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PREFACE

This manual is a practical beginners guide to machine <code
programming using the V2200/300. It is meant as a simple
introduction to machine code programming for those who want
to further explore the capabilities of their machine beyond
the boundaries imposed by Basic.

The manual explains what machine code is, how to write simple
machine code programs, and how to pass these programs to your
computer, It also contains some information about VZ200/300
hardware to allow you to more fully utilise the power of
machine code programs,

The transition from Basic programming to machine code
programming is a large and difficult step to take. Machine
code is complicated and is an order more difficult than Basic
programming with many rules to follow. Fortunately though,
the rewards for the machine code programmer are high. For
high speed operation in graphics, or special cassette reading
routines, machine code is a must.

There are many general ‘how to’ texts available on machine
code or Assembly Language, but the problem 1is the vast
majority are either not specific enough for the VZ, or
pitched at too high a level for the beginner., This manual
does not attempt to repeat the more detailed, general
information available in such texts, but is meant to be a
primer for the VI owner just starting to learn, allowing them
to take the first steps on that long, but fascinating road
which is machine code programming,

As you work through this manual it is assumed that you have
beside you the Basic Reference Manual supplied with your VZ,
as well as one of the many 'How To Program The Z-80’ books
available, If you can also get hold of the VZ Technical
Reference Manual this will be of great assistance,

I hope the information contained in these pages is of use and
interest to you and provides encouragement to continue your
studies in this area, thereby providing many hours of
enjoyment as it has done for me,

Steve Olney
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CHAFRPTER 1

INTRODUCTION TO MACHINE CODE

Machine code is the code that the computer uses directly and
takes less room than the equivalent program in Basic and
usually runs much faster. On the minus side it is much more
difficult to write and also read, even one that you have
written yourself just recently.

The instructions given in this book give you a stage by stage
introduction to the basics of machine code and show you how
to write simple programs yourself. Examples will be given of
adding two numbers together and displaying a message on the
screen, Also, details on how to load and run machine code
from Basic programs will be given,

On a slightly more advanced note, the use of an Editor
Assembler to simplify the writing of machine code is
explained,

The main reason machine code is hard to read, is that it is
not written in an English-like fashion as Basic is, but when
examined in memory it appears as a list of numbers and
letters, This makes finding ‘bugs’ very difficult. Also
because the effects of bugs are wusually catastrophic,
Generally, this means that the damage has been done before
you have time to see where the problem lies.

When you are running a machine code program you are working
outside the normal operation of Basic. Therefore, when an
error occurs you aren’t provided with a helpful message which
gives a hint as to where or what the error is. Instead the
most common result is a very convincing play-dead-possum act,
or sometimes a spectacular video display.

Either effect is far from the desired result, and it is
important to be very careful and meticulous when writing your
programs to ensure your code contains as few errors as
possible, The time taken to check your work two or three
times is always a good investment towards speedy completion
of your programs.

1.81 WHAT IS MACHINE CODE ?

Machine code is the code that the computer executes directly,
i.e., the code which the computer takes from memory and reads
as actual instructions to carry out certain operations
directly,




You may be surprised to learn that the programs you have
written in Basic are not really computer instructions in the
direct sense, but rather a list of data items,

There is a large block of machine code called a Basic
Interpreter already built into your VZ and a part of this
machine code translates your Basic listing as a sequence of
calls to other sections of the same inbuilt machine code in
order to carry out the tasks you have specified with your
Basic listing.

Each part of a machine code program is represented by a
binary number, Sometimes the binary number represents an
instruction to the computer and sometimes it represents a
number directly.

Which case it represents depends on the order and context of
the binary number within the machine code program, A binary
number is a form of representation of numerical quantities
and data directly allied to what happens at the hardware
level of operation of the computer.

1.02 DIGITAL VOLTAGE LEVELS

In a digital system like your VZ computer, data is moved
around as a pattern of two voltage levels. In your VZ, as 1is
the case in practically all microprocessor controlled

computers, these two levels are +5V and @V. If you attach an
oscilloscope to the digital part of your computer circuits
you will observe these two levels, some static, and some
changing at different rates,

To relate these purely physical voltage 1levels to the
representation of data these levels are called by names other
than +5V and @V, i.e. ‘high’ and ‘low’, or ‘logic 1’ and
‘logic @’ respectively,

1.63 TWO LEVELS — BINARY NUMBERS

If we are using these binary levels in writing down machine
code data or using them in arithmetic operations, then we use
the symbols ‘1’ and '@’ respectively. We can write any number
in terms of binary, for example, the number ‘25’ in binary is
‘0011001’ ,

We could enter the number 25 into a digital system by setting
up the position of eight switches, reading left to right, the
first three off, the next two on, the next two off and the
last one on,




1.4 BINARY DATA IN THE COMPUTER

In the computer the switches are replaced with a set of eight
data lines running around inside, connecting one chip to
another., This is called the data bus,

Along this data bus information can be moved back and forth
between the various sections of the computer which needs to
have access to the data, The grouping of these eight data
lines each carrying a ‘bit’ of information (either ‘1’ or
‘®’) is called a binary data ‘byte’,

Each binary byte carries the code for one piece of
information or data for use by the computer, These binary
bytes are the codes which the computer uses directly to carry
out the tasks set to it, A sequence of these binary bytes is
called a machine code program,

Later on we will look at binary more closely, but while we
are in the early stages we will be using a numbering system
which is closely related to both binary and our ordinary
everyday decimal counting system, This numbering system 1is
called hexadecimal, which Chapter 3 deals with in more
detail.

1.85 MACHINE CODE IS COMPLEX

In a Basic program the task of adding two numbers together is
written out in an English-like form, i.e.,

PRINT 3 + 4

In machine code however, each step of the operation must be
specified, as the power of each instruction to the computer
is very limited, i.e., moving data, or adding and subtracting
two numbers stored in specified areas of the computer. Also
the size of the numbers that can be handled in one operation
is restricted.

In Basic programs all these details are taken care of for us
by the Basic Interpreter, but in machine code we are strictly

on our own,

To further emphasise the difference, consider the task of

clearing the video screen. In Basic this is done by simply
typing ‘CLS’, while in machine code programming you must

specify where in the computer’s memory the screen area
begins, how many locations need to be cleared, and what byte
code must be entered into the screen video area to produce a
blank screen,




Many times you will find yourself thinking that this or that
task could be much more easily done in Basic, but persevere,
as the same can be said about learning any new human
language, say French.

In the early stages, of course you can use the old familiar
English language better. But finally, the new language opens
up areas which are not accessible by the old. So it is with
learning machine code,

1.06 INTRODUCING HEXADECIMAL

When writing machine code you could write down all the
ingstructions in binary numbers, but this would be very =slow
and confusing and the last thing we need is confusion,
Instead we can use a shorter, more compact representation
called hexadecimal.

Once you are familiar with hex (short for hexadecimal) you
will find it easier to use than binary. In any case, it is
very easy to convert hex to binary if needs be. The
hexadecimal numbering system uses sixteen different symbols,
taking -9 from the decimal numbering system and adding
another six from the alphabet, A-F, That’s six letters plus
ten numbers, hence HEXaDECIMAL.

1.97 HEXADECIMAL CODES

The following could be a hex representation of a machine code
program:-—

CD 7A 01
3E 9A
21 FF FF

Each line starts with an instruction, the next byte(s), if
any, containing data. With the 180 sometimes the second byte
is also part of an instruction code. This is because the 780
hag more instructions than can be uniquely specified by Jjust
one byte. Each pair of symbols is the hex equivalent of the
binary code that would appear, in turn, on the data lines, if
the computer was running the above program.

1.8 MNEMONICS AND ASSEMBLY LANGUAGE

We can also write down the instructions in a kind of
shorthand form, called ‘assembly language’, consisting of
‘mnemonicg’ which indicate what the instruction does.




For example, the above short program could be written 1in
assembly language form thus:-

CALL @17AH
LD A, 9AH
LD HL ,@FFFFH

The second line ‘LD A,9AH’ can be read, ''load register A with
the hex number 9A'". This makes the program much easier to
read and debug.

1.9 WHAT IS AN EDITOR ASSEMBLER ?

Of course, the mnemonics cannot be read by the computer
directly, so we use a translater program called an Editeor
Assembler to convert the assembly language source into the
correct sequence of binary codes in memory. This translater
program, unlike the Basic Interpreter, does not come inbuilt
to the VZ, but must be loaded from tape or disc.

The editor part of the Editor program allows us to build up
our assembly source listing, while the assembler part does
the translation of the mnemonics into machine code. We can
get a printout of the machine code in hex, and also generate
a tape which contains the machine code program stored in
binary form ready to be 1loaded into memory and run or
executed,

1.16 THE BASIC LOADER

In the early stages we will use the method of writing the
program in mnemonic form, then once we are certain that the
logic of the program is correct, translate the mnemonics into
their hex equivalents., You can then use a Basic ‘loader’
program to take the hex numbers in DATA statements and
convert them into decimal suitable for loading into memory
from Basic,

Alternatively, you can convert the hex numbers yourself by
hand (or calculator conversion) to decimal and enter the
decimal equivalents into the DATA statements, ready to Dbe
loaded into memory by Basic. The 1latter method has the
advantage of being faster when loading the code, but is more
prone to errors than the first method.

-oo00oo—
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CHAaFRPTER 2

FPFARTS 0OF YOUR VZ COMFPFUTER

As mentioned before, when you are programming in machine code
you must specify every step in the operation of the program,
You must tell the computer (via the program) where the video
screen is located, where to store or retrieve data and so on.

When you are programming in Basic all this information 1is
already there and is used by the interpreter to carry out all
these operations transparently. That is, the programmer does
not need to know where everything is stored in the computer’s
hardware in order to program,

However, to do any useful work in machine code, you must know
something about the hardware side of the computer. The
following is intended to give a brief idea of the operation
of some of the major parts inside your VZ.

2.91 PLASTIC CHIFS

If you were to open up the case of your VZ you would find a
number of black rectangular plastic-looking components with
pins on each side. These are integrated circuits (IC for
short, or more commonly — chips). They are called integrated
circuits because a number of different circuit components
have been etched onto one or two silicon slices 1inside the
plastic package,

It is this integration of complex circuits onto a small area
which has allowed the production of sophisticated devices
which not long ago were affordable only by universities or
other government institutions, and led to the development of
the personal computer.

2.62 DATA AND ADDRESS BUSSES

Data flows between the chips in the form of eight-bit Dbytes
via the data bus, while the locations from where, and, to
where the data flows is specified by the binary number on a
bus sixteen bits wide, called the ‘address’ bus. The control
of which chip is receiving and which chip is transmitting the
data is specified by several lines called collectively the
‘control’ bus,




2.63 MEMORY CHIPS

ROM stands for ‘read only memory’, and is the name for the
chips where permanent information is stored in the computer,
These chips contain, in the case of the VZ, the machine code
instructions for the operation of the Basic Interpreter.

Every time you switch on the VZ, you find that the Basic
Interpreter starts running by itself. This 1is Dbecause the
information stored in the ROM is retained even when the power
is switched off. The information has been burnt into the ROM
before it was soldered into the <circuit and cannot be
overwritten by the computer, hence the name ‘read-only’.

What this means as far as our machine code programming is
concerned, is that we cannot use the space occupied by ROM to
store our programs, simply because we cannot change the
information stored at these locations,

RAM stands for ‘random access memory’ and this is where you
will store your programs which you will 1load into the
computer. Not only can the information be read out of these
chips, but also new information can be stored in them. When
you load different Basic programs, either by typing them in
or by loading from tape and disc, this is where the
information is stored.

2.64 THE MICROPROCESSOR CHIP

The microprocessor chip holds the CPU, or the central
processing unit, which co-ordinates all the processing of the
data within the computer. It is the brains of the computer,
and performs the addition, subtraction, comparison and
movement operations on the data.

2.85 CLOCK TIMING

The clock is the regulator of the events that occur inside
the computer. It synchronises the transfer of data by timing
via clock pulses and ensures that all parts of the computer
have sufficient time to respond to the information supplied
to it.

If you view the clock signal on an oscilloscope, you will
find that it is just a square signal switching between logic
1 and logic @ levels. It is called a clock because of 1its
timing and synchronising role in the computer, and has no
direct connection with hours, minutes and seconds.




2.86 ADDRESS SPACE

The CPU inside the computer is the chip which produces the
address information which is output on the address bus,
Different addresses on the address bus specify one single
location in the computers memory. The CPU can put out an
address number on the address bus for 65,536 different
locations,.

This address space can be filled with memory chips, either
ROM or RAM, and in the case of the VZ, special circuits which
allow communication with external inputs, 1like the keyboard.

When we are programming in machine code we need a map to show
us where ROM and RAM and other circuits are 1located 1in the
address range, so that we don’t accidently try to occupy
locations which are reserved for other purposes,

Also, when Basic is operating, it needs room to store
variables from the program and temporary pointers and data
for its own use. If we inadvertently overwrite these areas,
Bagic will cease to operate correctly.

In Chapter 7, which gives more information about the
partitioning of the VZ memory, we will look in more detail at
how the VZ memory is utilised,

2.97 WORK SPACE

The CPU makes use of some RAM space for work areas. It needs
space for buffers which are temporary stores for incoming
data such as input from a keyboard or cassette interface or
disc drive,

When Basic is being used the CPU needs space for the Basic
RETURN stack, for storing the return addresses for use by the
GOSUB command,

A system variables scratchpad is needed to store information
about the current status of the program being executed, for
example, the last DATA item read by the READ command.

Additionally, the CPU needs its own machine code return stack
used to store return addresses for machine code CALLs from
within the Interpreter machine code itself.

2.98 PASES IN MEMORY

Memory addresses can be conveniently thought of being divided
into pages, with each page containing 256 locations. The 780
CPU can address 256 pages giving 256 x 256 = 65,536 locations
altogether,




1@

Thinking of the address range as divided up in this way 1is
useful because address locations are stored in two bytes in a
machine code program, the first byte specifying the position
in page, while the second specifies the page number. Page and
location numbers begin from @ and end with 255. That is, the
hundredth byte would appear in leccation 99 on page Q.

2.89 TRAFFIC ALONG THE DATA BUS

Locations are specified by a unique address, with each
location capable of storing eight bits of one data byte, 2All
eight bits are stored and retrieved in byte-size chunks ‘oh
dear !) by the CPU outputting the correct address on the
address bus, and then, after waiting a short +time for the
memory chips to respond, veading or writing the byte on the
data bus,

The major part of the work done by tha CPU is fetching data
from memory, acting on that data, and sometimes, returning
the data to memory again. Also the CPU controls the transfer
of data between chips, say from a buffer area somewhere in a
program to a section of RAM which is used for the video
display. i

Before we talk about actually writing machine code and
placing it into memory, we need to understand how to use hex
notation so that we can more easily handle the binary data
which makes up the machine code program. The next chapter
deals with machine code and the use of hex numbers,

-ooDoo-
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CHAFRPTER 5

MACHINE CODE - AND HEXADECIMAL NUMBERS

The terms 'machine code’ and ‘assembly language’ seem to be
used interchangeably. For example, you often hear ©people
talking about writing a program in machine code, and in the
same time talking about assembly language. In fact, the end
product of both these processes is the same; a series of
instructions on which the microprocessor chip inside the
computer can act wupon directly. That series of coded
instructions is called a ‘machine code’ program.

There are 256 unique arrangements of bits in an eight-bit
byte, therefore, there are 256 unique pieces of information
that can be represented. Each memory location in your VZ can
contain one eight-bit byte, correspondingly, there are eight
data lines running around inside forming the data bus which
carries the level of each of the eight bits.

It is important to realise that the pattern of 1l’s and @’s
produced by the eight bits is just a code for a piece of
information. The assignment of the codes may or may not
follow some kind of mathematical order. Also, under different
circumstances the same code can represent entirely different
information.

For example, the eight-bit byte binary 01000001 can represent
the number 65 if you are doing arithmetic operations, while
to a video character generator chip this same pattern would
represent the letter ‘A’,

Our task, in order to control the operation of the CPU, is to
place in this memory a correct sequence of bytes which the
CPU will interpret as a sequence of instructions,

3.01 HAND ASSEMBL ING

To place the bytes of a machine code program in memory we can
look them up in a table and load them in one by one. Here we
are working directly with the byte codes and so is often
called ‘hand assembling’. To simplify writing these codes
down we use various shorthand representations using different
numbering systems, however, we still have to write down the
bytes one by one,

In addition, we need to calculate the size of relative Jjumps
in the program,
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All in all, it is a tedious process, very prone to errors,
and it would be much easier if we could write the
instructions down as short words which sound 1like the
instruction they represent — a ‘MNFMONIC’.

If we had a special program which could read these mnemonics
and arrange or ‘assemble’ them into the correct sequence of
binary bytes, then our task would be easier and much less
prone to errors,

A sequential 1list of mnemonics is called an ‘Assembly
Language Source Listing’, and the program used to write and
assemble the source listing is callerd an ‘Editor Assembler’.

Below is an example of machine code written in a numbering
system called hex, short for hexadecimal. Beside it is the
equivalent assembly language source listing, and finally the
binary bit patterns they represent.

MACHINE CODE ASSEMBLY LANGUAGE BINARY CODE

(Hexadecimal) (Source Listing) (Pattern of Bits)
3E 02 LD A,02H 20111110 00000010
Coe 04 ADD A,Q4H 11000110 00000100
32 57 7F LD (7FS7H) ,A 20110010 21010111 ©1111111

3.02 HEXADECIMAL NUMBERS

From the above example we can ree that to represent a small
quantity (3E hex or 62 decimal) in binary, we require a
relatively large number of symbols (ones and zeroes).

This makes manipulating binary notation cumbersome. Several
other numbering systems have been devised to make the use of
binary numbers easier.

The most often used system is hexadecimal. As the name
implies, there are sixteen different symbols available for
counting, This means that we run out of symbols 1in each
column at slower rate than for both binary and decimal
systems. This makes hex numbers relatively compact.

On the next page is a table showing equivalent numbers for
the three systems.
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TABLE 3.1
DECIMAL BINARY HEXADECIMAL

ulalnlt)
2001
2010
2011
0100
2101
0110
0111
1000
1001
10 1010
11 1011
12 1100
13 1101
14 1110
15 1111

Lok wbo—-S

HEHOQEP>POONI0OeWwNEE

In the familiar decimal system when we have to write down a
number larger than nine, we create a new column to the 1left
to indicate the overflow, Each time there is an overflow, the
new column is incremented by one.

There comes a time when this new column overflows, so we
create a third column to the left of the first two, and so
on, creating as many columns as is necessary to represent the
quantity we wish to write down.

Although each column contains only the digits from @ to 9,
the actual value those digits contribute to the total of the
number depends on which column they occupy. The effective
value of each digit in each column is found by multiplying
the digit value (0-9) by the column weighting,

The column weights for the decimal system are, starting from
right to left, 1, 10, 108, 100® and so on. That 1is, 1, 10,
10x10, 10x10x10.

For the hexadecimal system there are sixteen different
symbols, therefore the column weights are, 1, 16, 16x16,
16x16x16 and so on.

Thus the hex number 3BDH is evaluated into the decimal system
as;

DIGIT VALUE = 3 (3 11 (@BH) 13 (@DH)
COLUMN WEIGHT: 16x16 (256) 16 1
COLUMN VALUE : 3x256 (768) 11x16 (176) 13x1 (13

TOTAL VALUE : 768 + 176 + 13 = 957 DECIMAL
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3.83 BINARY TO HEXADECIMAL

The usefulness of the hexadecimal numbering system can be
seen when a conversion from binary to hex 1is required.
Because there is a direct relationship between each hex
symbol (or digit) and four bits of a binary number, the
conversion process can be performed by just 1looking up the
table given previously and writing the new number,

Using the binary number (111118), we start from the
right-hand side of the binary number and select out the four
right-most bits ( 11 / 1118 ). If we look up Table 3.1 we see
that this bit pattern corresponds to the hex digit OEH. Then
we select out the next four bits of the binary number
(0011 7/ 1110 >.

Notice how I have filled out the left-most three bits with
zeroes in order to bring up the total number of bits to four.
This corresponds to the hex digit 3H,.

Hence: 11111@ binary = 3EH hex

Note that when writing hex numbers you must follow the number
with the letter 'H’ to distinguish it from 33 decimal. This
is the convention used by most Editor Assemblers.,
Incidently,if the hexadecimal number begins with a letter
(A-F) then it must be preceded with a '@’ to enable the
Editor Assembler to distinguish the number from a label, e.g.
@®B3H.

3.94 DECIMAL TO HEXADECIMAL

To convert a decimal number, say 1998, to a hex number, first
divide the number by 4096 (16x16x16x16) to find how many lots
of 40968 there are in the number,

Write down the integer part in hex (@ in this case). Then
divide the remainder by 256 (16x16x16) and write the integer
part again in hex (7).,

Finally, divide the remainder by 16 and write down the
integer part in hex once more (12 decimal or @CH in hex) and
then the remainder of decimal 14 or OEH, Therefore 1998
decimal = @Q7CEH.

Listings 3.1 and 3.2 are two Basic number conversion programs
which can be used either alone or part of a larger Basic
program,
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For example, a Basic loader program may require data written
in hexadecimal notation to be converted to decimal before
being POKFEd into memory. In this case Listing 3.2 could be
incorporated into the loader program,

Listing 3.1 DECIMAL -> HEXADECIMAL

CONVERTS DECIMAL NUMBER
T HEXADECIMAL NUMBER

16
116
120 RE
5@ INFUTYDECTMAL NUMBER" ;D

146 IF (D>65535) OR (D4 -32768) THEN 136
156 He=""

168 D=D+ (D@ X~655%6

176 Ne=(D+ (DE2767) %65536) AND (15)

186 HE=CHRS (4B+N-7% (N>9) ) +H$

196 D=INT ((D+ (D<@) X~65536) /16)

D@0 1F DB THEN 176

216 PRINT Hs$

220 GOTD 1736

REM

Listing 3.2 HEXADECIMAL -> DECIMAL

133 REM CONVERTS UF TO 4 DIGIT

119 REM HEXADECIMAL NUMEER TO

126 REM DECIMAL EGUIVALENT

130 REM

146 INFUT"HEXADECIMAL NUMEBER";H$

156 IF LEN(H$) =4 THEN 140

168 N=g

178 FOR I=1 TO LEN(H$)

186 V=ASC (MID$ (H$, 1,1))

196 IF (Vo 48) OR(V:76) OR ((VES7)AND (V£465) ) THEN 144
2HH N=NK L6+ (V-55+ (=7% (VE64)))

210 NEXT I

220 PRINT N,:IF N:32767 THEN PRINT N-65536 ELSE PRINT® *
23F GOTO 144

-0o00oo0-
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CHAFRPTER 4

LOADING MACHINE CODE:=: PEEK, POKE & USR

Before we look at ways to mix M/C (machine code) and Basic
programs, let’s look at how we put the M/C bytes into RAM
memory and then jump to that M/C program.

4.01 PEEK AND POKE

If we want to examine a particular memory 1location to see
what value or byte is stored there, we can use the rather
aptly named PEEK Basic command. (See page 103 VZ208 Basic
Reference Manual, page 135 VZ38@ Main Unit Manual) .

PRINT PEEK (address)

will print to the screen the value of the byte held in the
memory location specified by ‘address’. Thus:-

PRINT PEEK (28672)

will return the value of the byte stored at location 28672
(7Q00H) .

Note that ‘address’ must be the decimal equivalent of the
address., Location 28672 decimal is the address of the top
left hand position of the video screen, Try placing different
characters at the top left hand position of the screen with
the cursor and see what value 1is wused to represent those
characters in video RAM,

Notice that the values are within the range of @ to 255. This
is because this is the range of values that can be stored
away in one 8-bit byte,.

Of course, we can assign this PEEKed value to a variable, as
in:—

A = PEEK(28672)

This command will work for both RAM and ROM (and indeed for
all 65536 memory locations as it is a ‘read’ operation).

If we now want to store or alter a byte at a memory location,
we can use another Basic command, POKE. (See page 103 VZ200
Basic Reference Manual, page 136 VZ300 Main Unit Manual) .

POKE address,value
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will place the number ‘value’ into memory location ‘address’.
Thus: -

POKE 28672,65

will put the value 65 into the top left hand corner of the
gscreen which is the code for the letter ‘A’

Try POKEing values between @ and 255 and note the different
screen characters appearing in the top 1left hand corner.
Compare these with the table of video screen Character Codes
(See page 156 VZ200 Basic Reference Manual, page 204 VZ300
Main Unit Manual).

If you PEEK into the same location as you have just POKEd4,
you will find that the value you have POKEd is stored at that
location. This is because the screen video memory is RAM
(read and write) .

If you attempt to store values at memory locations which are
either empty or occupied with ROM you will find that this
does not work.,

In the case of empty memory space (areas without any memory
chips) you will find a number between ® and 255 (and it will
most likely be different on consecutive PEEKs), whilst in the
cagse of memory space occupied by ROM you will find that vyour
value is not stored and each PEEK will return the same number
(permanently stored in the ROM) .

4.92 PLACES NOT TO POKE

Although it is possible to POKE into any address of the
computer, it is very ill—-advised to POKE 1into the Basic
scratch pad between 7880H and 7AE9H, as this can easily cause
a crash, Also, POKEing parts of the RAM which contain the
Bagic program 1lines or wvariables can result in the
Interpreter losing track of the program, or the values of the
variables being lost.

The Basic commands PEEK and POKE are extremely useful for
entering and running M/C programs on the VZ. Without them, we
would not be able to enter the bytes of our M/C programs into
memory, and so we would not be able to run them,

Of course, this is overstating the case as we can use an
Editor Assembler, but for small programs (and particularly
for our initial experimentation) loading our M/C programs via
Basic is simpler,

Now that we have a way of entering our M/C bytes from Basic
we need a way of running them from Basic as well,
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We need a Basic command which causes the CPU to leave the
Interpreter, execute a machine code program that we have
placed in some memory location, and then return to Basic.
There is a Basic command to do this, It is the USR function.

4,83 USR FUNCTION

The Basic Interpreter, through the use of the USR function
(page 141 VZ200, page 186 VZI308@ Basic Manuals), treats your

M/C programs as machine code subroutines. The USR function
call is a GOSUB call to a machine code program. The
Interpreter does not actually execute a Basic GOSUB

instruction, but a M/C equivalent.

Before executing a USR function <call, you must POKE the
starting address of your M/C program to a memory location in
the Basic Interpreter’s scratch pad memory space.

Because an address is a 16-bit number, there must be two
8-bit bytes to POKE, The USR function pointer location is
788EH and 788FH (30862 and 30863 decimal). It is a
peculiarity of the Z8@ that 16-bit numbers are stored in
memory in reverse order,

Thus, if we wanted to store the address @A®GBOH as our M/C
program starting address, we would store @ (BOH) in location
788EH (30862 decimal) and 168 (BA@H) in location 788FH (30863
decimal) ,

We will see later in Chapter 7 how we can pass values between
the Basic Interpreter and M/C programs,

4.04 USING PEEK TO EVALUATE SYSTEM POINTERS

The usefulness of the Basic PEEK command can be shown by
using it to evaluate the System Pointers which reside in the
communications region. (See Appendix 1 and 35).

The System Pointers have addresses stored in them in two—-byte
form, low order byte first, which specify various boundaries,
such as the current top of memory, the end of the current
Basic program text, start of variable storage, etc..

The first (low order) byte is the location within a page of
memory, while the second (high order) byte contains the page
number. To evaluate this as a memory location for PEEK the
low order byte is added to 256 times the high order byte.

For example, to find the current top of memory (in 78Bl/2H,
see Appendix 1 and 5) :-




20

First, evaluate 78BlH by looking up 78H and @B1H in Appendix
7, which gives 78H = 120 decimal, @BlH = 177 decimal.

Therefore 78B1H = 177 + 256%120 = 30897 decimal,

Now find the low order byte, and then the high order byte
pointer value:-—

LO
HO

PEEK (30897)
PEEK (30897+1)

o

Therefore the current top of memory = LO + 256*HO, or in one
line:-

PRINT PEEK(3@897) + 256*PEEK(30898)

Try finding the bottom of string space (78A0/1H = 30888/1
decimal) by the following:-

CLEAR 50
PRINT PEEK(3088@) + 256+*PEEK (30881)

Note that the bottom of string space should be 50 bytes below
the current top of memory as set by the ‘CLEAR 58’ command
line,

Now try:-

CLEAR 200
PRINT PEEK(3088@) + 256*PEEK(30881)

Now the bottom of string space should be 200 bytes below the
current top of memory.

Later chapters will show not only how to PEEK current pointer

values, but how to POKE and update pointers as a means of
reserving space for M/C programs. (See Chapter 7).

—oo0oo-
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CHAFRFTER 5

THE Z—8@ REGISTERS

S.41 THE Z80 MICROPROCESSOR UNIT (MPU)

The term microcomputer came into use to describe a computer
system the next step down from the minicomputer, which in
turn described smaller versions of the full-blown mainframe
computer systems. A microcomputer system proper congists of a
central processing unit (CPU), memory devices and various
input/output (I/0) devices. The CPU itself consists of an
arithmetic logic unit (ALU), some on-chip storage for the ALU
to work in (called registers), and a control unit (CU) to
keep all sections of the CPU working together.

A microprocessor chip like the Zilog Z8@ combines all these
elements of a MPU onto one chip. Although MPU is probably the
more correct term to describe the Z88, it is more commonly
called the CPU and that is the term used in this book.

S5.82 INTERNAL REGISTERS
A register is simply an area of memory internal to the CPU
which can be manipulated directly by the ALU in order to

carry out arithmetic or logical operations at high speed.

These registers are either 8 or 16 bits wide, the width of

the data and address busses respectively. Accordingly, the
8-bit registers are used mainly to store program data while
the 16-bit registers are mainly used to store memory

addresses.

There are ten 8-bit and four 16-bit registers in the Z80 CPU.
Appendix 2 shows these registers and how they are organised,

Note how the 8-bit registers are grouped in 16-bit pairs.
This is because these pairs of 8-bit registers are sometimes
treated as 16-bit units as well as being accessible as
individual 8-bit units.

5.3 THE ACCUMUILATOR

The ‘A’ register or Accumulator is the primary register for
arithmetic or logical operations. Most operations are best
performed here, and sometimes it is the only place the CPU
can carry out certain operations. This is where the result of
an operation is stored or accumulated.
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For example, if the number 7 is added to the contents of the
accumulator (containing the number 2), the result (9 is
written back into the accumulator (the original number 2 is
lost) . Additional information about the result of the last
operation is contained in the ‘F’ or Flag register, This is
why the 'F’ register is shown paired to the A register in
Appendix 2.

9.84 THE FLAG REGISTER

This register is the only register in which the data cannot
be interpreted as a number. Six out of the eight bits in the
register are used to indicate, or ‘flag’, the result of an
operation. Not all bits are affected by all operations, only
those bits which are relevant to that operation,

The function of some of the bits is abescure, so we will
initially confine ourselves to two bits: the ZERO and the
CARRY flags,

The Z (Zero) and C (Carry) flags are bit 6 and bit @ of the F
register respectively.

The Z flag is used to indicate when an operation results in
zero. This could be the result of subtracting two equal
numbers, or the result of testing a single bit in the
accumulator to see if it is a 1 or @. The important thing to
remember is that the Z bit is set to 1 when there is a =zero
result and reset to a @ when there is not a zero result,

That is:
Zero result (2) Z
Non-Zero result (NZ) Z

1
2

The C flag is used to indicate an overflow or underflow
result. This can occur when the result of an addition is
larger than eight bits (greater than 255). The C bit is set
to 1 when there is a carry condition and set to @ if there is
not ,

It is also possible to shift individual bits of a register or
memory location through the carry bit which will be then be
set (1) or reset (@) accordingly. Tests for the states of the
Z and C flags allow different actions to be taken depending
on the results of a previous operation,

95.45 OTHER REGISTER PAIRS

The register pairs *BC’, ‘DE’, ‘HL’® are often called
‘secondary accumulators’ because many of the arithmetic and
logical operations that can be performed on the A register
can be performed on these registers as well.
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These operations can be carried out the registers either as
individual 8-bit or paired 16-bit units. They are sometimes
called ‘data counters’ as they can be used to provide a
pointer scanning through blocks of data in memory. The HL 1is
the most useful of these as it can carry out many operations
on memory locations that the other secondary accumulators
cannot ,

5.86 THE 1 AND R REGISTERS

These are two 8-bit special purpose registers which are
rarely used by the software programmer. The 'I’ (or Interrupt
Vector) register contains half of a memory address used when
the CPU responds to an interrupt input in Interrupt Mode 2
(IM2) . The VZ is initialised to IM1 when switched on, so this
register is normally not relevant.

The 'R’ (or Refresh) register is more closely related to a
hardware function of the Z88 than software. It keeps track of
the address of dynamic memory currently being refreshed. What
this means will be explained when we deal with memory
devices in Chapter 6.

It is worth noting that the contents of the R register can be
loaded in or out of the A register. You can use the
constantly changing contents of the R register as a source of
an integer random number between @ and 255, or as the =seed
for a more complex random number generator program,.

5.87 THE 16-BIT OR ADDRESS REGISTERS

The four 16-bit registers are single registers. They can only
be manipulated as 16-bit units and are mainly used to store
addresses and therefore are closely associated with memory
access operations.

9.98 THE INDEX REGISTERS

The IX and IY registers are ‘indexed addressing’ registers,
so called because they can be loaded with the base address
(16-bits) of a block of memory. Instructions which then refer
to these registers contain an offset (8-bit) from this base
index address pointing to a particular byte within the memory
block. The offset (or displacement) in the range -128 to +127
is added to the base address to reference the required byte.

5.89 THE STACK POINTER

The SP or Stack Pointer register keeps track of 16-bit data
stored away temporarily in a specially reserved section of
external memory.,
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The programmer must specitfy the starting position of this
‘stack’, as it is called, by loading a memory address into
the SP register before the stack is used. The CPU can then
store (by a 'PUSH’ instruction) 16-bit numbers onto the stack
which can be later retrieved by a 'POP’' instruction.

The SP register keeps track of the next free memory space
BELOW the last PUSHed data by being decremented after a PUSH
operation and incremented after a POP operation.

The action of PUSH-ing and POP-ping is very similar to that
of a letter spike used as a temporary file. The last letter
spiked (PUSH) is the first available for access (POP). It is
not vossible to access a letter in the middle of the pile of
spiked letters by a single operation. You need to alter the
top of the pile by pulling off a bunch of letters in one go
to uncover the buried letter.

Likewise, it is not possible to access a number stored in the
middle of the stack by a single operation, but the top of the
stack can be altered by loading a new address location into
the SP register directly,

Believe me, this is not a prudent move, as the VZ video
interrupt which occurs every 20mS uses the stack and can
overwrite vital stack data. The interrupt can be disabled but
if software routines in the Basic ROM are used the interrupt
can be re-enabled causing all sorts of grief,

In general the SP register is best left alone once it has
been initialised, except of course through the action of PUSH
and POP,.

Remember, the SP register is decremented after each PUSH
operation, so, as 16-bit numbers are stored onto the stack it
grows down in memory, i.e. upside down to the operation of
our letter stack. The stack is also used when there is a call
to a subroutine (like a GOSUB in Basic) because the CPU needs
to store the return address so it can resume execution at
that part of the program which called the subroutine.

5.10 THE PROGRAM COUNTER

The last 16-bit register is the PC or Program Counter. The
CPU uses this register to keep track of where it is in the
program that it is running. The program bytes are fetched
from memory, one at a time, and the PC register is
incremented to the address of the next byte which is required
for program execution.
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The only way the programmer can alter this register 1s
indirectly, by causing program execution to continue at a
different part of memory. This occurs when there 1is a CALL
instruction (like the Basic GOSUB) or one of the several jump
instructions (like the Basic GOTO) .

S.11 THE ALTERNATE REGISTER SET

Just when you thought that the Z80 must be crammed with all
these registers, now 1is the time to refer you back to
Appendix 2. There you will note that the register pairs AF,
BC, DE and HL are duplicated by another set of registers AF’,
BC’, DE’ and HL’.

These registers are called the ALTERNATE REGISTER SET. These
registers are not accessible directly, however, the data
contained in them can be accessed by exchanging the contents
of the main registers with the contents of the alternate set.

The alternate registers seem like a good temporary store, but
their use is not recommended unless you push them onto the
stack before altering their contents. Although the Basic
interpreter does not appear to use the alternate set, the
Disc Operating System (DOS) does. All in all, I feel it Dbest
not to use them as temporary storage area.

-oo0no-
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CHAFTER &

HAaRDWARE - CPU, RAM, ROM & VIDEO

6.81 THE CPU BUSSES

There are three main groups of connections to the 780 CPU:
the 8-bit DATA BUS (data can flow in or out of the CPU wvia
this bus ), the 16-bit ADDRESS BUS (output only), and a
mixture of input and output control signals which help the
CPU synchronise with other devices. (Refer Appendix 3).

The data bus in the Z8@ consists of eight ‘two-way’ digital
lines which allows the CPU to read data in from, or, output
data to, the rest of the microcomputer system. The two most
common data transfers occur from the CPU to some external
memory device (or vice-versa), and between the CPU and some
I/0 device,

The address bus conveys a 16-bit address output from the CPU.
This address determines at which location within the
microcomputer system data transfers will take place.

Note that the data bus is 8 bits ‘wide’, and the address bus
is 16 bits ‘wide’.

Looking at an 8-bit binary number, we should realise that the
maximum value for that number occurs when all bits are 1. The
maximum binary 8-bit number is then 11111111.

If you look carefully at a decimal or hexadecimal number you
should notice that each digit has ‘n’ times the weight of the
digit to its immediate right, where 'n’ is the maximum count
in each column. That is, ‘n’ = 1@ for decimal and 'n’ = 16
for hexadecimal.

As binary numbers have only two values (1 or @) it follows
that each digit in a binary number has twice the weight of
the digit to its immediate right - starting from the
right-most bit which has a weight of 1 - the decimal
equivalent of 11111111 (the maximum value for an eight-bit
binary number) is:

BINARY NUMBER 1 1 1 1 1 1 1 1
COLUMN WEIGHT = 128 + 64 + 32 + 16 + 8 + 4 + 2 + 1
MAXIMUM VALUE = 255

So the maximum range of numbers which can be represented by
an 8-bit binary number is from @ - 255.
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Therefore, @ - 255 is the maximum range for any single data
byte in memory.

Instead of doing the addition of each digit weight as above,
the maximum value could have been calculated by:

MAXIMUM VALUE = (2 ~ N)-1
where N = number of binary digits and "’ means ‘raised to
the power of’.

As N = 8, the maximum value = (2 ~ 8)-1 = 255, which gives
256 different values from @ - 255,

We can use this equation to calculate the maximum number of
different locations the 16-bit address bus can select by
adding one to the maximum value.

MAXIMUM LOCATIONS = (2 ~ 16)
= 65536 (i.e. from @ - 65535)
6.92 OTHER CPU INPUTS

The 7280 CPU is contained in a 40 pin chip. The data and
address lines, plus power (+5v) and ground, account for 26
pins, leaving 14 pins for the third group of connections, the
control signals. As mentioned previously, these signals allow
the 7280 to communicate with outside devices in order to
synchronise (or be synchronised with) external events. What
this means exactly is best explained by examining some of
these signals in more detail.

6.83 CLOCK INPUT

The most important control signal is the CLOCK input. The
basic function of the clock is to provide a reference timing
signal so that all the events which are taking place around
the system can be synchronised. Also the rate at which events
are completed is determined by the clock frequency.

In the VZ200 the frequency of the clock is 3,579,545 clock
cycles (or periods) per second. This means that the smallest
time interval used in determining the timing of events in the
VZ200 is 1/(3,579,545) seconds (= 279.36511 nanoseconds) .
However, the smallest software timing interval is four clock
periods or about 1.12 microseconds, as the shortest
instruction takes four clock periods to execute.

In the case of the VZ300 the CPU clock frequency has been
effectively shifted down from 3.5795 MHz to 3.5469 MHz.
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Consequently program execution for the VZ300 is V.9% slower,
and the frequencies generated by the SOUND command are ©0.9%
flat when compared to the VZ208. This timing difference
should be accounted for when using critical software timing
loops in your M/C programming.

6.864 RESET INPUT

This input to the Z8@ CPU is activated every time the power
is switched on. Its purpose is to reset the 780 to certain
initial states so that execution can begin from a Kknown
starting point.

The input is what is called an ‘active low’ input. The term
‘active low’ refers to the input only having any effect when
it is taken to a logic low (@) level.

There is a external delay circuit connected to this input
which holds the level to a logic 1low long enough for the
power supplies to the rest of the circuit to have stabilised
after switch on. After this delay the reset input is taken to
logic high (1) and execution begins from location @G@OOH.

6.95 INT INPUT

This input allows an external hardware device to ‘interrupt’
the normal program flow and force the CPU to execute a
different piece of machine code. When finished, the CPU
resumes executing where it left off from the normal program
flow.

The other eleven control signals are not directly applicable
to the software programmer as they relate to purely hardware
considerations,

All 780 pin connections are available at the ‘memory
expansion’ interface at the back of the case (except BUSRQ
and BUSAK) . These are not buffered so care must be exercised
when any connections are made to them to avoid permanent
damage to the internal chips.

6.9465 MEMORY DEVICES

As mentioned previously, the address bus inside the VZ is
16-bits wide which gives the Z88 access to 63536 separate
memory locations in which to store data. In case you’'re
wondering why you have heard Z80 based computers being able
to address 64K bytes of memory, not 65.536K bytes, the answer
is that ‘1K’ bytes of memory is 1024 bytes and not 1900 as
you might expect (1024 = 2710). Divide 65536 by 1@24 and you
will come up with 64K.
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There are two types of memory devices in the VZ:; these are
called Random Access Memory (RAM) and Read Only Memory (ROM).
The terms RAM and ROM have these days become less than
clearly descriptive, RAM originally wused to distinguish
between core memory (where any byte could be accessed in any
random order) and hardcopy memory devices such as paper and
magnetic tape (where bytes of information had to be accessed

sequentially) .
6.47 RAM MEMORY

The term RAM has now been pressed into service to refer to
memory from which we can not only read, but alsc write new
data. It therefore could be more accurately termed Read/Write
Memory. This is the memory in which data that must be able to
be changed, are stored.

Examples are:- variables that are changed while the pProgram
is running, program listings while writing Basic programs,
or, the memory which contains the everchanging video display
information,

While a very useful component, RAM has one very 1inconvenient
characteristic. When the power is removed completely, the
memory loses all the data it held. This means we need to
store our programs on tape or disc to keep permanent copies
of them. This is why the Basic Interpreter is stored in
permanent memory (ROM), so that it is available as soon asg
the VZ is switched on.

Some computers have small batteries connected across their
static RAM chips which continue to supply power to the chips
even when the main power supply has been switched off., The VZ
is not one of them.

6.98 STATIC AND DYNAMIC RAM

MOS (Metal Oxide Semiconductor) RAM memories are made in two
basic types, STATIC and DYNAMIC. In MOS static RAM the bits
are stored in MOSFET Flip-Flops called latches. It is
referred to as static because the state of the latch (binary
data) is retained as long as power is supplied. The static
RAM chips used in the VZ are type 6116 which contain 2K
(2048) byte locations each with 8-bits.

The standard VZ2@0® has eight of these static RAM chips,
giving 8K bytes of static memory for the unexpanded VZ200. Of
this 8K bytes 2K is used for the video RAM, plus 745 bytes
for the Basic Scratch Pad and 50 bytes for the initial string
space. This leaves about 5349 bytes available for actual
program RAM space,
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The VZ300 has Jjust one 6116 static RAM chip as standard which
is used for the video RAM, the rest of the 18K bytes total
memory being provided by in~built dynamic RAM,

MOS dynamic RAM stores data bits in small capacitors instead
of flip-flops as in static RAM. This obviously is a very
simple cell arrangement and allows very large memory arrays
to be constructed on a chip.

The relative physical size of typical static and dynamic RAM
chips illustrates this point vividly. The 4116 dynamic RAM
chip is about one-third the size the size of the 6116 static
RAM chip. Both hold 16K bits of data.

Unfortunately, the capacitor used in the dynamic memory chip
is so small that it quickly loses it charge and the data will
‘fade’ unless it is re-written, or refreshed, at least every
2mS.

With most types of CPU this requires additional circuitry and
complicates the operation of the dynamic memory. However, the
288 has additional circuitry built in to take care of this.
The R register is part of this inbuilt circuitry. The refresh
operation is done transparently to the operation of the 780
during the normal time for fetching and execution of
instructions. Very neat !

6.89 ROM MEMORY

The term ROM, or Read Only Memory, is more descriptive as you
can only read from these memory locations during normal
operation. This memory is used to store data of a fixed
nature because the data is retained when the power is
switched off and cannot be altered by the programmer, even
using machine code,.

For example, in the VZ, the machine code which implements the
Basic Interpreter (memory locations @QQ0BH to 3FFFH = 16K
bytes) is held in ROM - as is the machine code which runsg the
Disc System (the ROM is in the Disc Controller Interface and
occupies memory locations 4B0@H to SFFFH = 8K bytes).

Every computer needs a minimum amount of program code (called
a Bootstrap Program) when it is switched on because the CPU
starts executing almost immediately, and from then on needs
code to execute continuously. It is convenient to store this
bootstrap code in ROM,

The bootstrap code in the VZ is actually the initialisation
routines of the Basic Interpreter ROM,
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6.10 THE 6847 VIDEO DISPLAY GENERATOR

The Motorola MC6847 Video Display Generator (VDG) reads data
from the video RAM and produces the video signal which allows
the generation of alphanumeric and graphic displays. The chip
is capable of four different alphanumeric display modes, two
semigraphic (low-resolution) modes, and eight graphic
(high-resolution) display modes,.

Before you become too excited about this, the four
alphanumeric modes are normal ,inverse,green or orange
background; the semigraphic mode is 1locked into what 1is
called the SEMIGRAPHICS FOUR mode (four blocks per character
space, eight colours); the graphics mode 1is 1locked intc
CCLOUR GRAPHICS TWO mode (graphics only, with 128 blocks or
‘pixels’ across and 64 pixels down, four colours).

The display modes that are available from Basic are fixed by
hardware connections and are not alterable by software.

The VDG provides all the signals required to produce a colour

display including vertical and horizontal sync pulses,
chrominance (colour) signals and luminance (brightness level)
signals. These signals are combined externally and are

accessible as composite video signals (for direct connection
to a monitor), or as a modulated VHF signal at the rear of
the VZ suitable for connection to the antenna terminals of a
domestic TV set,

The VDG also provides a hardware INT (interrupt) signal to
the CPU to tell it when the vertical retrace period has
started. This allows the CPU to access the video memory at
times when the VDG is not writing video data to the =screen,
avoiding undesirable flicker.

The VDG scans through the video RAM memory and reads out the
character codes that have been stored there, It then switches
the video level at the correct times as the screen is scanned
by the electron beam to produce the outline of the character
on the screen., In fact the process is in principle the same
as the way a dot-matrix printer produces a character on a
page by firing needle hammers into the printer ribbon at the
correct times. The shape of the outline of the dots closely
spaced gives the impression of a continuous character
outline,

wWhen the VDG is in the graphics mode ( MODE (1) ) the VDG
scans the full 2048 bytes of the screen RAM memory. In the
text mode ( MODE (@) ) the VDG only scans the first 512 bytes
of the video memory.

—oo0oo-
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CHAFRPTER 7

BEASIC 2 MACHINE CODE - PEACEFUL
CO-EXISTENCE

7.91 COMBINING MACHINE CODE WITH BASIC

For some reason or other, when the move is made into machine
code, programmers seem to abandon Basic completely. In
general programs are machine code only. I am not convinced
that this is the best approach when using M/C in a computer
which already has a Basic Interpreter resident in ROM.

Certainly there is a certain sense of satisfaction 1in being
able to show you can code your program entirely 1in machine
code, but surely the aim should be to write your programs
efficiently, quickly and (as is sometimes forgotten) 1in a
form which can be debugged easily. I consider this to be a
professional approach to programming.

As well, it is important to develop your M/C programs in such
a way as to allow them to be easily modified for use in other
programs. This results in substantial savings in time and
effort in your programming activities,

The general approach I would recommend is to use Basic
programming as much as possible (i.e. only use M/C where
speed is of paramount importance, or it simply not possible
to carry out an operation using Basic) and then use the Basic
USER function call to run M/C routines for those areas where
M/C is required,

For example, if you were writing a program to read in
programs off tape without executing them, (to find out
information about the program contained in the header), you
could use Basic for prompts, instructions or menu displays,
only using M/C routines (called from Basic) to read the data
from the tapes.

The strength of this approach is the ability to save the M/C
routines by just saving the Basic program, being able to edit
the M/C program using the standard Basic screen editor, and
saving heaps of time trying to write machine code routines
for operations for which Basic would be Jjust as suitable,
i.e. where speed is not important.

There are disadvantages of course, the main one being that
some instructions in your M/C program may refer to absolute
memory locations and so the program cannot be readily moved
around and made to run at a different location in memory.
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Of course, this occurs even when you are using M/C code only,
but then you are usually working through a utility program
called an Editor Assembler which makes all the necessary
adjustments to the program code automatically.

When you are using Basic to load in the M/C and then execute
it, and you want the machine code to execute at a different
location, all absolute jumps must be recalculated and updated
by you. The solution to this is to make all your machine code
relocateable using RELATIVE reference instructions.

All this may not be clear to you at this stage, as we have
not looked at the different types of instructions yet, but
will become clear later.

7.02 SAFE PLACES FOR MACHINE CODE

If we are going to make our M/C programs as routines callable
and co-resident with Basic programs we need to find a safe
place to store them. Obviously this has to be in RAM memory,
because, as you will remember, it is not possible to alter
ROM memory space. To ensure this, we obviously need to know
where RAM and ROM memory resides.

Some areas of RAM are not suitable because the Basic
Interpreter uses them to store information it needs to keep
on executing correctly. As the Basic program runs it may use
extra variables which require extra memory space to store
them. The Interpreter also uses a section of memory for its
own ‘stack’, a place it uses as a temporary store. Indeed, it
uses the stack to store the return address at which the CPU
needs to continue after being directed to execute our M/C
routines via the Basic USER function.

If we are not careful where we place our M/C routines, there
is a good chance they will be overwritten by the normal run

of events during execution of the Basic Interpreter.

At best, this will result in wrong results from our program

and at worst, cause a ‘crash’. This is where the CPU gets out
of step with the intended program flow and blindly tries to
execute what it ‘thinks’ 1is the correct sequence of

instructions. This can often only be stopped by resetting the
computer to regain control. In order that we do not put our
M/C programs in these expanding areas, we need to know whicn
areas in RAM the Basic Interpreter uses.

A memory map is used to illustrate the organisation of memory
space within the computer, but before we 1look at this, we
will have a closer look at the Basic Interpreter itself and
briefly how it operates.
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7.83 SO YOU THINK YOU’RE A PROGRAMMER 7

As we write our Basic programs, we slip into the false notion
that we are writing Basic program ‘code’. In fact, the only
code used while a program runs 1is the original Basic
Interpreter code which came with the machine (resident in the
Basic ROM) when we bought it,.

The program we write in Basic is, in reality, a linked data
list which the Basic Interpreter machine code uses to carry
out the operations as specified in that program. As the Basic
program runs, the Interpreter reads the data from the Basic
program data list which tells it which sections of machine
code to execute in the Basic ROM to carry out the actions of
the Basic program,

When we write our machine code routines and call them from
Basic we are, in effect, extending the Interpreter, and
should aim to integrate those routines with the operation of
the Interpreter as much as possible.

7.94 VI MEMORY MAP

Appendix 1 shows a representation or ‘map’ of how the
unexpanded VZ200/300 is organised. Recall that the address of
a byte in memory is the location of that byte. Each memory

location can store an 8-bit byte which in turn represents a
number between @ and 255. The addresses in Appendix 1 are
given in hexadecimal and decimal notation. The map shows how
the memory is used for Basic programming.

7.85 BASIC ROM

The first 16K (16384) bytes of memory is the Basic ROM,
occupying memory address @@O00H to 3FFFH. This area is
obviously unusable for the storage of M/C programs.

The VZ 16K Basic is essentially TRS-880 Level II Microsoft
Basic (12K) plus 4K bytes of enhancement (sound, inverse text
handling, high-res graphics and different cassette routines) .
That is not to say that the Basic is more comprehensive than
Level II, but the commands implemented are essentially the
same as Level 1T,

Sure, the VZ does not compare with the more sophisticated
microcomputers (neither does it have a sophisticated price
tag) , but viewed from the angle of what it was obviously
intended (a way of getting your feet wet without emptying
your pockets), it is close to ideal.
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Because the VZ Basic is largely identical with that wused 1in
the TRS-80 and System 88, anyone who has owned one of these
machines has a head start (especially on me, as I have never
even used one) .

Much of the TRS-£€@/System 88 software (both Basic and M/C)
can be adapted. A M/C utility program has been written by the
author which re-enables all the Level II Basic commands
hidden away in the VZ Basic which allows many TRS-88/System
80 Basic software listings to be adapted (except graphics of
course) ,

7.86 ROM CARTRIDGES

The area of memory from 400@H to 67FFH has been reserved by
the designers for the addition of extra software in ROM
cartridges, occupying the area between the Basic ROM and the
memory-mapped I/0 (input/ocutput) area from 6800H to 6FFFH.
This does not mean that you cannot use this area for other
purposes (extra FAM, more memory-mapped 1/0 etc.), but the
Basic Interpreter checks for the presence of ROM cartridges
starting at 4000H, 6BBOH and B80B®H (during initialisation
upon switch-on) and if it finds the correct byte sequence at
one of these locations, execution Jjumps to that ROM
cartridge., This is how control is passed to ROM cartridges
such as the Serial Interface and the Disc Drive Interface.

7.97 MEMORY-MAPPED I/0

The memory mapped I/0 from 6800H to 6FFFH is the interface
for the keyboard, cassette, video display controller and
sound circuits, The I/0 hardware interface circuits are
called memory-mapped because I1I/0 operations are normally
carried out by special I/0 machine code instructions ‘IN’ and
*OUT’ through 'I/0 ports’.

Memory—mapped 1/0 allows access to hardware circuits through
memory operations which can allow simplification of Dboth
software and hardware.

An example of this is the keyboard scanning interface
circuit, which we will deal with in more detail in Appendix
4.

7.8 VIDEO SCREEN RAM

Memory space from 7000H to 77FFH 1is occupied by 2k bytes
(2048 bytes) of video screen RAM (See Appendix 1) . In MODE(®>
only the first 512 bytes of this memory space 1is used,
organised as 32 characters across by 16 lines down, each
character requiring one byte (32 * 16 = 512 bytes).
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During MODE(1), all 2048 bytes are used to give a high-res
screen of 128 pixels (points) across by 64 pixels down, There
are 4 horizontal pixels/byte, therefore there are 32 bytes
across by 64 down (32 * 64 = 2048 bytes).

7.89 BASIC SCRATCH PAD RAM

The Basic Interpreter needs reserved space to use as
temporary storage of values and system pointers when it is
executing. This area can be loosely defined as occupying
addresses 7800H to 7AE9H. I say loosely because not all
addresses are used in this area.

Address 7AE9H is the start of Basic program area. For more
details on System pointers (start of Basic, end of Basic,
etc.) see Appendix 5.

The Basic Scratch Pad area should not be disturbed as the
results can be disastrous. Although there are a few areas
which appear not to be used by the Interpreter, I prefer to
recommend that you use other areas for your M/C programs.

From the above we can see, for the VZ, the area that we can
put our M/C programs is from 7AE9H to the top of memory
(which varies according to how much RAM is present) .

I have, on occasions, placed M/C programs in the unused top
of video RAM (720@0H to 77FFH when in MODE(@) ), but this was
only when I had no other room to place them. If you do use
this portion of screen RAM then you must be sure that you do
not enter MODE(l) otherwise you will lose your code.

In any case because the CPU is accessing the video memocry
chip during execution of a program in this area, a flicker
will be produced on the screen.

The area 7AE9H to top of memory is also occupied by Basic
programs, and so we need a method of making Basic and M/C
programs mix together without causing conflicts.

7.1 HOMES FOR M/C PROGRAMS

The safest place for M/C programs is in memory which has been
stolen away from that which is available to Basic programs.
If we can fool the Basic Interpreter into taking the top of
available memory to be lower than what is actually available,
we can use this memory space above the new top of memory to
store our M/C programs,.

The Basic Interpreter stores the pointer to top of memory
(TOM) in locations 78BlH and 78B2H (30897 and 30898 decimal).
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We can alter this from Basic (carefully!) by the program in
Listing 7.1,

The value TM contains the new TOM and so we can put our M/C
program in memory starting from the next byte up from this
new TOM (and all the way up to the old TOM) without
interfering with the operation of Basic.

Note that this method is independent of memory size.
Listing 7.1

106

3 £ %
SOB9H, ME
ALL FOTNTERS

b CEOEYE) X256 REM FIMD NEW TOM

16E FRINT TH
If you add the following line:
176 GOTO 1a@

you will see successive TOM values printed out on the screen
until the amount of available space for Basic is reduced to a
level so small that there is not sufficient space for the
program itself to operate,

This results in an “0OUT OF MEMORY ERROR’ in line 15@.
7.11 EMBEDDING MACHINE CODE IN BASIC

Now that we can reserve memory for our machine code programs,
POKE bytes into that memory and then jump to the start of our
machine code, we need a method of actually storing our
machine bytes in Basic so that they can be easily loaded.

The first method of embedding machine code is to include the
code in DATA statements and then move this to a fixed
location in memory. Let’s see how this works on a simple
program,

Listing 7.2 contains a short program which scrolls the screen
DOWN by one line.

For the moment don’t worry about how the actual M/C code
program works. Our aim is to learn how to load M/C programs
from Basic. However, you might like to refer to Chapter 11
for clues,
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Listing 7.2

LINE LABEL MNEMONIC HEX CODE DECIMAL
Gl S a1
A 5 =
B Dl
FLisH HL.
HUHL. LI &
LD E
e
e
(e ML, 7
@ i1y fEH
G B, 2EH
L L IO (HLLY o A
#15 Hi.
@14 DN LOGF
@l FRED =0 HL..
G DE.
w17 (M M 195
@1y AF F1 LN
@19 (4 S

If you look at the previous listing, you will see that the
decimal equivalent of each hexadecimal byte has been worked
out by the following: e.g. for hexadecimal ‘@FSH’

DECIMAL = (F * 16) + (5 * 1)
= (15 * 16) + (8 * 1)
= 240 + S
= 245

Also note how the order of the two 8-bit bytes which make up
the 16-bit values to be loaded into the HL, DE and BC
registers are reversed in order in memory (see lines
005,086,007 and 0B9) .

This is the case for all 16-bit values in memory when they
are to be used by the 780,

So now it is simply a matter of entering the decimal
equivalents into DATA statements in order that they can be
loaded into memory from Basic via the use of POKE.

Firstly, we must allocate the memory space required (31
bytes), but say we allocate 49 bytes of memory. We use the
TOM resetting program as before, i.e.:- (see over page).
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Listing 7.3

AR BY VR
T
FOIND MSE & Lk
R TE R NEW T
i 4@ T FOINTERS
e T N B
1 &

Next, we load the decimal machine code bytes from DATA
statements into the reserved area.

17 FOR O = @ TO 5@ sREF 3L BYTES

1680 s REM I BYTE

194 sREM NEXT LOCATION
2O Fe7 THEN L=L-68556 P REM RANGE OF FPOEE
21@ FOFE L, D sREM BYTE INTO MEMORY

wa NEXT W

The actual DATA statements are put at the end of the program
(my preference) .

Note how the location to which the byte is to be 1loaded 1is
checked in line 200. This is because the two Basic memory
reference functions PEEK and POKE (also the FOR,,.TO.,.NEXT
loop index) won’t accept 1l6-bit integer values greater than
32767. 1f you reference memory locations in the upper 32K of
memory (above 32767) then the location must be entered as:

location = location - 65536
If you don’t then an 'overflow’ error results,

Next, the USR function needs to know where the start of the
M/C program is. The wvariable ‘ST’ contains the decimal
equivalent of the start of the M/C program. It is a 16-bit
address (in the range 8-65535) and the MSB (most significant
byte) is evaluated by dividing by 256. The LSB is found by
multiplying the integer value of that division by 256 and
subtracting from the original value, i.e.:-

EEG MG = INT(8T/256)
adEm LS = 8T (MEKE2E6)

For example, let’s say 'ST=50000°

MS
LS

INT (5@00808/256) = 195
S@BBAB - (195*256) = 500080 - 49920 = 8@
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Working back the other way to check.
ST = (MS*256) + LS = (195%256) + 80 = 50000

We put these two bytes into the special USR function pointer
(remembering to put them in reverse order in memory) located
at 788EH and 788FH (30862 and 30863 decimal) .

s PUIRE MSEA T, LEL FPORE 20865, M5

Provide a delay to slow the downward scroll action (because
the M/C action is too fast).

=1
D7E PRINTRE, RED (9
SEEFOR Dl T

Now the USR function call can be used to jump to the M/C
routine. We will call it straight away in our demonstration
program here, but in an actual program it can be called any
time after it has been loaded into memory, and the USR
function pointers at 788EH and 788FH have been loaded
correctly.

2GH X UBR (6D

Go back and print a new line and scroll down.
EEg GOTOD 279

Now the DATA statements.

boDET
Ceaies L
DT éE

Type in the above Basic program, CSAVE it (or SAVE it if you
have a disc system) and then RUN it.

You should see a random six digit number being printed at the
top of the screen and then the whole screen moved one line
down
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So to embed M/C in a Basic program by thisz mefhod dn ke
followinag:

(. Write the program in mnemonics and tiaiple ctrevrn ot
Write down the hexadecimal -nde for the mnemonics.

3. Convert the hexadecimal values for the machine <code
into their decimal equivalents.

4, Put these decimal equivalents into DATA statements in
the Basic program.

5. Use the Basic program to allocate memory space for
the M/C by lowering the TOM pointers for Basic,
leaving space above the new TOM. Reset Basic
pointers.

6. Move the DATA values to this reserved spéce above the
new TOM,

7. Set up the USR address (32862 and 30863) and call the
machine code as required.

7.12 DISADVANTAGES OF *DATA STATEMENT® METHOD

Because the actual position of the code is determined by the
amount of memory resident in the computer in which the
program is to be loaded, the M/C program must not contain
absolute memory address references to within the program
itself.

For example, if you wanted to load the HL register with the
beginning of a text message block within your program, you
are in trouble. This is because this absolute memory address
reference depends on where the program is loaded.

Of course, if the absolute address is outside the program
(e.g. CALL 3450H) there is no problem because this is in ROM
and so does not change position when your M/C program is
loaded into different places in memory.

The actual amount of memory varies between VZ280 and VZ300,
or when a 16K memory expansion is fitted, or indeed if there
is the Disc Drive Controller fitted (The Disc Operating
System grabs 30@ odd bytes from the top of memory and lowers
the ‘Top of Memory’ pointer when the VZ is switched on).
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If you want to write a M/C program loaded from DATA
statements that will work on any VZ you can do one of three
things: -

1. Write your code without the use of absolute memory
address reference instructions, not a simple task !

2. Include in your Basic loader an ‘absolute address
adjusting’ section which corrects all the absolute
memory references according to the the actual loading
address of the M/C program due to different memory
sizes. This is the method I used for my Extended
Basic wutility, although the ‘address adjusting’
routine was part of the M/C program itself. Certainly
not an easy task !

3. Decide on a fixed top of memory value which will work
for all variations of memory size. For example, say
you want your program to work for an unexpanded VZ300
or VZ20® with 16K memory expansion. Referring to
Appendix 1, choosing a fixed top of memory value of
@AFFFH (45055 decimal) would allow your M/C code
program to lie between OBBOOH (45856 decimal) and
@B7FFH (47183 decimal) . This allows just over 2000
bytes for the M/C program.

Notice that this wastes space in the case of an expanded
V7200 (and indeed an expanded VZ300), but this is the penalty
for the simplicity of having a fixed location to load your
M/C program, that is, it can contain absolute memory address
references to within itself. This simplifies the programming
process considerably.

Incidently, a number of M/C programs originally written for
the 16k VZ20@ use this fixed 1loading address technique
(although not loaded from a Basic 1loader, but a M/C tape
directly). This is why they will not work with an unexpanded
VZ300, because the top of memory for the unexpanded V1302 is
lower than an expanded V2200 (Refer Appendix 1),

As an extra trap, remember that in the case of the unexpanded
VZ300, almost 400 bytes has been grabbed from @B7FFH down by
the Disc Operating System if it ijs fitted. This means that if
the program is to work on an unexpanded VZ308 then only about
150@ bytes should be used above the new top of memory.

Given the above limitations, this method still has the strong
point of simplicity. To reserve 2047 bytes for a program to
work on an unexpanded VZI300 or and expanded VZI200 the
following simple process is used:—

1 FOEE @897, 29%: FORE 24898, 170: CLEAR 59
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This will set the "Top of Memory’ pointer to? @AFFFH (45@5S
decimal), allowing about 1500 bytes up from OBOOOH (45056
decimal) to be used to load the M/C program.

The “CLEAR 5@’ command is needed to reset all the other
Basic pointers which are set relative to top of memory.

If you require more memory than this simply POKE 1location
38898 with a lower value than 175. Lowering this value by 1
lowers the top of memory by 256 bytes.

For example, to set the top of memory to 8FFFH (36863
decimal), POKE location 38898 with 143 instead of 175. Now
memory from 9@8B0H to @B7FFH (36864 to 47183, reserving Jjust
over 1@0@00 bytes), is available for your M/C program, less
about 400 bytes down from @B7FFH if a Disc Controller is
fitted.

Of course, now you have only memory from 7AE9H (31465
decimal) to 8FFFH (36863 decimal) available for the Basic
program itself,

7.13 MACHINE CODE EMBEDDED IN °‘REM’ STATEMENTS

For small programs (maximum of about 60 bytes) we can put our
M/C program in a fixed area which does not change with memory
size, This allows the use of absolute memory references
because the location of the M/C program is known. We do this
by placing our machine code in the 1location in memory
occupied by a REM statement,

By making the REM statement the very first 1line <(say 1line
number @), and because the start of Basic programs does not
change with different memory sizes, we have a fixed address
to load the code.

The major restrictions are size (less 6@ bytes) and the fact
that you can’t have a zero byte in the code (because Basic
treats this as an end of line marker and will get terribly
confused if it finds one before the real end of line when you
try to edit the Basic program). There are some sneaky ways
around this as we can see in the modified scroll routine
in Listing 7.4.

Note that there was a zero byte in the previous M/C program
(line @@9 in the machine code listing). To avoid this zero
byte in the modified program above, we load HL with 6FFFH and
then INCrement it by one to 700@H in the next line (see lines
@09 and 010). We now can load this code into a REM statement.
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First we create the REM statement (do NOT use the REM short
form apostrophe as it takes two bytes to store it in memory
as against one for the standard REM) .

@ OREMRKRRRKTHIS TEXT MAKES GURE THAT SUFFLCTERNT SRR LS MO EK KK

The start of where Basic programs are stored in memory 18
7AE9H (31465 decimal) . Basic uses two bytes (31465-31466) to
hold the address of the next Basic line, another two bytes
(31467-31468) to hold the line number of this line, and one
byte (31469 to hold the token for REM.

Therefore we can begin loading our machine code at 1location
31470 (7AEEH) .

Listing 7.4

LINE LABEL MNEMONIC HEX CODE DECIMAL

1B\ SREG FUBH  AF

@ FUSH  BC

al7 FUSH  DE

B FUSH  HL

B GORL. LD HL., 7 1 DFH
e LD DE, 71FFH
(7 LD B, 1EGH
PBHE LDDR

(E9 LD HL » &FFFH
@16 INC HL.

@11 1D A, 6HH
@1z LD B, 26H
@1 LOOF 1.D (HL) , A
(14 ING HL.

@15 DINZ  LOOF

@16 RIREG FOF HL

@17 FOF DE

18 FOF B

19 FOF AF

@R RET

Remember we have an extra byte to load (32 bytes now) because
of the trick to eliminate the zero byte out of the original
program,

Listing 7.5

16 FOR J o= @ T 31 s REM 32 BYTEL
1146 READ D REM READ RBYTE

120 FORE
1738 MEXT J

E147e+d,. D CREM OPUT OBYTE TNTO MEM
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Now the DATA statements.

PAg DeTe Haih
L8E DaTe |
LeE DeTa 208

We can RUN this program as it stands now, so CSAVE it first
and then RUN. Now LIST the program again. You will notice
something strange has happened to the REM statement in line
number @. The text has been replaced by the single Basic
command ‘VAL’, This is because decimal 245 (the first value
in the DATA list) is the Basic token for the Basic command
VAL’ ,

Nothing else appears on the line because the next byte in the
line has a value (197) which the Interpreter cannot recognise
as a valid text character (excluding graphic characters) or a
valid command token, so it just skips to the next line and
continues listing.

Nevertheless, our M/C bytes are still stored away in that
line in memory (even though the Basic LIST function doesn’t
want to admit to the fact!), and can be saved just as if it
was ordinary text within a REM statement.

In fact, we no longer need lines 10@ - 16@ and they can be
deleted (assuming of course that we don’t want to alter the
M/C program at some other time). So we are Jjust left with
line @ which has our small M/C program hidden away.

We need only now set up the USR function by POKEing the start
address of the M/C program (3147@0) and then we can access the
code at any time by using the USR function call.

Because the location of the start address (31470) is fixed it
might be worthwhile to work out the two bytes that have to be
POKEd into the USR function pointers and note them down.

MSB = INT(31470/256) = 122
LSB= 31470 - (MS*256) = 31470 - (122%*256) = 238

If you possess a calculator that does decimal/hexadecimal
conversions then first convert 31470 decimal to hex:—

31470 = 7AEEH
Split this 16-bit hex number into two 8-bit bytes:

LSB = EEH, MSB = 7AH
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Then convert each byte back to decimal:-
LSB = 238, MSB = 122

Therefore, before you use the USR function call, set up the
pointers by:-

Then accegss the M/C at any time by:-—
X=USR (@)

It is always wise to set up the USR function pointers every
time we want to call our machine code, just to ensure that
they are correct. If the pointers have been altered
inadvertently, the program execution may continue in some
unexpected (and inconvenient) direction.

7.14 M/C BETWEEN THE END OF BASIC PROGRAM AND ITS VARIABLE
STORAGE AREA

A third method of reserving space for a M/C program is to
artificially raise the start of the variable storage area
which normally rides directly on the top of the end of the
Basic program text.

This method requires careful thought to prevent either the
variable storage area, the Basic program text itself or the
M/C from interfering with each other. The idea is to use the
space between the end of Basic program text and the wupward
moved variable storage area to locate our M/C program.

To move the variable storage upward we tell the interpreter
that the Basic program text is longer than it actually is by
altering the 'End of Basic’ pointer 1located at 30969 and
30970 decimal (78F9H and 78FAH) .

Firstly, find out where your Basic program text actually does
end by typing in:-

PRINT PEEK (3097@) *256 + PEEK(30969)

Write this value down. Next determine how 1long your M/C
program is and round off to the nearest next multiple of 256.
That is, if the length of your M/C program is 680 bytes, the
next nearest multiple of 256 is 768 (3%256). Then adjust the
MSB of the "End of Basic’ pointer by this amount. This must
be done in the very first line of the Basic program:-

1 FOKE Z2@97@, FEEE CRO97@+3)
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This will raise the apparent end of Basic by 3%256 = 768
bytes. We can now slot a M/C program between the real end of
Basic (the value written down above) and our artificial end
of Basic which is 768 bytes further up in memory.

Actually, you should go for gross overkill on allocating
space because it is only after you have typed in all the
Basic program can you be sure of the length of Basic text.
However, if you are loading the M/C program from DATA
statements, you cannot finalise the code for the M/C program
which refers to absolute memory addresses before you know
where the Basic text ends - Catch 22 !

This is why I prefer lowering the ‘Top of Memory’ pointer to
reserve space as the actual location of the machine code does
not need to change if the Basic program grows by a
significant amount,

There are other traps in the end of Basic approach, and they
are:-—

1. Moving the end of Basic too high up in memory can
leave too little space for the variable storage area
which grows up from this point and the Basic stack
area which grows down from the top of memory.

2. Be careful that any editing of the Basic program does
not cause the real end of Basic text to increase and
encroach on the M/C program loading area because if
you are loading the M/C from DATA statements (or any
method which loads the code after the Basic program
ig loaded) it is possible to inadvertently overwrite
the Basic text.

We now have the capability of calling machine c¢ode programs
while in the middle of Basic program execution. This means
that time-critical parts of the Basic program can be coded in
machine code to speed up program execution, while Basic can
be used for operations which are harder to code in assembly
language, such as string input and handling, printing on the
screen, and number operations (number-crunching).

In summary, the procedure for calling M/C programs from Basic
via the USR call is as follows:

1. POKE the address of the start of the machine code
routine to be called into the USR pointers at 30862
and 30863. The two bytes represent the least
significant and most significant bytes of the address
in standard 780 16-bit format (least significant
first then most significant).
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2. Any time a call to the machine code routine 1is
required, call the routine by a Basic USR function
call such as X=USR(@@) .

You can make calls to more than one M/C routine by setting up
the USR pointers 30862 and 30863 to the proper address Jjust
before the USR call.

7.15 PASSING VALUES BETWEEN BASIC AND MACHINE CODE
ROUTINES

The USR call function has two arguments:
X=USR (@)

X and @ are two dummy arguments that can be wused to
communicate 16-bit integer values between Basic and your
machine code routines. The argument inside the brackets can
be sent to the machine code routine and a value can be
returned from the machine code in the variable X.

In fact, I sometimes prefer to write the USR function with
the following dummy parameters:

R=USR (S)

where S’ signifies data Sent to the machine code routine and
‘R’ signifies data Received. When the above USR call is made,
the 16-bit value of 'S’ is loaded into 31089 and 31018 (7921H
and 7922H) where it can be accessed by your machine code
routine,

On return from the machine code program (caused by a RET
instruction at the end of your machine code 1routine), the
contents of 31009 and 3101@ will be assembled into a 16-bit
integer value and loaded into ‘R’, where it can be used by
Basgic.

Finally, we have three methods of embedding machine code
programs in Basic by:

1. Creating space at the top of memory by moving the
Bagsic TOM pointers down and using the space so
reserved to load our machine code bytes from DATA
statements. If the memory size is variable (i.e. you
want the program to run on different VZ machines)
then the machine code cannot contain any absolute
memory references to within the program itself. You
have a large area available for your code using this
method.
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1f, however, you are writing the code for a fixed
memory size, then of course the code can be assembled
for that fixed memory location. You can choose a
fixed top of memory value which will work for
different VZ configurations, a simple method but
wasteful of available memory space.

2. For small programs (approx. 6@ bytes long) you can
load your code into a REM statement in the very first
line of your Basic program. This code can contain
absolute memory references because the start of Basic
is known for all memory sizes, but it cannot contain
any zero bytes.

3., Raising the "End of Basic’ pointer value reserves
space between the real end of Basic text and the
variable storage area. Requires keeping track of
where M/C program is being loaded to ensure that
Basic text and M/C program code do not overlap.

7.16 LOADING FROM DISK

Another variation on the method of loading machine code from
a Basic program exists, but is only convenient for programs
loaded from Disk. In this method the required memory is
reserved by moving the start of the Basic program area upward
in memory from its normal start at 31465 (7AEQ9H) .

Before you start typing in the Basic program proper, the
*Start of Basic program’ and ‘Start of Variables Table’
pointers must be altered to the higher position, Now any
Basic program lines entered will be placed into memory
starting at this higher position. Your machine code program
can now be loaded between the old start of Basic (31465) and
the the new, higher start of Basic,

For tape users this method has one disadvantage. Before the
main Basic program is reloaded, the 'Start of Basic program’
and the ‘Start of Variables Table’ pointers will have to be
altered by the ‘shifting’ program, otherwise the Basic
Interpreter will not find the up-shifted program lines (i. e.
it will not LIST or RUN).

This is because while the tape loading routine will place the
Basic program into the same higher location from which it was
CSAVEd, it does not reset the Basic program pointers to the
new, higher position.
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However, Disk System users will find that once the up-shifted
Basic program has been entered and SAVEd on Disk, loading in
the program from Disk will automatically reset the pointers
to the the correct memory position, and consequently, the
up-shifted Basic program will both LIST and RUN. The short
Basic program in Listing 7.6 will reset the pointers to the
required position.

Listing 7.6

166 INPUT"NEW START OF BASIC"3sNS
118 FOR J=NS TO NG+2

1249 POKE J,@

173@ NEXT J

146 M1=INT (NS/256) 1L 1=NG~ (M1X256)

15¢ FOFE 26884, L1:FOKE @885, M1

160 MP2=INT ((NS+2) /256) s L2= (NE+Z) —~ (M2XZ256)
176 FORE 3@969, L2 PORE Z@97@¢,M2

Lines 118 - 130 place three zero bytes into the new start of
Basic area, while lines 148 - 17@ calculate the 8-bit bytes
to set the ‘Start of Basic’ and ‘Start of Variable Table’

pointers.

Incidently,once you have RUN this program, you will have lost
it, because it no longer starts at the new °'Start of Basic’
location. So, before RUNning it be sure to save it !

Once the program has been RUN, you can begin typing in your
main Basic program, from which, presumably, you will load
your machine code program from DATA statements into the area
so0 reserved,

Remember, if you are using tape saving you must load and RUN
the above ‘shifting’ program before attempting to reload/load
your main program from tape. Disk users need not bother with
this, just reloading the up-shifted program from Disk will
reset the Basic pointers to the correct values.

Finally, the machine code program that you 1load below the
up—-shifted Basic program can contain absolute memory
references because the start of the machine code program is
fixed (31465) irrespective of the memory size of the machine
used. In this respect, this method has the advantage of the
REM method without the restriction of the 1limited program
length allowable. In fact, the length of the machine code
program is limited only by the size of the total memory
available and the need to accommodate the main Basic program
above it (between the machine code program and TOM) .

-ao0oo-
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NOTES




CHAFRTER S

ARITHMETIC OFERAT IONS

8.91 NUMBERING SYSTEMS

Before we can progress any further in our understanding of
the operation of the VZ and the inner workings of the 180
microprocessor chip, we need to study the way in which
numbers are handled by the computer.

To start with, it is useful to have a «closer 1look at the
numbering system we use every day. This system is so familiar
to us that we use it without giving a thought to the scheme
of things behind the rules that we automatically wuse every
day. Of course, as we know there are only ten different
symbols in our decimal numbering system. Also obviously, we
regularly use these symbols to represent quantities much
larger than ten,

The method we use to do this is to simply create columns of
symbols with the different columns having different weights
assigned to their symbols. When we count using this systenm,
we start from @, then progress through 1, 2, 3, 4, 5, 6, 7,
8, 9 (our ten symbols).

At this point we have run out of symbols. Our next logical
step is to start back at @ again and continue counting.
However, we need some way to record the count of ten we have
already completed. We do this by creating another column to
the left of our first column. To indicate we have completed
one count of ten we place the symbol 1 in this second column,
As the count continues, we are going to eventually run out of
symbols in the second column as well. We then simply create a
third column to left of the second, and increment it by one
symbol every time the second column overflows.

This process can be continued as long as we like to represent
larger and larger numbers (provided we have a piece of paper
large enough to write down all our columns of symbols).

So then, when we count in our decimal system, we simply
increment through the list of ten symbols available to  us.
When we run out of symbols we create another column to
indicate the overflow. The process just described is the same
for any numbering system, whether it be HEXADECIMAL (six plus
ten = sixteen different symbols), OCTAL (eight different
symbols), or BINARY (two different symbols),
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One final point about the decimal numbering system, if we
look more closely at the effect symbols have on the actual
quantity, we see that the symbols in each column have ten
times the weight of the symbols in the column to its right.
Also, the actual value of each symbol in a column is the
symbol value (8-9) times the weight for that column.

Thus the number 5482 is evaluated as:-

DECIMAL NUMBER : 5 4 8 2
COLUMN WEIGHT : 10*10*10 16*10 10 1
COLUMN VALUE : 5%1000 4*100 8*10 2%1
TOTAL VALUE : 5000 + 400 + 80 + 2

= 5482

8.82 BINARY NUMBERS

The two most common numbering systems (other than decimal)
that you will encounter are BINARY and HEXADECIMAL., We will
now look at the simpler of the two systems, BINARY.

As mentioned previously, the binary numbering system has only
two symbols. To count in binary we follow the same procedure
as for our familiar decimal system. However, because we have
only two symbols in our binary system, we very quickly run
out of symbols. This means that we have to start creating
those extra columns at a rapid rate.

Hence, a quantity written out in Dbinary notation 1is much
longer than the same quantity written 1in decimal notation.
Additionally, because we run out of symbols after two
increments, the weight for each column is TWO times the
weight of the column to its right.

That is, the right-most bit (BI-nary digi-T) in a binary
number has the smallest weight and so is <called the Least
Significant Bit (LSB), while the 1left-most bit has the
largest weight and so is referred to as the Most Significant
Bit (MSB). Thus the binary number 11181 is evaluated 1in
decimal as:-

BINARY NUMBER: 1 1 1 f@ 1
COLUMN WEIGHT: 2*%2%2%2 2%2%2 2%2 2 1
COLUMN VALUE : 1*16 1*8 1*4 B*2 1*1
TOTAL VALUE = 16 + 8 + 4 + @ + 1

= 29 decimal
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One of the biggest surprises to newcomers to M/C programming
is the realisation that although M/C allows you to do many
things that Basic will not allow, it also demands that even
the simplest operation must be done at the lowest level,

For example, in Basic the programmer would barely blink an
eye at adding or multiplying two numbers, while in M/C these
simple operations can be quite complex to program. This is
especially true when you are dealing with floating point
numbers (numbers which contain decimal points e.g. 77.352).

Specialised routines need to be developed to handle these
floating point numbers., Once again, it would be easier to use
Basic to do these arithmetic operations,.

In this chapter then, we will deal with simple arithmetic
operations only.

However, once again, it is stressed that using Basic code 1is
by far the simplest method of performing arithmetic
operations in your program,

8.93 EIGHT-BIT ARITHMETIC

In arithmetic operations the most important register is tfhe
Flag or ‘F’ register. This register is different from any of
the other registers in the Z88 CPU,

You cannot perform any data transfer operations, in fact, the
only direct operations that can be carried out on the flag
register are PUSH-ing and POP-ping to the stack and clearing
the carry bit.

The state of the bits in the flag register is determined by
the results of operations carried out in the A register and
cannot be altered directly except for the carry bit.

The contents of the flag register should not be considered to
be a byte, but rather a collection of bits used to ‘flag’
various conditions that have occurred. Only 6 out of the 8
bits are used, these being SET ('1’) or CLEARED ('@’)
depending on the outcome of some operation.

Not all operations perform by the CPU affect the condition of
the Flag bits, for example, load instructions do not affect
any.

The most important flag bit in the flag register is the CARRY
flag., Remembering that the maximum number that can be stored
in an eight bit number is 255, what happens when we add two
numbers in the accumulator (the A register) which total more

than 255 7
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For example, consider the addition of 255 plus 1 = 256

11111111 (255)
+ Q0ooeel (1)
180000000 (256)

The result (256) requires nine bits, but the registers and
memory devices are only eight bits in an eight-bit computer,
If we ignore the ninth bit, we will have the result 255 + 1 =
@. One purpose of the carry bit in the flag register 1is to
signal the occurrence of such an overflow (ninth bit)
resulting from an addition.

An overflow condition also occurs when we perform a
subtraction which results in a negative answer., The carry bit
is set to signal that a borrow has occurred.

The particular condition of the carry flag can be used
directly in the arithmetic operation or can be wused to
control the path of execution of the program.

To illustrate the use of the carry flag bit, we will look at
the programming required to perform simple integer addition
operations.

B8.64 ADDING TWO NUMBERS

Machine programming is largely a matter of moving data into
areas where it can be accessed by the CPU to allow operations
to be carried out on that data. That is, the main area of
activity is storing and retrieving data.

This is why LOAD instructions form such a large part of the
CPU instruction set. LOAD instructions are used to move the
data around inside the microprocessor system into areas where
operations can be carried out (mainly in registers) and then
stored back in memory in known locations for further
processing or for later use elsewhere in the program.

The following programs compare the operations needed to add
two numbers between @ and 255, the first in Basic and the
second using M/C,

Listing 8.1

1 TNFLTT A sREM LT
g TNFUT B ML S (RIS
ZEE R o= 6 o+ B A TR NUEE
4eih FPRINT R LB FRIMT REDULT
S U Lo R REFEAT

FOLMTD A
COIMT TR
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The short Basic program in Listing 8.1 accepts two numbers,
adds them, and stores the result in the variable 'R’ .

The program in Listing 8.4 wuses Basic to input the two
numbers to be added, but instead of 1loading them into
variables ‘A’ and 'B’, it transfers the two numbers to two
consecutive memory locations (8800H and 80@1H) .

A jump is made to the M/C routine, where the first number is
loaded into the B register from location 80Q®@H, the second
number into the A register from location 88@1H, then the two
numbers are added together by the CPU,

The CPU leaves the result in the A register from where it is
loaded back into a third memory location (8002H) .

A return is made back to Basic where the result in 1loaded
from memory into the variable ‘R’ and then displayed.

Firstly, the M/C source code:-

Listing 8.2

@BE1 5 ADDS TWO B-BIT NUMBERS
G 3 BTORED 1IN B0O6GH % 8
GEE 5 RESULT 16 LEFT

PB4 ADDL DEFE g
@GHE ADDE DEFE @dH

& DEFER @

A7 7LD A, (ADDI
g LD B, A

@y LD Fiy, (ADDED
@1 ADD AR

w11 LD (RES1) .68
@1 RET

In the source code in Listing 8.2 we have used the DEFB
(DEFine Byte) pseudo-op to reserve three consecutive bytes
and label them ADD1l, ADD2 and RES1 respectively.

Line @07 instructs the CPU to get the byte stored in location
ADD1 into the A register.

Line @08 then transfers that number into the B register. This
is because the B register cannot be 1loaded directly from
memory as can the A register,

Line Q@9 tells the CPU to 1l1load the second number from
location ADD2 into the A register.
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Line @1®@ instructs the CPU to add the <contents of the B
register to the A register and store the result back into the
A register. Note that this results in the original contents
of the A register being lost (or more correctly overwritten).

Line @11 loads the result in the A register into location
RES1 where it will be accessed after the return to Basic 1is
made in Line 012,

The machine code is assembled and loaded at 80@8H. This 1is
done without the usual reserving of memory for the machine
code. This can be ‘got away with’ because both the machine
code and the Basic program that goes with it are small,

We can load the machine code in the "no-man’s land’ between
the end of the Basic program itself and the Basic
top-of-memory boundary without fear of it being overwritten.

When assembled starting at location 82@@H, by hand or by the
Editor Assembler, the source code in Listing 8.2 produces the
object code in Listing 8.3 (Refer Appendix 6 for object
codes) .

Listing 8.3
ADDRESS OBJECT CODE
CHAE

B |
B

Note here that the first three bytes are reserved by the DEFB
pseudo-op for the storage of the two numbers to be added and
storage of the result. That 1is, the actual start of
executeable code is at 8803H. This is the location that must
be entered into the USR function execute address pointer at
788EH and 788FH (30862 and 30863 decimal),

The Basic program used to load and call the above M/C program
is given below. Note once again how the USR execute address
(80@3H) has been poked into 308862 and 30863. Also note line
5@ contains the decimal equivalents of the hexadecimal object
code for the routine as given above, which 1is poked 1into
memory by lines 1@ to 40 of the Basic loader.
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Listing 8.4

A RER FOEE Tk RO InE IR

g R MEMORY,  HTARTING &7 S0

. - - TERT bé) x T OEROF B
FRINT R : LT UM SCREEN

S LT 1

Of course you can input any size number into the pure Basic
only program as the interpreter will automatically account
for any result., If the result is larger than 6 digits then it
will use exponential notation to express the answer.

When you run the M/C add program, you will find some curious
results., Input "'208°’ for both the first and second number,.
You would expect the result to be 40@ (quite rightly, as 200
+ 200 = 400) . However, the M/C add program returns not 400,
but 114,

This seems odd until it is remembered that the maximum number
the A register can hold is the maximum value of an eight-bit
number. This maximum number, you should recall, is 255.

To represent the result 408 we need nine bits, this ninth bit
would have a weight of 256. However,the A register is only
eight bits wide, therefore when the addition of two numbers
in the A register exceeds 255, the ninth bit value of 256 is
lost from the result,.

We can check this by subtracting 256 from the expected result
(400) : -

400 - 256 = 114

This is the result that is returned by our M/C add program.
Obviously, this is not a very satisfactory state of affairs,
so we need some way of retaining this overflow. This is done
by a special bit reserved in the Flag register., When we add
two numbers in our familiar decimal system which total more
than 9, we keep track of the overflow by ‘carrying’ to the
next column to the left. The special bit in the flag register
which imitates this operation is called the Carry bit.
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We have to modify our M/C routine to test for the carry
caused by the result being greater than 255. We could wuse a
fourth location to "flag’ whether there has been a carry or
not. We could load this carry location with a "1’ if there is
a carry, a '@’ if there is not,

Listing 8.5

ool s AbDh
=i

FLIMBERS
R PiH
A, “H

@

T
AIGT
7
e iy
HEHy SR Fry CFALIDLD
L LI Bty £

Wil L1 Fry CADEED

@i ADD fH, B

NI .1 (IRESL) . A
G314 LD 1y i
1S J M. ZERD
@lé NG &

W17 JERDO LD (2ARKD . A
@1E RET

Notice how in Line ®@8 an extra byte has been reserved for
the carry flag (80@3H). A test for the condition of the carry
flag is made in Line 815, and if the carry flag is not set
(Ne Carry is true), then a relative jump is made to the label
*ZERO’ at Line @17. Here the zero byte which was loaded into
the A register at Line 814 is loaded into CARR, our carry
flag location 8@Q0O3H.

If a carry did occur, then the increment instruction of Line
@16 is not skipped and the zero byte in the A register 1is
incremented to a *1’. This value is then loaded into the CARR
location to signal that a carry has been made in the
addition,

Note that the loading of a zero byte into the A register in
Line 814 did not affect the carry flag, thereby allowing a
test of the previous addition to be carried out in Line @15,

The Basic loader for the M/C program will have to be modified
to include the extra code as well as the additional check for
the carry flag, In particular note that the start of
executeable code has been shifted up by one 1location (to
8004H) to make way for the carry flag byte at 8003H.
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Listing 8.6

ADDRESS OBJECT CODE ADDRESS OBJECT CODE

iz

i g2ull

s GIG S 1Y] &1

By ami4 ORI =15
Bidon @1 o H917

Listing 8.7

R OREL THE ROUTINE INTO

g FOR T = @ T 2k i K
[y L EMEMORY, sSTART NG Al gudoH

5@ oDATE B, @, @, 8,58, 9, 128, 71,58
HE ODATH &8, w, 48, 1, 60, % 1
A FOEE 2862, 45 POk

3 (Big
INTO "¢
D NUMEBEER INTD "B
Ak LNTU SO
IO @i

Y

LEG TNEUT A
e TNFUT B
o FLRE

51
sgeT

BEIE -

&ér )

g mo o THEN K Al ,
H LT OO SRR
1§38

443
S

8.45 ADDING LARGER NUMBERS

When you run the previous M/C add program, you will find that
entering 200 for the two numbers will now produce the correct
answer of 40@, But you will find entering numbers greater
than 255 for either of the two input numbers will produce a
*FUNCTION CODE ERROR’ .

This is because you have attempted to use the POKE function
with a number which is larger than the maximum number that a
single memory location can store. Remember each memory
location can only store one eight-bit byte with a maximum
value of 255,

When doing arithmetic there obviously is a need to deal with
numbers larger than 255. Numbers over 255 can be stored in
two bytes, called the ‘high order byte’ and the “low order
byte’, just like addresses.
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The high order byte contains the number of whole 256s there
is in the number, while the low order byte stores the
fractional part of 256 which makes up the remainder of the
number .

Remember, as with addresses, the 280 CPU always accesses the
low order byte before the high order byte and so you must
ensure that you store them in that order in memory.

Just like addresses, to express a number in two bytes, first
find how many ‘whole lots of 256’ there are in the number.
That is, divide the number by 256. The integer part of the
answer is the decimal equivalent of the high order byte. The
decimal fraction part of the answer is the fraction of 256
which makes up the remainder. To convert this decimal
fraction to a whole number between @ and 255, multiply by
256,

For example, the number 1574 :-
1574 / 256 = 6.,1484

Therefore, the decimal equivalent of the high order byte 1is
6, and the decimal equivalent of the low order byte is @.1484
¥ 256 = 37.99 or 38, You can avoid the error in the low order
byte by finding the remainder by subtracting the whole 1lots
of 256 from the original number, the answer is the remainder.

1574 - (6 ¥ 256) = 38

Hence, the number 1574 is stored in memory as two bytes, the
first containing 38 decimal (LSB), the second containing 6
decimal (MSB),

We now need a total of seven bytes to perform the addition of
two 2-byte numbers, Two for the high and 1low bytes of the
first number to be added, two for the second number, two for
the result, and one to store the carry from the addition, if
any.

Using the accumulator to do the additions piecemeal 1is
tedious because the A register can only handle one byte at a
time. Fortunately, the HL and BC register pairs can be wused
as limited 16-bit (or 2-byte) accumulators. Actually the HL
register is the accumulator, while the BC register can be
used to store the other half of the 2-byte addition.

Listing 8.8 is the source and object code for a 16-bit
addition subroutine which will be loaded and called as in the
previous examples. The origin is set to 88BVUH again.
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Note the use of the DEFW (DEFine Word) pseudo-op to reserve
two consecutive bytes for each 16-bit quantity. tiee {(hapter
11).

After the addition in Line @11 the answer is left in the HL
register pair. If the addition results in a carry, the carry
bit of the flag register is set., A different method is wused
here to test the condition of the carry bit (Lines 013 & @14)
and set the contents of CARR (88@6H) accordingly. If you use
the instruction ADC instead of ADD, the condition of the
carry bit is added to the result.

Therefore, if you load the A register with zero, and then add
it to zero again, the result will be the condition of the
carry bit,

That is, if the carry bit was set, then after the ADC
instruction has been executed the A register will contain a
*1’, If the carry bit was cleared (zero—ed) , then the A
register will contain zero, The resultant contents of the A
register are then loaded into CARR for later access from
Basic via a PEEK,

Listing 8.8

A
Gl

BC, (ADDL
HL., Rt

i3
i
i1 g
@it
e

e B
£

£34

£

The Basic loader is given in Listing 8.9 for the 16-bit M/C
add program,

The M/C 16-bit add program loaded from Basic in Listing 8.9
will accept input numbers from @ to 65536,

This is still a long way from the pure Basic only addition
program given at the beginning of the chapter, which will
accept floating point numbers in the range from -1,78141E+38
to 1.,70141E+38.
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Listing 8.9

R R aRET PR T RO e el

I, HUTARTIRNG &0 Sawaad

&

PRFUT R !
fiE = TN (f N LT
Grobko o= k- INRRRN

M o= INMT(
F .t 2

ATOINTY
: THTE
TNTE

W B4
O GEEEH
S UILLT
s FRER = CAaRRY
LT & - fd

X
1 THEN RR

(.
4@ FRINT RR
S LOTO Leva
Writing routines to handle floating point numbers is well
beyond the scope of this book and such operations can be
handled by converting the floating point data into integers
and then use routines which are extensions of the above,

8.86 MANIPULATING BINARY NUMBERS

We have just seen how we can add two numbers via machine
code, however, we did not actually see how the CPU performs
these additions on those numbers., To be able to manipulate
binary data in a more general way we need to look at the way
the CPU handles the numbers presented to it.

We already know that the computer only deals in binary data
of eight bits, with each 8-bit byte occupying one memory
location. These 8-bit bytes can represent directly the
numbers between @ and 255.

Of course we need to handle other data than numbers between @
and 255 in our computer, and we have looked at how several
consecutive bytes in memory can be used to represent numbers
larger than 255 in the previous examples. However, the
computer must have some means to represent the other forms of
information that it is required to handle.
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In Basic we use several types of variables in our programs to
hold the information that we want the program to work on.
These are:-

- real . can have a decimal fraction, e.g. A = 3,56,
B = 1,6E+32

- integer : cannot have a decimal fraction,
e.g. C% = 122

- string : used to store a string, e.g. Ds = "TEST"

When we use machine code, we cannot use these variables
directly, but we have to write software which will represent
and handle this data using only integers in the range @ to
255 . We can combine bytes in a fixed format to represent
larger numbers or floating point (real) quantities.

The CPU does not inherently ‘know’ what data any combination
of 8-bit bytes represent, that ‘knowledge’ is contained in
the manner in which the data is manipulated by software that
must be written,

8.07 SIGNED INTEGERS

We have seen how the CPU handles integers in the range of ©
to 65535, but what about negative numbers 7 Negative numbers
must still be represented by binary numbers so that they can
be handled by the CPU, but we need some way of indicating the
sign of the number.

The most common way is to use the left-most bit in the number
(the MSB) to indicate whether the number (represented by the
remaining bits to the right) is negative or positive., To
signal that the number is negative, the MSB of the number 1is
set to '1’. A positive number is signalled by the MSB being
cleared to a ‘@’ .

The effect of using one bit to signal the sign of the number
is to reduce (by one) the number of bits available to

represent the actual quantity of the number . Because it is
the MSB that is used, the range is reduced by a factor of
two. The new range for an 8-bit number is -128 to +127, and

for a 16-~bit number the range is —32768 to +32767.

How do we (or the CPU for that matter) distinguish a large
un-signed integer (@-65535) from a negative signed integer?

We cannot. Nor can the CPU,

It is up to the programmer to interpret the data when it 1is
input and when it is output as a result.
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The manipulation of signed integers is one area which causes
a certain degree of heartburn for beginner programmers,

We need to determine the actual code that 1s used to
represent the negative quantity. First, we make the
assumption that the 8-bit binary number ‘00000000’ represents
the number zero. Now of course, the addition of a negative
and a positive number of the same magnitude must equal =zero,
e.g. (+1) + (-1) = 0.

Therefore:—
o000 1 (+1)
+ XXXXXxxx (—1)

ledulnlrlulnln] @)

Now the rules of binary addition are very simple:-

Ll
+ + +
el

o
1
2

ihn o

Plus carry of 1’ to the column to the left.

To get the LSB (right-most bit) of the result of the addition
to equal ‘'®’, the LSB of the binary representation of -1 must
be 1" as 1 + 1 =0,

The carry from the addition in the LSB column is moved to the
left. Now, to get the result in the second column to be '@’,
the second bit of -1 must also be ‘1’, and so on,

The representation of -1 in binary is therefore:-
XXXXXXXx = 11111111
Repeating for -5 :-

PV 101 (+S)
+ RXXXXXXX (—95)
20000000 (@)

Using the same rules, the bit pattern as follows will produce
zero when added to +5.

XXXXxxxx = 11111011

You are probably wondering at this stage if there is an
easier way than this try—-and-see method!

Fortunately, there is., To find the binary representation of a
negative number, take each bit of the binary pattern for the
positive value of the number and invert. This 1is called
complementing the number.
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The result of the inversion of each bit of the positive value
is called the ONE’s COMPLEMENT. If we now add 1 to the one’s
complement, we have the TWO’s COMPLEMENT . This two’s
complement is the representation for the negative number.
That is, for the number -5 we find the binary representation
by:-

00000181  (+5)
11111018 (complementing each bit of +35)

+ 20002001 (add one to the one’s complement)
11111011 (two complement result = -5)

This technique can be extended to 16-bit numbers to give the
range of -32768 to +32767. This is the range of legal numbers
that can be used in the Basic memory commands, PEEK and POKE.

8.98 STRINGS (OF CHARACTERS)

When we ‘'string’ together characters into a group, we can
form them into words, then into text. There are many machine
code programs that are used to handle text in the computer
(e.g. word processor programs), but so far we have only seen
how the binary patterns inside a computer can be used to
represent numbers.

So, in order to handle text characters inside the computer,
we encode them. There is a standard code used for text
characters, called the American Standard Code for Information
Interchange, thankfully shortened to the ASCII code.

For example, as mentioned earlier, the code for the letter
A’ is 65 decimal (41H). You can find the ASCII code for any
character (including the ‘RETURN’ key) by using the following
Basic program,

Listing 8.1¢
T == INEEYS: 1% = [NEEYS

vTHERM 1@
oy pe e o= o v

4
pageli

=]

The first character to be output will be the “RETURN’ which
is typed to ‘RUN’ the program itself. After that the program
will return the ASCII code for any character that can be
typed from the keyboard, including the graphics characters
(for the colour green).
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Therefore, a binary pattern in memory can represent the
following information:-

1. A machine code instruction which can be executed
directly by the CPU,

2. A numerical value within the range 0 to 255, or by
grouping two bytes together, within the range
B-65535, :

3. A code representing a character.

When the CPU encounters these bytes in memory, it cannot
distinguish between them, it is up to the programmer to
instruct the CPU to treat the binary information in the
correct manner by the structure of the program and by the
manner in which the data is used.

~oo0oo-
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CHAFTER <2

THE VIDEO SCREERN - MESSAGES & SIMPLE GRAPHICS

In this chapter we will apply some of the techniques already
discussed in previous chapters by writing a small M/C program
which will output a short message on the screen. To run the
program the message is first loaded by Basic into a specific
area which we will call the text buffer. Then Basic calls
(via a USR function call) the M/C program which takes each
letter of the message and outputs it to the screen.

9.861 END OF MESSAGE FLAG

We need some way of signalling to the M/C program when it has
reached the end of the message data because we want to be
able to enter messages of different lengths. If we are only
outputting text then we can use one of the graphic block
codes as a flag byte for the end of the message, For example,
we might choose 255 (@FFH) as the end of message marker, i.e.
@FFH is loaded to the end of the text message in the text
buffer.

As the program is reading the letter codes from the text
buffer, it checks each code to see if it is OFFH. If the code
equals @OFFH then the program returns control back to Basic,
otherwise the code is a valid character code and is output to
the screen.

9.62 FINDING THE END OF MESSAGE FLAG

To detect whether the code is @FFH we use a comparison
instruction to compare the code we have loaded into the A
register from the text buffer to @FFH. The °‘CP’ instruction
actually does a non-destructive subtraction of the value
specified in the second byte of the instruction and the value
held in the A register.

I1f the answer is zero then the two values must be equal and
this sets the zero flag in the flag register to 1.

The next instruction after the compare operation is a
conditional return instruction which tests the state of the
zero flag, and if it is set then the last code compared must
have been @FFH, so a return is made to Basic.
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?.¢3 SPACE FOR SMALL TEST PROGRAMS

Memory space is needed not only for the text buffer, but also
the program itself, Because the program is small there is no
need to lower the top of memory pointers to reserve space,
but i:.-tead the program can be loaded mid-memory and still be
out of the way. As the text Dbuffer will Dbe wvariable 1in
lenath, it makes good sense to put this after the M/C program
code proper,

For small experimental programs I use 80WOBH as a starting
point for the M/C program itself and 88BBH for the start of
any data areas. This leaves plenty of space for the small
Basic loader program below it and more than enough space from
the top of memory for working space for the Basic interpreter
to use.

Our text buffer begins from 8880H, but the start of the wvideo
display area must also be known., Chapter 7 gave that as 7000H
(28672 decimal), so if we wanted to print the message on the
top line then we would use this value.

Of course, if the message needs to be displayed further down
the screen, we would use a starting address higher in memory
- as long as the text is not loaded higher than 71FFH which
is the bottom right—hand screen position in MODE (@) .

.84 THE MESSAGE PROGRAM

Listing 9.1 and 9.2 are the mnemonics and hex codes
respectively for the message output program. A slight
complication here is that an absolute jump is made in the
last line (line B@9) as part of the looping process to get
the next letter code. This means we have to find the absolute
memory address of the third instruction in the program and
enter it into the last instruction.

NOTE ~ comments in brackets in listings in this chapter are
for explanation only and are not to be typed into the program
listing.

Listing 9.1 Mnemonics

SR

LR

Ay
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Listing 9.2 Addresses and Hex Codes

vl wim 88 (note revers
11 @ 7 o sty
‘ (hack to this address from
FE {second byte is

@ orcer
bt

limne)

GIGR

{must bhe

nintes S 13
601595 BaD (IR TR =1} (Jjump back to BOd6H,
order of address

In lines @83 and @06 the operands are in brackets, being
specified by the current contents of the register pairs, BC
and DE. The operands are in effect variable operands because
the actual value can be changed by a simple increment
instruction operating on the register pairs as in 1lines 007
and 008,

This form of variable addressing is called ‘indirect
addressing’ because the CPU has to first read the instruction
code in memory, then go to the register pair specified and
then pull out the actual address to be used.

In lines 801, @02 and 809 the addresses are actually written
into the instruction, so the CPU can read the address
required directly from the code in program memory. This type
of direct reading of the required address is called
‘immediate addressing’.

The first two lines initialise the two register pairs to the
start of the text buffer (BC) and the start of screen memory
(DE) .

Line ®@3 instructs the CPU to read the address value from the
BC register pair and then put the byte value stored at this
address into the A register. This is indirect addressing as
described above,

Line @04 compares the byte just loaded into the A register
with OFFH and sets the zero flag bit in the flag register to
1 if the byte in the A register is @FFH.

Line ®@5 returns control to Basic if the test for O@OFFH 1is
true, ie. the zero flag bit is set.

Lin~ 786 is executed if the the byte tested in line 004 is
not @FFH, that is, a valid letter code. The valid letter code
in the A register is loaded into the current address value
held in the DE register pair.
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Lines B0@7 and 008 adjust the register pairs BC and DE, to
their respective next addresses ready for the processing of
the next letter code byte.

Line B@9 causes an unconditional jump back to line B@3 where
the next code is loaded from the text buffer and the process
continues,

Listing 9.3 Basic Loader

15105
1ie

L. |1f1L)P;fx FROGHRAM

{(start of M/C program — 8 Z1a))
yis HH% (read the next hex data string?
IF Hib$="XX" THEM  25a@ (test +tor end of data flag)
149 1F LEMHHS) < X2 THEN 244 (valid hex code length)
1E5E N
l1ed FOR I=1 TO 2 (two digits to be processed)
L7 V=ASC(MID$(HH$ Ladd) (ABCTT code of each digit)
1836 POV OR (V7)) OR COV ST AND (V465 ) THEN 246
190 M=K L o+ (V-85 (7% (V640 )) ( build «
DG NEXT

Lmal valued
{ (get ewcond digrt)
D (GPH {OBEEIOHK{BF 32767 )Y) N (load value into manory)
a (adJUbt pointer to next lULﬂLiUH)
Criey e i

ING HEXY DATA":ERND

% ) (Find page

) (=

..ha.rUff SEBELE, (poke Lﬁi

THE TEXT TO OuUTRUT

TRPUTYTYRE TN TEXT TO BE OUTRFUT": TX% Cimpuat lP,t)

HE=EAE16 start ot text budffer - £ ]

< I=1 10 LEMITX$) (go +tor length of

' (MIDSE(TX%, 1, 1)) {(find ABCILI value of

(BB (L9556XK (SREZ2767) ) L0 (ietter into buffer?

+1 tadivst text bufter pointer)

I (3o to last letier)

m BB+ (HBEI6X (SRFIE767))) 255 (end buffer with @FFH)

re=l SR ) (go to FM/C program)

FENTREEDG, "FINTSHED" s END return here and end)
HE X DODES

AEGDRTA @1, 00, 88, 11,086, 70,30, FE, FF, 0B, 12,05, 12,073, 66, 80

468 DATA XX

?.85 THE BASIC LOADER

The loader program in Listing 9.3 is slightly different to
previous versions as the hex codes are entered into DATA
statements of the loader without first converting them to
their decimal equivalents. This has the advantage of being
less prone to errors, but 1is slower during the 1loading
process,
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?.86 GRAPHICS PROGRAM

This program will fill the screen with any character
specified including both letters and graphics characters. Of
course, much more complex programs have to be written for
something spectacular, but with the simple program here you
can concentrate on fundamental principles.

Listing 9.4 and 9.5 contain the mnemonics and the object
codes for the screen fill program respectively.

Listing 9.4 Screen Fill Program Mnemonics (Source Listing)

01451 STRT {12 Hi. . 7@0EH (start of video display)
3 LD RO, @200 (number of scresn locations)
O LD Ay (7921H) (et passed character code)
GIOR .0 {HL.) 4 A la o SCrEen memnoryl
a1t INC HL. (next screen position)
@b DEC 2] (decremaent bvte
Gt L. A, B (load A with B re
alute (R C (OR with C reg
1ol JIR M2, LOOF {cdoy Bill end of
@im RET (all done, back to

Listing 9.5 Screen Fill Program Object Code

@ 21 G 76 (note reverse order of address bytes)
010 @l @ @ (512 screen locations - @2OGEH)
P BG4 EZAO21 79 (code passed to 7921H by USR]
s d BEHI9 77 (load character to screen)
@S BOEA 25 (rexwt screen position?
@i é BEdR (keap track of ' :
7 - (get contents of B into

0 (OR with G, if both B oand © reglsters
alul F & are rero bthen zero flag set)

Gl (return to Basic)
Line @01 loads the start of the video display area into the
HL register, while line @02 loads the BC register with the
number of bytes required to be loaded. Here the whole screen
is going to be filled which has 512 locations or bytes 1in
memory, so @200H is loaded into BC.

Line @®3 is interesting because this is where the M/C
retrieves data passed to it from the Basic USR function. When
*X=USR(CC)’ is executed in the Basic program, the 16-bit
(two—byte) value of CC is loaded to 7921H and 7922H (low byte
first) . Because the low order byte is loaded first in memory
and because the number in CC should always be less than 255
(to be a valid character code), the A register needs only to
be loaded with the contents of 7921H.
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Line B@3 must be executed each time a character 1is loaded
because the contents of the A register is overwritten in line
@26 during testing of the BC register.

The need to use registers for more than one task occurs
frequently in M/C programming and care must be taken to keep
certain values intact during program execution. Sometimes
another unused register can be wutilised or perhaps a
temporary storage location within the program itself.

As a variation on this, the temporary storage area used here
for the character code is outside the program area itself, in
the USR function work area. However, the use of the stack 1is
the most common way of temporarily storing vital data and 1is
dealt with in more detail in the next chapter.

Line @04 loads the character code Jjust received 1into the
memory address pointed to by the HL register.

Line ®@5 increments the video memory pointer (HL register) to
the next screen address while line @06 decrements the byte
counter (BC register) one more count towards @Q@GQOH.

Lines @07 and @®8 do a logical "OR’ of the low and high order
bytes of the BC register. Only when both B and C registers
contain zero will the zero flag bit be set in the flag
register. The state of the zero flag bit is tested in line
P09 and if not set (the contents of BC not equal to @QGOH)
then a jump is made back to line @83 to do the next byte.

Note how that while BC is loaded as register pair in line
@02, each register can be manipulated separately, as in lines
087 and 008.

Notice also, the instruction in line @89 of the hex codes
does not contain an absolute memory address reference to the
address of the code in line @3, but has only a single byte,
@F6H. This is the value of the relative jump from the code in
line @09 to the code in line B®3 of the hex codes listing,.

The use of relative jump addressing is very important because
it allows the relocation of the code around in memory without
changing the code. This is because the code contained in the
instruction is not the actual memory address of the
destination of the jump — which would have to be changed 1if
the program was moved around - but the offset between the two
sections of code which does not change.

The manual calculation of the offset is a bit tricky and will
be shown in the next chapter on jumping and looping.
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This is one area where you will appreciate the convenience of
an Editor Assembler which calculates the offset automatically
during assembly of the source listing. Line @1@ contains the
return to Basic when BC has been decremented to QVOOH, i.e.,
all the screen has been filled.

Listing 9.6 contains the Basic loader for the screen fill
program.

By the way, when the term ''output to the screen'' is used, it
really is a bit misleading. The CPU does not output to the
screen directly, but rather loads character codes 1into an
area of RAM which has been connected to the Video Display
Generator (VDG) chip by the hardware circuits.

It is the VDG which periodically reads this video RAM and
generates the video signals which are fed to the screen via
the video outputs producing the characters on the display.

Listing 9.6 Screen Fill Program Basic Loader

198
Tl
i
136G 1F HH$=CXEX" THEN 4
1A TF LEN(HHS) < =2 THEN 249
1 5@ N
168 FOR I=1 TO 2 (twp digits to bDe processed)
174 VaEAB0 MIDS (HH$, 1,107 (ABCTT code of each digit)
[F (Va4 DR (Y 7 OR GOV ES7YAND (VI&TG Y THEN 40
Bl=plk L b+ (VS8 (T (V0641 ) ) ¢ build decimal value)
MEXT 1 (get second digit)
- (BF+ (LS5 26% (BP 327673 ) . H (load value into memory)
(ad iust pointer to next :
toden n
RO HEX DRDATAY™ ERND Cesry o Mmes 1
: (Find page byvite - MSER of program)
: and then find LBEB)
G FOKE Z2E865,MS (poke LSE % MR into USSR
CHARACTER CODE TO BE OQUTFUT
AHE 00 (input character

AT pe oo am SIAIAISISY)
rext hex data string?
for end of data +1ag)
hey code length)

B AT,
18 THE

(return here and

-oo0oo-
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NOTES
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CHAFTER 1@

JUMPFS . BRANCHES (AND MORE ON STACK OPERATIONS)

Many times while programming in Basic you need to Jjump to
another section of the program, away from the straight
execution of line numbers in sequence. The GOTO and GOSUB
commands are used for this in Basic.

The GOTO command line can be either unconditional -~ ‘GOTO
100’ , or conditional - ‘IF X=1 THEN GOTO 100’ .

In M/C programming there are also unconditional JUMPS and
conditional BRANCHES to other parts of the program, with an
extra twist as we will see. There is also the M/C equivalent
to the GOSUB, a 'CALL’ to a subroutine,

16.81 JUMPS, BRANCHES AND SUBROUTINES

During the normal uninterrupted flow of program execution the
special 16~bit program counter (PC) register is simply
incremented to the next instruction in memory. When a jump or
branch is made to a different address, that address is loaded
into the program counter and the CPU then carries out the
instructions in sequence from that address.

Subroutines are called by a ‘CALL nnnn’ instruction where
‘nnnn’ specifies the address of the subroutine, Remembering
that a GOSUB command in Basic returns to the next command
after the GOSUB when a RETURN command is executed, similarly,
a return to the next instruction is made from a M/C CALL
instruction when a RET instruction is encountered.

RET instructions in M/C differ from the Basic RETURN command
by having a number of conditional variations - see details
about the M/C RET instruction in Chapter 13.

When a ‘CALL’ is made to a subroutine in M/C, the address of
the next instruction after the call instruction is ‘pushed’
onto the stack. The stack is last-in/first-out temporary
storage in RAM, the stack pointer (SP) register pointing to
the -~urrent top of stack address. See discussion of 16-bit
registers in Chapter 5.

When the CPU encounters a RET instruction at the end of a
csubroutine, it retrieves the return address by *popping’ it
off the stack and loading it into the program counter.
Program execution then continues from the next instruction
after the CALL instruction as desired.
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10.02 CONDITIONAL TES18

In addition to the unconditional jump - ‘JP address’, the Z8@
provides conditional branching.

When executing a conditional branch the CPU tests the
condition of one of the bits in the flag register and,
depending on the result, either branches to another part of
the program or continues on to the next instruction after the
conditional branch instruction.

The bits that can be tested are the =zero, carry, sign and
parity/overflow bits.

Table 10.1 contains the conditional branch instructions for
testing each bit which causes a jump if the conditions are
met .

Table 16.1

INSTRUCTION CONDITION (if there is...)
JP Z,address a zero result (Z=1)

JP NZ,address a non—-zero result (Z=0)

JP C,address a carry (C=1)

JP NC,address no carry (C=8)

JP M,address a negative result (S=1)

JP P,address a positive result (S=0)

JP PO,address odd parity result (P/V=0)
JP PE,address even parity result (P/V=1)

The above instructions contain the absolute address for the
jump, but in addition the 780 has relative addressing
instructions,

19.063 RELATIVE BRANCHING

With a relative branching instruction a single offset
displacement byte is specified as part of the instruction
instead of a two-byte absolute address. As mentioned before
relative addressing is useful for creating programs which can
be loaded to different parts of memory without modification
because they do not contain any absolute address references.

There is a limitation, however, because only the zero and
carry flag bits can be tested with the conditional relative
branch instructions.

In addition to the conditional relative branching
instructions there is an unconditional relative branch
instruction :- "JR displacement’.
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Table 18.2 ccntains the c-nditional relative branchng
instructions.

Table 16.2

INSTRUCTION CONDLITION (if there is...)
JR Z,displacement a zero result (Z=1)

JR NZ ,displacement a non-zero result (Z=0)

JR C,displacement a carry (C=1)

JR NC,displacement no carry (C=8)

10.64 CALCULATING THE DISPLACEMENT BYTE

When the CPU erncounters a relative branch instruction and
needs to execute the relative jump, the displacement value is
added to the current program counter value to work out the
address for the jump.

The displacement value is worked out by counting the number
of bytes between the starting address of the next instruction
after the relative branch instruction and the start of the
instruction to be branched to.

The start of the next instruction after the relative branch
instruction is taken as @ because the program counter is
sitting at this address after it has fetched all of the
branch instruction bytes,

As an example we will 1look at the calculation of the
displacement byte in the short graphics program in the

previous chapter. Refer to Listing 10.1 for the assembly
source,

Listing 14.1
LINE LABEL MNEMONIC ADDRESS CODE

13481 STRT I.D HL , 7 @aEH BHGH 21 @@ 7
21 L.D RBC, @2@0H (=1an @y @ @l

16 LOCHE 1.0 A, (79211HD) SE06 IA 21 79
@4 .D (HL.Y .« A SEED 77

20} INC HL. oA &

GIGT DEIL BC s 101 ] @K

@7 1..D AR =jalnim 78

e OR C 8D Bl

@ JR NZ, LO0F 8EHOE 2 Féa

Ny RET il [y
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Starting from address 8010H - the start of the next
instruction after the relative branch instruction in line 809
- count the number of bytes back to, and, including the start
of the instruction in line 8@3. Remember to count the byte at
801GH as @. The number counted is 1@ bytes. Because the
movement is backwards then the displacement is -1@.

There is no direct representation of negative numbers in
binary, so a possible solution could be to use the first
seven bits (bit @ to bit 6) to represent the quantity and the
eighth bit (bit 7) to indicate whether the quantity is
positive or negative.

10.05 TWO’S COMPLEMENT NUMBERS

Unfortunately, in order to simplify the logic in the design
of Arithmetic Logic Units inside CPUs, a different system
called ''two’s complement'' has been adopted for the
representation of negative numbers. We have already dealt
briefly with two’s complement numbers in Chapter 8 (under
*Signed Integers’).

Although the use of this system might simplify things for the
chip designer, it makes things a little tricky for us,

Normally to work out the value of a binary byte we use all
eight bits, but in two’s complement we use the eighth bit to
indicate the sign of the quantity. The eighth bit set (1)
indicates a negative quantity while a @ indicates a positive
quantity, in agreeance with the convention for the sign bit
of the flag register.

The remaining seven bits for a positive quantity is evaluated
as for a normal binary quantity and has a maximum value of
+127,

For negative quantities the eight bit is a 1, but the
remaining seven bits are not simply the binary magnitude. The

following is the procedure for working out the two’s
complement of our displacement, -10,

1. The displacement is negative so the eighth bit 1is a
1,

2. Invert all the remaining seven bits which represent
the magnitude:-—

10 (decimal) = BB81018 (7-bit binary)

invert lower seven bits = 1110101
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3. Add one (0000001) :
1110101
+ 0000001
1110110
4. Make up the full eight bit binary byte - 11110110

5. Break the byte into two 4-bit numbers and evaluate:-

1111/0110
1111 = 15 decimal P11@ = 6 decimal
= @FH = 6H

i.e., the two’s complement of the displacement -1@ is QF6H.

The biggest negative displacement is given by the eighth bit
set to a 1, and the remaining seven bits all @0s, 1i.e.,
19000008d - which evaluates to -128.

So the maximum range for a relative branch is +127 (forwards)
and -128 (backwards) and is a major restriction of the use of
such instructions,.

Once again the advantage of using an Editor Assembler can be
appreciated as it will automatically calculate the
displacement byte from the source listing,

12.06 SAVING DATA ON THE STACK

The CPU automatically uses the stack (controlled by the stack
pointer (SP) register) when a call is made to a subroutine.
The CPU uses the stack to store the return address which will
be retrieved when the call has finished.

The stack can also be used by the programmer in a more direct
way by PUSHing and POPing the contents of the register pairs,
i.e., data is stored on the stack as 16-bit quantities.

The SP register is decremented or incremented by two during
each stack operation because each memory location can only
store eight bits, so two bytes are needed to store the 16-bit
values,

Because there are a limited number of registers available,
sometimes the need arises to save the contents of a register
pair temporarily while the register pair is used for another
purpose. The stack can be used for this purpose.
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The following source code in Listing 1@8.2 is for the previous
short graphics machine code program, modified to wuse the
stack as temporary storage for the contents of the A
register,

Listing 16.2

LINE LABEL MNEMONIC

STRT L1 HL.. 7

|13 B, @
\ LD A, (7R321HD)

§if <) FLiGH AF
S L.OOF FOF Al
aray FLISH Al
a7 .D (HLY W A
e TN HL.
(9 DEC B
Bl LD Ay B
@il IR G
@l JR NZ , L.OOF
LA RET

Three lines have been added, two PUSHes to the stack and one
POP, The PUSH to the stack in line o4 is quite
straight-forward, the contents of the A register just loaded
from location 7921H is being saved to the stack because it is
going to be overwritten in lines @®1® and ©@11. However, the
"POP AF - PUSH AF’ sequence in lines @05 and @26 might look a
little odd.

Well, in fact, the first time the program executes these
instructions they are really not necessary because the
contents of the A register are not destroyed until further
down. The reason for writing the program this way 1is to
ensure the correct sequence of operations for the repetitive
loop operations between lines @05 to @12 later on,

Coming into the loop at line @@5, the required contents of
the A register have been saved to the stack. The first time
lines @85 and 006 are executed they are not really necessary,
but when the program loops back from line @12 the contents of
the A register have been destroyed in lines ©1® and @11. Line
@85 renews the contents of the A register by POPping the
saved value off the stack,.

Remember, the execution of a POP instruction copies the
contents of the stack pointed to by the SP register. Then the
SP register is incremented to the next last saved value (the
stack grows down in memory when items are added). This

means that another POP will not return the same value because
it will be retrieved from the next position on the stack.
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So we actually have to resave the value to the stack ready to
be POPped the next time around. This is the purpose of line

006,

By the way, when a value is POPped off the stack, the entry
in the stack memory is not destroyed, the SP register is just
incremented to the next entry. Therefore, in theory, you
could just as easily reposition the SP register back to the
value by decrementing the SP twice. I say in theory, because
such a practice is very dangerous as it is very easy to lose
track of what is what by using this technique. I have not
seen this used, nor have I ever used it,

Some thought about what happens to data during stack
operations is useful,

When a register pair is PUSHed, the contents of the register
pair are copied to the next two lower locations below the
last entry to the stack. The contents of the register are not
destroyed, but simply copied to the stack.

When a register pair is POPped, the current data value on the
stack overwrites the contents of the register pair. The
previous value in the register pair is destroyed. The SP 1is
incremented two bytes higher up in memory to the next value
held on the stack,

Sometimes more than one register is needed to be saved on the
stack. For example, if you are calling a ROM routine which
uses several registers, you might need to save the contents
of those registers until the execution returns from the call.
The source code in Listing 1@.3 below shows such a situation.

Note how the registers are POPped in strict reverse order to
the order in which they were PUSHed. This is to ensure that
the correct values go into the right registers, as the stack
is a LIFO stack. The term LIFO comes from Last In - First

Out ,

Listing 18.3

LINE LABEL MNEMONIC
GTRT FUSH AF
FLSH BC
FLSH DE

LS Hi..
i L. FOM
- HL-
DE
[RE

fr LD
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We can use a variation in the order of PUSH-ing and POP-ing
as a convenient way of doing a ‘switch—a-roo’ on the contents
of register pairs. The sequence below swaps the contents of
the BC and DE register pairs.

PUSH BC
PUSH DE
POP BC
POP DE

Juggling of register data on the stack is one of the more
tricky, but nonetheless useful, techniques of machine code
programming,

The next chapter on the Vi Editor Assembler shows how it is
used to simplify the entry of machine code programs by using
mnemonics in assembly language source code,

~oo0oo-
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CHAFTER 11

EDITOR ASSEMBLER

The VZ Editor Assembler is a simple means of editing,
assembling and creating auto-execute M/C programs for the VZ.
The Editor Assembler is not the most sophisticated that I
have used, but is perfectly adequate for the purpose for
which it was intended, that is, to provide a simple means of
assembling and creating M/C obiject tapes for the VZ,

The only serious limitation I have found with it is the small
size of memory available for -editing and assembling the
programs. This 1is because the Assembly Source code
(mnemonics) and the Object Code (actual machine executeable
code) are co-resident in a memory area of approximately 11
Kbytes - about 21 Kbytes in later versions.

11.21 DEFINITIONS

The VZ Editor Assembler is what is called a ‘two pass’
assembler. The term ‘two pass’ refers to the fact that the
Assembler scans the Assembly Source code twice. Each scan 1is
called a pass,

During the first pass, labels are read and relative offsets

are calculated which are used during the second pass. The
second pass decodes opcodes, operands and expressions,.

11.902 ASSEMBLY LANGUAGE SYNTAX

An assembly language program, or a source code listing,
consists of labels, opcodes, pseudo-ops, operands, and
comments in a sequence which defines the wuser’s program,.
These labels, opcodes, pseudo—ops, and operands must be

separated from each other by one or more ASCII commas or
spaces,

Comments are separated from the rest by a separate line
beginning with a semi-colon. The following illustrates the
source code format:
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11.63 LLABELS

A label is composed of one to four characters. The characters
used in a label cannot be any of the non-printable ASCII
characters, an ASCII blank, or any of the following
characters:—

PSS &T ()@=-/7+ % ;3 <>,

As well, the first character of a label cannot be a decimal
digit. All labels must begin in column one. A label can be
used in any line in the source code, but cannot appear twice
in the label field.

A label in the label field of a source code listing is set to
the current 16 bit value of the assembler program counter.
The exception to this is when the label is assigned a 16 bit
$ % &’ ()@= characters:-

value by the pseudo-op 'EQU’. Once defined, a label may be
used in other fields in source lines elsewhere in the source
code listing.

11.94 OPCODES

In the 280 instruction set there are 67 opcodes, such as
LD’ ; 25 operand keywords, such as ‘HL’; and nearly 708 legal
combinations of opcodes and operands recognised by this
assembler. In this manual they are only briefly documented,
so it is essential that a companion Z88 ‘how to program’ text
is obtained. The are also many undocumented combinations of
opcodes and operands, but they are for the advanced
programmer, and so do not concern us here.

11.65 PSEUDD-OPS

The VZ Editor Assembler recognises four pseudo-ops. These
appear in the opcode field of a source statement. Labels for
these pseudo-ops are optional except for the ‘EQU’ pseudo-op.
The pseudo-ops do not necessarily generate object code, as
all opcodes do, but can cause certain wvalues to be loaded
into certain bytes, or can reserve bytes. All the pseudo-ops
direct the Assembler to cause some action to happen.

A pseudo-op can be used to assign a value to a label. This is
the "'EQU’ pseudo—-op and has the format:-

label EQU nn
where nn is a 16 bit walue.
For example:-

VIDE EQU 7008H
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here the 1label ‘VIDE’ has been EQUated to 7@00H, the
beginning of video RAM memory, and can be used later on in
the source code to save referring to the hexadecimal address
7000H directly. For example:~

STRT LD HL,VIDE
could then be used in place of:-
STRT LD HL,7000H

This value is fixed by the ‘EQU’ pseudo-op and cannot be
redefined by another Pseudo-op or appear in the label field
of another statement in the source code,

The label can also be made equal to the address of the label
itself which is the current value of the assembler program
counter. The format is:-

label EQU $

where $ is the current value of the assembler Program
counter,

Particular bytes within a Program can have their contents
defined by one of two pseudo-ops, as opposed to having their
contents determined by the assembling of a source line and
the resultant object code.

The first of these is the "DEFB’ pseudo-op which has the
following format with the brackets around the ‘label’
indicating that a label is optional.

(label) DEFB n

where n is an 8 bit value which becomes the contents of the
byte in memory at that address. ASCII characters can be
assigned to these bytes by enclosing them in quotes,

For example:-

(label) DEFB ‘A
The other pseudo-op is the "DEFW’ pseudo-op.
(label) DEFW nn

where nn is a 16 bit value. The least significant byte of the
16 bit quantity nn is loaded into the address of the current
pProgram counter, and the most significant byte of nn is
loaded into the address of the pProgram counter + 1, These two
consecutive bytes form what is called a “word’,




If the user wants to reserve a certain section of RAM inside
the program area but does not want to initialise it with
specific values during assembly, the *'DEFS’ pseudo-op can be
used. The format is:

(label) DEFS nn

where nn is a 16 bit value, Using this pseudo-op reserves nn
bytes of memory and caused the assembler program counter to
be incremented over this area,

11.986 OPERANDS

There may be zero, one, or two operands present in the source
statement depending on the opcode or the pseudo—op used. An
operand can take one of the following forms: - a generic
operand, a constant, a label, the program counter symbol '§’
or an expression,

A generic operand is a keyword which has special meaning to
the Assembler. These keywords are recognised as having only
one meaning and should not be used as labels. Below is a list
of these operands and their meanings.

OPERAND MEANING

A A register (accumulator)
B B register

C C register

D D register

E E register

F F register (flags)

AF AF register pair

AF’ AF’ register pair

BC BC register pair

DE DE register pair

HL HL register pair

SP stack pointer register

S program counter

I I register (interrupt vector MS byte)
R refresh register

IX IX index register

1Y IY index register
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OPERAND MEANING

NZ non-zero

Z zero

NC non—carry

C carry

PO parity odd/non overflow
PE parity even/overflow

P sign positive

M sign negative

A constant used as an operand must be in the range @ through
@FFFFH or @ through 65535. The are two types of constants,
but the default is decimal. Hexadecimal numbers must start
with a digit @ to 9 and end with ‘H’,e.g., 22H, @FCH, 15H,
OA3H,

ASCII constants are characters enclosed in double quotes and
are converted to their equivalent ASCII code byte ("A"= 41H).

Labels may be used as operands with two conditions: firstly
they have to appear in the label field of a source line
elsewhere in the source listing, and secondly, labels cannot
be defined by 1labels which are not defined themselves
previously. This is an inherent limitation of a two pass
assembler,

The symbol '$’ can be used as an operand. It represents the
current value of the assembler program counter (the address
at which the code is currently being assembled to).

Finally, the allowed range for the offset in a “JR’
instruction is -128 to +127.

11.97 TYPICAL EDITING/ASSEMBLING SESSION

To illustrate the actions in a typical Editor Assembler
session, we will use the example of the simple half screen
clearing routine from a previous exercise. The process can be
broken down into a number of steps:—

1. Write down on paper a description of the process that
is required to be implemented in your program.

2. Draw a flowchart of each sub-task in the process, and
if the program is sufficiently complex, draw an
overall general flowchart to show how the various
sub-~task modules link together.
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3. Write down on paper the assembly language mnemonics
which implement the operations of the flowchart. I
recommend you don’t type the source code directly
into the Editor Assembler without writing it down on
paper first. This is because in spite of the
convenience of being able to quickly edit the source
on the screen, the video screen has not been able to
replace the facility of seeing the whole program
before you at one time (spread out across the table
in front of you). This ‘panoramic’ paper view wins
hands down when it comes to making the program a
nicely integrated unit. electronic ‘cut and paste’
will still come a poor second to this approach until
we have video displays which occupy the size of a
table top.

4. Once you are satisfied with the logic and the flow of
the code, type it into the Editor Assembler, using
the ‘I’ command.

For example, enter the small routine in Listing 11.1 from a
previous example:-—

Listing 11.1
fi5gs | i HALF-SCREEN CLEAR ROUTINE

STRT LD B, #FFH
LD ML, 7@0dH

(4 LD oy HEH
] LOOF LD (Hi.) . A
¥ & ING HL

a7 DJINZ L00F

GG RET

Always make the first line of your source code a comment line
(must be started with a ‘;’), perhaps a short one 1line
description of the function of the program.

If you put actual program mnemonics on the first 1line you
will find that you will not be able to insert extra code
easily at the head of the code later., This is because if you
enter 'I1’ when you want to insert a line at the head of the
source code you will find the Editor Assembler will respond
by bringing up the second line,.

If you type "IB8’ you will be presented with the next after
the last line of the source code. Therefore, fill the first
line with something that you will not be 1likely to alter
often, e.g. a title for the program.
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You can of course insert lines at line 081 by typing °‘I1°
(the Editor Assembler responds by bringing up line ©082) and
then re-typing line 001 into line @8@2. You can then enter the
new code in line @01 by entering ‘'El’ .

If it is a long listing I suggest you save it periodically on
tape using the 'TS’ command. When it comes to deciding how
often you 'back-up’ or save your source code, decide on the
maximum amount of time you want to waste if the power should
accidentally go off. If you don’t mind losing half an hours’
work, then only back-up every half hour, but remember - it is
not Jjust the typing time vyou have 1lost. Sometimes a
considerable amount of working out and design thought is lost
and you might have to go back and spend time trying to
remember why you did something a certain way.

Once again, if you write down the program source code on
paper before you begin to type it into the Editor Assembler,
you are ahead (or at least, not too far behind).

S. Set status to printer output using *S1C’ and get a
printout of the source code for use during debugging.

6. Set the start address for assembly by using the ‘0O’
command, and use the ‘A’ command to assemble the
source code after setting the status to ‘S1A’,
Assuming you have set the origin to 800OH (32768
decimal) either by "08800H’ or "032768’, the Editor
Assembler will produce the following:-

Listing 11.2

BEL 3 HALF-SCREEN CLEAR ROUTINE
@EE STRT LD B, @FFH
BOwH @6 FF
' LD ML, 7 @GEH
LRl 0w 7

LD iy, 66H
BEHOS ZE L@
GES LOOF LD (ML) LA
Qa7 7
@i INC  HL
BHEE B
By DINZ LOOF
BEHHY 16 FU
e RET

lalog ey

7. If there are no errors in the assembly go to step 9,
otherwise set the status to 'S1C’ to get a printout
of the errors.
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8. Go back to your source code listing with this error
listing, find the errors, correct them, and then
produce a new source listing, Write a cancellation
note across the old source to avoid the possibility
of confusion over which is the the 1latest, most
correct version of the listing. Now go back to step 6
and repeat the process until all errors have been
eliminated. As long as you are keeping track of the
latest correct source listing there 1is no need to

update the source on tape, unless, of course, the
corrections are very drastic, or the listing is very
long.

9, At this stage you should have an error-free source
code listing, however, you may still have a long way
to go. This is because the errors found by the Editor
Assembler are simply syntax-like errors.

There are now basically three paths to follow to fully check
out your program code.

The first is to assemble the code into RAM just above where
the source code is held using the 'R’ command. This has the
advantage of being a quick way of checking out the code, but
has the disadvantage of not being able to assemble the code
at the position in memory where you want the program to run,
I have rarely used this facility. Also, if the program has a
bug, it can overwrite the Editor Assembler object code, or
lock up the computer completely, requiring you to switch off
the VZ to regain control. In either case you will have to
reload both the Editor Assembler and the offending source
code in order to correct it.

The second path available is to create an object tape of the
program. This allows the program to be loaded where it is
supposed to run finally. However, it is necessary to reset
the VZ in order to load the object tape and run it. Once
again you will have to load the Editor Assembler and the
source code back in to correct any errors, and then create a
new object tape. This will have to be repeated for every
error found. In other words, it is impossible to easily make
any corrections to the program without loading back in the
Editor Assembler and the source code.

The third path is the one I tend to use in general, and that
is to take the assembled object code and convert it to
decimal notation and place it in "DATA’ statements of a Basic
loader program. I find this a handy method for testing small
routines for a larger program, or small routines to be called
from a main Basic program, using the USR(®) Basic command as
described previously.
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The small half screen clearing subroutine was developed using
this approach., If you study line 2010® (repeated here below)
and examine each of the entries in that line you will find
they are the decimal equivalents of the hexadecimal object
code produced by the Editor Assembler when it assembled the
above source code,

S
0

SEld DATA &, 255, 55 S0l -1

The final -1 is an ‘end of data’ flag for the loader,
WARNING ! WARNING ! (Don’t say you haven’t been warned)

As it says in the Editor Assembler Instruction Manual, be
sure to save your source code before you attempt to run your
program in memory to avoid the mind-boggling, dog-kicking
frustration of losing all your hard work if the program
crashes. In fact, I always save my source before assembling
it, that is, during the time I am entering the source code.

Appendix 8 contains the 1list of mnemonics and pseudo-ops
recognised by the VZ Editor Assembler.

—oo0oo—-
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CHAFTER 12

FPFPROGRAMMING TECHNIGQUES

This chapter will deal with the process of writing simple
machine code programs. The general approach described here is
applicable to either wusing a Basic 1loader or an Editor
Assembler.

Writing machine code programs involves implementing the task
to be performed by using the available instructions and
assembling them into a program.

Compared to Basic, machine code requires a large number of
instructions even for simple tasks, so it is important to
find ways of reducing the number of necessary instructions in
order to minimize the size and complexity of the program.

12.91 SUBROUTINES

As a Basic programmer, you should be familiar with the
concept of subroutines, Just as you can write a separate
section of Basic code and then ‘call’ it by the use of the
Basic GOSUB command, in machine code program there 1is a
*CALL’ instruction. Likewise, when a return to the original
section of code is required, there is a ‘RET’ instruction
(like the RETURN instruction in Basic).

Subroutines save the duplication of sections of code which
are used a number of times in the program, thereby saving on
the number of bytes needed in memory to store the program,.
Also, by breaking down the operation of the program into
smaller, indentifiable sections, the program is easier to
write, understand and correct.

Unfortunately, there is one major difference between Basic
and machine code subroutines; when a call is made to a
subroutine in Basic it is to a certain line number, while in
machine code the call is made to a absolute memory reference.

That is, you need to know exactly where in memory the
subroutine is stored. The actual physical memory address must
be included in the operation code for the *CALL’ instruction
(which is @CDH followed by the low order byte, then the high
order byte, of the memory address of the start of the
subroutine) . In Basic the line number is just a reference to
a position in the Basic code 1listing - it has nothing
directly to do with the actual physical memory address.
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That means, for machine code, we have to keep track of any
changes, insertions or deletions which may affect the actual
memory address of our routines.

If we are assembling our machine code by hand, this becomes a
tedious and error—prone operation., This is another reason for
using an Editor Assembler, because this utility allows us to
specify the start address of the routine by a label and then
the actual address for the CALL instruction is automatically
calculated by the Editor Assembler when it assembles the
source code for the program.

12.02 LOOPS

In Basic, the use of FOR...NEXT or IF,..THEN GOTO commands
allows us to construct loops and repeat sections of program,
using changing variables, until certain testable conditions
occur. In machine code, the use of the conditional JUMP
instruction (with testing operations) can be used to
construct a loop.

If we use JR instructions, these loops can be implemented
using code that is relocateable. This limits the variety of
tests that can be made as well as the number of bytes
contained within the loop, but this is usually not a problem,

12.03 FLOWCHARTS

The use of flowcharts is the sign of a competent programmer
who takes a professional approach to programming. It’s a case
of ‘real programmers DO use flowcharts’. Some programmers are
of the opinion that because of the sophisticated editing
utilities available, all program development, writing and
checking can be done at the keyboard. Although this may be
possible for simple programs, it can be shown that over a
period of time such an approach is inefficient and
unprofessional.

It seems to me that those who advocate this approach have
never written, debugged or modified a sizeable program ( >
10K bytes), or at least done it efficiently. Their programs
can at times resemble machinery held together with fencing
wire; they work, but any attempt to modify or adapt them
results in a mess.

The first step in writing machine code is to =set out in
flowchart form the operational flow of the proposed program,
Even if you have managed to write programs in Basic without
flowcharts, do not make the mistake of thinking you can get
away with it when writing machine code except for the
simplest of programs (50 bytes or so).
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The idea behind flowcharts is to give you an overall picture
of the operation of the program in order to allow efficient
writing, altering and debugging. You simply can’t keep this
overall picture in your head (except for simple programs).

If the program is large (and therefore complicated) begin by
writing down in English a description of the performance that
is required from the program. Then isolate and write down the
separate sub-tasks that need to be performed.

Devising flowcharts for these sub-tasks will allow you to
decide what registers to use, where data will be stored, and
what routines can be used more than once in the program flow
if they are made to be general in nature.

The use of flowcharts can also help you to decide the most
efficient use of the available instructions, sometimes
considerably shortening the code necessary.

If you can have the patience to lay out your program properly
in flowchart form, you will find it a good long-term
investment for future programming activity. If you include in
the flowchart such details as the use of registers, what is
on the stack at each point, you will find the program not
only easier to debug, but also many of the clever little
tricks you have devised can be re-used at a later date in
other programs.

12.864 EXAMPLE PROGRAM

We will write a small routine which is commonly required in
many programs, that of clearing the video screen. (Althcough
in this example only half of the screen will be cleared).

The process will be done in three stages:-—

1. Identifying parameters that will be used by the
routine, i.e. the start and finish of the video
screen in memory to be cleared , and the character
used to fill this area to produce a blank screen,

2. Drawing a flowchart to describe the operation of the
routine,

3. The implementing of the tasks as described in the
flowchart in assembly language and the production of
machine code bytes (object code) by assembling the
assembly language source code,

In addition, a Basic program listing is given to show the
equivalent operations in Basic.
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12.95 PROGRAM PARAMETERS

The start of the video text screen (MODE @) is at 7000H
(28672) and extends upwards in memory for 512 bytes to 71FFH
(29183) . The character code for a blank or space is 40H for a
black space, or 6@H for a white space,

Figure 12.1

Flowchart (; START 4)

LOAD COUNTER ‘B’ Register
SCREEN SIZE

'

LOAD POINTER ‘HL’ Register
START SCREEN

)

LOAD CHAR.
TO SCREEN

INCREMENT
POINTER

LAST SCREEN
LOCATION 7

NO

YES

( FINISH )

Listing 12.1 Assembly Language Source Code Listing

START LD B, @FFH sload B Register 1/2 screen
L. Hi.. o 7#@EH s load HL Register with start
.D A, HEH sload A register with space code
LOGE LD CHL DY 5 A 1load space to scoreen
ITNC HL sincrement to next location
DJINZ  LOOF sdecrement B Register and check to see

sif it 18 zero
1iF not zero go back to CLOOPT
FLET sveturn to calling code.

If you use the VZ Editor Assembler to produce the object
code, leave out the comments, and remember that labels have a
maximum of four characters.
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Listing 12.2 V. Assembler Source and Object Code
LINE ASSEMBLY SOURCE CODE ADDRESS OBJECT CODE
A STRT LI B, GFFH B e FF

g 1.0 HL. 7 SE0H jrativy a1 oo 76
HEs LD A, L 101w SE b

@4 LOOF LD (HL) L A BT 77
HEE INC Hi.. alutis] 25
Bh DINZ  LOOF BHEe 19 FC
@7 RET alaleye ()

12.06 ASSEMBLY LANGUAGE SOURCE CODE LISTING

The above listing is what will be produced by the VZ Editor
Assembler with the exception that the Address and Object Code
will be on the next 1line after the Source Code. I have
patched my Editor Assembler to output the Address and Object
Code on the same line (only for hard copy to the printer).

The equivalent Basic program would be:-
Limsting 12.3

Lo B=ESS

O HL=2867 2

IO A=SE

46 FOEE HL,A

SEH HL=HL+1

6@ B=B-1:1F B<>@ THEN GOTO 4@
766 END

Note how the hexadecimal quantities in the Assembly Language
Source code have been converted to their decimal equivalents
and the variables used in the Basic program are the same as
the register names in the Assembly Source code for ease of
comparison,

Finally, to clearly see the difference in speed between Basic
program execution, use the Basic M/C loader to load and
execute the machine code program above and compare the time
to clear the top half of the screen. The two (Basic and M/C)
clearing routines have been combined into the one program.

Listing 12.4 is the Basic screen clearing program (lines
30-800) to which a M/C loader has been added (S08-2010) .

This example illustrates two things clearly. The first is the
vast superiority of M/C over Basic as regards to speed, and
how small M/C subroutines can be conveniently called from a
main Basic program to perform those functions which require
speed, while the main Basic program is used to output text
and accept input from the user via the keyboard.
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Once again, I put forward the idea that there is no need to
write all your program in M/C in a computer which has a
resident Basic Interpreter.

Listing 12.4 The Screen Clearing Program

TG REM BASIC VERSION
4G 0L

S@OFOR I=1 TO 163 #FRINT"KEKXKO0KOKOOOO0KKK " 3 1 NEXT 1
&% INFUT'HIT *RETURN® TO START"3;D$

79 T@dlh, "STARTING BASIC CLEAR SCREEMN"

L@ R=25s

2
TEE A=T4

A8 FOKE HL.A

SEH HL=HL+ 1

b B=E-1:IF B8 THEN GOTO 4@

706 PRINT@448, "FINISHED"

8@ INFUT"HIT *RETURN® TOD 60 TO M/C"3:D$

PEHE REM M/C VERSION

110§ CLS: §T=10500

1206 FOR I=1 TO 1&6: FRINT"XKKKKKKRKOOKCKKKK " 3 s NEXT 1

LZ6@6 READ Di IF D=-1 THEN GOTO 1666

1496 FOEE ST,D

1506 ST=8T+1:60TD 1366

166G MB=INT (325@6/256) 1 LB=I2S50@-MEX 256

1706 FOKE 20862, LR: FOKE I@863, MR

1866 INFUT"HIT "RETURN® TO START";D$

1906 PRINTR416, "STARTING M/C CLEAR SCREEN": X=USK (@)
2O06H PRINTE@448, “FINISHED" : END

2010 DATA 6,255,335,0,112,62,96, 119,35, 16, 252, 261, -1

—-oo0oo-
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CHAFRFTER 13

THE Z—68¢ INSTRUCTION SET

As mentioned before, when you are creating your machine code
program it is very useful to write it down in the form of
mnemonics. These mnemonics are a kind of shorthand for the
instructions that can be utilised by the CPU. There are
several very good reasons for using this shorthand
representation:

It enables us to:-

1. ‘verbalise’ the operations we wish to carry out and
we can fairly easily step through the code to check
that everything is correct. Imagine trying to step
through a list of op-codes expressed in numerical
form (e.g. 3EH, 22H, 23H, OQAFH, QEDH etc.) 1in order
to check it out (debug it).

2. express some quantities in general terms while we are
still in the stages of initially writing our code so
that when we change the program we do not have to
recalculate those quantities.

3. Finally, if we are using an Editor Assembler (you
should if you are serious about your programming) we
do not need to actually write down the numerical
values of each byte of the machine code program - the
Editor Assembler does it for us., Also, if we insert a
new piece of code between existing code, the Editor
Assembler automatically adjusts for the new locations
when it re-assembles,

13.041 MNEMONICS

The mnemonics used to represent the various instructions are
designed to remind us of the operation that the instruction
carries out and so a generalised form of description is used.
The following illustrates the general source code format:-

(label) op—code {operand 1{,operand 27}]

As indicated by brackets, some of the parts of the source
code line are optional.




102

The ‘label’ field is used to mark a particular point in the
source code so that a jump can be made to this point from
some other part of the code. In other words it has the same
function as the line number has in a Basic 'GOTO line number’
statement.

The ‘op-code’ field must be included. The letters wused here
define the basic function of the instruction, e.g. LD means
load, INC means increment, ADD means add (surprise,
surprise!!), while ADC means add with carry and so on.

Letters which represent the registers (AF, BC, HL etc.) do
not appear in the op—-code field itself (except for several
direct Accumulator operations).

The ‘operand 1,operand 2’ field generally indicates what item
the operation will be carried out on, The operands might
specify a register, a memory location or an actual numerical
value, Note that 'operand 2’ is an extension of ‘operand 1,
i.e, you can’t have ‘operand 2’ by itself,

In any list of instructions for a CPU, there are some
instructions which are almost identical to some others,
except for referring to, say, a different register. In order
to avoid repeating these almost identical instructions in the
following descriptions, we can replace the gspecific
references by general terms,

In the section below the following general conventions are
used:—

r Any individual 8-bit register (A, B, C, D, E, H and
LD

rr 16-bit register pair, Will always mean BC, DE and
HL. The description will say if the other 16-bit
registers are also included (AF, IX, IY and SP).

n 8-bit data byte.
nn 16-bit data byte or memory address

d 8-bit offset or relative displacement, Has the
range of +127 to -128,

When brackets are used around a 16-bit quantity, that
qgquantity is not the actual value to be used, but rather is
used as a ‘pointer’ to a memory location where the data to be
acted upon is stored.
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Fven more obscure is the situation when brackets surround a
register pair designation. Here the register pair contains
the 16-bit quantity which is used as the pointer to the
memory location which contains the data to be acted upon.

For example:-—
LD A, (7000H)

means load the Accumulator (8-bit register A) with the 8-bit
data stored in location 780@H, while:—

LD A, (HL)

means load the Accumulator with the 8-bit data stored in the
memory location pointed to by the 16-bit address held in the
HL register.

This seemingly indirect way of specifying the location of a
byte in memory is, in fact, very useful. For example, when we
want to scan through a block of memory and test for a
particular value.

Instead of having separate instructions to reference each
memory location to be scanned, we can load the first memory
location into the HL register, use ‘LD A,(HL)’ to load the
data byte into the Accumulator and test it. To access the
next byte in memory, we simply INCrement the HL register and
repeat ‘LD A, (HL)’ etc., using a 1loop construct (much the
same way as a FOR...NEXT loop in Basic).

13.82 ACCUMULATOR OPERATIONS

The Accumulator, or A register, is the only 8-bit register in
which 8-bit arithmetic operations can be performed. The
result of the operation is written back into the A register,
overwriting values previously stored in the Accumulator.

ADD A ,n :the next 8-bit data byte ‘n’ following the
instruction byte in program memory is added
to the contents of A.

ADD A r :the contents of register 'r’ are added to A.

ADD A, (HL) :the contents of the memory location pointed
to by HL are added to A.

ADD A, (IX+d) :the contents of the memory location pointed

ADD A, (I1Y+d) to by adding the displacement ‘d’ to the

contents of IX and IY respectively, are added
to A.
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The previous instructions are repeated for ADC (add with
carry), except the condition of the carry flag is included in
the sum, i.e,:—

ADC A,n : ADC A,r : ADC A, (HL) : ADC A, (IX+d) : ADC A, (IY+d)
Similarly, for 8-bit subtraction:-

SUBn : SUB r : SUB (HL) : SUB (IX+d) : SUB (IY+d)

and with carry:-

SBC n : SBC r : SBC (HL) : SBC (IX+d) : SBC (IY+d)

Note that for the SUB and SBC instructions the letter ‘A’ is
not included as operand 1 as is the case for ADD and ADC.

Three of the above 8-bit arithmetic operations are available
for 16-bit operations, with the HL register acting as the
16-bit ‘accumulator’, i.e. the result is loaded back into HL.

ADD HL,rr tthe contents of register pair ‘rr’ are added
to HL, where ‘rr’ may be BC, DE, or HL itself
(where it doubles the value in HL) or SP.

ADC HL,rr :the contents of register pair ‘rr’ (as above)
and the carry bit of the flag (‘F’) register
are added to HL,.

There is only one 16-bit subtraction operation available;
subtract with carry:-

SBC HL,rr :the contents of the register pair ‘rr’ and
the carry bit are subtracted from the HL
register,

Note that if you want to do a ‘subtract without carry’
operation then precede the *SBC HL,rr’ instruction with an
‘XOR A’ which has the effect of zero-ing the A register and
clearing the carry flag.

Two more ADDs are available which operate on the index
registers IX and IY. They are:-—

ADD IX,rr :where ‘rr’ may be BC, DE, IX itself, or SP.
ADD 1IY,rr :where ‘rr’ may be BC, DE, IY itself, or SP,

Another group of instructions which use the Accumulator are
the LOGICAL or BOOLEAN operations. The operations are carried
out on a bit-by-bit comparison basis between the eight bits
in the accumulator and the identical eight bits of another
specified byte.
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The result of each bit comparison is loaded back into the
corresponding bit position in the Accumulator.

Firstly, let’s look at the logical AND operation. Here the
result for each bit position is logic 1 if the bit in the
Accumulator is 1 AND the bit in the comparison byte 1is 1.
Otherwise the result is 0.

AND n :the Accumulator byte is ANDed with ‘n’ and
the result loaded back into the Accumulator.

AND r :the contents of the Accumulator and the ‘r’
register are ANDed and the result is left in
the Accumulator.

AND (HL) :the contents of the memory location pointed
to by the HL register and the Accumulator are
ANDed. Result in A,

AND (IX+d) :the contents of the memory 1location pointed

AND (IY+d) to by adding the displacement °‘d’ to the
contents of IX and IY respectively, are ANDed
with the contents of the A register.

The logical OR operation is similar to the AND by being a
bit-wise comparison operation. Here the bit result is 1 if
either, or both of the A register and comparison byte bits
are 1. The OR instructions are of the same form as the AND
instructions, i.e,:—

ORn : ORr : OR (HL) : OR (IX+d) : OR (IY+d)

The logical XOR (eXclusive OR) operation is once again
similar to the other two logical operations. For the XOR, the
result is 1 if one (and ONLY one) of the bits in the A
register or the comparison byte is 1, i.e., each bit result
is set to 1 if the two bits compared are different.

Once again the form of the XOR instructions is similar to the
ADD and OR instructions:-

XOR n : XOR r : XOR (HL) : XOR (IX+d) : XOR (IY+d)

Incidently, for all the above logical operations the carry
flag is set.
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Two instructions to round off the logical operations on the
Accumulator,

CPL :All bits are logically inverted, 1i.e. if a
bit was 1 it is made @, and vice-versa,

NEG :the contents of the A register are subtracted
from zero.

13.03 LOAD INSTRUCTIONS

The largest and most frequently used group of instructions
are LOAD instructions. This is not surprising because loading
instructions are used to initialise registers or memory
locations, and move data around inside the computer (from
register to register, register to memory and back, etc.). In
general, the item given in operand 1 is the DESTINATION item,
while the item given in operand 2 is the SOURCE item,

Firstly, the 8-bit register loads:

LD r,r t:load first ‘r’ with the contents of the
second ‘r’

LD r,n :load ‘r’ with the eight-bit value ‘n’,

LD r, (HL) :load ‘r’ with the contents of the memory
location pointed to by HL.

LD r, (IX+d) :locad ‘r’ with the contents of the memory

LD r, (IY+d) location pointed to by adding °d’ to the

contents of IX and IY respectively.

In addition to the general register locads given above, the A
register can be loaded from an address actually contained in
the instruction itself (called immediate addressing). Also
the memory location from which the data is to be loaded into
the A register can be pointed to by the contents of the BC
and DE registers.

LD A, (nn) :locad A with the contents of memory location
‘nn’ .
LD A, (ro) :lcad A with the contents of the memory

location pointed to by the contents of the

. ’

register pair ‘rr

To round off the €-bit register loads, note that every load
instruction which fetches a value from a memory address has
its storage equivalent (EXCEPT for data 1loads from bytes
within the instruction itself).
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That is, we have opposites for LD A,(mn), LD r,(HL), LD
A, (rr) etc., but not for LD r,n, LD A,n etc.. For example:-

LD (HL),A : LD (nn),A : LD (HL) ,r etc., but NOT LD n,A .

Next, we will deal with the 16-bit register pair loads (BC,
DE, HL, IX and 1IY).

’

LD rr,nn :load the register pair ‘rr’ with the 16-bit
data ‘nn’. The first byte after the
instruction in program memory is loaded into
the low order register of the pair (the ‘L’
register in the HL register pair) and the
next byte in program memory 1is loaded into
the high order register of the register pair
(the ‘H’ register in the HL register pair) .

LD rr, (nn) :1oad the register pair ‘rr’ with the contents
of two consecutive memory locations, the
first of which is specified by ‘nn’, The byte
located at memory location ‘'‘nn’ is loaded
into the low order register, while the byte
located at location '‘nn+l’ is loaded into the
high order register.

The one opposite instruction for 16-bit loads is:—

LD (nn),rr .1oad the location specified by ‘nn’ with the
contents of ‘rr’ - the low order byte of the
register pair being loaded into the location
‘nn’ and the high order loaded into location
‘nn+l’ .

It is also possible to load 16-bit data into memory from an
jnstruction. The location to which the 16-bit program data is
to be loaded can only be pointed to by the HL, IX and IY
register pairs.

LD (HL) ,nn : LD (IX+d),nn : LD (IY+d) ,nn
Finally, we can set the SP to point to any 16-bit memory
location by loading it with the contents of the HL, IX or IY

register pairs.

LD SP,HL : LD SP,IX : LD SP,IY
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The 16-bit contents of SP cannot be accessed directly <(there
is no LD HL,SP etc. instruction), however, we can access the
SP indirectly by executing an ADD HL,SP instruction after we
have zero-ed the HL register pair, e.g.:-

LD HL ,8860@H
ADD HL, SP

Now we have the contents of the SP register effectively
loaded into the HL register pair.

13.84 JUMPS

Many of the types of constructs used in Basic Programming are
also needed in machine code programming. We need, for
instance, an absolute jump instruction to perform the same
function as ‘GOTO 108@’ does in Basic. We do this by loading
the PC with a new address which is the address of the section
of program to where we want the program execution to Jump to.
We cannot do this directly, but there is a more convenient
and flexible way; via JUMP instructions,

First, the absolute unconditional Jjumps:—
JP nn :load the PC with the address ‘nn’. Execution

will continue at this new address. Remember,
low order byte first.

JP (HL) :1load the PC with the contents of HL, IX or IY
JP (IX) respectively., Execution now continues at the
JP (IY) new address pointed to by HL, IX or IY.

Just as we have conditional GOTOs in Basic, we can have

conditional jumps in machine code. A conditional GOTO in
Basic acts on the result of some test, e.g.:-

IF X=10@ THEN GOTO 1200
In our Z8® machine code case the results of tests are
indicated in the states of the bits in the ‘F’ (flag)
register. They are:-

JP NZ,nn :jump to address ‘nn’ if zero flag is @,

JP Z,nn :jump if zero flag is 1.

JP NC,nn :jump if carry flag is @.

JP C,nn :jump if carry flag is 1.

JP PO,nn :jump if parity flag is 0,

JP PE,nn :Jump if parity flag is 1.

JP P,nn :Jump if sign flag is positive.

JP M, nn :Jump if sign flag is negative.
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Notice the jumps are to absolute locations (given by ‘nn’).
We also have RELATIVE jumps, which are so many steps back or
forward from the current position. The size of the relative
jump is given by an 8-bit displacement “d’. Once again the
range for this 8-bit offset is +127 to -128. The positive
~values of the of fset cause jumps forward (or higher wup) in
memory, while the negative values cause jumps backwards (or
lower down) in memory.

JR d :jumps ‘d’ number of memory bytes uncond- .
itionally.

There are only five conditional relative 3ump instructions:—
JR N2,d : JR Z,n : JR NC,n : JR C,n
(NZ, Z, NC and C as above) .

The fifth conditional relative jump instruction is similar to
the FOR...NEXT loop construct in Basic.

DINZ 4 :decrement the B register, and if it is not
zero, Jjump 'd’ number of memory bytes
(usually backwards to the beginning of a
loop). If B is zero continue execution at the
next byte in program memory following the
DJNZ instruction.

The machine code equivalent to the Basic GOSUB is the CALL
instruction. When a CALL is executed, the current program
memory address (the contents of PC) are pushed onto the
stack, and the PC is loaded with the new address of the
subroutine CALLed. We have the unconditional CALL:-

CALL nn :go to the subroutine at address ‘nn’
and conditional CALLs:-

CALL NZ,nn : CALL Z,nn : CALL NC,nn : CALL C,nn : CALL PC,nn
CALL PE,nn : CALL P,nn : CALL M,nn

To RETurn from the subroutine CALLed back to the original
program memory location, we have the unconditional RETurn
instruction:—

RET
and the conditional RETurns:-

RET NZ : RET Z : RET NC : RET C : RET PO : RET PE : RET P
RET M
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13.85 TESTING

Testing operations affect the state of bits in the F
register, which then can be used in the conditional jumps
detailed above., The testing operation does not alter the
values under test, but the flag bits are set/reset according
to the result of the test,

A comparison operation between the contents of the A register
and a specified byte can be made:-

CP r :subtract the contents of ‘r’ from the
contents of A, If (A) = (r) then Z=1 (Z), C=0
(NC) ; if (A) < (r) then Z=@ (NZ), C=1 (C) ;
if (A) > (r) then Z=0 (NZ), C=@ (NC),

CP (HL) :byte to be tested is pointed to by HL,
CP (IX+d) :byte pointed to by IX+d, IY+d respectively.
CP (I1Y+d)

Instead of testing the whole byte in one operation, we can
test individual bits of a byte with BIT instructions. For the
following BIT instructions, ‘bit’ refers to one of the eight
bits in the target byte, numbered from @ to 7. Bit @ being
the LSB (Least Significant Bit).

BIT bit,r :place the complement (inverted value) of the
specified bit from ‘r’ into the ‘Z’ Dbit of
the flag register.

BIT bit, (HL) :place the complement of the specified bit
from the memory location pointed to by HL
into the *Z’ flag,

BIT bit, (IX+d) :test specified bit in the byte pointed to by
BIT bit, (IY+d) IX and 1IY plus ‘d’. The carry bit is
unaffected.

13.06 SET AND RESET

Still dealing with bit operations, but not testing, are the
SET and RESET instructions. SET can be used to force single
bits in a specified byte to 1, while RESET forces the
specified bit to @, The general form for the SET and RESET
instructions follows that for the BIT instructions as above.

SET bit,r RESET bit,r
SET bit, (HL) RESET bit, (HL)
SET bit, (IX+d) RESET bit, (IX+d)

SET bit, (IY+d) RESET bit, (IY+d)
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13.87 ROTATE AND SHIFT

Another group of bit instructions are the rotate and shift
jnstructions. All of these instructions involve a kind of
‘musical chairs’ operation where bits are either bumped to
the right or left of their current positions in the target
byte.

RL r : RL (HL) : RL (IX+d) : RL (IY+d)

:the contents of the specified byte are
shifted left (the direction from bit @ to bit
7 is left) one bit position through the carry
bit of the flag register. The carry bit is
loaded into bit @ and bit 7 1is loaded into
carry.

The single-byte RLA instruction is equivalent to the RL A
version of the general two-byte RL r instruction given above,

RLC r : RLC (HL) : RLC (IX+d) : RLC (IY+d)

:the contents of the specified byte are
rotated left one bit position. Bit 7 1is
loaded into bit @ and also the carry.

Once again, there is a single-byte RLCA instruction
equivalent to the RLC A version of the general two—-byte RLC r
instruction.

There are equivalent right rotate instructions (where bit @
is loaded into the carry instead of bit 7) -

RR r : RR (HL) : RR (IX+d) : RR (IY+d) : RRA
RRC r : RRC (HL) : RRC (IX+d) : RRC (IY+d) : RRCA

Shift instructions are essentially the same as rotate
instructions except the bit that is shifted out the end of
the byte is not wrapped around to the other end.
There are two types of shifts; Arithmetic and Logical:-
SLA r : SLA (HL) : SLA (IX+d) : SLA (IY+d)

.Shift Left Arithmetic; bit 7 is loaded into

the carry, all others are shifted left by one
bit position, bit @ is loaded with a "@’.
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SRA r : SRA (HL) : SRA (IX+d) : SRA (IY+d)

:Shift Right Arithmetic; bit @ is loaded into
the carry, all others are shifted right by
one bit position, bit 7 is copied into bit 6
(but bit 7 remains unchanged).

SRL r : SRL (HL) : SRL (IX+d) : SRL (IY+d)

:Shift Right Logical; the same as Shift Right
Arithmetic, but bit 7 is loaded into bit 6
and bit 7 is loaded with a @.

13.08 INCREMENT AND DECREMENT

In a previous example dealing with incrementing a pointer
through memory we used the HL register to contain the current
pointer value. There are a group of instructions to not only
increment, but also decrement, the contents of registers as
well as specified bytes given by:-

INC r : INC rr : INC (HL) : INC (IX+d) : INC (IY+d)
DEC r : DEC rr : DEC (HL) : DEC (IX+d) : DEC (IY+d)

where ‘rr’ can be BC, DE, HL, IX, IY or SP.

13.99 INPUT AND OUTPUT INSTRUCTIONS

Not only can we move data around in memory, in and out of
registers, but also between the computer itself and external
devices., That is, we can output 8-bit data onto, or read

8-bit data from, external data lines.

These sets of eight data 1lines are called collectively,
‘PORTS’ . An example of a port is the output connection to a
printer which supplies the 8-bit data for characters of a
hard copy listing. There are only two variations for each of
the input and output port instructions:-

IN A, () :load the A register with the data connected

to the input data lines of port number ‘'n

»

OUT (n) ,A :load the output data lines of port number 'n
with the data contained in the A register.

IN r, (O :load register 'r’ with the data connected to
the input data 1lines of the port number
specified by register C,

OUT () ,r :load the output data lines of the port number
specified by C with the data contained in
register ‘r’
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13.1¢ STACK OPERATIONS

There are two classes of stack operations. One occurs as the
result of direct access to the stack, while the other occurs
indirectly because of ‘CALL’ and ‘RET’ instructions. Data

must be 16-bit, and, in line with Z880 convention, the low
order byte is placed in memory first., The SP register always
points to the current low order byte. Remember, the stack
grows downwards in memory. Firstly, the direct access

instructions,

PUSH rr :the SP is decremented by one and the contents
of the high order byte of ‘rr’ is loaded into
memory. The SP is decremented by one again,
the contents of the low order byte of ‘rr’ is
loaded into memory. The register pair ‘'rr’
includes AF, BC, DE, HL, IX and 1IY.

POP rr :the reverse operation to PUSH. The byte in
memory pointed to by SP is 1loaded into the
low order byte of the register pair ‘rr’, the
SP register is incremented by one, and the
byte now pointed to by SP is loaded into the
high order byte of ‘rr’, Lastly, SP 1is

incremented by one to point to the low order
byte of the next 16-bit value up in memory.

Indirect stack operation results from the use of the “CALL’
and ‘RET’ instructions, When a CALL instruction is executed,
the CPU needs to store a return address so that it «can
continue execution at that point in the main program from
which the subroutine was called.

The CPU uses the stack to store this 16-bit return address in
the same manner in which the 16-bit contents of a register
pair is stored when a PUSH instruction is executed. When a
return is made to the main program, the 16-bit return address
is loaded from the stack into the PC register,

That is, the execution of a RET instruction is similar in
operation to the POP instruction which retrieves a 16-bit
value from the stack and loads it into a register pair.

Note that even within a called subroutine there can be a CALL
to another subroutine and so on. The stack then will grow
downward with each new CALL, only being shrunk by a RET
instruction,.
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13.11 OTHER INSTRUCTIONS

The above covers the most commonly used instructions and for
details of the operation of the balance of the instructions I
refer you to one of the many publications which describe all

operations of the Z80 completely.

—oo0oo—




115

CHAFTER 14

INFUT aND OUTFUT - THE REAL WORLD OUTSIDE

There are two types of input/output (I/0) in the VZ200/380 -
standard I/0 and memory—-mapped I/0. Cassette tape read/write
operations are memory-mapped I1/0, as is the scanning of the
keyboard to detect keypresses. Standard I/0 operations are
used for printer output and handshaking as well as for disc
controller operations,

14.961 STANDARD 1/0

Standard I/0 makes use of the special I/0 instructions which
can be performed by the Z-88 CPU. There are two groups of
these instructions:-

(i> INA,(n) ; OUT (n),A

(ii) IN r,(C) ; OUT (©O),r

’ ’

where 'n’ is an 8-bit address and ‘r’ is an 8-bit register.
There is a third group of ‘block move’ I/0 instructions which
are essentially the same as the two groups above but handle

blocks of data instead of single bytes,

The "IN’ instruction reads one byte from an external device
into an 8-bit register, while the "OUT’ instruction transfers
a data byte from an 8-bit register out to an external device.

The I/0 instruction is special because it uses an I/0 address
which is an 8-bit address completely separate from the normal
memory address map. The 8-bit address is contained in the 1I/0
instruction itself [*n’ in IN A, (n); OUT (n),A] or previously
loaded into the C register [IN r,(C); OUT (C),r].

As the I/0 address is specified by an 8-bit byte the I/0
address can be from @ to 255 allowing up to 256 external
devices to be selected.

The I/0 sequence is a slight modification of the normal
memory read/write operation and uses the bottom eight address
lines (A@-A7) to communicate the required I/0O address to
external devices. The devices are alerted that address lines
AD-A7 are being used to output the I/0 address by a separate
IORQ ocutput line.
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After decoding the I/0 address to see which device is to Dbe
selected, the selected device checks to see if the CPU
requires an input or an output operation by reading the RD
and WR output lines from the CPU and acts accordingly.

Although there are 256 1/0 PORTS available which can be
separately addressed, the VZ200/300 uses only a small portion
of these. I/0 ports are used for the printer interface, disc
controller, joystick and the memory bank switch for the 64K
memory expansion module.

The entire top half of the I/0 address range is unused at
present, that is, from 1/0 address 128 to 255 and so could be
used to map devices other than the standard devices at
present available for the VZ200/300.

We will now look in more detail at probably the most commonly
used I/0 port; the printer port.

14.92 THE PRINTER 1/0 PORT

Printers used with the VZ200/380 output port conform with a
standard called the ‘Centronics bus’. This standard defines
the lines used for data transfer, handshaking, voltage levels
and timing of the signals sent and received from the printer.

Handshaking control signals are used to synchronise the
transfer of data from the CPU to the printer.

The first step in the normal sequence for the transfer of a
byte of data (representing a character to be printed, a
carriage return, line feed or part of a control =sequence to
set the printer to underline) is for the CPU to check to see
if the printer is ready to receive the next character. This
is done by reading the status on the BUSY/READY handshake
from the printer,

If the CPU sends the character before the printer is ready to
receive it, the character will be lost. When the printer is
ready the character is loaded into the output latch mapped
onto the printer I/0 address. Finally, the CPU sends a pulse
to the printer which strobes the data into the printer
buffer. To send the next character the process is repeated.

Below are the port assignments for these operations:—

I1/0 OPERATION 170 PORYT ADDRESS
Read Printer Status POH (@ decimal) [input]
Load OQutput Latch @EH (14 decimal) [output]

Strobe Data to Printer ®DH (13 decimal) [output]
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Bit @ of the input byte from port @O@OH is 1low (@) if the
printer is ready and high (1) if the printer is busy.

One of the quirks of the printer driver routine is that it
filters the data before it sends it out the port. This is no
problem when just sending normal text to the printer during a
LLIST operation, but if you are attempting to set wup the
printer by control codes from Basic using the LPRINT CHRS$( )
command, the filter in the output routine prevents you from
outputting certain codes.

To get around this restriction you can directly output the
codes to the printer port using the Basic ‘OUT p,n’ command,
where ‘p’ is the port address and ‘n’ is the data to be
output. The following short listing will allow outputting a
data byte from @-255 to the printer port including handshake.

Listing 14.1 Direct Output to the Printer Port.

1@ TF CINF (@) ANDL) < »@ THEN 118: REM CHECE [F PRINTER READY
11@ OuUT 14,0 : REM LOAL OUTFUT LATOH
L2g ouT 13,D : REM STROBE DATA INTO FRIMTER

This program is particularly useful if you want to send
graphic codes to the printer as the filter in the printer
driver stops some codes between @ and 32 decimal from being
sent to the printer when using the LPRINT CHRS () command.

The equivalent M/C code could be as follows in Listing 12,2,
Listing 12.2 Machine Code Qutput to the Printer Port

CaHE InN A, (M)

BIT @,
JR NZ y CHE
LD A,data
OUT  (BEH) A
0L (BIH) L A

14.83 MEMORY-MAPPED I1/0

The second type of I/0 is memory-mapped I/0. The external
device looks for a particular address on all of the address
lines A®-Al15. That is, each external device looks just like a
memory location access for read and write.

As all sixteen address lines are being used it is possible to
have 65536 separate external devices selected. The catch is
that these addresses are part of the memory map for the ROMs
and RAMs and not separate as is the case for standard I/0O and
so a careful decision as to what part of the memory range is
going to be allocated to the I/0O has to be made.
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In the VZ200/380 the address space from 6800H-6FFFH has been
allocated to memory mapped 1/0 for keyboard scanning,
cassette input and output, sound and video attributes. This
area has not been fully decoded so in the case of cassette
1/0, sound and video attributes, a read or write to any
address within the range 6800H-6FFFH will work. In the case
of keyboard scanning the situation is a little more complex
because row selection is driven from the state of the
low-order address lines (see Appendix 4).

A Basic POKE to 680@H (26624 decimal) will load the data into
the output latch decoded to this address range, The bits of
this output latch are allocated as follows:~-

BIT NUMBER FUNCTION

(7] One side of a push-pull drive for the
output speaker (see bit 5).

1 Unused.

2 Cassette output drive line.

3 Mode [@=mode (@), l=mode(l)]

4 Background colour.

S Other side of push-pull drive to speaker.

6 Unused.

7 Unused.

Notice that in order to alter the contents of one bit you
need to load in all eight bits of the latch. Therefore you
need to keep track of the state of the other bits in the
latch to prevent, say, the toggling of the cassette output
bit from causing spurious output from the speaker or
switching the mode of the video. For this reason a copy of
the output latch is maintained at 783BH (30779 decimal) and
should be updated with any new pattern that you are
outputting to the latch.

Listing 12.3 is a Basic demonstration program which shows how
to switch screen modes without using the MODE( ) command:-

Listing 12.3

V@G L=FEEE (36779) sREM LODE UP CORY OF LATOH

118 M=(L) OR (8) dREM MAKE BIT % = 1 (MODE (1))
: sREM UFDATE OUTFLT LATOH

, sREM UFDATE COFY UF LATCH

seighs NEXT D REM DELAY TO SEE WHATS HAFFENING

s REM LOOK UF COF LATCH

sREM MAKE BIT 3 = @ (MODE(g))

s REM UFDATE QUTFUT LATCH

: PREM UFDATE CORY OF LATUH

TO SEerNEXT DiREM DELAY T SEE

D GOTE 166 SREM DOOIT ABATN

-
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14.84 CASSETTE INPUT

Reading the cassette input line is done by PEEKing location
6800H and testing the level of bit 6. As the signal of the
audio data comes in from the cassette recorder the 1level on
bit 6 changes from one to zero. There are special software
routines in the VZ200/308 ROM to decipher these ones and
zeros into bytes which form the program to be loaded into
memory .

Actually, it is a pretty useless exercise to use Basic to
read this input line as any changes are occurring too fast
for Basic to catch all the data. Machine code must be used in
this area,

Connecting a computer to the outside real world is one of the
more fascinating aspects of micro-computing and opens up
another world of real-time data acquisition, digitizers, and
control of external hardware devices. Venturers into this
world require not only good knowledge in the software area
but also expertise in hardware design.

-o00oo-




120

NOTES
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CHAFRPTER 15

CONCL USION - WHERE TO GO FROM HERE

It is not possible to cover all aspects of the scope of
machine code programming in this introductory text, indeed,
it is not even possible to go deep enough into the areas
covered, Where this has caused frustration I apologise, but
at least it indicates a desire on your part to go on to a
more deeper understanding of the subject.

This text was intended to provide you with the means to carry
out simple programming exercises on paper and on your
VZ200/308. At least that was the aim of this book.

The next step would be to try and modify programming examples
from other Z-88 machines as now you should have a better
understanding of the structure of your VZ200/300.

The next step I would like to wundertake is to produce a
handbook of machine code routines which could stand alone or
be incorporated into larger programs, such utilities as tape
header reading routines and the like.

Coverage in such detail shall have to be the subject of
another text specifically aimed at covering specific
programming examples, maybe in the near future.

Remember, you will not learn machine code from a book; vyou
must learn from experience. You should try writing your own
Programs, or modifications of programs of other Z—80
machines,

GOOD LUCK !!!

Steve Olney

———000000000000000—~—-
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AFFENDI X 1

V208 MEMORY MAP

DOOO v,i“'

cooo |

BOOO |

AQQQ

9000 |

8000 |

7800

7000

6800 |} e e —————
1mmmmmmmmmm UNUSED_ADDRESSES %&%i&&?ﬁﬁmh

6000

5000

4000

3000 |

2000

1000 |

111"

EXPANSION

MODULE

o

i

. *ff "g

i
i

(16K - 4116 x 8)

STANDARD

(6K - 6116 x 3)

USER
RAM

VIDEO RAM

(2K - 6116 X 1)

KEYBOARD, CASSETTE PORT, SPEAKER

DISC OPERATING SYSTEM

ROMS (8K)

65535

61440

S7344

53248

49152

45056

40960

36864

32768
30720
28672
26624

24576

20480

16384

12288

8192

40396

Qo0

-1

-4896

-8192

-12288

-16384

-20480

-24576

-28672

-32768



F¥FFF
¥800

Foeo

Eoo

Do0o

Cono
B80O

Bo©GO

AQQQ

90800

8000
7800
7200
6800

6000

5000

4000

2058

VZ32¢ MEMORY MAP - Appendix 1 cont’d

i UNUSED ADDRESSES

V7300

MEMORY
EXPANSION

MODULE

(16K - 4116 x 8)

STANDARD
USER
RAM

(16K - 4116 x 8)

VIDEO RAM (2K - 6116 X 1)

KEYBOARD, CASSETTE PORT, SPEAKER

FRTT
I

# UNUSED ADDRESSES ifi

DISC OPERATING SYSTEM

ROMS (8K)

65535 -1

~] 63488 -—2048

61440 -4096

57344 -8192

53248 -12288

49152 -16384
47104 -18432

45856 -20480

40960 -24576

36864 —-28672165s3¢g

32768= —32768 +65536
30720
28672
26624

24576

20480

16384

12288

8192

4096

2000
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BASIC WORK SPACE FOR 8K VZI20@ - Appendix 1 cont’d

Address values inside { } brackets give location of ©pointer
inside communications area. (See Chapter 4 for details).

TOP OF MEMORY {78Bl1/2}
9000 L————- — 36864 -28672
STRING TABLE (5@ BYTES)

——————————————————————————————————————— {78R0/13
SERO STACK FOR INTERPRETER 36352 -29194
(GROWS DOWNWARD)
8C00 35840 -29696
8AQQ 35328 -30208
FREE
8800 34816 -30720
SPACE
8600 34304 -31232
8400 33792 -31744
——————————————————————————————————————— {78FD/E}
ARRAY VARIABLES
8200 TABLE 33288 -32256
——————————————————————————————————————— {78FB/C3>
SIMPLE
8000 VARIABLES 32768 -32768
TABLE
——————————————————————————————————————— {78F9/A)
7E00 32256
BASIC
PROGRAM
7C00 TEXT 31744
7AE9 ——— = 31465 {78A4/5}
7A00 COMMUNICATIONS 31232
REGION
(POINTERS, WORKING DATA)
7800 f——eeee U 30720
7600 VIDEO SCREEN 30208
RAM
7400 29696
TOP LEFT = 28672
BOTTOM RIGHT = 29183 - MODE (@)

7200 36719 - MODE (1) 29184

7000 T = e 28672
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AFFENDI X 2

Accumulator

Interrupt
Vector

Accumulator

780 REGISTERS

ALTERNATE REGISTER SET

Flags
General
Purpose
Registers
Memory
Refresh
Index
Registers
Stack
Pointer

Program
Counter

Flags
General
Purpose

Registers
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ARPFENDIX 3=

286 PINOUT
All AlQ
Al2 A9
Al3 A8
Al4 A7
AlS Ab
CLK AS
D4 A4
D3 A3
DS A2
D6 Al
+5V Al
D2 Qv
D7 RFSH
Do M1
D1 RESET
INT BUSRQ
NMI WAIT
HALT BUSAK
MREQ WR
IORQ RD
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AFPFERNDIX 49

KEYBOARD LAYOUT

The VZ200/300@ keyboard matrix is memory-mapped I/0. One side
of the key switches are wired to address lines AD-A7. The
other side of the switches are wired to an input port which
is read whenever any address in the range 680QH-6FFFH 1is
selected.

That is, by PEEKing in this range, data can be read out of
the input port as part of a normal memory PEEK. By PEEKing
addresses in the range 6888H-6FFFH that correspond to only
one of the address lines A®-A7 being low at any one time, we
can select one of the horizontal ROWS in the table below,

By examining the wvalue returned from the PEEK, we can
determine which bit is low and hence in what COLUMN the
depressed key lies. The intersection of the selected ROW and
the detected COLUMN specifies which key was pressed.,

By scanning through each ROW in turn and checking for one of
the bits ©0-5 for a low level, we can scan the whole keyboard.
I1f we do not detect a low on any of the bits for all of the
addresses, then no key has been depressed.

ADDR.

LINE HEX BASIC

(LOW) ADDR. PEEK( BIT @ BIT 1 BIT 2 BIT 3 BIT 4 BIT S
A 687FH 26751 H L : K ; J
Al 68BFH 26815 Y O RETURN I P U
A2 68DFH 26847 6 S - 8 2 7
A3 68EFH 26863 N . UNUSED , SPACE M
Ad 68F7H 26871 S 2 UNUSED 3 1 4
AS 68FBH 26875 B X SHIFT C Z v
A6 68FDH 26877 G S CTRL D A F
A7 68FEH 26878 T W UNUSED E @ R

A quick check to see if ANY key has been depressed can be
used to save time., By PEEKing address 680@H (26624 decimal)
all address lines A@-A7 are low and a check to see if any bit
@-5 is low will show if any key is depressed. If a bit is low
then the full scan would be done to find which one, while if
no bits were found low then no keys were depressed.

The above refers to Basic PEEKing, but the method is easily
implemented in M/C, Instead of PEEKing, use the M/ C
instruction: LD A, (68xx). Then check the state of each bit of
the accumulator by rotating through the carry flag and
testing,

—-oo0oo-
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AFFENDI X 5

SYSTEM POINTER ADDRESSES

HEX
783B

787D/E/F

788E/F
789C

78AB/1
78A2/3
78A4/5
78A6

78AB

78Bl1/2
78DA/B
78E1

78E2/3
78E4/5
78E6/7
78E8/9
78F5/6
78F9/A
78FB/C

78FD/E

DECIMAL

30779

30845/6/7

30862/3
38876
30880/1
30882/3
30884/5
30886
30891
30897/8
30938/9
30945
38946/7
38948/9
30950/1
30952/3
30965/6
30963/70
30971/72

30973/4

FUNCTIONAL DESCRIPTION

Contains current state of the
latch.
Interrupt Exit,.
‘XX YY’ is the address of your
routine) .

Contains the address of USER subroutine.

out.put

(fill with C3 YY XX where
interrupt

Output stream device code. l=printer,
B=screen, —-l=cassette.

Address of bottom of string area.

Current line number during execution.
Address of start of program, (usually
7AESH) .

Current cursor position across line,
(0-31) , '

Updated from Refresh Register during RND,
(@-255) .

Top of memory pointer, (T.O0.M.).

Line number of last DATA value read
during execution,

Auto line numbering flag, @=off, >@=on.

Next line to be auto—-line

numbering.
Auto line numbering

output in
increment .

Address of start of current line in
memory during execution.
Current value of the SP at
statement .

Last line number
STOP.

End of Basic pointer.

beginning of

executed when END or

Address of dimensioned variables table.

Start address of free space.
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Appendix 5 cont’d

HEX

7901

791A
791B

7921/72

DECIMAL

38977

31002
31003

31009/10

FUNCTIONAL DESCRIPTION

Start of variable type declaration 1list.
There are 26 spaces, one for each letter
of the alphabet. A declaration holds for
all wvariables which start with the
declared letter. Declarations are:-—
2=integer, 3=string, 4=single precision,
8=double precision.

End of variable declaration list.

Trace flag (@=off, >0=on).

Value of "X’ passed in Y=USR(X).

—oo0oo—-
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AFPFENDI X &

COMMON 7Z-8¢ OPCODES

The following abbreviations have
n = 8-bit number nn
r = 8-bit register rr
¢ = condition code mm
d = 8-bit offset or displacement

be

Honon

NOTE: - the 16-bit quantities ‘nn’
8-bit bytes stored in memory with the low-order byte before

the high-order byte.

en used in this table:-

16-bit number
16-bit register pair
16-bit address

and ‘mm’ are two separate

ADC A,n - Add with Carry the 8-bit number ‘n’ to the
accumulator.
ADC A ,n CE n
ADC A, r - Add with Carry the contents of the 8-bit register
‘r’ to the accumulator,
ADC ALA 8F
ADC A,B 88
ADC A,C 89
ADC A,D 8A
ADC ALE 8B
ADC A,H 8C
ADC A,L 8D
ADC HL,rr - Add with Carry the contents of register pair
‘rr’ to HL.
ADC HL, BC ED4A
ADC HL,DE EDSA
ADC HL,HL ED6A
ADD A.n - Add without Carry the 8-bit number ‘n’ to the
accumulator,
ADD A ,)n Cé n
ADD A,r - Add without Carry the contents of the 8-bit
register 'r’ to the accumulator.
ADD A A 87
ADD A,B 80
ADD A,C 81
ADD A,D 82
ADD AE 83
ADD A,H 84
ADD A,L 85
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Appendix 6 cont’d

ADD HL,rr - Add without Carry the contents of the 16-bit
register pair ‘rr’ to HL.
ADD HL,BC 83
ADD HL,DE 19
ADD HL,HL 29
CALL mm - Jump to a subroutine starting at address ‘mam’
CALL mm CD mm
CALL c¢,mm - Jump to a subroutine starting at address ‘mm’

depending on the condition of the flag bits 1in
the flag register.

CALL Z,mm CC mm
CALL NZ,mm C4 mm
CALL C,mm DC mm
CALL NC,mm D4 mm
CALL PE,mm EC mm
CALL PO,nmm E4 mm
CALL M,mm FC mm
CALL P,mm F4 mm

CF - Complement Carry flag.

CCF 3F
CP n - Compare the contents of the accumulator with the
8-bit number ‘n’ . Set the condition flags
accordingly.
CP n FE n
CP r - Compare the contents of the accumulator with the
contents of the 8-bit register ‘'r’. Set the
condition flags accordingly.
CP A BF
CP B B8
CP C B9
CP D BA
CP E BB
CP H BC
CP L BD
CP _(HL) - Compare the contents of the accumulator with the

contents of the memory location pointed to by HL,

CP (HL) BE
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Appendix & cont’d

DEC r - Decrement the 8-bit register ‘r’by one.
DEC A 3D
DEC B B85
DEC C @D
DEC D 15
DEC E 1D
DEC H 25
DEC L 2D
DEC rr - Decrement the 16-bit register pair ‘rr’ by one.
DEC BC @B
DEC DE 1B
DEC HL 2B
DEC IX DD2B
DEC 1Y FD2B
DEC_(HL) - Decrement the contents of the memory location
pointed to by HL by one.
DEC (HL) 35
INC r - Increment the 8-bit register ‘r’ by one.
INC A 3C
INC B 24
INC C @cC
INC D 14
INC E icC
INC H 24
INC L 2C
INC rr - Increment the 16-bit register pair ‘rr’ by one,
INC BC a3
INC DE 13
INC HL 23
INC (HL) - Increment the contents of the memory location
pointed to by HL by one.
INC (HL) 34
JP mm - Jump to address ‘mm’
JP mm C3 mm
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Appendix 6 cont’d

JP (rr - Jump to the address ‘mm’ held in register pair
lrr)
JP (HL) E9
JP (IXD DDES
JP (IYD FDE9
JP c,mm — Jump to the address ‘mm’ depending on the

condition of the flag bits in the flag register.

JP Z,mm CA mm
JP NZ,mm C2 mm
JP C,mm DA mm
JP NC,mm D2 mm
JP PE,mm EA mm
JP PO,mm E2 mm
JP M,mm FA mm
JP P,mm F2 mm
JR d - Jump back or forwards in memory by the displacement
E—— ‘q’ .
JR d 18 d
JR ¢,d - Jump by the displacement ‘d’ depending on the
condition of the flag bits in the flag register.
JR NZ,d 20 d
JR Z,d 28 d
JR NC,d 30 d
JR C,d 38 d
LD r.n - Load the 8-bit register ‘r’ with the 8-bit number
\n’
LD A,n 3E n
LD B,n 26 n
LD C,n QE n
LD D,n 16 n
LD E,n 1E n
LD H,n 26 n
LD L,n 2E n
LD rr,nn - Load the 16-bit register pair ‘rr’ with the

16-bit number ‘nn’.

LD BC,nn @1 nn
LD DE,nn 11 nn
LD HL,nn 21 nn
LD IX,nn DD21 nn
LD IY,nn FD21 nn

LD SP,nn 31 nn
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Appendix 6 cont’d

LD A, (mm) - Load the accumulator with the contents of
memory location ‘mm’
LD A, (mm) 3A mm
LD rr,(mm) - Load the register pair ‘rr’ with the contents

2

of memory locations ‘mm’ and ‘mm+l’ .

LD BC, (mm) ED4B mm
LD DE, (mm) ED5B mm
LD HL, (mm) 2A mm
LD A,r - Load the accumulator with contents of the 8--bit

Al 4

register 'r

LD A,A 7F
LD A,B 78
LD A,C 79
LD A,D TA
LD AL,E 7B
LD A,H 7C
LD A,L 7D
LD r,(rr) - Load the 8-bit register ‘r’ with the contents

of the memory location pointed to by the 16-bit

<

register pair ‘rr’

LD A, (BC) A
LD A, (DE) 1A
LD A, (HL) 7E
LD B, (HL) 46
LD C, (HL) 4E
LD D, (HL) 56
LD E, (HL) SE
LD H, (HL) 66
LD L, (HL) 6E
LD (mm) A — Load the contents of the accumulator into

memory location ‘mm’

LD (mm) ,A 32 mm
LD (mm) ,rr - Load the contents of the 16-bit register pair
‘rr’ into memory locations ‘mm’ and ‘mm+l’ .
LD (um) ,BC ED43 mm
LD (mm) ,DE ED53 mm

LD (mm) ,HL 22 mm
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Appendix & cont’d

LD (rr).r - Load the memory location pointed to by the
16-bit register pair ‘rr’ with contents of the
8-bit register ‘r’

LD (BC),A 02
LD (DE) ,A 12
LD (HL) ,A 77
LD (HL).B 7@
LD (HL),C 71
LD (HL),D 72
LD (HL) ,E 73
LD (HL) ,H 74
LD (HL),L 75
"LD (rr).n - Load the memory location pointed to Dby the

16-bit register pair ‘rr’ with the 8-bit number

[y ’

n

LD (HL) ,n 36
RET - Return from a call to a subroutine.
RET C9
RET ¢ - Return from a call to a subroutine depending on the

condition of the flag bits in the flag register.

RET Z C8

RET NZ Cco

RET C D8

RET NC Do

RET PE E8

RET PO EQ

RET M F8

RET P F@
SBC A,n - Subtract with Carry the 8-bit number ‘n’ from the
contents of the accumulator. Store the result

back in the accumulator.
SBC A,n DE n

SBC A,r - Subtract with Carry the contents of the 8-bit

register ‘r’ from the contents of the A register.
Store the result back in the A register.

SBC A,A 9F
SBC A,B 98
SBC A,C 99
SBC A,D 9A
SBC A,E 9B
SBC A,H 9C
SBC A,L 9D
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Appendix & cont’d

SBC HL,rr - Subtract the contents of the 16-bit register
pair ‘rr’ from HL. Store the result back in HL.

SBC HL,BC ED42

SBC HL,DE ED52

SBC HL,HL EDbZ
SBC A, (HL) - Subtract with Carry the contents of the memory

location pointed to by HL from the contents of
the accumulator. Store the result back in the
accumulator.

SBC A, (HL) SE
SCF - Set the Carry flag bit in the flag register.
SCF 37

SUB n -

SUB (HL)

Subtract the 8-bit number ‘n’ from the contents of
the accumulator. Store the results Dback in the
accumulator.

SUB n D6 n
Subtract the contents of the 8-bit register ‘r’
from the contents of the accumulator. Store the
result back in the accumulator.

SUB A 97
SUB B 98
SUB C 91
SUB D 92
SUB E 93
SUB H 94
SUB L 95

- Subtract the contents of the memory 1location
pointed to by HL from the accumulator. Store the
result back in the accumulator,

SUB (HL) 96

-oo0oo—
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AFFENDI X 7

HEXADECIMAL/DECIMAL CONVERSION TABLES

Positive Numbers FIRST HEX DIGIT

1 2 3 4 S 6 7 8 9 A B C D E F

16 32 48 ©64
17 33 49 65
18 34 50 66
19 35 51 67
20 36 52 68
21 37 83 69
22 38 54 70
23 39 585 71
24 40 56 72
25 41 657 73
1@ 26 42 58 74
11 27 43 59 75
12 28 44 60 76
13 29 45 61 77
14 30 46 62 78
15 31 47 63 79

OZOo0Omwm
Vo~NoOUbke~ell &

>< [T T

= Qg

Negative Numbers FIRST HEX DIGIT

l:][ F E D C B A 9 81

S -1 -17 -33 -49 -65 -81 -97 -113
E -2 -18 -34 -50 -66 -82 -98 -114
C -3 -19 -35 -51 -67 -83 -99 -115
0] -4 -20 -36 -52 -68 -84 -108 -116
N -5 -21 -37 -53 -69 -85 -101 -117
D -6 -22 -38 ~-54 -70 -86 -182 -118

-7 -23 -39 -55 =71 -87 -183 -119
H -8 -24 -4 -56 =72 -88 -104 -120
E -9 -25 -41 -57 -73 -89 -185 -121
X -1  -26 -42 -58 -74 -90 -186 -122

-1 =27 -43 -59 -75 -91 ~-1v7 -123
2 -1z -28 -44 -6 ~76 -92 -188 —-124
L -13 -29 ~-45 -61 =77 -93 -189 -125
G -14 -3 -46 -b2 -78 -94 -1l -126
0 -1 =31 -47 -63 -79 -95 -111 -127
T -l =32 -48 -64 -80 -96 -112 -128

NOTE: Another method of finding two’s complement representation of an
8-hbit recative number is to add 256 to the negative number and then
lor™ up the resulting positive quantity in the top table. e.g. to
fint the two’s complement of -1, 256-18 = 246 = QF6H.
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AFFENDI X 8

Z-86 MNEMONICS RECOGNISED BY THE VZ EDITOR ASSEMBLER

ADC HL,ss
ADD A,r

ADD A, (IY+d)'

ADD IY,rr

BIT b, (IX+d) 7t

-CALL cc,nn
CP s
CPI
DAA

-DEC IY ¢+ &

DINZ e

EX (P ,IX
EX DE,HL
IMOQ

IN A, (n)
INC IX

INC (IY+d)
IND

INIR

JP (IYD

JR C,e

JR NZ,e

LD A, (DE)
LD A,R

LD (HL) ,A
LD HL, (nn)
LD IX,nn
LD (IX+d),r
LD (IY+d),n
LD (nn),dd
LD (nn),IY
LD r, (IX+d)
LD r,r’

LD SP,IY
LDI

NOP

OTIR

OUTD

POP 1Y
PUSH 1Y
RET

RETN

RLC (HL)
RLC r

RRm

RRCA

SBC A,s
SET b, (HL)
SET b,r
SRL m

ADC A,s
ADD A, (HL)
ADD HL,ss
AND s

BIT b, (I1Y+d)
CALL nn
CPD

CPIR

DEC m

DEC ss

EI

EX (sp),1Y
EXX

IM1

IN r, (C)
INC (IX+d)
INC r

INDR

JP (HL)

JP cc,nn
JR e

JR Z,e

LD A,I

LD (BOC) ,A
LD dd,nn
LD (HL),r
LD IX, (nn)
LD IY,nn
LD (1Y+d),r
LD (nn) ,HL
LD R,A

LD r, (IY+d)
LD SP,HL
LDD

LDIR

OR s

OouT O ,r
OUTI

POP qgq
PUSH qgq
RET cc

RL m

RLC (IX+d)
RLCA

RRA

RRD

SBC HL, ss
SET b, (IX+d)
SLA m

SUB s

ADD A,n

ADD A, (IX+d)
ADD IX,pp
BIT b, (HL)
BIT b,r

CCF

CPDR

CPL

DEC IX

DI

EX (SP) ,HL
EX AF,AF’
HALT

IM 2

INC (HL)

INC TY

INC ss

INI

JP (1IX)

JP nn

JR NC, e

LD A, (BO

LD A, (nn)

LD (DB ,A
LD dd, (nn)
LD I,A

LD (IX+d),n
LD IY, (nn)
LD (nn) ,A
LD (nn),IX
LD r, (HL)

LD r,n

LD Sp,IX
LDDR

NEG

OTDR

OouT (nm ,A
POP IX

PUSH IX

RES b,m
RETI

RLA

RLC (IY+d»
RLD
RRC
RST
SCF
SET
SRA
XOR

, (IY+d)

w395 O3
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Appendix 8 cont’d

PSEUDO-OFPS RECOGNISED BY THE VZI EDITOR ASSEMBLER

EQU nn EQU s DEFB n DEFS nn DEFW nn

OPERAND NOTATION

r

(

nn

ccC

aq

S8

PP

rr

dd

)

one of the following registers: A, B, C, D, E, H,
L.

brackets around an operand point to the contents of
a memory location or I/0 port, pointed to by the
operand. The operand could be an eight or sixteen
bit value, the contents of an eight bit register or
sixteen bit register pair, or the contents of an
index register plus an eight bit displacement
value,

an eight bit value in the range ® to 255,

a sixteen bit value in the range @ to 65535.

an eight bit signed displacement value in the range
-128 to 127,
bit number in the range of @ to 7 (Bit @ to Bit 7).

state of the condition bits in the flag register:
NZ, Z, NC, C, PO, PE, P, M.
an eight bit offset in the range -128 to 127.

one of the following register pairs: AF, BC, DE,
Sﬁé of the following register pairs: BC, DE, HL,
::é of the following register pairs: BC, DE, IX,
gié of the following register pairs: BC, DE, 1Y,
one of the following: r, n, (HL), (IX+d), (IY+d).

one of the following register pairs: BC, DE, HL,

SP.
one of the following: r, (HL), (IX+d), (IY+d).
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