE"
055B 01 F2 01 LD BC,01F2 ;LD BC WITH THE DISPLAY ON TIME
055E C5 PUSH BC ;SAVE ON STACK
055F CD 36 08 CALL 0836 ;CALL SCAN
0562 Cl POP BC ;RECOVER BC
0563 OB DEC BC ;DECREMENT
0564 78 LD A,B ;AND LOOP UNTIL
0565 B1 OR C ;BC IS ZERO
0566 20 F6 JR NZ,055E

AFTER A FILE INFORMATION BLOCK IS LOADED AND THE FILE NUMBER DISPLAYED, A TEST IS DONE
ON THE REQUIRED FILE NUMBER WINDOW. FIRST IT IS TESTED FOR FFFF (LOAD/TEST NEXT FOUND
FILE). IF FFFF, THE ROUTINE SKIPS AHEAD TO LOAD/TEST THE FILE. OTHERWISE THE REQUIRED
FILE NUMBER IS SUBTRACTED FROM THE JUST LOADED FILE NUMBER, IF THE RESULT IS ZERO THEN
THE FILE IS THE ONE SELECTED AND IS LOADED/TESTED.
THE OPTIONAL START WINDOW IS THEN TESTED FOR FFFF. IF IT IS, THE START ADDRESS FROM THE
TAPE IS USED. IF THE OPTIONAL START BUFFER HAS SOMETHING OTHER THAT FFFF, THEN THE ADDRESS
HERE IS USED AS THE START ADDRESS TO LOAD/TEST THE TAPE.

0568
056B

2A
23

98 08 LD HL,(0898)
INC HL

;TEST FOR FFFF IN FILE NAME WINDOW

056C 7C LD A,H
056D B5 OR L
056E 2B DEC HL ;JUMP IF FILE WINDOW IS FFFF
056F 28 09 JR 2,057A ;TO INPUT FILE REGARDLESS OF ITS NUMBER
0571 ED 5B A4 08 LD DE,(08A4) ;ELSE TEST THAT INPUT FILE NAME
0575 B7 OR A ;IS THE SAME AS THE ONE IN THE FILE
0576 ED 52 SBC HL,DE ;NUMBER WINDOW AND JUMP IF NOT
0578 20 B7 JR NZ,0531 ;SELECTED FILE TO LOOK FOR NEXT FILE
057A 2A 9A 08 LD HL,(089A) ;TEST THAT OPTIONAL START ADDRESS
057D 23 INC HL ;IS FFFF
057E 7C LD A,H
057F B5 OR L
0580 2B DEC HL
0581 20 03 JR NZ,0586 ;JUMP IF NOT, ELSE USE START ADDRESS
0583 2A A6 08 LD HL,(08A6) ;PROVIDED FROM THE TAPE

THE MAIN LOAD/TEST ROUTINE STARTS HERE.
REFER TO THE DESCRIPTION OF THE BYTE COUNT AND BLOCK FORMATION AT THE OUTPUT SECTION
ROUTINE (SEE 508).
WHEN ALL THE BLOCKS HAVE BEEN INPUTTED AND THE ROUTINE JUMPS TO DISPLAY PASS/FAIL -Ld ON
THE LED DISPLAY.
HL IS POINTING TO THE PLACE IN MEMORY WHERE THE FILE WILL BE LOADED/TESTED.

0586 ED 4B A8 08 	LD BC,(08A8) 	;PUT NUMBER OF BYTES INTO BC
058A CD C9 05 	CALL 05C9 	;CALL B CONVERT AND TEST
058D 20 05 JR NZ,0594 ;JUMP IF NOT ZERO AS THERE IS AT
058F 78 LD A,B ;LEAST ONE FULL BLOCK TO LOAD/TEST
0590 B7 OR A ;CHECK THAT B (FORMALLY C)=0
0591 28 OA JR Z,059D ;JUMP IF SO AS ALL BYTES DONE
0593 AF XOR A ;ELSE SET ZERO FLAG TO REMEMBER
0594 F5 PUSH AF ;SAVE FLAGS ON STACK
0595 CD E3 05 CALL 05E3 ;CALL INBLOCK
0598 20 06 JR NZ,05A0 ;JUMP IF LOAD/TEST FAILED
059A Fl POP AF ;RECOVER FLAGS
059B 20 E9 JR NZ,0586 ;LOOP IF THERE MIGHT BE MORE
059D AF XOR A ;SET ZERO (SUCCESS) FLAG
059E 18 01 JR 05A1 ;JUMP TO END HANDLER
05A0 D1 POP DE ;CLEAN UP STACK
05A1 20 11 JR NZ,05B4 ;JUMP IF FAILED LOAD/TEST

THE LOAD/TEST HAS PASSED. TEST HERE FOR OPTIONAL AUTO-GO AND FOR LOAD OPERATION (NO
AUTO-GO FOR TEST OPERATIONS). START EXECUTION AT AUTO-GO ADDRESS IF REQUIRED.

05A3 2A AA 08
	

LD HL,(08AA) ;PUT OPTIONAL GO ADDRESS IN EL
05A6 23
	

INC HL 	;TEST FOR FFFF
05A7 7C
	

LD A,H 	;AND JUMP

05AE E5
05A9 2B
05AA 28
05AC 3A
05AF B7
05B0 20
05B2 E9
05B3 AF

OR L
DEC HL

07 	JR Z,0583
BA 08 	LD A,(088A)

OR A
01 	JR NZ,05B3

JP (4L)
XOR A

;IF FFFF
;AS THERE
;IS NO AUTO-GO
;TEST THAT A LOAD OPERATION WAS
;DONE
;SKIP JUMP IF IT WAS A TEST
;ELSE AUTO START THE PROGRAM
;SET ZERO FLAG AS TEST PASSED

Zo

THE POST LOAD/TEST MENU DISPLAYS ARE SET UP HERE. IF THE LOAD/TEST FAILED THE ZERO FLAG
IS CLEAR THE ROUTINE WILL POINT TO THE "FAIL" DISPLAY. OTHERWISE IT IS SET TO POINT TO
THE "PASS" DISPLAY. THE DATA DISPLAY IS CALCULATED BY ADDING THE MENU ENTRY NUMBER OF
THE JUST PERFORMED OPERATION X2, TO THE TABLE BASE OF POST LOAD/TEST DATA DISPLAYS.
(THE MENU ENTRY NUMBER IS STILL THE SAME AS IT WAS WHEN "GO" WAS PRESS FROM THE MENU).

11 68 07 LD DE,0768 ;LOAD DE TO BASE OF DATA DISPLAY
21 5C 07 LD HL,075C ;TABLE AND HL "FAIL" DISPLAY
20 02 JR NZ,05BD ;TABLE:
2E 58 LD L,58 ;ADJUST HL TO PASS IF ZERO
3A 8F 08 LD A,(088F) ;FIND WHAT OPERATION WAS PERFORMED
07 RLCA ;AND DOUBLE VALUE AND ADD TO HL TO
83 ADD A,E ;POINT DE AT POST TAPE OPERATION
5F LD E,A ;DATA DISPLAY ENTRY (SEE 0768-0771)
00 NOP ;(FROM FIXED ERROR)
AF XOR A ;ZERO A
C3 47 00 JP 0047 ;JUMP TO SOFT MENU ENTRY

THIS IS THE CONVERT/TEST B ROUTINE.
THE VALUE IN B IS CONVERTED AND OUTPUTTED TO PORT 2.
THEN B IS TESTED AND ONE OF THE FOLLOWING OPERATIONS IS PERFORMED. IF B=0 THEN C IS
TRANSFERRED INTO B AND THE ZERO FLAG IS SET. IF B IS NOT 0 THEN B IS DECREMENTED, THE
COUNT IS UP-DATED IN ITS BUFFER AND THE ZERO FLAG AND B IS CLEARED.

05B4
05B7
05BA
05BC
05BE
05C1
05C2
05C3
05C4
05C5
05C6

05C9 78
05CA E6 OF
05CC 11 DO 07
05CF 83
05D0 5F
05D1 1A
05D2 D3 02
05D4 78
05D5 B7
05D6 28 09
05D8 05
05D9 ED 43 A8 08
05DD 06 00
05DF B7
05E0 C9
05E1 41
05E2 C9

LD A,B
AND OF
LD DE,07D0
ADD A,E
LD E,A
1,1) A, (DE)
OUT 02,A
LD A,B
OR A
JR Z,05E1
DEC B
LD (08A8),BC
LD B4 O0
OR A
RET
LD B,C
RET

;PUT HIGH BYTE OF COUNT IN A
;MASK TO ONE DIGIT
;POINT DE TO DISPLAY CODE TABLE
;ADD A

;GET DISPLAY VALUE
;OUTPUT IT TO DISPLAY
;TEST HIGH BYTE
;FOR ZERO
;JUMP IF ZERO
;ELSE DECREASE COUNT BY ONE BLOCK
;STORE COUNT
;LOAD B FOR 256 BYTE OUTPUT BLOCK
;CLEAR ZERO FLAG
;DONE
;PUT LAST BLOCK SIZE IN B
;DONE

THIS BLOCK LOADS/TESTS THE BYTES IN FROM THE TAPE. THE NUMBER OF BYTES IS HELD IN B ON
INPUT. AFTER THE SUB-ROUTINE THAT INPUTS A BYTE IS CALLED, A TEST AND JUMP IS DONE. THE
TEST AND JUMP SELECT THE REQUIRED CODE TO PERFORM A LOAD OR TEST AS SELECTED FROM THE
MENU BY THE USER. THE CHECK-SUM LOADED FROM THE TAPE HAS HAD ONE ADDED TO IT BY THE TAPE
OUTPUT ROUTINE. THIS ADDED ONE IS REMOVED IN THIS ROUTINE BEFORE THE CHECK-SUM COMPARE
IS DONE.

05E3 3A 8A 08
05E6 4F
05E7 AF
05E8 F5
05E9 CD OB 06
05EC CB 49
05EE 20 OE
05E0 73
05F1 23
05F2 Fl
05F3 83
05F4 10 F2
05F6 F5
05F7 CD OB 06
O5FA Fl
05FB 1D
05FC BB
05FD C9

LD A,(088A)
LD C,A
XOR A
PUSH AF
CALL 060B
BIT 1,C
JR NZ,05FE
LD (HL),E
INC HL
POP AF
ADD A,E
DJNZ,05E8
PUSH AF
CALL 060B
POP AF
DEC E
CP E
RET

;GET CURRENT OPERATION
;SAVE IN C
;CLEAR A FOR CHECKSUM
;SAVE CHECKSUM
;CALL GET BYTE
;TEST FOR CURRENT OPERATION
;JUMP IF A EITHER TEST
;ELSE STORE INPUTTED BYTE IN MEMORY
;POINT TO NEXT LOCATION
;GET CHECKSUM
;ADD TO NEW BYTE
;DO UNTIL BLOCK DONE
;SAVE CHECKSUM
;GET TAPE CHECKSUM
;GET MEMORY CHECKSUM
;CORRECT TAPE CHECKSUM
;TEST CHECKSUMS TO SET FLAGS
;BLOCK DONE

OFTE CL 4] PIT 0,C ;TEST FOP. WHICH TE S7
0600 28 FO JR Z,05F2 ;JUMP IF CHECKSUM ONLY TEST
0602 Fl POP AF ;GET CHECKSUM
0603 57 LD D,A ;SAVE IN D
0604 7B LD A,E ;GET INPUT BYTE
0605 BE CP (HL) ;TEST TO MEMORY
0606 23 INC HL ;POINT TO NEXT LOCATION
0607 7A LD A.AD ;PUT CHECKSUM BACK IN A
0608 28 E9 JR Z,05F3 ;JUMP TO MAIN LOOP IF ALL OK
060A C9 RET ;RETURN IF ERROR

THIS ROUTINE INPUTS A SINGLE BYTE.

060B CD 18 06 	CALL 0618
060E 16 08 	LD D,08
0610 CD 18 06 	CALL 0618
0613 CB 1B 	RR E
0615 15 	 DEC D
0616 20 F8 	JR NZ,0610

;GET START BIT
;LOAD D FOR 8 BITS
;GET BIT
;PUT IT IN E

;DO FOR EIGHT BITS,

THIS ROUTINE INPUTS A SINGLE BIT
THE STRUCTURE OF EACH BIT IS IMPORTANT TO UNDERSTAND AT THIS POINT. A LOGIC 0 IS REPRESENTED
BY 4 SHORT PERIODS FOLLOWED BY 1 LONG PERIOD AND A LOGIC 1 BY 2 SHORT PERIODS AND 2 LONG
PERIODS. THESE ARE HIGH SPEED FIGURES. FOR LOW SPEED THE ABOVE COUNTS ARE DOUBLED.
THE BITS ARE DECODED BY COUNTING THE RATIO OF SHORT PERIODS TO LONG PERIODS. A COMPLICATED
METHOD OF COUNTING IS USED TO RESULT IN THE BIT VALUE BEING REFLECTED IN BIT 7 OF L. THE
ROUTINE IS TERMINATED WHEN A SHORT PERIOD THAT FOLLOWED A LONG PERIOD IS DETECTED. THE
LONG PERIOD IS FLAGGED WITH BIT 0 OF H. THE "SHORT AFTER LONG" PERIOD USED FOR TERMINATION
IS ACTUALLY THE FIRST CELL OF THE NEXT BIT.
THE VALUE OF THE BIT INPUTTED IS THEN PUT INTO THE CARRY FLAG.

0618 D9 EXX ;SWAP REGISTERS
0619 21 00 00 LD HL,0000 ;ZERO HL
061C CD 30 06 CALL 0630 ;CALL TO MEASURE PERIOD
061F 38 06 JR C,0627 ;JUMP IF SHORT PERIOD
0621 2D DEC L ;SET HIGH ORDER BIT OF L TO ONES
0622 2D DEC L ;
0623 CB C4 SET 0,H ;REMEMBER THAT THE LONG PERIOD
0625 18 F5 JR 061C ;HAS BEEN DETECTED: LOOP BACK
0627 2C INC L ;SHORT PERIOD SO ADD ONE TO L
0628 CB 44 BIT 0,H ;TEST FOR SHORT AFTER LONG PERIOD
062A 28 FO JR Z,061C ;JUMP IF NOT
062C CB 15 RL L ;END OF BIT: PUT BIT 7,L INTO
062E D9 EXX ;CARRY: SWAP REGISTERS
062F C9 RET ;INPUT BIT IN CARRY

THIS ROUTINE INPUTS AND MEASURES THE PERIOD OF EACH TAPE CELL AND COMPARES IT TO THE
THRESHOLD BETWEEN A SHORT AND LONG PERIOD. THE 	CELL IS ALSO ECHOED ON THE TEC SPEAKER.

0630 11 00 00 	LD DE,0000 	;ZERO DE FOR PERIOD MEASUREMENT
0633 DB 03 	IN A,03 	;TEST TAPE LEVEL
0635 13 	 INC DE 	;TIME PERIOD
0636 17 	 RLA 	 ;PUT TAPE LEVEL INTO CARRY
0637 30 FA 	JR NC,0633 	;LOOP UNTIL IT GOES RIGA
0639 AF 	 XOR A 	;ECHO IT ON
063A D3 01 	OUT (01),A 	;THE TEC SPEAKER
063C DB 03 IN A,03 ;MEASURE SECOND HALF OF CYCLE
063E 13 INC DE ;IN THE SAME FASHION AS ABOVE
063F 17 RLA
0640 38 FA JR C,063C ;THIS TIME LOOP UNTIL TAPE LEVEL
0642 3E 84 LD A,84 ;GOES LOW: ECHO IT ON TEC SPEAKER
0644 D3 01 OUT (01),A
0646 7B LD A,E ;GET PERIOD MEASUREMENT
0647 FE 1A CP 1A ;COMPARE IT TO THRESHOLD
0649 C9 RET ;TO SET FLAGS: DONE

THIS ROUTINE OUTPUTS A BLOCK TO THE TAPE. THE NUMBER OF BYTES IS HELD IN B AND THE BLOCK
IS ADDRESS BY HL. AFTER ALL THE BYTES HAVE BEEN OUTPUTTED, THE CHECKSUM +1, WHICH WAS
ADDED UP AS EACH BYTE WAS OUTPUTTED, IS SENT TO THE TAPE.

064A 08
0648 5E
064C 83
064D 08
064E CD 57 06
0651 23

EX AF,AF'
LD E, (HL)
ADD A,E
EX AF,AF'
CALL 0657
INC HL

;GET CHECKSUM IN A
;PUT BYTE TO BE OUTPUTTED IN E
;ADD FOR CHECKSUM
;SAVE IN ALTERNATE AF
;CALL OUT BYTE
;POINT TO NEXT BYTE

2

0C1,2 10 Ft:
	

DJ1:2,0C47i 	;L FOR ALL LYTE Ii
0654 0&
	

EX AF,AF' 	;GET CHECKSUM
0655 3C
	

INC A 	;INCREASE IT BY. ONE
0656 5F
	

LD E,A 	;PUT IT IN E

THIS ROUTINE
DATA BITS AND

OUTPUTS A SINGLE BYTE IN E TO THE TAPE. THE FORMAT IS 1 START BIT, EIGHT
1 STOP BIT.

0657 16 08 LD D,08 ;SET D FOR 8 BITS
0659 B7 OR A ;CLEAR CARRY AND CALL OUTBIT
065A CD 66 06 CALL 0666 ;TO OUTPUT BINARY ZERO FOR START BIT
065D CB 1B RR E ;PUT FIRST BIT IN CARRY
065F CD 66 06 CALL 0666 ;CALL OUT BIT
0662 15 DEC D
0663 20 F8 JR NZ,065D ;DO FOR 8 BITS
0665 37 SCF ;SET CARRY TO OUTPUT STOP BIT (1)

THIS ROUTINE OUTPUTS A SINGLE BIT. IF THE CARRY IS SET, THEN A LOGIC 1 IS OUTPUTTED
OTHERWISE A LOGIC O.
A 1 IS REPRESENTED BY 2 SHORT AND 2 LONG PERIODS.
A 0 IS REPRESENTED BY 4 SHORT PERIODS AND 1 LONG PERIOD.
L IS LOADED WITH DOUBLE THE LOW SPEED CYCLE COUNT AS IT IS USED TO COUNT THE HALF CYCLES
IN THE TONE ROUTINE. IF THE HIGH SPEED SAVE IS SELECTED, THEN THE CYCLE COUNT WILL BE
HALVED IN THE TONE ROUTINE.

0666 D9 EXX ;SWAP REGISTERS
0667 26 00 LD H,00 ;ZERO H
0669 38 09 JR C,0674 ;JUMP IF BINARY 1 IS TO BE OUTPUTTED
066B 2E 10 LD L,10 ;LOAD L WITH HIGH TONE CYCLE COUNT
066D CD 84 06 CALL 0684 ;CALL HIGH TONE
0670 2E 04 LD L,04 ;LOAD L WITH LOW TONE CYCLE COUNT
0672 18 07 JR 067B ;JUMP TO LOW TONE
0674 2E 08 LD L,08 ;LOAD L FOR HIGH TONE CYCLE COUNT
0676 CD 84 06 CALL 0684 ;FOR BINARY ONE: CALL HIGH TONE
0679 2E 08 LD L,08 ;LOAD L FOR LOW TONE CYCLE COUNT
067B CD 80 06 CALL 0680 ;CALL LOW TONE
067E D9 EXX ;SWAP BACK REGISTERS
067F C9 RET ;DONE

SET-UP FOR LOW TONE (LONG PERIOD)

0680 OE 29 	LD C,29 	;LOAD C FOR LOW TONE
0682 18 02 	JR 0686 	;JUMP TO TONE ROUTINE

SET-UP FOR HIGH TONE (SHORT PERIOD)

0684 OE 11 	LD C,11 	;LOAD C FOR HIGH TONE

TONE ROUTINE
TESTS FOR LOW SPEED SAVE. IF SO THEN IT HALVES THE CYCLE COUNT IN L.

0686 3A 8F 08 LD A,(088F) ;FIND WHICH SPEED
0689 B7 OR A ;ZERO = HIGH SPEED
068A 20 02 JR NZ,068E ;JUMP IF LOW SPEED
068C CB 3D SRL L ;ELSE HALVE CYCLE COUNT
068E 11 01 00 LD DE,0001 ;
0691 3E 84 LD A,84 ;TURN ON SPEAKER AND MIDDLE DISPLAY
0693 D3 01 OUT 	(01),A
0695 41 LD B,C
0696 10 FE DONZ,0696 ;PERIOD DELAY
0698 BE 80 XOR 80 ;TOGGLE SPEAKER BIT
069A ED 52 SEC HL,DE ;DECREASE CYCLE COUNT
069C 20 F5 JR NZ,0693 ;JUMP IF NOT ALL CYCLES DONE
069E C9 RET ;ELSE RETURN

THIS ROUTINE SETS UP THE "ERR-IN DISPLAY ON THE PERIMETER HANDLER.

069F 21 52 07 LD HL,0752 ;POINT HL TO "Err-In" DISPLAY
06A2 11 00 08 LD DE,0800 ;CODE AND DE TO RAM DEstination
06A5 01 06 00 LD BC,0006 ;BC(ount)
06A8 ED BO LDIR ;MOVE BLOCK
06AA C3 50 00 JP 0050 ;JUMP TO SOFT PERIMETER ENTRY

----END OF TAPE ROUTINES----

THIS ROUTINE IS THE KEYBOARD READER/VALIDATER
THE ACTION IS AS FOLLOWS:
A SHORT LOOP LOOKS FOR A KEY PRESS. IF NO KEY IS PRESSED, THEN THE KEY PRESS BUFFER (0825)
IS CLEARED THE ZERO AND THE CARRY FLAG CLEARED AND THE ROUTINE RETURNS.
IF A KEY IS FOUND, THEN THE REMAINING LOOP COUNTS ARE WORKED OFF IN A DUMMY LOOP TO ENSURE
EQUAL TIME IN EXECUTING THE ROUTINE.
IF IT IS THE FIRST TIME.THAT THE KEY HAS BEEN DETECTED, THEN THE KEY PRESS FLAG WILL BE
CLEAR.(IT WAS CLEARED BY THE MONITOR VARIABLES ON RESET). THE ROUTINE TESTS FOR THIS
CONDITION AND IF TRUE THEN THE KEY IS ACCEPTED AS "VALID" AND FLAGGED BY A SET CARRY AND
SET ZERO FLAG AND THE KEY PRESS FLAG IS SET TO INDICATE THE A KEY HAS BEEN DETECTED. THE
INPUT IS THEN PLACED IN BOTH THE "I" REGISTER AND THE ACCUMULATOR. IF A KEY IS DETECTED
BUT FOUND NOT TO BE VALID, 	I.E. IT HAS ALREADY BEEN DETECTED AND PROCESSED, THEN THE
CARRY WILL BE SET BUT THE ZERO CLEARED. THIS ALLOWS THE AUTO KEY REPEAT SECTION TO KNOW
THAT A KEY IS STILL BEING HELD DOWN. THE AUTO KEY REPEAT SECTION MAKE UP ITS OWN MIND
WHETHER IT IS VALID OR NOT.

06AD DB 03 IN A,(03) ;TEST FOR KEY PRESSED
06AF CB 77 BIT 6,A
06B1 28 08 JR Z,06BB ;JUMP IF KEY PRESSED
06B3 10 F8 DONZ,06AD ;LOOP LOOKING FOR KEY UNTIL B=0
06B5 AF XQR A ;CLEAR KEY PRESS FLAG
06B6 32 25 08 LD 	(0825),A
06B9 3D DEC A ;SET A TO FF AND CLEAR ZERO FLAG
06BA C9 RET ;DONE
06BB 3A 25 08 LD A,(0825) ;GET KEY PRESS FLAG
06BE B7 OR A ;TEST FOR ZERO
06BF 20 00 JR NZ,06C1 ;DUMMY JUMP TO EQUALIZE TIME
06C1 10 F8 DJNZ,06BB ;FINISH LOOP
06C3 37 SCF ;SET CARRY
06C4 20 F4 JR NZ,06BA ;DUMMY JUMP TO RETURN
06C6 3D DEC A ;SET KEY PRESS FLAG TO FF
06C7 32 25 08 LD 	(0825),A
06CA DB 00 IN A,(00) ;GET INPUT KEY FROM ENCODER CHIP
06CC E6 1F AND 1F ;MASK OFF UNUSED BITS
06CE CB 7F BIT 7,A ;SET ZERO FLAG (THINK ABOUT IT!)
06D0 37 SCF ;SET CARRY
06D1 32 20 08 LD 	(0820),A ;STORE INPUT KEY
06D4 C9 RET ;DONE

THIS ROUTINE IS CALLED ONCE ON EVERY HARD RESET. IT INITIALIZES THE LCD THEN TESTS THAT
IT IS THERE (IT CANNOT DO IT THE OTHER WAY AROUND AS THE LCD NEEDS TO BE INITIALIZED
BEFORE IT WILL RESPOND INTELLIGENTLY). IF THE LCD IS FITTED THEN THE ROUTINE WILL READ
IN AN ASCII SPACE CHARACTER (20H) OR IF THE LCD IS NOT, JUNK FROM THE DATA BUSS.
20H IS SUBTRACTED FROM WHATEVER IS READ IN AND THE RESULT IS STORED IN THE LCD ENABLE
BUFFER. IF THE RESULT IS ZERO THEN THE LCD IS ENABLED. IT IS VITAL TO KNOW IF THE LCD IS
FITTED, OTHERWISE THE ROUTINE WHICH READS THE BUSY FLAG MAY LOOP FOREVER.

06D5 21 B5 07 	LD HL,07B5 	;POINT HL TO LCD INITIALIZE TABLE
06D8 01 04 04 	LD BC,0404 	;B=4 BYTES, C=PORT 4
06DB 11 00 05 	LD DE,0500 	;DELAY BETWEEN
06DE 1B 	 DEC DE 	;EACH BYTE
06DF 7A 	 LD A,D 	;AS PER
06E0 B3 	 OR E 	 ;LCD MANUFACTER'S
06E1 20 FB JR NZ,06DE ;INSTRUCTIONS
06E3 ED A3 OUTI ;OUTPUT (HL) TO (C) 	HL=HL=1,B=B-1
06E5 20 F4 JR NZ,06DB ;JUMP IF B NOT 0
06E7 10 FE DJNZ,06E7 ;SHORT DELAY
06E9 DB 84 IN A,(84) ;INPUT FROM LCD TO SEE IF IT'S THERE
06EB D6 20 SUB 20 ;SUBTRACT ASCII SPACE, IF LCD FITTED
06ED 32 21 08 LD 	(0821),A ;RESULT WILL BE ZERO: STORE THIS IN
06F0 C9 RET ;LCD MASK: DONE
06F1 FF RST 38
06F2 FF RST 38
06F3 FF RST 38
06F4 FF RST 38
06F5 FF RST 38
06F6 FF RST 38
06F7 FF RST 38
06F8 FF RST 38
06F9 FF RST 38
06FA FF RST 38
06FB FF RST 38
06FC FF RST 38
06FD FF RST 38
06FE FF RST 38
06FF FF RST 38

J[FLON'S T1 GLEE; Pk:GE

AT 0700 IS THE TAPE'S MENU JUMP TABLE.

0700 C3 3F 04
0703 C3 3F 04
0706 C3 3B 04
0709 C3 37 04
070C C3 26 04

HIGH SPEED SAVE
LOW SPEED SAVE
TEST BLOCK
TEST CHECKSUM
LOAD TAPE

BELOW ARE THE JMON DEFAULT RESET VARIABLES (A ZERO IS THE ACTIVE 	 RAM
STATE UNLESS OTHERWISE STATED). 	 LOCATION

070F 00 	 KEY BUFFER 	 0820
0710 00 	 LCD ON/OFF FLAG 	 0821*
0711 00 	 SOUND ON/OFF 	 0822*
0712 FF 	 GO AT ALTERNATE GO ADDRESS IF AA 	 0823*
0713 FF 	 STEPPER KEY CONTROL/TIMER 	 0824
0714 00 	 KEY PRESSED FLAG 	 0825
0715 FF 	 UNUSED 	 0826
0716 00 	 AUTO INCREMENT ON/OFF 	 0827*
0717 00 OA 	 ALT GO ADDR/SOFT RESET EDIT LOCATION 	 0828*
0719 70 	 AUTO KEY REPEAT TIMER 	 082A
071A 00 	 MONITOR CONTROL BYTE 	 082B
071B 00 08 	 DISPLAY BUFFER ADDRESS 	 082C*
071D 00 09 	 INITIAL EDITING LOCATION 	 082E

BELOW ARE THE JMON INDIRECT JUMP ADDRESSES. THIS TABLE IS SHIFTED
DOWN TO 0830 ON A HARD RESET.

071F C3 D5 01 	 CONVERT HL TO DISPLAY CODE 	 0830
0722 C3 DA 01 	 CONVERT A TO DISPLAY CODE 	 0833
0725 C3 BA 01 	 LED SCAN ROUTINE 	 0836
0728 C3 EE 01 	 SET LED DOTS 	 0839
072B C3 24 02 	 RESET TONES 	 083C
072E C3 27 02 	 TONE 	 083F
0731 C3 81 01 	 SCAN/KEY/LCD/PATCH LOOP 	 0842
0734 C3 B2 00 	 SOFT JMON ENTRY 	 0845
0737 C3 3C 02 	 LCD ROUTINE 	 0848

BELOW ARE THE DISPLAY TABLES FOR THE TAPE'S MENU ADDRESS DISPLAYS AND
THE "ERR-IN" DISPLAY THAT IS SUPERIMPOSED OVER THE PERIMETER HANDLER.

073A A7 6F EA C7 	"SAVE"
073E A7 6F EA C7 	"SAVE"
0742 C6 C7 A7 C6 	"TEST"
0746 C6 C7 A7 C6 	"TEST"
074A C2 EB 6F EC 	"LOAD"
074E 04 C7 64 EC 	"-End"
0752 04 C7 44 44 28 64 "-Err In"
0758 4F 6F A7 A7 	"PASS'
075C 47 6F 28 C2 	"FAIL

BELOW ARE THE TAPE'S MENU DATA DISPLAYS.

0760 04 6E
	 u_R“

0762 04 C2
	

"-L"
0764 E6 C2
	

"bL"
0766 C3 A7
	

"CS"
0768 04 C6
	

""-t"

076A 04 A7
	

"-S"
076C C6 E6
	

"tb"
076E C3 A7
	

"CS"
0770 C2 EC
	

"Ld"

0772 - 077B (UNUSED)

* DENOTES CONTROL BYTES DESIGNED TO BE USER ALTERED (IN RAM).

24

BELOW IS THE PERIMETER HANDLER COMAND STRING FOR THE TAPE SOFTWARE.

077C 00 FF C6 07 99 08 00 03 (FF FF; THE JUMP ADDRESS FOR THE TAPE
ROUTINES IS SUPPLIED BY THE POST MENU SET—UP ROUTINES, SEE 0426-044E).

0786 — 0788 FF (RESERVED FOR COMMAND STRING EXPANSION).

BELOW IS THE TAPE'S MENU DRIVER COMMAND STRING.

0789 FF FF 00 04 00 07 3A 07 60 07

TAPE'S SOFTWARE MENU DATA KEY HANDLER ROUTINE JUMP VECTOR
(A RETURN INSTRUCTION).

0793 C9

BELOW IS THE STEPPERS DATA DISPLAY CODES.

0794 4F C3
0796 6F 47
0798 E6 C3
079A EC C7
079C 6E C2
079E 28 6E
07A0 28 AE
07A2 7F 57
07A4 F6 D3
07A6 FC D7
07A8 7E D2
07AA A7 4F

"PC"
reAF vi
"BC"
"dE"
"HL"
"IX"
"IY"
AF 11

"BC'"
"dE'
"HL'"
"SP"

07AC FF (UNUSED)

START OF STAGGERED TABLE OF JMON MODE WORDS FOR LCD

07AD 44 61 74 61 	"Data"
07B1 41 64 64 72 	"Addy"

LCD INITIALIZATION CODES

07B5 38 01 06 OC

THE REST OF THE JMON MODE WORD TABLE FOR LCD

07B9 46 73 2D 	 "Fs-"

07BC FF (UNUSED)

ADDRESS TABLE OF THE LCD PROMPT LOCATIONS.

07BD 84 87 8A 8D C4 C7 CA CD 80

TAPE'S PERIMETER HANDLER DATA DISPLAYS

07C6 04 47 	 "-F"
07C8 04 A7 	 ""-S"
07CA 04 C7 	 "-En
07CC 04 E3 	 "—G"

07CD — 07CF FF (UNUSED)

BELOW ARE THE DISPLAY CODE EQUIVALENTS OF THE HEX DIGITS
0 TO F LISTED IN ASCENDING ORDER.

07D0 EB 28 CD AD 2E A7 E7 29 EF 2F 6F E6 C3 EC C7 47

FINALLY AT 07E0 IS THE FUNCTION-1 AND SHIFT JUMP ADDRESSES.

07E0 D2 03 E3 02 5E 00 FF FF D3 02 AE 00 DE 02 4103
07F0 ED 02 E8 02 F2 02 FF FF FF FF FF FF FF FF FF FF

5

24,

SEGMENT TARGET GAME
By Mr. S Clarke, 2774

Segment Target is a simple game
in which you must hit the moving
segment in the bottom right of the
address section. i.e.

Shoot when the h gh ghted
segment is illuminated.

As each target is hit, the next one
moves even FASTER! Any key can
be used to shoot. Your score is
stored at 08FF (in HEX)

**********Warlefrirrirgrfkisgardrir***Irwire*******

SEGMENT TARGET, as presented
below, has been written to run with
the MON-1 series MONitors. By
changing the LD A,I (ED 57) to RST
20/NOP (E7, 00) as described in the
section on running old programs
with JMON in issue 15, it will run
equally as well with JMON.
Don't be content to just play SEG-
MENT TARGET GAME, see if
you can improve on it!

-JIM

0900 11 00 38
	

LD DE,3800
0903 ED 53 As og LD (09A6),DE
0907 3E 00
	

LD A,00
0909 32 FF 08
	

LD (08FF),A
090C 21 80 09
	

LD HL,0980
090F 7E
	

LD A,(HL)
0910 47
	

LD B,A
0911 23
	

INC HL
0912 7E
	

LD A,(HL)
0913 4F
	

LD C,A
0914 23
	

INC HL
0915 78
	

LD A,B
0916 FE FF
	

CP FF
0918 CA 6B 09
	

JP Z,096B
091B D3 01
	

OUT (01),A
091D 79
	

LD A,C
091E D3 02
	

OUT (02),A
0920 CD 2E 09
	

CALL 092E
0923 CD 3A 09
	

CALL 093A
0926 FE 12
	

CP 12
0928 CA OC 09
	

JP Z,090C
092B C3 OF 09
	

JP 090F
092E ED 5B AS 09 LD DE,(09A6)
0932 1B
	

DEC DE
0933 7A
	

LD A,D
0934 FE 00
	

CP 00
0936 C8
	

RET Z
0937 C3 32 09
	

JP 0932
093A ED 57/E7,00 LD A,1
093C 5F
	

LD E,A
093D 3E FF
	

LD A,FF
093F ED 47
	

LD I,A
0941 78
	

LD A,E

0942 FE FF
	

CP FF
0944 C8
	

RET Z
0945 78
	

LD A,B
0946 FE 04
	

CP 04
0948 CO
	

RET NZ
0949 79
	

LD A,C
094A FE 80
	

CP 80
094C CO
	

RET NZ
0940 3E 03
	

LD A,03
094F D3 01
	

OUT (01),A
0951 3E FF
	

LD A,FF
0953 D3 02
	

OUT (02)A
0955 CD 2E 09
	

CALL 092E
0958 3A FF 08
	

LD A,(08FF)
095B 3C
	

INC A
095C 32 FF 08
	

LD (08FF),A
095F ED 5B A6 09 LD DE,(09A6)
0963 15
	

DEC D
0964 ED 53 A6 09 LD (09A6),DE
0968 3E 12
	

LD A,12
096A C9
	

RET
0966 11 00 BF
	

LD DE,BFOO
096E ED 53 A6 09 LD (09A6),DE
0972 3E FF
	

LD A,FF
0974 D3 01
	

OUT (01),A
0976 3E 85
	

LD A,85
0978 D3 02
	

OUT (02),A
097A CD 2E 09
	

CALL 092E
097D C7
	

RST 00

0980 20 01 10 01 08 01 04 01
0988 04 08 04 04 08 04 10 04
099b 20 04 20 40 20 80 10 80
0998 08 80 04 80 02 80 01 80
09A0 FF

WHIRL
by Jeff Kennett 3218

This clever routine for the 8x8 dis-
play continuously rotates the dis-
play around 90 degrees and
produces quite an Interesting effect.
After a while the eyes are fooled and
It begins to look like anything other
than a rotating arrow head. One staff
member thought it looked like a plus
sign trying to rap dance!!
Experiment with the values in the
table at 0A00 and the delay at
0927/8 to see what dazzling effects
you can produce!

0900
0903
0906
0A08

CD 27 09
11 08 OA
06 08
C5

CALL 0927
LD DE,0A08
LD B4O8
PUSH BC

0909 06 08 LD B4O8
090B 21 00 OA LD HL,0A00
090E AF XR A
090F CB 06 RLC (HL)
0911 1F RRA
0912 23 INC HL
0913 10 FA DJNZ 090F
0915 12 LD (DE),A
0916 13 INC DE
0917 Cl POP BC
0918 10 EE DJNZ 0908
091A 01 Os 00 LD BC,0008
091D 11 00 OA LD DE,0A00

0920
0923
0925
0927
0929

21 08 OA
ED BO
18 D9
06 50
C5

LD HL,0A08
LDIR
JR 0900
LD B.06
PUSH BC

092A 06 80 LD B,80
092C 21 00 OA LD HL,0A00
092F 7E LD A,(HL)
0930 D3 05 OUT (05),A
0932 78 LD A,B
0933 D3 06 OUT (06),A
0935 06 40 LD B,40
0937 10 FE DJNZ 0937
0939 47 LD B,A
093A AF XOR A
093B D3 06 OUT (06),A
093D 23 INC HL
093E CB 08 RRC B
0940 30 ED JRNC 092F
0942 Cl POP BC
0943 10 E4 DJNZ 0929
0945 C9 RET

0A00:18 30 60 FF FF 60 30 18

HEX TO BCD
CONVERSION

By James Doran 3259

This SUB-ROUTINE will convert a
hex number in A into its decimal
equivalent and store the result in
BC.
The hex number is held in A on
entry.
The routine works by counting up in
decimal while counting down the
HEX number until zero.
This means that low numbers are
converted quickly while larger num-
bers take longer.
The decimal counter is achieved by
the use of the DECIMAL ADJUST
ACCUMULATOR (DM) instruction.

0900 06 00 LD B4O0
0902 4F LD C,A
0903 3E 00 LD A,00
0905 3C INC A
0906 27 DAA
0907 30 02 JR NC,+2
0909 04 INC B
090A 3F CCF
090B OD DEC C
090A 20 F7 JR NZ,-9
090C 4F LD C,A
090D C9 RET

Exit: BC = packed BCD equivalent
of two hex digits in A.
The above routine is useful as a
HEX to BCD conversion SUB-
ROUTINE, but keep in mind the dis-
advantage of the length of time
being very dependent on the mag-
nitude of the HEX number to be con-
verted.

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25

