
OS 1100
MAPPER® Run Design
Operations
Reference Manual

Relative to Release
	

June 1988
Level 34R1

Printed in U S America
Priced Item
	 UP-9662.5

UNISYS OS 1100

MAPPER® Run Design
Operations
Reference Manual

Copyright © 1988 Unisys Corporation
All Rights Reserved
Unisys is a trademark of Unisys Corporation
MAPPER is a registered trademark
of Unisys Corporation

Relative to Release
	

June 1988
Level 34R1

Printed in U S America
Priced Item
	

UP-9662.5

The names, places, and/or events used in this publication are not intended to correspond
to any individual, group, or association existing, living, or otherwise. Any similarity or
likeness of the names, places, and/or events with the names of any individual living or
otherwise, or that of any group or association is purely coincidental and unintentional.

NO WARRANTIES OF ANY NATURE ARE EXTENDED BY THE DOCUMENT. Any product
and related material disclosed herein are only furnished pursuant and subject to the
terms and conditions of a duly executed Program Product License or Agreement to
purchase or lease equipment. The only warranties made by Unisys, if any, with respect
to the products described in this document are set forth in such License or Agreement.
Unisys cannot accept any financial or other responsibility that may be the result of your
use of the information in this document or software material, including direct, indirect,
special, or consequential damages.

You should be very careful to ensure that the use of this information and/or software
material complies with the laws, rules, and regulations of the jurisdictions with respect to
which it is used.

The information contained herein is subject to change without notice. Revisions may be
issued to advise of such changes and/or additions.

Correspondence regarding this publication should be forwarded, using the remark form
in this manual, or remarks may be addressed directly to Unisys Corporation, MAPPER
System Test and Publications, P.O. Box 64942 MS: 4792, St. Paul, Minnesota,
55164-0942, U.S.A.

Page Status

Page 	 Issue

ATM-1 through ATM-14 	 Original

Contents-1 through Contents-9 	Original

Section 1 tab 	 Original

1-1 through 1-7 	 Original

Section 2 tab 	 Original

2-1 through 2-13 	 Original
Section 3 tab 	 Original

3-1 through 3-10 	 Original
Section 4 tab 	 Original

4-1 through 4-30 	 Original
Section 5 tab 	 Original
5-1 through 5-17 	 Original
Section 6 tab 	 Original
6-1 through 6-15 	 Original
Section 7 tab 	 Original
7-1 through 7-7 	 Original
A-E tab 	 Original
7-8 through 7-139 	 Original
F-O tab 	 Original
7-140 through 7-264 	 Original
P-Z tab 	 Original
7-265 through 7-414 	 Original
Appendixes tab 	 Original
A-1 through A-18 	 Original
B-1 through B-11 	 Original
C-1 through C-8 	 Original
13-1 through ID-10 	 Original
E-1 through E-10 	 Original
F-1 through F-26 	 Original
Glossary/Index tab 	 Original
Glossary-1 through Glossary-35 	Original
Index-1 through Index-15 	 Original

UP-9662.5 	 PS-1

About This Manual

PURPOSE

This manual provides complete descriptions, formats, and examples for
all run statements, as well as instructions for designing runs and getting
them registered. By using this manual, the run designer can write and
update complete runs, obtain quick access to statement syntax, and
learn about efficiency techniques by following examples.

SCOPE

This manual contains reference information about run statements and
offers complete sample runs. It is not meant to teach run design; it is
designed to provide quick reference to run statement information.

AUDIENCE

The Run Design Reference is for all run designers —from beginning run
designers to advanced users who design sophisticated applications.

PREREQUISITES

Before using this manual, beginning run designers should feel
comfortable with using MAPPER software and should be familiar with
the demonstration database. Ideally, the beginning run designer should
understand basic run design concepts. To learn about writing runs,
read the OS 1100 MAPPER Run Design Operations Training Guide or
attend a MAPPER run design class.

UP-9662.5 	 ATM-1

About This Manual

HOW TO USE THIS MANUAL

If you are an experienced run designer, review "New Run Design
Features" in Section 1. Then use Section 7 and the appendixes as
references while writing runs.

If you are a novice run designer, read the first six sections before
beginning to write your own runs. Then use Section 7 and the
appendixes as references. In addition, you may want to review the
sample runs in Appendixes B and C for more insight into MAPPER
runs.

Until you're a registered MAPPER run designer, sign on as JDOER to
practice writing runs. Ask your coordinator for a valid JDOER sign-
on.

Use the EXAM run to check your MAPPER run-writing skills on line.
See the OS 1100 MAPPER Manual Functions Operations Training Guide
for more information.

Conventions

To help you understand this manual and find MAPPER software easy
to use, certain style conventions are used. Following is a description of
how this manual handles run statement syntax, tab characters, examples,
key names, uppercase letters, italics, color, and important terminology.

ATM-2 	 UP-9662.5

About This Manual

Run Statement Syntax

The format of a MAPPER run statement consists of these conventions:

❑ The call is capitalized (for example, CHG). However, you can type
it in either uppercase or lowercase letters.

❑ Fields and subfields are italicized whenever they call for variable
data. Variable data is information you supply according to the
explanation that follows the statement.

NOTE: Field and subfield abbreviations are listed and described
in Appendix A.

❑ Fields or subfields enclosed in brackets are optional. In this
example, field2, sub field], and sub field2 are optional:

field] [field2 sub field 1,subfield2]

Whenever you make an entry in an optional subfield, you must
type all intervening commas. For example:

@AUX,O,B,2,123,COP,Y„,Y„2 .

❑ Braces around items separated by a vertical bar mean that you may
choose from among the items listed; for example:

(item] I item2)

Tab Characters

A special character called a quadrate (0) always represents a tab
character. You can't see tab characters on the screen, but when you
place the cursor over a tab character, the cursor blinks.

UP-9662.5 	 ATM-3

About This Manual

Examples

The examples in this manual appear in uppercase letters; however, you
can type them in lowercase. Some examples appear with brief
comments similar to comments you might type in your run control
report. These comments may start anywhere after the space-period-
space that follows a run statement. For example:

@OLR.O.B.3 . DELETE RID 3B IN MODE 0

Some examples are presented with directory names as well as with
traditional column-character syntax. In these cases, both statements are
presented, followed by one set of field descriptions.

CAUTION: Be careful when trying examples that update the
demonstration (JDOE) database provided on the release
tape. If, for example, you want to try an example that
deletes lines in RID 2B, be sure to use a duplicate report
so you do not change RID 2B in the demonstration
database.

Keyboard Key Names

The key names used in this manual are based on the UTS family of
keyboards. If you need definitions for keys other than those on a UTS
keyboard, refer to your terminal documentation.

Uppercase Letters

These items appear in uppercase letters:

O MAPPER functions and run statement calls (for example, CHG)

O MAPPER runs (for example, FCC run, RUNA run)

O MAPPER files (for example, MAPER1 file)

O Reserved words (for example, INPUTS)

ATM-4 	 UP-9662.5

About This Manual

Italics

Italics appear for a number of reasons:

❑ The italicized letter N (ii or N) stands for a numeral (nn calls for
two digits; nnn for three, and so on).

❑ Other italicized letters (for example, x and y) indicate user-
supplied variables.

❑ In date formats, y or Y means year; m or M means month; and d or
D means day.

❑ Words in bold italics are key terms that are defined in the glossary.

Color

Run statement formats and information that you are instructed to type
are shown in color.

Enter and Resume

The term "enter" means type the necessary information and press XMIT.

"Resume" means press Fl (you must use the UPPER FUNCTION key at
the same time) or enter rsm.

UP-9662.5 	 ATM-5

About This Manual

ORGANIZATION

This manual contains seven sections and six appendixes:

Section 1. Introduction contains a list of new run design features and
provides a brief description of MAPPER runs.

Section 2. Using the Data Directory describes the Data Directory and
how to use it.

Section 3. Formulating Run Statements introduces you to run statement
formats and guidelines. It also explains how to use labels and special
characters in run statements.

Section 4. Variables and Reserved Words introduces you to variables
and reserved words and explains how to use them in runs.

Section 5. Using Online Runs describes how to use HELP and other
online run design aids.

Section 6. Designing and Debugging Runs discusses how to handle
reports and results and how to design, register, and debug runs.

Section 7. Run Statements presents the MAPPER run statements in
alphabetical order, along with their formats, field descriptions, and
examples.

A. Summaries: Statements and Options lists all MAPPER run statement
formats and field abbreviations.

B. Reserved Words provides a table of all reserved words, a detailed
example using reserved words, and a discussion of how to use reserved
words directly in run statements.

C. Sample Runs: DEMO, EDIT, and MARK provides three detailed
sample runs.

D. Efficient Run Techniques offers suggestions for making your runs
efficient.

ATM-6 	 UP-9662.5

About This Manual

E. Character Sets lists the Limited Character Set and the Full
Character Set.

F. Data Transfer Module explains how to use the DTM interface
through the QSND, QSNR, QRSP, QREL, and QCTL run statements.

RELATED PRODUCT INFORMATION

This manual is part of the MAPPER software level 34R1 library, which
contains documents that you may find helpful while using MAPPER
software. The following list provides the exact title of each document
in the library, followed by its short title in parentheses and its previous
title. The documents are listed in the order a new MAPPER site might
use them. A separate list describes how to order copies of the MAPPER
software level 34R1 manuals. In addition, there are several documents
of related Unisys products that are referenced throughout this manual;
these are listed under "Related Unisys Documents."

Documents in This Library

0 OS 1100 MAPPER Software installation Guide, UP-10786.9
(Installation Guide)

Previous titles: MAPPER Software Level 33R1, Installation Guide
MAPPER Software Level 33R1, Release Description

This guide is for systems analysts who install and maintain
MAPPER systems. It contains information previously found in the
Release Description, such as new features for this software level,
compatibility with other software and hardware, any restrictions
that apply, and information about product support. It also lists the
contents of the release tape and procedures used to install,
configure, verify, start, and generate MAPPER software level 34R1.

UP-9662.5 	 ATM-7

About This Manual

❑ OS 1100 MAPPER Software Operations Guide, Vol. 1: Coordinators,
UP-9194.6 (Coordinator's Guide)

Previous title: MAPPER Software Level 33R1, Coordinator's
Reference

This guide is for MAPPER system coordinators. It describes their
responsibilities and gives examples of the reports they use to
establish and monitor a MAPPER system.

❑ OS 1100 MAPPER Software Operations Reference Card: Coordinators,
UP-14074 (Coordinator's Reference Card)

This reference card lists the most commonly used runs, functions,
run statements, and reserved words for coordinators.

❑ OS 1100 MAPPER Software Operations Guide, Vol. 2: Operators,
UP-9195.6 (Operator's Guide)

Previous title: MAPPER Software Level 33R1, Operator's Reference

This guide is for MAPPER system operators. It describes and gives
examples of all operator tasks, including starting the MAPPER
system, maintaining the system database, and creating recovery and
history tapes.

❑ OS 1100 MAPPER Software Operations Reference Card: Operators,
UP-14073 (Operator's Reference Card)

This reference card lists directives used by MAPPER system
operators.

❑ OS 1100 MAPPER Manual Functions Operations Reference Manual,
UP-9193.6 (Manual Functions Reference)

Previous title: MAPPER Software Level 33R1, Software Reference

This manual is for users who have a basic knowledge of the
MAPPER system. It provides comprehensive descriptions and
examples of the MAPPER functions. It also includes an overview
of form type design and run design.

ATM-8 	 UP-9662.5

About This Manual

❑ OS 1100 MAPPER Manual Functions Operations Reference Card,
UP-9196.7 (Manual Functions Reference Card)

This reference card provides a summary of formats for MAPPER
functions and runs, along with the available options.

❑ OS 1100 MAPPER Run Design Operations Reference Manual,
UP-9662.5 (Run Design Reference)

Previous title: MAPPER Software Level 33R1, Run Designer's
Reference

This manual is for MAPPER run designers. It provides complete
descriptions, formats, and examples for all run statements, as well
as instructions for designing runs and getting them registered.

❑ OS 1100 MAPPER Run Design Operations Reference Card, UP-12999.1
(Run Design Reference Card)

This reference card provides all MAPPER run statement formats,
along with their field definitions and available options. It also
lists reserved words used for run design.

❑ OS 1100 MAPPER Word Processing Operations Guide, UP-11619.1
(Word Processing Guide)

Previous title: MAPPER Software Level 33R1, Word Processing
Guide

This guide is for all users of MAPPER word processing. It
provides complete descriptions and examples of MAPPER word
processing functions.

❑ OS 1100 MAPPER Word Processing Operations Reference Card,
UP-13019 (Word Processing Reference Card)

This reference card lists and describes all word processing control
parameters, control characters, and commands.

UP-9662.5 	 ATM-9

About This Manual

❑ OS 1100 MAPPER Color Graphics Operations Guide, UP-11615.1
(Color Graphics Guide)

Previous title: MAPPER Software Level 33R1, Color Graphics Guide

This guide is for all users of MAPPER color graphics. It provides
complete descriptions and examples of MAPPER color graphics
functions, runs, and graphics codes.

❑ OS 1100 MAPPER Color Graphics Operations Reference Card,
UP-13020 (Color Graphics Reference Card)

This reference card lists all graphics runs, functions, primitive
graphics code commands, and expanded syntax commands. It also
contains GOC (Generate Organization Chart) commands and tables
for colors, marker symbols, line patterns, and fill patterns.

❑ OS 1100 MAPPER SCHDLR Interface Programming Reference
Manual, UP-11616.1 (SCHDLR Reference)

Previous title: MAPPER Software Level 33R1, SCHDLR
Programmer's Reference

This manual is for COBOL programmers who want to use the
SCHDLR interface. It provides the procedures and coding needed
for a COBOL program to interface with the MAPPER system. This
manual assumes you have knowledge of COBOL and Transaction
Processing (TIP).

ATM-10 	 UP-9662.5

About This Manual

Optional Documents

These documents are not part of the standard MAPPER library and
must be ordered separately.

❑ OS 1100 MAPPER Manual Functions Operations Training Guide,
UP-13964 (Manual Functions Training Guide)

Previous title: A Guide to Using MAPPER Software

This guide helps beginners use MAPPER software productively. It
provides an overview of what MAPPER software is and how it can
be used, and it introduces the most commonly used MAPPER
functions. For complete details on all MAPPER functions, see the
Manual Functions Reference.

❑ OS 1100 MAPPER Run Design Operations Training Guide, UP-13965
(Run Design Training Guide)

Previous title: A Guide to Creating MAPPER Software Runs

This guide is for users who have never written a run. It covers
only basic information and should be read and followed, step by
step, at a MAPPER terminal. When you need more details than are
given in this manual, see the Run Design Reference.

❑ OS 1100 MAPPER Software Operations Quick-Reference Guide, UP-
11628.1. (Quick-Reference Guide)

This guide is a handy, durable summary for all users of MAPPER
systems. It contains MAPPER functions, run statements, function
and run statement options, and reserved words. It also lists color
graphics and word processing information, commands for the
MAPPER system coordinator, and directives for the operator.

UP-9662.5 	 ATM-11

About This Manual

❑ OS 1100 MAPPER Software Operations Guide, Vol. 3: Using an IBM®
3270 Terminal, UP-11632.1 (Using an IBM 3270 Terminal Guide)

Previous title: MAPPER Software Level 33R1, Using an IBM 3270
Terminal

This guide explains how to use MAPPER software from an IBM
3270 series terminal (or equivalent). It shows examples for signing
on to the MAPPER system and using MAPPER software in one of
the two modes of operation, native or UTS emulation. It also lists
considerations for MAPPER run design and word processing.

❑ OS 1100 MAPPER New Features Operations Reference Manual,
UP-11631.1 (New Features Reference)

Previous title: MAPPER Software Level 33R1, Summarizing Level
33R1 Features

This manual provides an overview of MAPPER software level
34R1. It is a handy summary of new features for users who have
previous experience with MAPPER software.

Ordering MAPPER Software Level 34R1 Documents

The MAPPER documentation is ordered by PL, PK, and UP numbers:

❑ Use the PL (Product Library) number to order an entire standard
library. Note that this does not include the optional MAPPER
documentation.

❑ Use the PK (Package) number to order an individual manual with
its binder.

❑ Use the UP number to order documents that do not have binders.

IBM is a registered trademark of International Business Machines Corporation.

ATM-12 	 UP-9662.5

About This Manual

Use the following PK, PL, and UP numbers to order MAPPER
documentation.

Standard Library

Reference cards are included in the binders of the corresponding
manuals. To order additional copies of the reference cards, order them
by the UP number.

PL-0284

PK-1328
UP-9196.7

PK-1329
UP-12999.1

PK-1330
UP-13019

PK-1331
UP-13020

PK-1333
UP-14074

PK-1332
UP-14073

PK-1334

PK-1335

MAPPER Software Level 34R1 Standard Library

Manual Functions Reference
Manual Functions Reference Card

Run Design Reference
Run Design Reference Card

Word Processing Guide
Word Processing Reference Card

Color Graphics Guide
Color Graphics Reference Card

Coordinator's Guide
Coordinator's Reference Card

Operator's Guide
Operator's Reference Card

SCHDLR Reference

Installation Guide

UP-9662.5 	 ATM-13

About This Manual

Optional Documents

These are optional documents that do not come with the standard
library and must be ordered separately:

PK-1834

PK-1336

PK-1835

PK-1836

UP-11628.1

Using an IBM 3270 Terminal Guide

New Features Reference

Manual Functions Training Guide

Run Design Training Guide

Quick-Reference Guide

Related Unisys Documents

These Unisys manuals are referred to in this documentation, but they
are not part of the MAPPER library. Use the version that corresponds
to the level of software in use at your site.

❑ OS 1100 Distributed Data Processing (DDP-PPC/DDP-FJT) Messages
Reference Manual, UP-13510 (DDP-PPC/DDP-FJT Messages
Reference Manual)

This reference contains information about all messages and error
codes for DDP-PPC and DDP-FJT.

❑ OS 1100 Distributed Data Processing File and Job Transfer (DDP-
FJT) Operations Guide, Vol. 1: IPF Interface, UP-9740.3 (DDP-FJT
Operations Guide, Vol. 1: IPF Interface)

This guide describes how to transfer files and jobs from terminals
in a DDP network.

ATM-14 	 UP-9662.5

Contents

Page Status 	 PS-1

About This Manual 	 ATM-1

1. Introduction 	 1-1
New Run Design Features 	 1-2

New Run Statements 	 1-2
Enhancements to Existing Statements 	 1-3
New Reserved Words 	 1-4
Other New Features 	 1-4
Discontinued Runs 	 1-6

What Is a MAPPER Run? 	 1-7

2. Using the Data Directory 	 2-1
Naming Fields 	 2-2

Report Headers and the Header-Divider Line 	 2-2
Field Names 	 2-4
Field Names in Variables 	 2-4
Naming Partial Fields 	 2-5
Field Order 	 2-6
Field Size Variable Definition 	 2-6
Selecting Fields to Display 	 2-6
Converting to Field Names 	 2-7
Efficiency Considerations 	 2-7

Naming Modes, Form Types, and Reports 	 2-8
Mode, Form Type, and Report Names 	 2-9
Names in Variables 	 2-9
Naming Results 	 2-9
NAME —Updating the System Directory 	 2-10
System Directory Information 	 2-12

Naming Data Using Reserved Words 	 2-13

3. Formulating Run Statements 	 3-1
Run Statement Format 	 3-2

Valid Statements and Error Messages 	 3-3
Formulating Run Statements 	 3-3

Labels 	 3-6

UP-9662.5 	 Contents-1

Contents

Label Table Definition Lines 	 3-7
Special Characters 	 3-8

Semicolon —Field Delimiter 	 3-8
Slant —Multiple Parameter 	 3-9
Reverse Slant — Continue Statement 	 3-9
Apostrophe—Literal Data 	 3-10

4. Variables and Reserved Words 	 4-1
Variables—Names, Types, and Sizes 	 4-2

Naming Variables 	 4-2
Assigning Variable Types and Sizes 	 4-3
Using Variables 	 4-4

Initializing and Redefining Variables 	 4-9
Using an LDV Statement 	 4-9
Using a CHG Statement 	 4-10
Initializing Variables with Other Statements 	 4-11

Changing the Contents of Variables 	 4-12
Using Exponential Notation with Variables 	 4-13
Examples Using Variables 	 4-14
Loading Variables with Screen Input and Initial Input

Parameters 	 4-17
Using INPUT$ to Capture Data from the Screen 	 4-18
Using 1NPUT$ to Capture Initial Input Parameters 	 4-19
Using INSTR$ to Capture Data from the Screen 	 4-21
Using INVAR$ to Capture Data from the Screen 	 4-21
Using INVR1$ to Capture Data from the Screen 	 4-22
Using ICVAR$ to Capture Data from the Control Line 	4-23
Using FKEY$ to Capture Function Key Input 	 4-24

VARIABLE Run—Testing Contents of Variables 	 4-25
BVT Run —Building Variable Tables and Converting

Variables 	 4-27
Reserved Words 	 4-30

5. Using Online Runs 	 5-1
HELP Run 	 5-2

Using HELP for Run Statement Formats 	 5-3
Using HELP with Error Messages 	 5-3

LIMITS Run—Displaying Report and Line Limits 	 5-4
CC Run—Displaying Horizontal Column Count Positions 	 5-5
FCC Run —Examining Report Fields 	 5-6
FORM Run —Displaying Statement Fields and Subfields 	 5-7

Contents-2 	 UP-9662.5

Contents

FORMC —Creating Statements for Functions
that Use Function Masks 	 5-9

MARS Run—Creating Statements in Run Control Report 	 5-10
RUN Run—Automatically Generating and Registering

Runs 	 5-11
Controlling the Run Generation 	 5-11
Displaying a Report or Result 	 5-14
Limitations 	 5-15

RUNA Run—Analyzing Your Run 	 5-16

6. Designing and Debugging Runs 	 6-1
Handling Reports and Results 	 6-2

The Output Area 	 6-3
Results 	 6-3
The Relationship Between Output Area and Results 	 6-4

Designing and Registering a Run 	 6-5
Debugging Your Run 	 6-8

Interactive Debugging 	 6-8
The HELP Run 	 6-8
Checkpoint Displays 	 6-9
RDB Statement or Function 	 6-9
RAR and RER Statements 	 6-9

Using RDB (Run Debug) 	 6-10
RDB Commands 	 6-12
RDB Error Mode 	 6-15

7. Run Statements 	 7-1
List of Statements by Name 	 7-2
Statements with No Corresponding Manual Function 	 7-6
ADD 	(Append Report) 	 7-8
ADR 	(Add Report) 	 7-9
ART 	(Arithmetic) 	 7-11
AUX 	(Auxiliary) 	 7-16
BFN 	(Binary Find) 	 7-18
BLT 	(Build Label Tables) 	 7-26
BR 	(Background Run) 	 7-28
BRG 	(Break Graphics) 	 7-30
BRK (Break) 	 7-32
CAL 	(Calculate) 	 7-34
CAR 	(Clear Abort Routine) 	 7-56
CAU 	(Calculate Update) 	 7-57

UP-9662.5 	 Contents-3

Contents

CER 	(Clear Error Routine) 	 7-61
CHD 	(Command Handler) 	 7-62
CHG (Change) 	 7-67
CLK 	(Clear Link) 	 7-70
CLT 	(Clear Label Tables) 	 7-71
CLV 	(Clear Variables) 	 7-73
CMU 	(Commit Updates) 	 7-74
CPY 	(Copy) 	 7-75
CSR 	(Clear Subroutine) 	 7-77
DAT 	(Date) 	 7-78
DC 	(Date Calculator) 	 7-82
DCPY (DDP Copy) 	 7-86
DCR 	(Decode Report) 	 7-90
DCRE (DDP Create) 	 7-92
DCU 	(Decommit Updates) 	 7-95
DEC 	(Decrement Variables) 	 7-96
DEF 	(Define) 	 7-97
DEL 	(Delete) 	 7-101
DEV 	(Device) 	 7-102
DFU 	(Defer Updates) 	 7-104
DIR 	(Directory Information) 	 7-106
DIS 	(Diskette) 	 7-109
DLL 	(Downline Load) 	 7-112
DLR 	(Delete Report) 	 7-113
DPUR (DDP Purge) 	 7-114
DSG 	(Display Graphics) 	 7-116
DSM 	(Display Message) 	 7-119
DSP 	(Display Report) 	 7-122
DUP 	(Duplicate Report) 	 7-124
DVS 	(Define Variable Size) 	 7-126
ECR 	(Encode Report) 	 7-128
ELT 	(Element) 	 7-130
EL- 	(Element Delete) 	 7-134
ESR 	(Exit Subroutine) 	 7-137
EXT 	(Extract) 	 7-139
FDR 	(Find and Read) 	 7-140
FMT (Format) 	 7-144
FND 	(Find) 	 7-146
GOC 	(Generate Organization Chart) 	 7-150
GS 	(Graphics Scaler) 	 7-153
GTO 	(Go To) 	 7-159

Contents-4 	 UP-9662.5

Contents

IDU 	(Index User) 	 7-162
IF 	(Conditional) 	 7-165
INC 	(Increment Variables) 	 7-170
IND 	(Index) 	 7-171
INS 	(Insert) 	 7-173
JUV 	(Justify Variables) 	 7-174
KEY 	(Function Key Input) 	 7-177
LCH 	(Locate and Change) 	 7-178
LCV 	(Locate/Change Variable) 	 7-182
LDV 	(Load Variables) 	 7-191
LFC 	(Load Format Characters) 	 7-199
LFN 	(Load Field Name) 	 7-200
LLN 	(Last Line Number) 	 7-203
LMG 	(List Merge) 	 7-205
LNI 	(Line Insert) 	 7-207
LNK 	(Link to Another Run) 	 7-208
LNM 	(Line Move) 	 7-214
LNX 	(Line Duplicate) 	 7-215
LN+ 	(Line Add) 	 7-216
LN- 	(Line Delete) 	 7-217
LOC 	(Locate) 	 7-218
LOG 	(Accounting Log) 	 7-222
LOK 	(Update Lock) 	 7-223
LSM 	(Load System Message) 	 7-225
LZR 	(Line Zero) 	 7-226
MAU 	(Match Update) 	 7-229
MCH (Match) 	 7-232
MOD (Mode) 	 7-236
MSG 	(Message to Console) 	 7-237
OK 	(Acknowledge Message) 	 7-239
OUM 	(Output Mask) 	 7-240
OUT (Output) 	 7-245
PEK 	(Peek Variables) 	 7-265
POK 	(Poke Variables) 	 7-267
POP 	(Pop Variables) 	 7-269
PRT 	(Print) 	 7-271
PSH 	(Push Variables) 	 7-273
RAR 	(Register Abort Routine) 	 7-276
RDB 	(Run Debug) 	 7-279
RDC 	(Read Continuous) 	 7-280
RDL 	(Read Line) 	 7-284

UP-9662.5 	 Contents-5

Contents

REH 	(Retrieve from History) 	 7-288
REL 	(Release Display) 	 7-290
REP 	(Replace Report) 	 7-291
RER 	(Register Error Routine) 	 7-292
RET 	(Retrieve File) 	 7-295
RFM 	(Reformat Report) 	 7-299
RLN 	(Read Line Next) 	 7-301
RMV 	(Remove Variables) 	 7-305
RNM (Rename) 	 7-307
RPW 	(Read Password) 	 7-309
RRN 	(Remote Run) 	 7-311
RS 	(Run Status) 	 7-314
RSI 	(Remote Symbiont Interface) 	 7-315
RSL 	(Create Result Copy) 	 7-318
RSR 	(Run Subroutine) 	 7-319
RTN 	(Return Remote) 	 7-323
RUN 	(Run Start) 	 7-325
SC 	(Screen Control) 	 7-330
SEN 	(Send Report) 	 7-360
SFC 	(Set Format Characters) 	 7-361
SOR 	(Sort) 	 7-363
SRH (Search) 	 7-366
SRU 	(Search Update) 	 7-371
STN 	(Station Information) 	 7-373
STR 	(Batch Start) 	 7-376
SUB 	(Subtotal) 	 7-380
TCS 	(Tape Cassette) 	 7-385
TOT (Totalize) 	 7-388
TYP 	(Form Type) 	 7-393
ULK (Unlock) 	 7-396
UPD (Update) 	 7-397
USE 	(Use Variable Name) 	 7-398
WAT (Wait) 	 7-400
WDC 	(Word Change) 	 7-401
WDL 	(Word Locate) 	 7-403
WPR 	(Word Process) 	 7-405
WRL 	(Write Line) 	 7-408
XCH 	(Exchange Variables) 	 7-410
XIT 	(Sign-Off) 	 7-412
XQT 	(Execute Run Statement) 	 7-413

Contents-6 	 UP-9662.5

Contents

Appendixes

A. Summaries: Statements and Options 	 A-1
MAPPER Run Statements 	 A-2
Field and Subfield Abbreviations 	 A-6
Options for Ten Common Run Statements 	 A-13

B. Reserved Words 	 B-1
Table of Reserved Words 	 B-2
Example Using Reserved Words 	 B-10
Using Reserved Words Directly 	 B-11

C. Sample Runs: DEMO, EDIT and MARK 	 C-1
DEMO—Designing a Menu Screen 	 C-2
EDIT —Finding Status Codes in Form Type B 	 C-4
MARK—Determining Orders and Retail Dollars per

Customer 	 C-7

D. Efficient Run Techniques 	 D-1
Character Sets 	 D-2
Run Control Reports 	 D-2
Analysis/Registration 	 D-3
Loading Variables 	 D-4
Statements/Functions 	 D-5
Updating Reports 	 D-7
Logic 	 D-9
Batch Processing 	 D-10

E. Character Sets 	 E-1
Overview 	 E-2

C Option 	 E-2
Limited Character Set 	 E-4
Full Character Set 	 E-7

F. Data Transfer Module 	 F-1
Sending Messages 	 F-2
QSND (Send Message, No Response) 	 F-3
QSNR (Send Message, Response Expected) 	 F-7
Processing Messages 	 F-13
QRSP (Send Response Message) 	 F-14
QREL (Release Message) 	 F-16
QCTL (Queue Control) 	 F-17

UP-9662.5 	 Contents-7

Contents

More on Input Process Runs 	 F-24
Processing a Response 	 F-24
Processing Delayed Responses 	 F-26

Glossary

Index

Evaluation Card

Contents-8
	

UP-9662.5

Tables

4-1. Variables: 	Types, Sizes, Limitations 	 4-6
6-1. RDB Commands 	 6-12
7-1. ART: 	Arithmetic Operators 	 7-12
7-2. ART: 	Priority of Arithmetic Operations 	 7-13
7-3. ART: 	Arithmetic and Trigonometric Functions 	 7-15
7-4. CAL: 	Priority of Arithmetic Operations 	 7-40
7-5. CAL: 	Priority of Relational Operations 	 7-41
7-6. CAL: AND and OR True/False Conditions 	 7-42
7-7. CAL: 	Internal Arithmetic/Trigonometric Functions 	 7-42
7-8. CAL: 	DEF Statement Report Fields/Values 	 7-44
7-9. DATE and TIME Formats 	 7-49
7-10. M Characteristics 	 7-253
7-11. N Characteristics 	 7-254
7-12. Emphasis Characters 	 7-255
7-13. Five-to-One Color Codes 	 7-261
7-14. STR: Data Control Commands 	 7-377
A-1. Options for Ten Common Run Statements 	 A-13
B-1. Reserved Words 	 B-2
E-1. Limited Character Set (Fieldata) 	 E-4
E-2. Full Character Set (ASCII) 	 E-7
F-1. INFO Function Variables 	 F-18
F-2. STAT Function Variables 	 F-20

UP-9662.5 	 Contents-9

I. Introduction

This manual contains reference information about new and existing run
statements. By using this manual, you can write and update complete
runs, obtain quick access to statement syntax, and learn about
efficiency techniques by following examples.

This section contains:

❑ New Run Design Features

❑ What Is a MAPPER Run?

UP-9662.5 	 1-1

New Run Design Features

MAPPER software level 34R1 contains many new run statements,
enhancements to existing run statements, reserved words, and other new
run design features. Following are brief descriptions of these new
features.

NEW RUN STATEMENTS

BRG (Break Graphics)
Packs data, such as primitive graphics code, in the output area and
places it into a result.

DCR (Decode Report)
Transforms an encoded report into a readable report by specifying
the key. See ECR.

DSM (Display Message)
Allows you to display your own one-line message at the top of the
screen.

ECR (Encode Report)
Encodes a report, changing the data from readable text into code
that can be read only if a key is specified.

RDB (Run Debug)
Halts the run and enters into debug mode, which allows you to
interactively examine the contents of variables, reserved words, and
renamed results.

SC (Screen Control)
Allows you to create menus and other input screens or to edit text
already on the screen. You can also use it to overlay existing OUT
or DSP screens.

1-2 	 UP-9662.5

New Features

STN (Station Information)
Provides you with information about a specific station number.
Use it when sending data to another terminal via a DSG, OUT, or
SC statement.

USE (Use Named Variables)
Allows you to assign a variable name to a specific variable number.

ENHANCEMENTS TO EXISTING STATEMENTS

ADR Allows you to specify the RID number to add in a particular
mode and type. You can also enter the label or relative line
number to go to in case of an error.

DEF 	Added the V option to define the variable name that is
assigned to a specific variable number.

DLR 	Allows you to delete results as well as reports.

DSG 	Allows you to send DSG displays to other terminals. You can
specify a label or line number to go to in case of error.

DUP 	Allows you to specify a different mode and type to duplicate a
report into.

LDV 	Allows you to specify only the receiving variable when loading
a variable with its own contents.

MAU 	Added the A option to allow match updates on all line types.

MCH 	Added the A option to allow matching all line types.

OUT 	Allows you to send OUT displays to other terminals. You can
specify a label or relative line number to go to in case of error.

REP 	Allows you to specify a particular receiving report to be
created by the REP statement.

UP-9662.5 	 1-3

New Features

SRH 	Added the vrid variable to capture the RID number where the
find is made when doing a range search. This is useful when
using the B(n) option.

TYP 	Added the vrlmt variable to capture the highest RID number
allowed in the form type; the vllmt variable to capture the
highest number of lines allowed per report in the form type;
and the vrids variable to capture the total number of reports in
the form type.

NEW RESERVED WORDS

ELINE$ 	Contains the line number currently being executed in a run
control report.

MAXTYP$ Contains the maximum octal form type available on your
MAPPER system.

MSEC$ 	Contains the current number of milliseconds since
midnight.

OTHER NEW FEATURES

❑ The RDB (Run Debug) function and run statement allow you to
execute a run interactively and examine the contents of variables,
reserved words, and renamed results. You can step through the run
one line or command at a time; or you can set a breakpoint to halt
the run at a specific line number, label, run statement, or variable.

❑ Type A variables now allow up to sixteen characters rather than
twelve.

❑ The new LIMITS run displays the highest RID number and lines
per report that are allowed for the mode and type you are
currently in.

❑ The SCHEDULE run can now be called from a run control report
using the LNK (Link to Another Run) statement.

1-4 	 UP-9662.5

New Features

❑ Chart runs can now be called from a run control report using the
LNK (Link to Another Run) statement.

❑ Variables can now be assigned meaningful names rather than
numbers. These variable names are enclosed in greater than and
less than signs; for example, you can use <Finds> rather than V 1.

❑ The DEMO, EDIT, and MARK sample runs have been updated to
show the use of named variables.

❑ The BVT (Build Variable Table) run allows you to build or rebuild
a variable table displaying the location of variables and convert
variables in your run control report. The BVT run replaces the
VAL run, which is no longer supported.

❑ The RUN run now includes function keys that allow you to control
the operation of runs and a screen that allows you to display,
execute, and register results or exit the run.

❑ You can use zeros in substring variables to specify two kinds of
trailing substrings. The first kind is a known trailing substring, in
which you indicate the starting character position and use the
remaining characters in the field. The second kind is an unknown
trailing substring, in which you don't know the starting character
position, but indicate the number of ending characters to use.

❑ Run statements now check the specified report to determine
whether the requested column exists. If the column number does
not exist, the run errs rather than returning the message "No more
finds." This enhancement does not apply to four run statements:
LFN (Load Field Name), RDC (Read Continuous), RDL (Read
Line), and RLN (Read Line Next).

UP-0662.5 	 1-5

New Features

❑ The HELP run contains a new option for run designers,
HELP @rfc, where rfc is the run function call. When this is
entered with a run control report on display, the format of the
specified run function call is displayed on the control line. You
can obtain additional help about that run statement by pressing Fl
or entering

❑ The FKEY$ reserved word now allows you to capture the number
of up to 22 function keys.

DISCONTINUED RUNS

❑ The FORMD run has been discontinued. However, you can now
use the new HELP @rfc to display a run statement format.

❑ The VAL run has been discontinued and is replaced by the new
BVT run.

1-6 	 UP-9662.5

What Is a MAPPER Run?

A MAPPER run is a sequence of statements based on MAPPER
functions that specify step-by-step instructions for generating reports
or results or for executing other applications. You type these run
statements in a run control report (see Appendix C for examples).

MAPPER runs efficiently execute sets of MAPPER functions. Runs are
especially appropriate for repetitive processing because they provide
both report generating as well as automatic database updating
capabilities.

You can make logical decisions based on variables or results (for
example, jumping, branching, and decisions based on data content).
You can also design MAPPER runs that run users can interrupt to
display data on the screen or enter information to be captured and
processed by the run.

You can format reports in your MAPPER runs to suit your needs.

UP-9662.5 	 1-7

2. Using the Data Directory

The Data Directory is a run design tool that allows you to dynamically
identify fields, modes, form types, and reports in run statements by
naming them.

Database naming has its own special syntax; however, it does not
replace standard run syntax. You can use both conventions in the same
run, even within the same run statement.

This section includes:

❑ Naming Fields

❑ Naming Modes, Form Types, and Reports

❑ Naming Data Using Reserved Words

UP-9662.5 	 2-1

Naming Fields

You can process fields in reports by name. The names are derived
either from the headers of the report, or from RID 0 if you're
processing the entire form type. Field names, therefore, are an integral
part of the database.

For example, in standard run syntax, this statement searches the report
for customer code AMCO:

@SRH,O,D,1 " 26-4 ❑ ,AMCO .

Using named fields, this statement does the same thing:

@SRH,O,D,1 " ' CUST CODE' ❑ , AMCO .

You don't have to specify the starting column number or the field size;
only the field name is required.

If a field moves within a report or if the size of the field changes, you
don't have to change the reference to it.

REPORT HEADERS AND THE HEADER-DIVIDER LINE

When a run reads the first named field in a statement, it scans the
report for a header-divider line (*=). The report must contain a header-
divider line within the first 16 lines of the report.

The run derives starting columns and field sizes from the grouping of
equal signs on the header-divider line, extracting field names from up
to two asterisk lines immediately preceding it. If the report has more
than two asterisk lines, the run recognizes only the last two.

2-2 	 UP-9662.5

Naming Fields

Examples

This example shows the first five fields in RID 2B in mode 0:

*ST . STATUS _ BY . PRODUCT . SER I AL .
*CD. DATE I N . TYPE 	.NUMBER _
*

From these fields, the following field names are derived:

ST CD (2-2)
STATUS DATE (5-6)
BY IN (12-2)
PRODUCT TYPE (15-9)
SERIAL NUMBER (25-6)

This example shows the first fields of a report with three asterisk lines
containing field headers:

* MONTHLY. ANNUAL .
* I NTEREST . D I SCOUNT .
* RATE . STATUS .

The field names are:

INTEREST RATE (2-8)
DISCOUNT STATUS (11-8)

Therefore, if you're using named fields for reports with three or more
asterisk type header lines, keep the important information in the two
header lines immediately preceding the header-divider line.

UP-9662.5 	 2-3

Naming Fields

FIELD NAMES

Enclose field names within apostrophes ('). Names can be either
uppercase or lowercase and can contain from 1 to 32 characters. Field
names must be unique within the report header; if duplicate names are
present, the run uses the leftmost one.

You can use any characters in your field names. However, the run
considers only alphanumeric characters (A to Z and 0 to 9) when
comparing the field name to the report header; it ignores any other
characters, such as spaces or special characters. For example,
'CUSTCODE', 'CUST-CODE', and 'CUST CODE' are all acceptable field
names.

You can also abbreviate field names by omitting trailing characters, as
long as the characters specified are unique to that field.

For example, you can specify a search of the CUST CODE field like
this:

@SRH,O,D,1 " 'CUST' ❑ ,AMCO .

This makes the run statement shorter, which generally makes it more
efficient.

FIELD NAMES IN VARIABLES

Enclose the name of a variable within apostrophes if it contains a field
name. Do not place any other characters, such as spaces, within
apostrophes. You can use any variable type, including a variable-
variable designation. However, you cannot use substrings of variables.

This example searches the CUST CODE field for AMCO; notice that
there are no spaces or other characters between the apostrophes in 'VV:

@LDV V1H18='CUST CODE' .
@GRH.0,D,1 " 'V1' ❑ ,AMCO .

2-4 	 UP-9662.5

Naming t mins

NAMING PARTIAL FIELDS

You can also specify a partial field. For example, you may want to
scan a field for specific starting or ending characters.

To name a partial field, enclose the relative starting column position
and number of characters of the partial field in parentheses after the
field name.

For example, this statement searches the first character of the
PRODUCT TYPE field:

@GRH,O.D.1 " 'PRODUCT TYPE(1-1)' ❑ ,B .

To process a named field from any column to the end of the field,
specify the starting column and define the number of characters as
zero.

For example, this statement searches the PRODUCT TYPE field
starting at the sixth column in the field for the remainder of the field:

@GRH.O.D.1 " 'PRODUCT TYPE(6-0)' ❑ ,BOX1 .

To name the trailing portion of a named field, specify a starting
column of zero and the number of characters to process.

This example searches the last character of the ORDER NUMBER
field:

@SRH,O,D,1 " 'ORDER NUMBER(0-1)' ❑ ,S .

UP-9662.5 	 2-5

Naming Fields

FIELD ORDER

You can list multiple named fields in any order; they don't have to be
in the same order in which they appear in the report, as long as the
parameters and named fields are in the same order.

For example, these two statements perform the same search and have
identical results:

@ISRH,O,D " 'ST CD','CUST CODE' ❑ ,OR,AMCO .

abSRH,O,D " 'GUST CODE','ST CD' ❑ ,AMCO,OR .

FIELD SIZE VARIABLE DEFINITION

Whenever an input parameter is used to process a report field, the
variable used for input must match the field size. The input field size
on a screen may also need to match a corresponding report field.

You can use the DVS (Define Variable Size) statement to create
variables equal to the size of the report fields (see DVS in Section 7).
When the run executes, it defines the size of the variable; any input
parameter or screen using that variable dynamically adjusts to a change
in the size of the field.

You can also define the variable to a field size in these statements that
load variables with data from report fields: RDC (Read Continuous),
RDL (Read Line), RLN (Read Line Next), and SUB (Subtotal). See
RDC, RDL, RLN, and SUB in Section 7.

SELECTING FIELDS TO DISPLAY

Use the FMT (Format) statement to select which fields you want to
display in a following DSP, OUT, or OUM statement (see FMT in
Section 7).

2-6 	 UP-9662.5

Naming Fields

CONVERTING TO FIELD NAMES

Use the LFN (Load Field Name) statement to translate standard column
number syntax into field names (see LFN in Section 7). You can use it
to convert existing run statements to use field names, or to translate
data from the OUM statement into field names (see OUM in Section 7).

EFFICIENCY CONSIDERATIONS

When a run encounters a field name, it must read the report header,
which requires one additional I/O access. However, it does not read the
header for other field names in the same run statement. Also,
succeeding run statements that specify the same report, or a result
derived from it, do not cause the run to read the report header again.

In this example, the SRH statement causes the run to read the headers;
the SOR and TOT statements do not.

@SRH,0,D,1 " 'ST CD' ❑ ,OR .
@SOR,O,D,-0 " 'ORDER NUMBER' ❑ ,1 .
@TOT,0,D,-0 S 'ORDER NUMBER','ORD QTY' ❑ ,S.+

You typically reprocess the result of a previous function. This
distributes the overhead of reading report headers and minimizes its
impact on any individual statement.

UP-9662.5 	 2-7

Naming Modes, Form Types, and Reports

You can identify a mode, a form type, or a report by name in a run
statement.

In standard run syntax, for example, this statement searches mode 0,
RID 1 D:

@SRH . 0 , D , 1 " 'GUST CODE' El ,AMCO

Using a named report, this statement does the same thing:

@SRH , ' ORDER STATUS' " ' CUST CODE' 0 , AMCO .

You don't have to specify the mode, form type, and report number —only
the name of the report.

Mode, form type, and report names are defined in the System
Directory, which you can access and update using the NAME run. (See
"NAME—Updating the System Directory" in this section.) Before using a
named mode, form type, or report, you must enter it in the System
Directory.

Depending on how it is defined, this name replaces one or more of the
mode, type, and RID (m,t,r) subfields in a run statement. If the name
defines a mode, it replaces only the first subfield. A name that defines
a report replaces all three subfields.

You can also assign a name to a range of reports in a form type. With
BFN (Binary Find), FND (Find), and SRH (Search), the system
automatically adds the R option to the run statement if you use a name
that defines a range of reports.

2-8 	 UP-9662.5

Naming Modes, Form Types, and Reports

MODE, FORM TYPE, AND REPORT NAMES

Enclose the names of modes, form types, and reports within apostrophes
('). Names must start with an alphabetic character (A to Z), can be
either uppercase or lowercase, and can contain from 1 to 16 characters.

You can use any characters in your data names. However, the run
considers only alphanumeric characters (A to Z and 0 to 9) when
comparing the name to the System Directory; it ignores any other
characters, such as spaces. For example, 'ORDERSTATUS', 'ORDER-
STATUS', and 'ORDER STATUS' are all acceptable names.

NAMES IN VARIABLES

Enclose the name of a variable in apostrophes if it contains a mode,
form type, or report name. Do not place any other characters, such as
spaces, within the apostrophes. You can use any variable type,
including a variable-variable designation. You cannot use substrings of
variables, however.

This example searches the ORDER STATUS report for AMCO in the
CUST CODE field; notice that there are no spaces or other characters
between the apostrophes in 'VV.

@LDV V1H18='ORDER STATUS' .
" 'CUST CODE' ❑ ,AMCO .

NAMING RESULTS

Wherever you specify the current result (-0) or a renamed result (-1 to
-4), you can omit the mode and type (rn and t) fields.

For example, instead of the following statement:

@DSP 0 , B , - 	.

you can use this statement to do the same thing:

@DSP - 0 .

UP-9662.5 	 2-9

Naming Modes, Form Types, and Reports

NAME — UPDATING THE SYSTEM DIRECTORY

The System Directory is a report that contains data names for modes,
form types, and reports. You can use data names in run statements to
define modes, types, and reports to process.

The NAME run updates the System Directory. You can enter a new
name, delete an existing name, or change the definition of an existing
name.

To use the NAME run, enter name to display this screen:

UPDATE SYSTEM DIRECTORY

Name

Mode

Type

RID Number(s)

Department (your department) 	(ALL.All)

USER-ID (your user-id) 	(ALL=AtL)

Function ADD
	

(ADD,CHG,DEL)

Update Directory Y
	

(Y or N)

2-10 	 UP-9662.5

Naming Modes, Form Types, and Reports

In field: 	 Enter:

Name
	 the data name (up to 16 characters, beginning with an

alphabetic character). Only alphanumeric characters are
stored in the System Directory; any other characters
entered in this field are ignored.

Mode* 	the mode number.

Type* 	the form type (A to I).

RID Number(s)* the RID number, or a range of RIDs defined by a
lower-higher designation (1-12, 500-999, and so forth).

Department 	the department number qualifier. (Default = user
department.) If you want to allow all departments to use
the name, enter ALL.

USER-ID

Function

the sign-on. (Default = your user-id.) If you want to
allow all users to use the name, enter ALL.

the type of update to the System Directory, where ADD =
add new item (default), CHG = change the definition of
an existing item, and DEL = delete an existing item.
Note that only the user who entered a name can change or
delete it.

Update 	 a Y to include the name in the System Directory.
Directory 	If you are naming several reports, it is more efficient to

enter N for all but the last report. You must enter a Y for
the last report to include all reports that you named.

* To name a mode, leave the Type and RID Number fields blank. To name a form type, leave only the

RID Number field blank. When deleting a name, you can leave the Mode, Type, and RID Number fields

blank.

UP-9662.5 	 2-11

Naming Modes, Form Types, and Reports

To use the fast-access method, use this format:

NAME namel,m,t,r,dept,user,junc,update?)

In field: 	 Enter:

name
	the data name.

m,t,r
	 the mode, form type, and RID number.

(Default = current -0.)

dept
	 the department number. (Default = user's department.)

user
	 the user's sign-on. (Default = your user-id.) Enter ALL

to allow all users to access the name.

func
	 the function, where ADD = add (default), CHG = change,

DEL = delete.

update? 	a Y to include the name in the System Directory.
(Default = Y.)

SYSTEM DIRECTORY INFORMATION

The DIR (Directory Information) statement allows you to retrieve
information about a particular data name from the System Directory.
(See DIR in Section 7.)

2-12 	 UP-9662.5

Naming Data Using Reserved Words

You can use reserved words directly in run statements, which means
you don't have to load them in variables beforehand. Because many
reserved words represent data entities, such as form types, this is also a
form of data naming.

For example, instead of the following sequence:

@CHG V114 MODE$.
@CHG V2I6 TYPE$.
@CHG V3I4 R1D$.
@DSP,V1,V2,V3 .

you can use just one statement to do the same thing:

@DSP , MODE$, TYPE$, R I D$.

In addition, you can use reserved words that represent numeric form
types to replace the mode and type (m and t) fields of run statements.

For example, this statement can replace the preceding example:

@OSP.TYPE$,R1D$.

UP-9662.5 	 2-13

3. Formulating Run Statements

MAPPER run statements begin with an at sign (@) and follow a
specific format. The next page shows a typical run statement format.
In addition, run statements often contain labels and special characters.

This section includes:

❑ Run Statement Format

❑ Labels

❑ Special Characters

UP-9662.5 	 3-1

Run Statement Format

Here's a typical MAPPER run statement format:

@labehfunction-call,mode,type,rid options column-characters
Aline-type,parameters variables . comments

Note the space-period-space before the comment. Your runs execute
more efficiently if you type a space-period at the end of each
statement and a space before typing a comment.

This SRH (Search) statement uses data from mode 0, type C, report 1:

@7:SRH. 0,C. 1 D 2-9 0 ,BLACKBOX7 V115. V216

where:

@ 	 control character

7: 	 label and separator (optional)

SRH 	 function call

0 	 mode number

C 	 form type of report

1 	 report identifier (RID) number

D 	 D option (deletes search information lines)

2-9 	 column-character positions to process: column 2
for nine character positions

0
	

line type: process tab lines (you can enclose the
invisible tab character in apostrophes if you
want to remind yourself that it is there)

BLACKBOX7 	parameter: search for BLACKBOX7s

3-2 	 UP-9662.5

Run Statement Format

V1I5 	 five-digit variable named VI, which captures the
number of finds

V2I6 	 six-digit variable named V2, which captures the
number of lines searched

VALID STATEMENTS AND ERROR MESSAGES

MAPPER software considers any line in a MAPPER run that begins
with an at sign (@) a run statement line; the line must have a valid
statement. If the system finds something invalid in a line, it responds
with an error message like one of these:

7UNABLE TO FIND ALL THE FIELDS REQUIRED

VTHIS CONTROL WORD IS NOT VALIDN

FORMULATING RUN STATEMENTS

Follow these guidelines when formulating run statements:

❑ Type an @ in column 1.

❑ Enter multiple run statements on one line and separate them with
spaces. Use just one @ per line.

❑ Terminate a line with a space-period-space (LS.A). Beginning a
line with an at sign-period (@.) or an at sign-label-period (@label .)
also terminates the line. You can begin comments (which are
useful for analyzing MAPPER runs) anywhere after the space-
period-space on any line.

❑ These statements terminate the line (the MAPPER system ignores
statements that follow them on the same line): DSP, ESR, LNK,
OUT, RDB, RRN, RSR, RTN, RUN, SC, and WAT.

UP-9662.5 	 3-3

`....../

Run Statement Format

O You can specify fields to process in the cc (column-characters)
subfield in any order, regardless of their order in the report, as
long as you list the parameters in the same order. For example,
these two run statements work the same:

@SRH , 0 , C , 1 " 2 - 5 , 16 - 1 0 , BLACK , A .

@SRH, 0,C, 1 " 16-1,2-5 0 ,A, BLACK .

O Define columns only once in the cc (column-characters) field.

O Terminate fields with spaces. A comma does not terminate a field.

O Separate subfields with commas. This includes blank subfields.

O Subf ields that define character positions to process must correspond
to control parameter subfields. The subfields must be equal in
number to, and in the same sequence as, the character position
subfields they correspond to.

O You can use variables in fields and subfields.

O Never exceed 19 variables in a field or subfield. In some cases, the
maximum number of variables allowed is fewer than 19 and noted
as such.

O Enclose fields or subfields that require significant spaces within
apostrophes.

O The required fields and subfields for a run statement vary from
statement to statement. Include all required fields. Enter two
apostrophes (") if you're not entering options in the o (options)
field.

O To get the literal representation of variables in the output area,
enclose them within apostrophes (for example, 'V1').

O Do not use an at sign or a colon (@ or :) in the first character
position of any line in the output area.

3-4 	 UP-9662.5

Run Statement Format

❑ Whenever you use a comma for something other than a subfield
separator, enclose it within apostrophes; for example, to include a
comma in the replacement string of an LCH (Locate and Change)
statement, use ' change, and'.

❑ In run statements that require an issuing and a receiving report,
designate the issuing report first and the receiving report second.

❑ Run statements that access or lock reports (IDU, LOK, RDL, SOR,
SRH) cannot access their own run control report.

See Appendix D for more ways to improve your MAPPER runs.

UP-9662.5 	 3-5

Labels

You can identify any statement line in a run with a label. Use labels
in these situations:

❑ At the start of a run statement to match a label specified in the lab
subfield of another run statement

❑ In logical IF GTO statements

❑ When you want to identify sections in a run

A comment in a run might, for example, say:

check vl at label 5 for information at your site

Format

@n: (followed by a statement)

or:

where is a line label number from 1 to 199 (or 1 to 399 if your system
is set up to handle up to 399 labels; check with your coordinator).

Each label must be unique; duplicates are not allowed.

3-6 	 UP-9662.5

Labels

LABEL TABLE DEFINITION LINES

Label table definition lines predefine label locations (that is, they tell the
run which lines have labels).

Use label table definition lines in larger, more stable production runs,
but not in runs that change frequently.

Here's an example of a label table:

:L 22=13.33=26,44=39

Label 22 is on line 13, label 33 is on line 26, and label 44 is on line 39.

Format

:L label-number=line-number, .

where:

label-number 	is the label number.

line-number 	is the line number in the run control report
where this label is located.

Use BLT to build label tables. See BLT in Section 7. See also the BLT
function in the Manual Functions Reference.

UP-9662.5 	 3-7

Special Characters

Use these special characters in MAPPER runs:

❑ Semicolon (;) as a field delimiter

❑ Slant (/) to indicate multiple parameters (for example, in a range
search)

❑ Reverse slant (\) for continuing a run statement on the next line

❑ Apostrophe (') to specify literal data in parameters fields of run
statements

SEMICOLON — FIELD DELIMITER

In an ART or CAL statement, use a semicolon (;) to separate
expressions. For example:

@ART V2+V3:V4*4 V10112.V11112

and:

@CAL,O,C.1 L 50-5.56-8.65-15 ❑,A.B.0
C=A*B:AVRG.VAVG(A) .

In an IF statement, use a semicolon to control more than one decision
on the same line. For example:

@IF V1 = 3 GTO 9 ; IF V1 = 6 GTO 8 ; GTO END

See GTO and IF in Section 7 for more examples.

3-8 	 UP-9662.5

Special Characters

SLANT — MULTIPLE PARAMETERS

Use a slant (/) to separate multiple parameters in a statement. For
example:

@GRH,O,B,2 D 2-2 0,0R/1],SC V113,V2I3 .

REVERSE SLANT — CONTINUE STATEMENT

Use a reverse slant (\) whenever a run statement is too long for one
line. For example:

@CAL,O,C,1,,,99 L 25-7,33-8,65-15 ❑ ,A,B+,C+
MAXA.VMAX(A);MAXB.VMAX(B);C=B-A V119,V219,X
V319,V419

The reverse slant at the end of the first line tells the system that this
statement continues on the second line.

For readability, use the reverse slant at the end of a subfield, and if
possible, avoid starting a second or succeeding line with a space.

You can use up to 640 characters in a run statement on multiple lines.
The system counts all characters in the last line, including unused
spaces.

UP-9662.5 	 3-9

Special Characters

APOSTROPHE — LITERAL DATA

Normally, characters in the parameters fields of run statements need
not be enclosed in apostrophes. The following characters, however,
must be enclosed in apostrophes:

❑ Spaces; for example:

@SRH , 0 , D, 1 D 'CUSTOMER' 0, 'DIGI TAL CORP ' .

❑ Slants; for example:

@SRI-1, 0 , D, 1 / 'CUSTOMER' 0 , 'UN ION STEEL /SULFR ' .

❑ Commas; for example:

@SRH , 0 , C , 1 F 'PRODUC COST' 0 , ' 13,500' .

3-10 	 UP-9662.5

4. Variables and Reserved Words

Variables and reserved words are important aspects of run design, so
you should know how to use them properly and efficiently. This
section defines variables and reserved words and tells why you use
them in run design. It also presents two runs (VARIABLE and BVT)
that you use with variables.

This section includes:

❑ Variables —Names, Types, and Sizes

❑ Initializing and Redefining Variables

❑ Changing the Contents of Variables

❑ Using Exponential Notation with Variables

❑ Examples Using Variables

❑ Loading Variables with Screen Input and Initial Input Parameters

❑ VARIABLE Run—Testing Contents of Variables

❑ BVT Run—Building Variable Tables and Converting Variables

❑ Reserved Words

UP-9662.5 	 4-1

Variables—Names, Types, and Sizes

A variable is a labeled entity that can assume different values. These
values are assigned by you or by the system.

When you use a variable, you must first initialize it. This means that
you assign it a name, a variable type, a size, and an initial value.

NAMING VARIABLES

You can name variables in two ways:

❑ You can use the traditional naming conventions, in which you
name a variable with a V followed by a number from 1 to 199.
(You can use up to 399 variables if your system is set up to handle
more than 199. Ask your coordinator for the maximum number of
variables allowed at your site.) You refer to the variable with the
letter V and its number (for example, V10).

❑ You can use the variable-naming method, in which you assign a
meaningful name for a variable rather than a number. The
variable name can be no greater than twelve characters, it must
begin with an alphabetic character (A-Z), and contain only
aphanumeric characters (A-Z and 0-9). You enclose the name in
less than (<) and greater than (>) signs (for example, <NAME>).

You can use these named variables anywhere you would use
numbered variables in a run. When a named variable is defined,
the system assigns it the lowest unused variable number. Therefore,
the first variable in a run is assigned to VI, the second is assigned
to V2, and so on. After a name is assigned to a variable, it can no
longer be referenced by its variable number.

4-2 	 UP-9662.5

Variables —Names, Types, and Sizes

Mixing named and numbered variables in the same run is not
recommended. However, if it is necessary to do so, you can use the
USE run statement, which allows you to assign a name to a specific
variable number. See USE (Use Variable Name) in Section 7.

NOTE: Named variables are slightly less efficient than numbered
variables. Although the difference is small, you may want to
consider it when using logic-intensive runs.

ASSIGNING VARIABLE TYPES AND SIZES

When you use a variable for the first time, you must assign it a type
and a size. There are six types of variables:

A 	Alphanumeric
F 	Fraction
H 	Hollerith (any characters)
I 	Integer (whole numbers)
0 	Octal
S 	String

You specify the size by using a number (or another variable) to
indicate the number of characters the variable can have.
When you initialize a variable, you specify its name, its type, and its
size.

For example, this means that V9 is an integer variable with three
characters:

V9 i3

Using the new variable-naming conventions, this means that <PHONE>
is an alphanumeric variable with eight characters:

<PHONE>A8

Table 4-1 shows types and sizes of variables used in ART, CHG, and IF
statements.

UP-9662.5 	 4-3

Variables—Names, Types, and Sizes

USING VARIABLES

You can refer to parts (substrings) of a variable:

variable-name(position-characters)

where position-characters are the starting character in the variable and
the number of characters. For example, this means start at character
position I for three characters:

V10(1-3)
	

or 	<PHONE> (1 -3)

NOTE: Substrings of H, I, and S type variables are treated as A type
variables. See Table 4-1 for information about types, sizes,
and limitations of variables.

You can also use zeros in substrings to specify known trailing substrings
and unknown trailing substrings. To use a known trailing substring, you
specify the starting character position, then a zero to indicate the
remaining characters of the field. For example, this means start at
character position 3 for the remaining characters in VI:

V1(3-0)

To specify an unknown trailing substring, you specify zero because you
don't know the starting character position; then specify the number of
ending characters to use. For example, this means to use the last two
characters of VI:

V1(0-2)

You can use another variable that has a number from 1 through 199 to
name a variable. For example, if VI contains the value 2, this
references variable V2:

V V 1

4-4 	 UP-9662.5

Variables—Names, Types, and Sizes

You can also use the new variable-naming conventions to reference a
variable with another variable. You specify this by enclosing the
variable name within two less than and greater than signs. For
example, if variable <ONE> contains the value TWO, this references
variable <TWO>:

«ONE»

You can use another variable that contains a valid number (depending
on the type of variable) to specify the size of a variable. For example:

VliV2

You can use variables in many places and for many purposes in
MAPPER runs. As you become increasingly familiar with MAPPER
run statement syntax and special commands, you are better able to
determine where a variable might be useful.

Here are just a few places you can use variables in place of hard-coded
data:

❑ In any field or subfield in run statements.

❑ In the run's output area. See BRK in Section 7.

❑ As counters and checks for logical decisions. See IF in Section 7.

Table 4-1 lists the maximum size, examples, and contents of each type
of variable. It also describes the contents of each type when used with
ART, CHG, and IF statements.

UP-9662.5 	 4-5

Variables—Names, Types, and Sizes

Table 4-1. Variables: Types, Sizes, Limitations

Type A (Alphanumeric):

	

Maximum Size:
	

16
Examples: V10a16 <PHONE>a8

	

Contents:
	Alphanumeric and special characters.

	

ART: 	Must have exclusively numeric characters.

	

CHG: 	For arithmetic, numeric characters produce
numeric answers and change letters and special
characters to the next letter in the character set.

	

IF:
	

Treats spaces and some special characters (. + -) as
zeros.

Type F (Fraction):
Maximum Size:

Examples:
Contents:

18
V10f18.10 <TOTAL>f 18.10
Fractional numbers, positive and negative.
Positive numbers may be unsigned; that is, they
don't need a plus sign (+). The maximum size of
18 includes the sign and decimal point. The
fractional portion may be up to ten characters. In
the above example, 18 characters are allowed —7
before the decimal point, the decimal point, and 10
after the decimal point. If more positive numbers
are added to the left of the decimal point, the
decimal portion is truncated.

ART, CHG, and IF are allowed.

(continued)

4-6 	 UP-9662.5

Variables—Names, Types, and Size:

Table 4-1. Variables: Types, Sizes, Limitations (cont.)

Type H (Hollerith):

	

Maximum Size:
	

18
Examples: V10h16 <CODE>h18

	

Contents:
	

Hollerith, any characters.

	

ART: 	Not allowed.

	

CHG: 	Changes all characters to the next character in the
set, including numbers.

	

IF: 	Characters must be identical to satisfy a true
condition.

Type I (Integer):
Maximum Size:

Examples:
Contents:

16
V10i12 	<FINDS>i3
Integer (whole numbers), positive and negative.
Positive numbers may be unsigned; that is, they
don't need a plus sign (+). Include the sign in the
variable size —it is a significant character.

ART, CHG, and IF are allowed.

(continued)

UP-9662.5 	 4-7

Variables —Names, Types, and Sizes

Table 4-1. Variables: Types, Sizes, Limitations (cont.)

Type 0 (Octal):
Maximum Size:

Examples:
Contents:

ART:

CHG:

IF:

12
V5o12 	<TYPE>o12
Numbers 0 through 7.

Not allowed.

For arithmetic, produces octal answers.

Considers the number's decimal value, not its octal
representation.

Type S (String):
Maximum Size:

Examples:
Contents:

ART:

CHG:

132
vlOs132 	<ADDRESS>s40
Alphabetic, numeric, and special characters, any
combination (for a total of 2,016 characters in all
string variables combined).

Not allowed.

Not allowed.

IF: 	Substrings up to 18 characters.

Full redefinition of string variables, of both size and type, is allowed.

4-8 	 UP-9662.5

Initializing and Redefining Variables

You can initialize and redefine variables in these ways:

❑ With an LDV statement

❑ With a CHG statement

❑ By way of another statement

NOTE: You can also initialize and redefine variables with a colon.
However, this method is no longer recommended because it is
less efficient and more difficult to use.

USING AN LDV STATEMENT

Using an LDV statement is the most efficient way to initialize and
load a variable, as in these examples. The first LDV statement
initializes VI to 1; the second redefines VI to A and initializes V2 to
10:

@LDV V112=1 .

@LDV V1A1=A,V212.10 .

UP-9662.5 	 4-9

Initializing and Redefining Variables

USING A CHG STATEMENT

You can use a CHG statement against all variables except type S
variables. You can initialize multiple variables on one line with
multiple CHG statements, as in this example:

@CHG V10A3 XYZ CHG V11A5 ABCDE .

This example shows how to name a variable with the contents of
another variable. If V2 contains 10, the following initializes V10 to
XYZ:

@CHG VV2A3 XYZ .

This example also names a variable with the contents of another
variable. If <ONE> contains the value TWO, the following statement
initializes variable <TWO> with 2:

@CHG «ONE»12 2 .

Redefined variables lose their previous content. In the following
example, the first two CHG statements initialize V10 and VII, and the
last two CHG statements redefine them:

@CHG V10A3 AAA CHG V11A1 A .

@CHG V10F4.2 1.23 CHG V1114 1234 .

4-10 	 UP-9662.5

Initializing and Redefining Variables

INITIALIZING VARIABLES WITH OTHER STATEMENTS

Several statements initialize variables (for example, RDC, RDL, and
RLN). Some statements (for example, FND and LOC) place certain
information in variables; some statements (for example, ART and TOT)
place values in variables. As you learn the functions and run
statements, you'll discover these and other possibilities.

This example shows how to use an RDL statement to place the data in
column 5 for six characters in <DATE> and the data in column 71 for
five characters in <ORDER>:

@RDL,O,B,2,<LINE>12,99 5-6,71-5 <DATE>1,<ORDER,H .

This example uses a FND statement to place the RID number of the
report where the find was made in <RID> and the line number in
<LINE>:

WND,O,B " 'ST-CD' ❑ ,IP <RID>16,<LINE>16 .

This example uses a TOT statement to place the number of lines
processed in <LINES> and the sum of the values totalized in <SUM>:

@ITOT,O,C,1 E 42-7 ❑ ,+ <LINES>14,<SUM>I7 .

UP-9662.5 	 4-11

Changing the Contents of Variables

You can change a variable's content several ways, as in these examples.
Note that these examples are shown as if in sequential order in a run.

@LDV V10A3=AAA . INITIALIZE V10 TO AAA

@LDV V10=BBB . CHANGE V10 TO BBB

@LDV V11I3=123 . INITIALIZE V11 TO 123

@INC V11 . INCREASE V11 BY 1

@LDV V12S15=0123456789ABCDE .

The following statement loads the first three character positions of V12
with V10:

@LDV V12(1-3)=V10 . V12 = BBB3456789ABCDE

Note that this INS statement does the same as the preceding LDV
statement, but it is slower and less efficient:

@INS V10 V12(1-3) .

The following statement loads two characters of V12 starting in column
14 with two characters of VI 1 starting in column 2:

@LDV V12(14-2)=V11(2-2) . V12 = BBB3456789ABC24

This LDV statement initializes V13 to 4 and changes VIO to equal the
three character positions starting in column V13 of V12:

@LDV V1311=4,V10=V12(V13-3) . V10 = 345

4-12 	 UP-9662.5

Using Exponential Notation with Variables

Type A, type I, and type F variables can have numbers in exponential
notation, as in this example:

@CHG V1Al2 12E5 + 1 . V1 EQUALS 1200001

If the numbers in a variable get too large for the variable, the system
changes the value to exponential notation if variables are defined as A,
I, or F type. For example:

@CHG V218 12345678 * 10 . V2 EQUALS 1.234E+8

UP-9662.5 	 4-13

Examples Using Variables

This DSP statement:

@DSP,V1.V2.113 .

is requesting that the following be displayed:

❑ Mode VI (that is, the mode number in VI)

❑ Type V2 (that is, the form type in V2)

❑ Report V3 (that is, the report number in V3)

Variables V1, V2, and V3 could be initialized in any number of ways.
Here are some possibilities:

❑ You could load the variables earlier in the run so that if the data
you want to display is moved to another mode or report, you need
to change that information only once in your run control report —at
the place where you initialized VI, V2, and V3. This is especially
useful if the report is processed repeatedly in the run, and is much
easier than changing every applicable statement in the run.

❑ You could write the run to pick up information entered on the
screen by the run user. For example:

ENTER THE LOCATION OF THE REPORT YOU WANT & TRANSMIT
MODE ❑ 	, ALPHABETIC TYPE ❑ , RID ❑ 	,

@BRK OUT,-0,3,3,1,1,Y„,P .
@CHG INPUT$ V113,V2A1,V314 DSP,V1,V2,V3 .

In this example, VI is initialized as the mode entered, V2 as the
type entered, and V3 as the report entered on the screen. The
MAPPER system displays the requested report on the screen.

4-14 	 UP-9662.5

Examples Using Variables

❑ Certain statements load variables automatically with pertinent
information. For example, this statement executes a find across all
reports in mode 2, type D, and loads V3 with the report number of
the first find:

@LDV V113.0,V2A1=D .
@FND,V1,V2 " 22-3 ❑ ,' 	1' V3I5 .

❑ You could also load the variables with a combination of screen
information and internal run loading (LDV), as in this example:

ENTER CODE TO FIND & WHERE TO LOOK (MODE O,TYPE B)
STATUS CODED , 	RIDO

@BRK OUT,-0,3,3,1,1,Y„,P .
@CHG INPUT$ V4A2,V3I4 LDV V111=0,V2A1=8 .
@FND,V1,V2,V3 " 2-2 ❑ ,V4 ,V5I5 .
@OSP,V1,V2,V3,V5 .

In the last statement, V5, which is the line number of the find, is
the line the display is started on.

UP-9662.5 	 4-15

Examples Using Variables

0 You can use variables as counters that the MAPPER system
increases whenever logically necessary and then later checks to see
if looping should continue, as in this sequence of statements:

@LDV V113=0,V2A1=D,V314=1,V415=6
@LZR,V1,V2,V3 V5I5 . V5=NR.LINES
@fND,V1,V2,V3,V4,196 " 22-3 0,' 	2' ,V4 .
@DSP,V1,V2,V3,V4 . V4=LINE
@INC V4 IF V4 NOT > V5 GTO LIN -2 .
@196: .

No More Finds
@GTO END .

In this example, V4 is the counter for the line to start the find on,
as well as the line number of the find for use in the display. V5 is
the number of lines in the report. As V4 is increased, the find
process begins further into the report. When V4 becomes greater
than V5, the entire report has been processed and the run ends.

You can use loops and counters like these in many other ways. In
the same example, you could execute a find across reports and
display the correct report at the appropriate line by using more
variables and checks.

4-16 	 UP-9662.5

Loading Variables with Screen Input and Initial
Input Parameters

You can load variables with the contents of these reserved words to
capture initial input (run call) parameters or information the user has
entered on the screen:

INPUT$ 	Captures user input from the screen or initial input
parameters (18 characters maximum for input fields)

INSTR$ 	Captures user input from entire lines on the screen

INVAR$ 	Captures user input from fields on the screen

INVR1$ 	Captures user input from fields on the screen (terminated
by the size of the variable rather than the size of the
field)

ICVAR$ 	Captures input the user has entered at the control line
(used only with the CHD [Command Handler] run
statement)

FKEY$ 	Captures the number of the function key the user pressed

Here are some guidelines for using these reserved words:

❑ To resume the run after the output is displayed, press XMIT with
the cursor below the control line. You can also press Fl or enter

to resume the run, but any data you entered on the screen is
not captured.

❑ If you specify Y in the interim? subfield of an OUT (Output)
statement or use the I option of the SC (Screen Control) statement,
the run continues automatically and you cannot load variables with
these reserved words.

❑ If you specify Y in the fxmit? subfield of an OUT statement or use
the X option of the SC statement, the run continues automatically
also, but you can load variables with these reserved words.

UP-9662.5 	 4-17

Loading Variables with Screen Input and Initial Input Parameters

NOTE: All input captured from the screen using these reserved words
is in the character set of the run control report.

USING INPUT$ TO CAPTURE DATA FROM THE SCREEN

When using INPUTS to capture data from the screen, remember these
guidelines:

❑ String variables are not allowed.

❑ Specify @CHG 1NPUT$ after an OUT or SC statement.

❑ The data entered in variables starts from a tab character: the data
after the first tab character in the first variable, the data after the
second tab character in the second variable, and so on.

❑ The number of characters loaded from a field depends on the
defined length of the variable.

This example, a portion of a run, uses the reserved word INPUTS to
enter data from the screen:

1. @BRK,O,A .
2. ENTER APPROPRIATE DATA AND TRANSMIT .
3. ❑ 	,ENTER START DATE IN FORMAT YYMMDD
4. ❑ 	,ENTER END DATE IN FORMAT YYMMDD
5. PLACE CURSOR HERE ->❑ , AND TRANSMIT .
6. @BRK OUT,-0,2,6,1,1,Y .
7. @CHG INPUT$ <STDATE>16,<ENDATE>16 .

4-18 	 UP-9662.5

Loading Variables with Screen Input and Initial Input Parameters

Here are descriptions of the lines in this example:

1. The first BRK statement defines the next output area (that is, the
lines that follow) as mode 0, type A. (See "Handling Reports and
Results" in Section 6 for an explanation of the output area.)

2-5. Place these lines in the output area.

6. The second BRK statement places the preceding lines from the
output area into the -0 result. The OUT statement displays the new
-0 result on the screen.

7. CHG 1NPUT$ loads <STDATE> with the start date and <ENDATE>
with the end date that is entered.

USING INPUT$ TO CAPTURE INITIAL INPUT PARAMETERS

Here are some examples of initial input parameters:

❑ Information the user enters after the run name (for example,
runname.ab,1234,99.99)

❑ RUN (Run Start) statement (See RUN in Section 7.)

❑ RRN (Remote Run) statement (See RRN in Section 7.)

❑ LNK (Link to Another Run) statement (See LNK in Section 7.)

❑ BR (Background Run) statement (See BR in Section 7.)

❑ BPRUN$ command in a batch runstream

When using INPUT$ to capture initial input parameters, remember
these guidelines:

❑ 	You can capture up to 40 variables.

\....i

❑ Check the maximum size of the variable (see Table 4-1).

❑ String variables are not allowed.

UP-9662.5 	 4-19

Loading Variables with Screen Input and Initial Input Parameters

This example, a portion of a run, uses the reserved word INPUT$ to
capture input parameters and, later, to enter data from the screen:

1. @CHG INPUT$ V1H2,V214,V3F5.2

. (other run statements)

2. @BRK , 0 , A .
3. ENTER PART NUMBER El ,
4. ENTER QUANTITY a
5. @BRK OUT,-0,2,2,1,1,Y .
6. @CHG INPUT$ V1H14,V2I8 .

Here are descriptions of the lines in this example:

1. The first statement in the run captures three variables from initial
input parameters.

2. The first BRK statement clears the output area and defines the
next output area as mode 0, type A.

3. Place this line in the output area.

4. Place this line in the output area.

5. The second BRK statement places the output area in a result (-0);
the OUT statement displays the new -0 result on the screen.

6. CHG 1NPUT$ loads the value of the part number into VI and the
value of the quantity into V2.

4-20 	 UP-9662.5

Loading Variables with Screen Input and Initial Input Parameters

USING INSTR$ TO CAPTURE DATA FROM THE SCREEN

When using INSTR$ to capture data from the screen, remember these
guidelines:

❑ You can use string variables.

❑ No leading tabs are required.

❑ Input variables are terminated by the end of the line.

❑ The maximum usable number of variables is the vertical screen
size.

❑ Specify @CHG INSTR$ before the OUT or SC statement.

❑ Do not use INSTR$ with formatted or protected output screens,
where the data received depends on the terminal type.

This example loads variables with two lines of data on the screen:

@CHG INSTR$ V1S80,V2S80 .

V I contains up to 80 characters, starting with the first character
following the SOE. If there is no SOE on the screen, it contains the
first 80 characters starting with the home position. V2 contains up to
80 characters starting with the first character on the next line.

USING INVAR$ TO CAPTURE DATA FROM THE SCREEN

When using INVAR$ to capture data from the screen, remember these
guidelines:

❑ You can enter up to 40 variables.

❑ You can use string variables.

❑ Specify @CHG INVAR$ before the OUT or SC statement.

UP-9662.5 	 4-21

Loading Variables with Screen Input and Initial Input Parameters

❑ The data entered in variables starts from a tab character: the data
after the first tab character in the first variable, the data after the
second tab character in the second variable, and so on.

❑ The length of an input field varies; it depends on the variable's
defined length.

This example, a portion of a run, uses the reserved word INVAR$ to
enter data from the screen:

@CHG INVAR$ V1S17,V213.V316 .
@BRK
ENTER DESCRIPTION ❑
ENTER QUANTITY ❑
ENTER DATE IN FORMAT YYMMDD ❑
WRK OUT,-0.2.3.1,1,Y

In this example, after the user enters the solicited information, the run
continues at the statement that follows the OUT statement. VI, V2, and
V3 contain the information the user entered.

USING INVR1$ TO CAPTURE DATA FROM THE SCREEN

INVR1$ is similar to INVAR$, but it allows you to load several fields
into one variable. When using INVR1$ to enter data from the screen,
remember these guidelines:

❑ You can capture up to 40 variables.

❑ You can use string variables.

❑ Specify @CHG INVR1$ before the OUT or SC statement.

❑ Do not use INVR1$ with formatted or protected output screens,
where the data received depends on the terminal type.

❑ The variable's length determines how many characters, including
intervening tab characters, are loaded into each variable.
Characters beyond the current screen line are not loaded.

4-22 	 UP-9662.5

Loading Variables with Screen Input and Initial Input Parameters

In this example, after the user enters the solicited information, the run
continues at the statement that follows the OUT statement. V1 contains
both the first and last name the user entered. Note that protected
format is not used.

@CHG INVR1$ V1S25 .

First
	

Last

ENTER NAME ❑ 	 ❑
@BRK OUT.-0,2,4,1,1,Y

USING ICVAR$ TO CAPTURE DATA FROM THE CONTROL LINE

When using ICVAR$ to capture data from the control line, remember
these guidelines:

❑ ICVAR$ captures information only when the user presses XMIT
from the control line and you have specified a CHD statement.

❑ Specify @CHG ICVAR$ before the DSP, OUT, or SC statement.

❑ No leading tabs are required.

❑ You can use string variables.

This example displays a report and loads VI with input the user
transmitted from the control line:

@CHD 100 .
@CHG ICVAR$ V1S80 .
@OSP.0,8,2 .

UP-9662.5 	 4-23

Loading Variables with Screen Input and Initial Input Parameters

USING FKEY$ TO CAPTURE FUNCTION KEY INPUT

In this example, the KEY statement requests function key input, the
DSP statement displays RID 2B in mode 0, and the LDV statement loads
VI with the contents of FKEY$. VI can then be tested for its contents,
and the run can be processed accordingly.

@KEY .
@OSP,O,B,2 .
@LDV,W V112=FKEY$.

4-24 	 UP-9662.5

VARIABLE Run—Testing Contents of Variables

The VARIABLE run determines how variable types and input methods
affect a variable's content.

To execute the VARIABLE run, enter:

variable

You get a message prompting you to enter a value. If you enter a
value, you get a result. You can resume and continue testing values as
long as you want. You can print the results you want to keep.

This example shows the Variable screen and a value to test:

Enter a value ► 	 (up to 6 characters)

The VARIABLE run displays the contents of variables

after initialization and arithmetic operations

UP-9662.5 	 4-25

VARIABLE RUN

This is the result:

line► 2
	

fmtl. 	- 	shft► 	hld chr0 	hid 	 «<RESULT>» ►

Variable values for entry (100.00)

@CNG INPUTS V1 @CHG INVARS V2 CHG V3 V1 + 1 @INC V1

V1A6 = (100.00) V2A6 = (100.00) V3A6 = (101) V1A6 	= (101)

V1I6 = (100) V2I6 = (100) V3I6 = (101) V1I6 	= (101)

V1F6.3 = (100.00) V2F6.3 = (100.00) V3F6.3 = (101.00) V1F6.3 = (101.00)

V106 = (100.00) V206 = (100) V306 = (N/A) V106 	= (100.00)

V1H6 = (100.00) V2H6 = (100.00) V3H6 = (100.01) V1H6 	= (101)

.. Press F1 to enter another value

If you want to test another value, press Fl.

4-26 	 UP-9662.5

BVT Run —Building Variable Tables and Converting
Variables

Use the BVT (Build Variable Table) run to build or rebuild a table that
displays the location of all the variables in your run control report.
You can also use it to name variables so you can easily convert to or
from named variables. (See "Variables—Names, Types, and Sizes" in this
section for information about named variables.) The variable table
result is displayed at the end of your run control report.

To use the BVT run, display your run control report and enter one of
these requests:

BVT 	The Build Variable Table request builds a variable table
and displays it as a result at the end of your run control
report.

BVT,Q 	The Quick build lists only the variables that are defined
(for example, V1A3 rather than V1).

CVT
	

The Convert request converts V-type variables (such as VI)
to named variables (such as <name>) using a previously
built variable table from the end of your run control
report.

CVT,N 	The Convert from Named Variables request converts all
named variables to V-type variables.

CVZ 	This request converts all V-type variables to three-
character variables (for example, VI to V001).

Note that each of the previous requests also calls the BLT (Build Label
Table) function, which builds or rebuilds the label table.

When you rebuild a variable table, the new table is matched with the
existing table to preserve any user-defined names or comments.

UP-9662.5 	 4-27

BVT Run

Building or rebuilding a variable table produces this information as a
result at the end of your run control report:

.VARIABLE TABLE

Name 	.Vnum.Sq. 	 Line Numbers 	 Comment

	

* 	

Field 	 Description

Name
	 The variable name (<name>) to equate to the V-type

number. (Default = N000.)

Vnum
	 The V-type number to equate to the variable name

(<name>).

Sq 	 The sequence number used to match and save user
comments.

Line Numbers 	The line number where the variables are located. The
line numbers containing defined variables are flagged
with asterisks.

Comment 	 Any user-supplied comments.

4-28 	 UP-9662.5

.VARIABLE TABLE

* 	NAME

	

* 	

.VNUM.SQ. LINE 	NUMBERS COMMENT

•

QTY V001 01 7*,13,18*,19 ORDER QUANTITY

RETAIL V002 01 7*,8,13,18*,19 RETAIL US$

CUST V003 01 18*,19 CUSTOMER NAME

END REPORT 	

BVT Run

Here are some additional points to remember:

❑ When you use BVT or BVT,Q to build or rebuild a variable table
locating a named variable, the run first checks for an existing table
to determine a V-type variable to associate the named variable
with. The run does not read USE run statements to determine a
V-type variable (see USE in Section 7). For example,
@USE NAME=V199 does not necessarily associate <NAME> with
V199.

❑ When you use CVT or CVT,N to convert variables, you are not
notified when a variable/variable is converted. For example, if
you convert VV199 to «name», it may not execute correctly.

❑ When you use CVT, CVT,N, or CVZ, and the size of the new
variable causes the run statement to extend beyond the end of the
line, the original report is displayed at that line number. No
changes are made to the run control report until you change that
run statement line.

Example

The run control report for the MARK Run, shown in Appendix C, is in
RID 3E of mode 0. After the BVT run is executed against this run
control report, this information is displayed at the end of the run
control report:

UP-9662.5 	 4-29

Reserved Words

A reserved word is a character string that is reserved for specific use in
a MAPPER run.

You can initialize a variable with the value of a reserved word using
CHG and LDV statements. For example, this CHG statement initializes
V2 as an SOE character:

@CHG V2111 SOES

This LDV statement initializes <MODE> to contain the mode number,
<TYPE> to contain the numeric form type number, and <RID> to
contain the report number of the last report or result processed or on
display:

@LDV,W <MODE>14=MODE$,<TYPE>16=TYPE$,‹RID>14=RID$.

See also CHG and LDV in Section 7.

You can also use reserved words directly —where you might otherwise
use a variable —in these subfields of a run statement:

171 	Mode
t 	Form type
r 	RID number
1 	Line number
f 	Format
p 	Parameters

NOTE: You cannot use reserved words in the output area, where
MAPPER software reads them literally. You can use
variables in the output area, however. (See BRK and OUT in
Section 7 and "Handling Reports and Results" in Section 6 for
more details.)

See Appendix B for a list of all reserved words and more examples.

4-30 	 UP-9662.5

5. Using Online Runs

This section contains information about online help and MAPPER runs
you can use to help you write your own runs. For more information
about the runs in this section, enter help,run,aid,

This section includes:

❑ HELP Run

❑ LIMITS Run —Displaying Report and Line Limits

❑ CC Run—Displaying Horizontal Column Count Positions

❑ FCC Run —Examining Report Fields

❑ FORM Run —Displaying Statement Fields and Subfields

❑ FORMC Run—Creating Statements for Functions That Use Function
Masks

❑ MARS Run—Creating Statements in Run Control Report

❑ RUN Run—Automatically Generating and Registering Runs

❑ RUNA Run—Analyzing Your Run

UP-0662.5 	 5-1

RUN Information

ROLL1 1

ADD 	I Append report

ADR 	► Add report
AID 	I 	Run design aids

ART 	1 	Arithmetic calculator

AUX 	► 	Auxiliary device control
BFN 	► 	Binary find in reports
BLT 	► 	Build label tables

(Tab to Selection or enter TARGET)

HELP Run

The HELP run displays information on your screen about individual
run statements and other items related to run design.

To execute the HELP run, enter:

ielp run

You get the RUN Information screen.

System Response

This screen lists run targets. A target is an item on the screen that you
can get information about. Notice that the cursor is located after
ROLL. Just press XMIT to roll through the target list.

Here's how to get more information about a target from the list:

❑ Enter the name of the target after ROLL.

❑ Or tab to the target and press XMIT.

If you want to roll backwards through the list, enter

5-2 	 UP-9662.5

HELP Run

If you know the target you want help with, you can enter the target on
your help call:

help run,target

where target is either the actual function call or statement, or an
abbreviation for other kinds of information.

For example, press CURSOR TO HOME and enter:

oeip run,au.

This takes you directly to the online help for the ADD statement and
tells you how to append one report to another.

USING HELP FOR RUN STATEMENT FORMATS

You can now use HELP to display a run statement format on the
control line while you are writing a run. With a run control report on
display, enter:

help grfr

where rfc is the run function call you want the format for. You can use
this format as a reference while supplying the fields for your own run
statement. If you need more information about the run statement, press
Fl or enter rsm to display detailed HELP information. Press Fl or
enter rsm again to return to your run control report.

USING HELP WITH ERROR MESSAGES

If an error message appears in the control line while you're executing a
run and you would like more detailed information about the error,
press CURSOR TO HOME and enter:

help

After reading the information, press Fl or enter rsm. The system
returns you to the line where your error occurred.

UP-9662.5 	 5-3

LIMITS Run—Displaying Report and Line Limits

Use the LIMITS run to display the highest RID number and the
maximum number of lines per report allowed for the current mode and
type. This information is displayed on the first line of the report,
overlaying the control line.

To execute the LIMITS run, display a report and enter:

System Response

This example shows the system's response if you execute the LIMITS
run with mode 0, RID 2B on display:

	

Highest Report 	= 2000 	Lines/Report = 131071

	

.DATE 15 FEB 88 08:27:51 RID 	2B 	22 JAN 86 JDOER

.0991231 	 CORPORATE PRODUCTION STATUS 	 B000002

*ST.STATUS.BY. PRODUCT .SERIAL.PRODUC.ORDER.CUST.PRODUC.PRODUC. SHIP .SHIP .SPC.

	

*CD. DATE .IN. TYPE 	.NUMBER. 	COST .NUMBR.CODE. PLAN .ACTUAL. DATE .ORDER.COD.
*

	

IP 831224 LS BLACKBOX1 436767
	

84389 AMCO 831223 831224

	

IP 831225 LS BLACKBOX1 436768
	

84390 AMCO 831223 831225

	

IP 831219 LS BLACKBOX2 637071
	

84353 INTR 831218 831219

5-4
	

UP-9662.5

CC Run—Displaying Horizontal Column Count
Positions

The CC run gives a horizontal column position count for a form type.

The column numbers appear in lines 2 and 3 of the screen. Since the
CC run is format sensitive, the column numbers are correct no matter
which format you display.

To execute the CC run, display a report and enter:

System Response

This example shows the system's response if you execute the CC run
with mode 0, RID 2B on display:

I
11111111112222222222333333333344444444445555555555666666666677777777778

12345678901234567890123456789012345678901234567890123456789012345678901234567890

*ST.STATUS.BY. PRODUCT .SERIAL.PRODUC.ORDER.CUST.PRODUC.PRODUC. SHIP .SHIP .SPC.

*CD. DATE .IN. TYPE 	.NUMBER. COST .NUMBR.CODE.PLAN .ACTUAL. DATE .ORDER.COD.
* •

IP 831224 LS BLACKBOX1 436767
	

84389 AMCO 831223 831224

IP 831225 LS BLACKBOX1 436768
	

84390 AMCO 831223 831225

IP 831219 LS BLACKBOX2 637071
	

84353 INTR 831218 831219

To get a column count on a specific line, enter:

where n is the line number on your display terminal where the column
count lines are to start.

To redisplay the original report, press Fl.

UP-9662.5 	 5-5

FCC Run—Examining Report Fields

The FCC run displays field headers, the position of the first character
in each field, and the size of each field.

To execute the FCC run, display a report and enter:

System Response

This example shows the system's response if you execute the FCC run
with mode 0, RID 2B on display:

line► 1 	fmt► 	rlI - 	shftI 	hld chrs► 	hld 	 <<<RESULT>>> ►
.DATE 15 FEB 88 08:18:52 	REPORT GENERATION 	JDOER

.MODE (0) TYPE (B) RID (2) CHARACTERS (80)

*ST.STATUS.BY. PRODUCT .SERIAL.PRODUC.ORDER.CUST.PRODUC.PRODUC. SHIP .SHIP .SPC.

*CD. DATE .IN. TYPE 	.NUMBER. COST .NUMBR.CODE. PLAN .ACTUAL. DATE .ORDER.COD.
* •

2-2 	12-2 	25-6 	32-6 	39-5 45-4 50-6 	57-6 	64-6 	71-5 77-3

5-6 	15-9

	 END REPORT 	

Take note of the column-character positions. If you want, print the
result for future reference.

To redisplay the original report, press Fl.

5-6 	 UP-9662.5

FORM Run—Displaying Statement Fields and
Subfields

The FORM run displays the format of run statements (fields and
subfields). You get the @ control character, the function call, and the
abbreviated fields and subfields. It fills in all open function calls in
the report.

To execute the FORM run, type the function calls you want the formats
for in your run control report, and enter:

form

Example

Here's an example of a request to execute the FORM run with some
function calls entered:

LINE 	FMT1 	RL1 	SHFI1 	HLD CHRS1 	HLD LN1 	 fcs 	►
.DATE 15 FEB 88 08:22:20 RID 	75 	15 FEB 88

*RUN FUNCTION DATA: EXAMPLE OF USE OF THE RUN DESIGN AID 'FORM' 	 E0210
*

•

@SRN

@SCR

@MCH

IDSP

	 END REPORT 	

UP-9662.5 	 5-7

LINE► 1 	FMT► 	- 	SHFT► 	HLD CHRS► 	HLD 	 fcs 	►
.DATE 15 FEB 88 08:24:20 RID 	75E 	15 FEB 88 JDOER

*RUN FUNCTION DATA: EXAMPLE OF USE OF THE RUN DESIGN AID 'FORM' 	 E0210
*

BSRH,m,t(,r,l,q,lab) o cc Ityp,p (ylines,yls,yrid) .

BSOR,m,t,r o cc Ityp,p .

BMCH,im,it,ir,rm,rt,rr(,lab) o icc iltyp,ip rcc rItyp,rp .

BDSP,m,t,r(,I,tabp,f,int?,hold,msg80) .

	 END REPORT 	

FORM Run

System Response

5-8 	 UP-9662.5

FORMC — Creating Statements for Functions that
Use Function Masks

The FORMC run creates run statements for functions that use function
masks, as well as for RDC, RDL, and WRL.

To execute the FORMC run:

❑ Enter the function call in a run control report including all
necessary modes, form types, and report numbers (for example,
@MCH,O,B,1,0,C,1 .).

❑ Roll the line with the desired statement to the top of the screen.

❑ Enter formc in the control line.

The function mask or masks appear on your screen. Fill in the options
and parameters and modify the mask, if necessary, just as you would
for the equivalent manual function.

For RDC, RDL, and WRL, fill in the variables in the desired fields.

The system writes the statements in your run control report. Modify
the statements as needed.

UP-9662.5 	 5-9

MARS — Creating Statements in Run Control Report

The MARS run creates MAPPER run statements and places them in a
run control report. If you don't have a run control report, the MARS
run adds one for you.

The MARS run is especially useful for capturing functions you use
repeatedly in a run control report. You can name the run and execute
it at any time. Call your coordinator for more information.

The MARS run prompts you for the information it needs to write the
run statements. It writes the statements in the run control report as it
creates them.

To execute the MARS run, enter:

lars[4]

or

lars*[,rt]

where rt is the RID number and form type (if you already have a run
control report), and means use Directory field names instead of
column-character positions in affected statements.

You get a menu of functions. You can do either of the following:

❑ Tab to the function you want and press XMIT.

❑ Enter the function call at the top of the menu after Enter call.

If you need help, enter:

mars,help

If you have the MARS run menu on your screen and you want help
with any function, tab to the call you want help with and enter a .

5-10 	 UP-9662.5

RUN Run—Automatically Generating and
Registering Runs

The RUN run automatically generates a run as you perform the manual
functions. The manual functions appear to execute normally, but the
RUN run converts them to run statements and accumulates them in a
result.

When you finish typing the sequence of manual functions, you can
register the run statements accumulated in the result as a separate run
or you can append them to an existing run.

To execute the RUN run, enter:

Or

where * means use report field names instead of column-character
positions in affected statements.

You can now begin entering manual functions in the sequence in which
you want them saved as a run. Each function is converted into a run
statement until you exit the RUN run.

CONTROLLING THE RUN GENERATION

You use these function keys to control execution of the run:

Fl Displays the generated run result.

F2 Displays the report currently being processed.

F3 Displays the Automatic Run Generation Logo.

F4 Terminates automatic run generation.

UP-9662.5 	 5-11

RUN Run

When you press F4 to end the automatic run generation, this screen is
displayed:

RUN

Automatic Run Generation Terminated

Display the result

Execute it

Register it in Type
	

(B-I)

Exit

(You are in mode nnn)

Place the cursor in one of the fields and press XMIT, or if you want to
register your run, enter the form type (B-1) in which to register it.

Field 	 Description

Display the result 	Display the run as a result. If you want to return to
this menu, press Fl.

Execute it
	 Execute the run that has been generated. Note that you

must press Fl for each DSP in the result. After the run
has finished executing, the menu is redisplayed.

Register it in Type Place the generated result in the form type you specify
and register it as a run. The run name is your user-id
and only you can execute it. Because the system deletes
any runs previously generated with the same name, you
may want to ask your coordinator to change the name.

Exit 	 Exit Automatic Run Generation.

* Note that the RUN run may be restricted on some systems; contact your coordinator if you have

problems registering the run.

5-12 	 UP-9662.5

RUIN Kun

These functions generate run statements and terminate automatic run
generation:

X 	Generates an XIT statement. When the XIT is
encountered in the run, the user is signed off.

REL 	Generates a REL statement. When the REL is
encountered in the run, the screen is released.

You can use most manual functions, except these:

A
AL
CALL
CUT (PASTE)
LANG
LZ
PC
PL
PUNCH
PSW
RPSW
RSI

SP
SS
WP

Arithmetic
Alarm
Interactive message switching
Cut (Paste)
Language
Line Zero
Phrase Change
Phrase Locate
Punch
Password
Read Password
Remote Symbiont Interface
(demand mode)
Spelling Check
Station-to-Station Message
Word Process

You also cannot use:

OK 	 Acknowledge a message

or these auxiliary device directives:

SI
	

Activate a screen bypass to an offline terminal
SQ
	

Resend a report to an auxiliary device
SR
	

Reactivate printing at the specified page number
SX
	

Terminate printing on an auxiliary device

UP-9662.5 	 5-13

RUN Run

These functions work when you are entering them as manual functions,
but do not generate run statements:

FUN 	 Function
L 	 Line Control
PNT 	 Paint
RSM 	 Resume
T 	 Type

DISPLAYING A REPORT OR RESULT

While you are executing manual functions within automatic run
generation, the RUN run generates a DSP (Display Report) statement
each time you display a report and when you terminate automatic run
generation with a report or result on display. If you don't want the
final DSP statement, press F3 to get the Automatic Run Generation logo
before pressing F4.

The RUN run does not generate a DSP statement for each function
result. For example, if you execute the S (Search), SORT (Sort), and
TOT (Totalize) functions, the generated run statements are entered into
your run and only the final result is displayed. If you want your run
to display each result, enter d - after each result is displayed.

You can also display a result at a specified line number and in any
format. To display the result at a specific line, roll the line to the top
of the screen. To display the result in a different format, enter the
format in the control line. Remember to enter d - if you want your run
to display this result.

5-14 	 UP-9662.5

RUN Run

LIMITATIONS

Here are some limitations of the RUN run:

❑ Entering for line control is the same as pressing F2 or entering

❑ You can use only the first three control line fields: LINE, FMT,
and RL. The system ignores the others.

❑ You cannot reuse a function mask after an error message appears
on the control line. Instead, you must reenter the function, get the
function mask a second time, and execute the function again.

❑ To update displayed reports or results, you must use the CHG
(Change) function or an updating function such as SU (Search
Update) followed by an UPD, or use a line change function such as
ADD LINE (]+n). However, when the generated run is executing,
you can update in the usual way.

❑ The system does not save the report number produced by the AR
(Add Report) or XR (Duplicate Report) function. The report
becomes the current result (-0) for further processing.

NOTE: Report numbers will probably be different at execution
time from what they were at generation time.

❑ You cannot generate run statements that have no manual
counterparts (such as IF and LDV). See "Functions and Statements"
in Section 7 for a list of statements with no manual function
counterpart.

❑ You cannot generate output screens or obtain user input from any
other source (for example, by using the reserved words INPUT$ or
INVAR$).

UP-9662.5 	 5-15

RUNA Run—Analyzing Your Run

The RUNA run identifies certain inefficient run design techniques.
The RUNA run is not an absolute or total test of run design quality,
but it does give you a good indication whether your run is acceptable.
Carefully review any indications of inefficient techniques identified
in the analysis and try to correct them. If you have a problem
correcting something, call your coordinator. Your coordinator must
give final approval of your run for production.

Even if your run passes the RUNA run analysis satisfactorily, it may
not be ready for use in production. Your coordinator must still
approve your run.

The RUNA run has its own built-in online HELP. To read it, enter:

runa.

or

runa,help

(Note that if you enter 	without a log list on display, you get the
RUNA run's online HELP.)

Before executing the RUNA run against your own run, do the
following:

❑ Make sure you have a LOG statement (see LOG) at the beginning of
the run (but after the label table, if there is one).

❑ Replace the REL statement (if used) with a GTO END statement to
keep the log list intact after the run completes.

❑ Execute your run.

5-16 	 UP-9662.5

RUNA Run

Follow these steps after your run completes:

1. Wait a few seconds; then press Fl.

2. When the log list appears on your screen (almost immediately),
enter runa to get the RUNA analysis result.

At this point, you can print the result, or go to the next step.

3. If you want even more details, press Fl.

The RUNA run appends a detailed explanation of recommended
corrective guidelines to the end of the result.

❑ Print the result if you want to refer to it in the future.

❑ If you don't want to print the result, you can press Fl to return
to the log list.

UP-9662.5 	 5-17

6. Designing and Debugging Runs

Before writing a run, it's important to know how to handle reports and
results. In addition, you should follow a step-by-step procedure in
creating your run. Finally, you need to know some debugging methods
in order to create an error-free run.

This section includes:

❑ Handling Reports and Results

❑ Designing and Registering a Run

❑ Debugging Your Run

❑ Using RDB (Run Debug)

UP-9662.5 	 6-1

Handling Reports and Results

You can process several reports in a single MAPPER run. The simplest
run acts on a report or result from a previously executed function and
produces a result or updated report, as shown in this figure:

/Report/Result
Input

Run

Report/Result
Output

You can use several reports and results from different modes for input,
provided your coordinator has registered the modes for access. This
figure shows a run using reports and results from different modes:

/ Reports/Results Reports/Results Reports/Results
Input 	 Input 	 Input

Run

6-2 	 UP-9662.5

Handling Reports and Results

THE OUTPUT AREA

The output area is a temporary scratch area that you build in your run
control report to hold information. This information is composed of
output lines, which are lines of data that do not have @ signs or colons
in column one (and are not continuations of run statement lines). They
may be, for example, messages or special screen displays you create that
you want to display later in the run.

To examine the output area at any time during the run, enter a GTO
END statement. This displays the contents of the output area as a
result.

You can use output area data as a result at any time by executing a
BRK statement (see BRK in Section 7). The BRK statement places the
output area into the current result and clears the output area. You can
then use the DSP or OUT statement to display the result. The output
area is now empty, so you can place new data in it.

RESULTS

A result is a temporary copy of data obtained by executing a MAPPER
function or run statement. The current result is the latest result, and its
report number is always -0. Only one current result (result -0) exists at
any moment. In addition to the current result, a MAPPER run can save
up to four results for subsequent access. To save up to four results,
rename them with an RNM statement (see RNM in Section 7).

To access results, specify the result identifier (the renamed result, such
as -1, or the current result, -0) in the appropriate subfields of a
MAPPER run statement. To access a report or result on display before
the run started, refer to it as -0 until your run creates another result.

UP-9662.5 	 6-3

Handling Reports and Results

THE RELATIONSHIP BETWEEN OUTPUT AREA AND RESULTS

Do not confuse the output area with a result. You create a result using
a function or run statement, such as SRH or TOT. You create the
output area by adding output lines to your run control report. You can
create an output area without affecting the current result or previously
renamed results.

The following figure shows how runs use the output area and results:

Run

Output
,.__ Area„i

/ Results 	 Result

	 /

For more detailed information about the output area and results, see
the Run Design Training Guide.

6-4 	 UP-9662.5

Designing and Registering a Run

When you're ready to write a MAPPER run, follow this logical step-by-
step procedure:

1. 	Plan the run. Determine which statements you want to execute
and whether you're going to use any logical decisions, paths, or
loops. It may be helpful to draw a flow chart, as shown here, to
map out the processing steps:

START
/

i

STATEMENT
1

STATEMENT
2

STATEMENT
3

STATEMENT
4

IEN

UP-9662.5 	 6-5

Designing and Registering a Run

If you're unsure what effect a run statement has in a run, you can
usually test the statement by running it separately. If it uses a
manually executable processing function, test it manually first.

2. Register your run control report through your MAPPER system
coordinator. First, execute the T (Type) function to see which
form type is available in your mode for MAPPER runs. Next, use
the AR (Add Report) function to add a report in that form type.
Give your coordinator such information as report number, form
type number, modes to be used, and your proposed run name.
Explain the general plan of the run to your coordinator to assess
its impact on the MAPPER system. If everything is acceptable,
your coordinator registers the run for online debugging.

3. Enter the required run statements in the run control report. With
manual updating, natural pauses between transmissions disperse
the processing load; but in a run, where the statements are
executed rapidly one after the other, virtually no pauses occur
between the execution of statements. A run that executes several
individual functions may put a severe load on the MAPPER
system. You should consider loading effects of the run and adjust
run user response expectations accordingly.

4. When the run is designed and ready for use, execute it in a
production mode with logging (see LOG in Section 7) turned on.
Have your coordinator assess your run's impact on the MAPPER
system by examining the log list. Your coordinator may suggest
improvements for your run.

After accepting your run and obtaining a final log list, your
coordinator registers it by its name. The coordinator may restrict
user accessibility, mode accessibility, time of execution,
input/output quantity, logic line count, and station numbers for
your run.

If you change your run significantly, your coordinator must
reanalyze it.

6-6 	 UP-9662.5

Designing and Registering a Run

5. 	You should give the run control report a report password and a
save flag in this format:

.vpyyhandd

The save flag must start in the first column of line 2 (the line
below the date line) and must be a period line (notice the period
beginning in column 1).

UP-9662.5 	 6-7

Debugging Your Run

There are several methods you can use to debug your run:

❑ Interactive debugging

❑ HELP run

❑ Checkpoint displays

❑ RDB statement and function

❑ RAR and RER run statements

INTERACTIVE DEBUGGING

When your run is halted because of an error, you see a one-line error
message and the erring run statement line at the top of the screen. You
can interactively correct the error instead of returning to the run
control report. This technique works well for simple errors, such as an
incorrect form type or variable name.

With the halted run on display, correct the erring line, move the cursor
to the end of the line and press XMIT. The change is added to your
run control report. To test the corrected run, execute it again.

THE HELP RUN

You can also use the HELP run to debug your run. When the run stops
because of an error, an error is displayed on the control line. If you
need more information, enter .ie1p to show a screen with a detailed
explanation. Press Fl or enter rsm when you are ready to continue.
The screen shows the line where the error occurred.

6-8 	 UP-9662.5

Debugging Your Run

CHECKPOINT DISPLAYS

If your run has several stages of processing, add DSP (Display Report)
run statements to display intermediate results. You can check the
results to see if the previous run statements have executed properly. If
you write your run in modules, where each module performs a specific
task, you can easily run each module with a checkpoint display to test
it. As you debug the run, take the checkpoint displays out.

RDB STATEMENT OR FUNCTION

You can use the RDB (Run Debug) function or run statement to debug
your run while it executes. This is different from interactive
debugging because you can do the following:

❑ Display or change the value of any variable

❑ Display a window of the run control report or another report or
result

❑ Examine a specific run statement line

❑ Stop the run when it comes to a specific variable

See "Using RDB (Run Debug)" in this section for more information.

RAR AND RER STATEMENTS

Additional bugs may be found while the run is being used in
production. The RAR and RER run statements help track down the
type of errors that occur so you can correct the run and produce a
better version.

Sometimes a run stops because a user presses MSG WAIT, or a run
statement error causes a problem. You can add the RAR statement so
that your run jumps to a subroutine in case a user presses MSG WAIT.
You can use the RER statement to jump to a subroutine if a run
statement error occurs. See RAR and RER in Section 7 for more
information.

UP-9662.5 	 6-9

Using RDB (Run Debug)

The RDB utility is a powerful run design tool. Use it to debug your
run interactively, examining the contents of variables, reserved words,
and renamed reports and results —all as the run is being executed. You
can step through the run one line or command at a time, or you can set
a breakpoint to halt the run at a specific line number, label, run
command, or variable.

You can use RDB manually or in a run. In either case, you must be a
registered run designer and the last person to update the run control
report; otherwise, the RDB request is ignored.

Manual Function Format

To use the manual function, this is the format to enter on the control
line:

RDB run(,v 	v]

In field: 	 Enter:

run 	the name of the run to debug.

any input variables supplied to the run.

Run Statement Format

@RDB .

6-10 	 UP-9662.5

Using RDB

If you use the manual function, the run halts before executing line 3 of
the run control report and displays a screen. If you use the run
statement, the run halts when it encounters the RDB statement and
displays a screen. The following example illustrates the lines from the
screen that is displayed:

RDB

RUN=testrun MODE=0 RID=2E

D 'Cust Code' *,AMCO .

Each line on the screen serves a specific purpose:

❑ The first line is the RDB prompt line; you enter RDB commands
after the SOE (►) on this line.

❑ The second line is the RDB Status Line. It displays the run name,
mode number, report name, and other information.

❑ The third line is blank.

❑ The fourth line contains the line in the run control report to
execute. It contains the line number and up to 70 characters of the
line (up to 122 characters on a 132-character terminal). If you used
the manual function, this line contains the first line (line 3) of the
run control report. If you used the RDB run statement, this line
contains the line in the run control report following the RDB
statement.

The lines that follow the fourth line of the screen contain subsequent
run statements as they are executed. Whenever a run halts, the next
statement to execute is always the bottom line on the screen.

UP-9662.5 	 6-11

Using RDB

RDB COMMANDS

You execute RDB commands by entering information on the RDB
prompt line or by pressing function keys. Table 6-1 describes the RDB
commands.

Table 6-1. RDB Commands

Help

Exit

Throttle

Enter a to display a summary of RDB commands.
Press Fl or enter 	to return to the run.

Enter a to terminate the run and release the screen.

Use function keys Fl through F4 to advance the run:

Fl 	(Line Step) executes an entire line of logic, even
if it contains more than one run statement. The
run halts and displays the next line to execute.

F2 	(Command Step) executes only a single run
command. The run halts and displays the line
starting at the column of the next run command
to execute. (Note that a space-period-space
terminator is considered a run command.)

F3 	(Normal Speed) returns the run to normal
execution speed. Pressing F3 a second time
halts the run.

F4 	(Stream) causes continuous step execution of the
run. Each line is displayed before it is
executed (or, each command is displayed if the
most recent step command was F2). Pressing F4
a second time halts the run.

NOTE: The run always halts and displays the RDB
prompt when resumed after a display or
output command.

(continued)

6-12 	 UP-9662.5

Using RDB

Table 6-1. RDB Commands (cont.)

Display
	

Enter one of the following commands to display a
variable, reserved word, the run control report, or a
renamed report or result:

displays variable number n. The variable
size and type are displayed, followed by its
contents enclosed in slant (/) characters. If
your run uses named variables, you can
display the variable by entering the name
(for example, <name>).

displays reserved word $ (for example,
USER$ or LLP$). The reserved word name
is displayed, followed by its value enclosed
in slant (/) characters.

displays the run control report at the line
currently being executed. You can use any
control line commands (such as ROLL,
SHFT, and so forth) to manipulate the run
control report. However, you cannot use
manual functions such as S (Search) or LOC
(Locate). Press Fl or enter rsm to return to
the run.

displays renamed report or result number n.
You can use any control line commands
(such as ROLL, SHFT, and so on) to
manipulate the renamed report or result, or
you can update it with a line change or
SOE Update. However, you cannot use
manual functions such as S (Search) or LOC
(Locate). Press Fl or enter 	to return to
the run.

(continued)

UP-9662.5 	 6-13

Using RDB

Table 6-1. RDB Commands (cont.)

Breakpoint 	You can set a breakpoint to cause the run to halt at a
specified item. Only one breakpoint can be active at a
time; setting a new breakpoint clears any previous one.
When you set a breakpoint, it is displayed in the RDB
Status Line. To set a breakpoint, enter one of these
commands:

breakpoints at line number n. The run halts
before executing line n.

breakpoints at label number n. The run halts
before executing the line at label n.

breakpoints after variable number n. The
run halts after executing any run statement
that references variable n.

breakpoints at run command x (for example,
SRH, OUT, and so forth.). The run halts
before executing run command x.

clears the breakpoint.

Monitor You can monitor a variable or reserved word by
displaying its contents whenever the run halts (between
line or command steps). Only one item can be
monitored at a time; setting a new monitor clears the
previous one. When you set a monitor, it is displayed
on the RDB Status Line. To set a monitor, enter one of
these commands:

M Vn 	monitors variable number n. The size, type,
and contents of variable n are displayed
whenever the run halts.

(continued)

6-14 	 UP-9662.5

Using RDB

Table 6-1. RDB Commands (cont.)

M$
	

monitors reserved word $ (for example,
USER$, LLP$, and so forth). The contents of
reserved word $ are displayed whenever the
run halts.

M 	clears the monitor.

Execute
	

You can dynamically insert a temporary run statement
to execute. Enter the statement in the RDB prompt
line. For example:

RDBI@LDV V114=1234 .

RDB ERROR MODE

If a run errs while under RDB control, press Fl or enter 	to activate
RDB Error Mode. While in RDB Error Mode, you can examine
variables, reserved words, and renamed reports and results as they
existed when the run erred. You can execute only the RDB Display
commands; the other commands (Breakpoint, Monitor, and Execute) are
not allowed.

UP-9662.5 	 6-15

7. Run Statements

This section presents the MAPPER run statements in alphabetical order
by the abbreviated call name.

The first subsection contains a reference list of all run statements in
alphabetical order by the complete run statement name. The second
subsection lists all run statements that have no manual counterpart.
The rest of this section lists all MAPPER run statements; each
subsection includes the run statement, its format, and brief examples.

Here's an overview of this section:

❑ List of Statements by Name

❑ Statements with No Corresponding Manual Function

❑ All Run Statements

UP-9662.5 	 7-1

List of Statements by Name

Name 	 Call

Accounting Log 	 LOG
Acknowledge Message 	 OK
Add Report 	 ADR
Append Report 	 ADD
Arithmetic 	 ART
Auxiliary 	 AUX
Background Run 	 BR
Batch Start 	 STR
Binary Find 	 BFN
Break 	 BRK
Break Graphics 	 BRG
Build Label Tables 	 BLT
Calculate 	 CAL
Calculate Update 	 CAU
Change 	 CHG
Clear Abort Routine 	 CAR
Clear Error Routine 	 CER
Clear Label Tables 	 CLT
Clear Link 	 CLK
Clear Subroutine 	 CSR
Clear Variables 	 CLV
Command Handler 	 CHD
Commit Updates 	 CMU
Conditional 	 IF
Copy 	 CPY
Create Result Copy 	 RSL
Date 	 DAT
Date Calculator 	 DC
DDP Copy 	 DCPY
DDP Create 	 DCRE
DDP Purge 	 DPUR
Decode Report 	 DCR
Decommit Updates 	 DCU
Decrement Variables 	 DEC
Defer Updates 	 DFU
Define 	 DEF

7-2 	 UP-9662.5

List of Statements by Name

Define Variable Size 	 DVS
Delete 	 DEL
Delete Report 	 DLR
Device 	 DEV
Directory Information 	 DIR
Diskette 	 DIS
Display Graphics 	 DSG
Display Message 	 DSM
Display Report 	 DSP
Downline Load 	 DLL
Duplicate Report 	 DUP
Element 	 ELT
Element Delete 	 EL-
Encode Report 	 ECR
Exchange Variables 	 XCH
Execute Run Statement 	 XQT
Exit Subroutine 	 ESR
Extract 	 EXT
Find 	 FND
Find and Read 	 FDR
Form Type 	 TYP
Format 	 FMT
Function Key Input 	 KEY
Generate Organization Chart 	GOC
Go To 	 GTO
Graphics Scalar 	 GS
Increment Variables 	 INC
Index 	 IND
Index User 	 IDU
Insert 	 INS
Justify Variables 	 JUV
Last Line Number 	 LLN
Line Add 	 LN+
Line Delete 	 LN-
Line Duplicate 	 LNX
Line Insert 	 LNI
Line Move 	 LNM
Line Zero 	 LZR
Link to Another Run 	 LNK
List Merge 	 LMG
Load Field Name 	 LFN

UP-9662.5 	 7-3

List of Statements by Name

Load Format Characters 	LFC
Load System Message 	 LSM
Load Variables 	 LDV
Locate 	 LOC
Locate and Change 	 LCH
Locate/Change Variable 	LCV
Match 	 MCH
Match Update 	 MAU
Message to Console 	 MSG
Mode 	 MOD
Output 	 OUT
Output Mask 	 OUM
Peek Variables 	 PEK
Poke Variables 	 POK
Pop Variables 	 POP
Print 	 PRT
Push Variables 	 PSH
Read Continuous 	 RDC
Read Line 	 RDL
Read Line Next 	 RLN
Read Password 	 RPW
Reformat Report 	 RFM
Register Abort Routine 	 RAR
Register Error Routine 	 RER
Release Display 	 REL
Remote Run 	 RRN
Remote Symbiont Interface 	RSI
Remove Variables 	 RMV
Rename 	 RNM
Replace Report 	 REP
Retrieve File 	 RET
Retrieve from History 	 REH
Return Remote 	 RTN
Run Debug 	 RDB
Run Start 	 RUN
Run Status 	 RS
Run Subroutine 	 RSR
Screen Control 	 SC
Search 	 SRH
Search Update 	 SRU
Send Report 	 SEN

7-4 	 UP-9662.5

List of Statements by Name

Set Format Characters 	 SFC
Sign-Off 	 XIT
Sort 	 SOR
Station Information 	 STN
Subtotal 	 SUB
Tape Cassette 	 TCS
Totalize 	 TOT
Unlock 	 ULK
Update 	 UPD
Update Lock 	 LOK
Use Variable Name 	 USE
Wait 	 WAT
Word Change 	 WDC
Word Locate 	 WDL
Word Process 	 WPR
Write Line 	 WRL

UP-9662.5 	 7-5

Statements with No Corresponding Manual
Function

Most MAPPER run statement calls have corresponding manual function
counterparts. These statements, however, cannot be done manually:

BRG 	 Break Graphics
BRK 	 Break
CAR 	 Clear Abort Routine
CER 	 Clear Error Routine
CHD 	 Command Handler
CHG 	 Change
CLK 	 Clear Link
CLV 	 Clear Variables
CMU 	 Commit Updates
CSR 	 Clear Subroutine
DCPY 	 DDP Copy
DCRE 	 DDP Create
DCU 	 Decommit Updates
DEC 	 Decrement Variables
DEF 	 Define
DFU 	 Defer Updates
DIR 	 Directory Information
DPUR 	 DDP Purge
DSM 	 Display Message
DVS 	 Define Variable Size
ESR 	 Exit Subroutine
FDR 	 Find and Read
FMT 	 Format
GTO 	 Go To
IF 	 Conditional
INC 	 Increment Variables
INS 	 Insert
JUV 	 Justify Variables
KEY 	 Function Key Input
LCV 	 Locate/Change Variable
LDV 	 Load Variables
LFC 	 Load Format Characters
LFN 	 Load Field Name
LLN 	 Last Line Number

7-6 	 UP-9662.5

Functions and Statements

LNK 	 Link to Another Run
LOG 	 Accounting Log
LOK 	 Update Lock
LSM 	 Load System Message
MSG 	 Message to Console
OUM 	 Output Mask
OUT 	 Output
PEK 	 Peek Variables
POK 	 Poke Variables
POP 	 Pop Variables
PSH 	 Push Variables
RAR 	 Register Abort Routine
RDC 	 Read Continuous
RDL 	 Read Line
RER 	 Register Error Routine
RLN 	 Read Line Next
RMV 	 Remove Variables
RNM 	 Rename
RPW 	 Read Password
RRN 	 Remote Run
RSR 	 Run Subroutine
RTN 	 Return Remote
SC 	 Screen Control
SFC 	 Save Format Characters
STN 	 Station Information
TYP 	 Form Type
ULK 	 Unlock
USE 	 Use Variable Name
WAT 	 Wait
WRL 	 Write Line
XCH 	 Exchange Variables
XQT 	 Execute Run Statement

UP-9662.5 	 7-7

Add (Append Report)

The ADD statement appends the issuing report to the end of the
receiving report and creates a result.

The ADD statement is equivalent to either the ADD ON or ADD TO
manual function, depending on the order in which you specify the
issuing and receiving reports.

If the receiving report has longer lines than the issuing report, the
system fills the lines in the issuing report with spaces. If the receiving
report has shorter lines, the system truncates the lines in the issuing
report.

Format

@ADD,im,it,ir,rm,rt,rr .

In field: 	 Enter:

im,it,ir 	the mode, type, and RID number of the issuing report.

rm,rt,rr 	the mode, type, and RID number of the receiving report.

Example

This statement appends RID 2B to RID 1B, both in mode 0:

@ADD , 0 , B , 2 , 0 , B , 1

Refer to the result as -0. For example:

@OSP , - 0 .

7-8 	 UP-9662.5

ADR (Add Report)

The ADR statement adds a new report in a specified form type. You
can specify the number of the report to be added. If you specify a
report number, that report is added, provided that it does not already
exist. If it does exist, the run continues at the label or relative line
number specified; if you did not specify a label or line number, the
run errs.

If you don't specify a report number, the MAPPER system selects the
next available report number in the form type and puts the RID
number in R1D$.

The added report becomes the current -0.

NOTE: You can create a permanent report to use as a scratch area
during run execution, but only if you intend to use it later as
a place to permanently store the results of the run. It is
inefficient to use an added report as a scratch area, then
delete it at the end of a run. See also Appendix D.

Format

@ADR,m,d,rjab] .

In field: 	 Enter:

the mode, type, and RID number of the report to be
added.

the label or relative line number to go to if the RID
number specified already exists or the form type
specified exceeds the maximum number of reports.

UP-9662.5 	 7-9

ADR

Reserved Word

Reserved word: 	RIDS

Word Content

RIDS RID number of the report you just added

Example I: Adding a New Report

This example uses an ADR statement to add a new report in mode 0,
type B. The LDV statement captures the new RID number:

@ADR.0.8 .
@ILDV,PW <RID>13=RID$

Example 2: Adding a New Report to Specified RID Number

The following example adds RID 10B to mode 0. The run goes to label
99 if 10B already exists or if type B is full.

@ADR.0.13,10.99 .

7-10 	 UP-9662.5

ART (Arithmetic)

The ART statement performs arithmetic operations on variables or
constants. Variables capture the numbers resulting from these
operations.

Use the ART statement primarily for solving complex operations,
including arithmetic and trigonometric functions, which are discussed
in this subsection. Use a CHG statement for simple computations.

Format

@ART exp vrslts .

In field: 	 Enter:

exp 	an arithmetic expression or expressions.

vrslts variables to capture the results of the expressions.
(Initialize variables for the number of results you
want to capture.)

Use type A, type F, and type I variables only. (See Table
4-1 for a description of variable types.)

UP-9662.5
	

7-11

ART

OPERATORS

Table 7-1 lists arithmetic operators that you can combine to form an
expression.

Table 7-1. ART: Arithmetic Operators

Operator Operation Expression Gives

+ Addition a+b value a plus value b.

- Subtraction a-b value a minus value b.

/ Division a/b value a divided by value b.

// Integer Division a//b value a integer divided by value b.

* Multiplication a*b value a times value b.

** Exponentiation a**b value of a raised to the power of value b.

- Unary Minus -a negative the value of a.

NOTE: Values a and b are real integers and numbers and can include
decimal fractions or expressions composed of such numbers.

FORMULATING ARITHMETIC EXPRESSIONS

When formulating expressions, specify arithmetic operators for every
operation; for example, enter the operation a times b as a*b. Forms
such as (a)(b) or ab are not valid.

Table 7-2 shows the priority by which the FORTRAN-based calculator
of the MAPPER system performs arithmetic operations.

7-12
	 UP-9662.5

ART

Table 7-2. ART: Priority of Arithmetic Operations

Priority Operator Operation

First - Unary minus

Second *1, Exponentiation

Third *,/,// Multiplication, division, integer division

Fourth +,- Addition, Subtraction

Example

This statement raises 3 to the 4th power, divides the result into 2, and
places the answer in VI:

@ART 2/3**4 V1F6.2

Don't precede or follow operators with spaces.

MULTIPLE EXPRESSIONS

Evaluating multiple expressions in a single statement is more efficient
than using a separate ART statement for each expression. This example
adds V33 to V34 and puts the answer in V36I3. It then subtracts V34
from V33 and puts the answer in V37I3. Note that a semicolon (;)
separates the expressions.

@ART V33+V34;V33-V34 V3613,V37I3 .

UP-9662.5 	 7-13

ART

INTERNAL COMPUTATION

You can refer to variables that are created internally by an ART
statement (A, B, etc.), then use these variables for computing
expressions within the same ART statement, as in this example:

@ART V1+V2;A*V3;B+5 ,V413,V5I3 .

In this example, the addition of V I to V2 produces answer A, which is
used in the second expression. The second expression, A*V3, produces
answer B, which is used in the third expression. The first subfield in
the variables field is skipped and a comma is used in its place, so the
answer from the first expression (A) is not captured in a variable.
Variable V4 contains the answer to the second expression, and V5
contains the answer to the third expression.

NEGATIVE NUMBERS

If it's possible that a variable used in an arithmetic expression has a
negative number, place the variable in parentheses; otherwise, the
calculator reads it as part of an expression and the run errs. Place all
negative numbers in arithmetic expressions in parentheses. For
example, in this statement, V5 contains a negative number:

@ART 3+(V5) V613

CHANGING THE HIERARCHY OF EXPRESSIONS

Use parentheses to change the hierarchy of expressions. In this
example, 2 is divided by 3, the product is raised to the power of 4, and
the answer is placed in VI:

@ART (2/3)**4 V1F6.2 .

7-14 	 UP-9662.5

ART

ARITHMETIC AND TRIGONOMETRIC FUNCTIONS

You can perform the arithmetic and trigonometric functions shown in
Table 7-3 using an ART statement. Note that x is a numeric value
(whole or fraction) or an arithmetic expression.

Table 7-3. ART: Arithmetic and Trigonometric Functions

Function 	 Description

ABS(x) 	absolute value or magnitude of x
ACOS(x) 	arc cosine: angle in radians that has a cosine of x
ASIN(x) 	arc sine: angle in radians that has a sine of x
ATAN(x) 	arc tangent: angle in radians that has a tangent of x
CBRT(x) 	cube root of x
COS(x) 	cosine of x radians
CTN(x) 	cotangent of x radians
DEG(x) 	x radians expressed in degrees
EXP(x) 	exponent: natural number "e" raised to power x
FRAC(x) 	fractional portion of x
HCOS(x) 	hyperbolic cosine of x
HSIN(x) 	hyperbolic sine of x
HTAN(x) 	hyperbolic tangent of x
INT(x) 	integer portion of x
LOG(x) 	logarithm of x in base "e"
LOGIO(x) 	logarithm of x in base 10
PI 	 pi (1T)
RAD(x) 	x degrees in radians
SIN(x) 	sine of x radians
SQRT(x) 	square root of x
TAN(x) 	tangent of x radians

The calculator uses double-precision arithmetic. This produces a
~, 	greater number of digits, resulting in greater accuracy.

UP-9662.5 	 7-15

AUX (Auxiliary)

The AUX statement sends reports to auxiliary devices—usually auxiliary
printers—connected to display terminals. The AUX statement does not
create a result (no -0 result exists).

Format

@AUX,m,t,r,sn,devLdlnos?,f,tabs?,dhdrs?,d1char?,Isp,transp?,unit,s1,spcc] .

In field: 	 Enter:

the mode, type, and report number of the report to send.

the station number where the auxiliary device is
connected.

aev 	the auxiliary device type reference:

COP 	Communications Output Printer
CQP 	Correspondence Quality Printer
TC I 	Cassette 1
TC2 	Cassette 2
TD I 	Diskette 1
TD2 	Diskette 2

dlnos?
	a Y to delete line numbers. Use Y if the report is 132

characters and you're printing basic format.
(Default = N.)

f
	

the report format (1 to 6). (Default = basic.)

tabs? 	a Y to include tab characters in the output or an N to
change them to spaces. (Default = N.)

(continued)

7-16 	 UP-9662.5

AUX

(continued)

In field: 	 Enter:

dhdrs? 	a Y to delete report headers in the output. (Default = N.)

d lchar? 	a Y to delete the first character of each line in the
output. (Default = N.)

lsp 	1, 2, or 3 for the line spacing. (Default = 1.)

transp? 	a Y to write lines exceeding 80 characters. (Default = N.)
Applicable only for cassettes/diskettes.

unit 	the unit on which to locate data in subsequent search
operations. Applicable only for cassettes/diskettes.

s/ 	 the station letter, which is on all station numbers. Use it
only to access the station through the Communications
Management System (CMS 1100). Call your coordinator if
you do not know the station letter.

spcc 	a — to delete special print control characters —B, —H, —U,
—V, and —X; also, if the printer is able, it can bold,
underline, etc. (Default = blank; does not delete control
characters before printing.) See the Word Processing
Guide for more information on special print control
characters.

Example

This statement prints RID 2B, mode 0, at station 123, on device name
COP, with deleted line sequence numbers, deleted headers, and double
spacing:

@AUX.0,13.2,123.COP.Y.„Y.,2 .

UP-9662.5 	 7-17

BFN (Binary Find)

The BFN statement finds items very quickly in a sorted list. It does so
by sampling the data at midpoint in the report or series of reports to
determine whether or not the data to find precedes or follows this point
(thus, the term "binary"). BFN ignores blank lines within the report. It
continues sampling, dividing, and sampling until it finds the first
occurrence of the data. With the N or 0 option, it creates a result.

NOTE: If a find is made, the report in which the find is made
becomes the current -0. Any previous -0 result is destroyed.

The data in a report must be sorted on the fields the find is to be done
on. If you want to perform a binary find on a range of reports, make
sure the data is sorted across all reports.

If BFN detects a sort order discrepancy, doesn't find data, or doesn't
find blanks when looking for them, it gives control to the label
specified in the lab subf ield.

If you specify a range of reports, make sure there are no empty reports
(containing no valid data or headers only) within the range. If the
BFN statement encounters an empty report, then finds the data that
matches the search criteria in a subsequent report, it ignores any
reports preceding the empty report. In this case, no error message is
supplied because a valid find is made.

. 7-18 	 UP-9662.5

BFN

Format

o cc ltyp,p [vrid,vinol .

In field: 	 Enter:

m,t,r 	the mode, type, and RID number of the report to scan.

1
	

the line number where the binary find starts. If you
have an idea where the data is located in your report,
you can speed up the binary find process by designating
a line number slightly before that location. If the data
is actually located before the line number you specify,
BFN searches the entire report and still finds the data.

If you want to locate data after a specific line only
(disregarding the previous lines of the report), use a
FND statement instead.

lab 	 the label or relative line number to go to if no finds are
made or in case of error.

o options:

A 	Process all line types.

B 	Build an index containing the first data line of
each report. Use an index to speed up the find
operations across multiple reports. Enter a K in
the p (parameter) field for the target field or
fields. If you use more than one field, they
must be in order from left to right. Be sure the
targets do not cross reports.

With the B option, BFN creates a result that you
must replace into the report immediately
preceding the first report of the specified range.

(continued)

UP-9662.5 	 7-19

BFN

(continued)

In field: 	 Enter:

If you would like the RID number placed in a
field, enter an equal sign in the corresponding
parameter field.

C(x) 	Alter normal character set processing:

C(F) 	Full character set
C(L) 	Limited character set
C(S) 	Strict character set of report

See also Appendix E.

E 	Display last item only if item appears more
than once.

I[n] 	Index in type at report n. Enter only I for the
default report (report 2); BFN scans report 2 or
report n to determine where to find items,
assuming that the reports having data to scan
follow the index report.

VerifyK

	

	that reports are sorted in ascending
order. Enter a K in the corresponding
parameter field. Note that when you specify
the K option, BFN tests each line of every
report specified, so use it with discretion on
large databases.

(continued)

7-20 	 UP-9662.5

BFN

(continued)

In field: 	 Enter:

N Create a result containing a separate line for
each item with the number of times the item
appears. Enter a K in the corresponding
parameter field to compare. Place an equal sign
in the parameter field if you want to store the
number of times the item appears in the
database.

To subtotal a field, enter =N in the parameter
field. The =N subtotals only fields containing
integer values. Note that you cannot use the =
and =N parameters at the same time.

O Create a result containing the items found,
including their trailer lines. (Also, you can
capture the information in four variables
instead of just two. See the end of this table.)
You cannot use the 0 option with the N option.

P Include trailer lines (all line types other than
the target line type) from the last valid find in
the result. Valid only with the N option.

Q 	Quick-find an item that appears only once in
the report. Use the Q option if you know that
the item appears only once in the report. When
used with the 0 option, no trailer lines are
included.

(continued)

UP-9662.5 	 7-21

BFN

(continued)

In field: 	 Enter:

Rx-y
	Scan a range of reports from report x through

report y. Normally, when you process all
reports in a type, report numbers 1 and 2 are
skipped. You can use the R option to specify a
range of reports, including reports 1 and 2.
Note that you must specify a range; it cannot be
a series of selected reports such as R3,5-10.

S 	Scan each report separately.

U 	Set an update lock on the report in which the
find is made (or would have been made).

@ 	Find blank lines or fields at the end of the
report. Use this option in runs that write blank
lines at the end of the report. When a blank
field is found, it is the first blank field after
the last line with data in it. If lines with blank
fields are interspersed with lines containing
data, the blank fields are not found.

When using the @ option, enter a K in the
corresponding parameter field.

/
	

Find slant as data.

the column-character positions or names of the fields in
which to scan.

the line type to scan. (If you specify the A option,
leave this subfield blank.)

(continued)

7-22 	 UP-9662.5

BFN

(continued)

In field: 	 Enter:

p one of these four kinds of parameters:

vrid

vino

variable 1

variable 2

variable 3

variable 4

the find parameters

the K parameter if you are using the N, K, B, or @
option

the = parameter if you are using the B or N option

the =N parameter if you are using the N option

NOTE: If no finds are made, and if the statement
contains a label to go to, you can use vrid and
vino.

a variable to capture the RID number where the find
would have been made.

a variable to capture the line number where the find
would have been made.

NOTE: With the 0 option, you can capture information
in four variables (which replace vrid and vino).
(Note that if no finds are made and a label is
specified, variables 3 and 4 are loaded with 0.)

a variable to capture the number of finds.

a variable to capture the number of lines in the result.

a variable to capture the RID number of the first find.

a variable to capture the line number of the first find.

UP-9662.5 	 7-23

BFN

Reserved Word

ReseNed Word: 	STAT1$ (error codes)

Code Error

1 Data not found

2 All 	lines with space fields filled (@ option)

3 Data not sorted

Example 1: Finding All Occurrences of an Item

@BFN , 0 C , 1 0 ' PRODUCT - TYPE ' ❑ , BLACKBOX4 .

where:

0,C, I 	 Search in RID 1C in mode 0.

O 	 Use the 0 option to create a result.

'PRODUCT-TYPE' Look in the PRODUCT TYPE field.

0 	 Process tab lines.

BLACKBOX4 	Find BLACKBOX4s.

7-24 	 UP-9662.5

BFN

Example 2: Finding the Only Occurrence of an Item

The following example uses the Q option and captures the line number
where the find was made in <LINE>:

OCFN,O,C, 1 „ 99 0 2-9 0 ,BLACKBOX4 ,<L INE> 13 .

where:

0,C,1 	 Search in RID IC in mode 0.

99 	 Go to label 99 in case of no finds or an error.

Q 	 Use the Q option to find it quickly.

2-9 	 Look in the PRODUCT TYPE field (column 2 for
nine characters).

0 	 Process tab lines.

BLACKBOX4 	Find the only BLACKBOX4.

<LINE> 	Capture the line number where the find was
made in <LINE>.

UP-9662.5 	 7-25

BLT (Build Label Tables)

Use a BLT statement to build label tables in a run control report and
create a result.

At the start of a run, label tables indicate on which lines labels are
located in the run control report. When the run reaches a statement that
directs it to a label, the run already knows where the label is. This
saves on overhead.

You can use the BLT statement to implement label tables in a database
made up entirely of runs. Label tables increase the efficiency of runs
with GTO statements that branch to labels (see GTO).

A new BLT statement in a report clears any old label tables before
creating new ones.

NOTE: You will most of ten use the manual BLT function rather than
the run statement. To use the manual function, simply
display your run control report, enter bit, and replace the
result. See the Manual Functions Reference for more details.

Format

@BLT,m,t,r[,1ab] .

In field: 	 Enter:

m,t,r
	the mode, type, and RID number of the run control report

to build label tables in.

lab
	

the label or relative line number to go to if an error
condition exists (such as a duplicate or invalid label).

7-26 	 UP-9662.5

BLT

Example

@BLT,O,E,10,99 .

where:

0,E,10 	 Build a label table in RID 10E, mode 0.

99 	 Go to label 99 in case of error.

See also CLT.

UP-9662.5 	 7-27

BR (Background Run)

Use a BR statement to start a background run.

When you execute a BR statement, the system removes the current result
(-0) from your run, if one exists, and passes it to the background run.
Your original run continues executing.

Background runs cannot contain DSP, OUM, REL, RSI, or XIT
statements; they can contain DSG, SC, or OUT statements only if the
output is sent to another terminal. Also, a BR statement cannot be
executed from a background run.

Format

@BR[,snjab] run[,vId] .

In field: 	 Enter:

sn
	

(optional) the station number to be notified when the
background run completes. If omitted, the station is not
notified.

the label or relative line number to go to if the number
of active background runs has already reached the
maximum allowed at your site. If you omit the label, the
run stalls until the background run is able to start.

the name of the background run to start. The run must
be registered for execution as a background run by the
coordinator.

variables, literal data, reserved words, or any combination
of these, to be picked up by the background run via
INPUT$.

7-28 	 UP-9662.5

BR

Reserved Word

Reseeed word: 	ORSTAN$.:

Word Content

ORSTAN$ Station number from the BR statement that started the run, or originating

station number if not supplied in the BR statement. 	ORSTAN$ always equals

zero for nonbackground runs.

Example

This statement starts the background run KISMET, picking up input
from USER$, and notifies station 123 when the run completes. If the
number of active background runs has already reached the maximum
allowed at this site, the run goes to label 99.

@BR.123,99 K1SMET,USER$.

UP-9662.5 	 7-29

BRG (Break Graphics)

Use a BRG statement to pack data in the output area and place it into
a result. It is particularly useful for packing primitive graphics code
and processing the result with MAPPER chart runs. The BRG
statement packs leading and trailing spaces from a single line, but does
not pack spaces embedded within the line.

The BRG statement is similar to a BRK statement (see BRK). When the
run encounters a BRG statement, it places all data in the output area
into a scratch result (-0) and clears the output area.

If you don't specify a mode and type for the output area, they are the
same as those of the run control report. You can change the mode and
type of the output area with a BRG statement without affecting the
current result. You do, however, change the mode and type of the
output area for subsequent results created by another BRG statement.

Format

@BRGLm,t,q] .

In field: 	 Enter:

m,t 	the mode number and form type of the output area. The
t field is required if you specify a mode.

q
	

how many output lines (quantity). For output exceeding
500 lines, estimating improves efficiency by substantially
reducing the I/Os.

If you don't specify a mode and type, skip only one
subfield (for example, @BRG„2500).

7-30 	 UP-9662.5

Example 1: Packing Primitive Graphics Code

In this example, the first BRG statement places the current output area
into a scratch result. (Note that a BRK could also be used here.) The
primitive graphics code then becomes the current output area in the
same mode and type as the run control report. The second BRG
statement packs the primitive code and places it into a result that can
be processed by MAPPER chart runs.

@BRG .

Primitive Graphics Code

@BRG .

Example 2: Estimating Subsequent Output Lines

This statement places the output area into a result and estimates that
the following output area will be 2,500 lines:

@BRG„2500 .

Example 3: Specifying Next Output Area

This statement places the output area into a result. The next output
area will reside in mode 2, type B.

@IBRG.2,8 .

BRG

UP-9662.5 	 7-31

BRK (Break)

Use a BRK statement to place the run's output area into a result. The
run builds the output area automatically (see Section 6 for more
details).

When the run encounters a BRK statement, it places all data in the
output area into a scratch result (-0) and clears the output area.

If you don't specify the mode and type for the output area, they are
the same as those of the run control report. You can change the mode
and form type of the output area with a BRK statement without
affecting the current result. You do, however, change the mode and
form type of the output area for subsequent results created by another
BRK statement.

Format

@BRIO,m,t,q1 .

In field: 	 Enter:

m,t 	the mode number and form type of the output area. The
t field is required if you specify a mode.

q
	

how many output lines (quantity). For output exceeding
500 lines, estimating improves efficiency by substantially
reducing the I/Os.

If you don't specify a mode and type, skip only one
subfield (for example, @BRK„2500).

7-32 	 UP-9662.5

Example

This example uses multiple BRK statements:

1. @BRK .

DATA1

2. @BRK , 0 , B .

DATA2

3. @BRK „ 2500 .

DATA3

4. @BRK .

Here is an explanation of each BRK statement:

1. The output area that follows resides in the same mode and type as
the run control report.

2. DATA] is now the -0 in the same mode and form type as the run
control report; the output area that follows resides in mode 0, type
B.

3. DATA2 is now the -0 result in mode 0, type B.

4. DATA3 is now the -0 result, at an estimated 2,500 lines, in mode 0,
type B.

UP-9662.5 	 7-33

CAL (Calculate)

The CAL statement performs arithmetic computations and conditional
evaluations on reports and results, and creates a result (except when the
0 option is used).

Format

@CAL,m,t,r[,1,q,1ab] o cc ltyp,p eq [yrsIts] .

In field: 	 Enter:

the mode, type, and RID number of the report to process.

the line number at which to start processing.

how many lines (quantity) to process.

the label or relative line number to go to if no data exists.
Be sure to use this field if there is any possibility that
some reports will not contain data; otherwise, no result is
created.

options:

A 	Process all line types.

C 	Conditionally display specific result lines. After
all equations are processed, include only those
lines that meet a true condition based on the last
IF statement in the result. For example, if the last
IF statement is IF:A=O, include only those lines
where field A is equal to zero in the result.

(continued)

7-34 	 UP-9662.5

CAL

(continued)

In field: 	 Enter:

E 	Erase fields (fill with spaces) if the answer equals
zero.

I 	Produce integer results: Truncate any fractional
part (that is, any numbers on the right side of the
decimal point) in the result.

J(x) 	Justify result value, where x is the justification:

C 	Insert commas in the integer portion every
three digits; eliminate nonsignificant zeros;
place the resulting value in the leftmost
portion of the field.

L 	Left-justify, eliminate nonsignificant zeros,
and place the resulting value in the leftmost
portion of the field.

R 	Right-justify, eliminate nonsignificant zeros,
and place the resulting value in the rightmost
portion of the field.

X Expand: Eliminate nonsignificant zeros, place
the resulting value in the leftmost column, and
fill the remaining fields with zeros.

Z 	Eliminate nonsignificant zeros, right-justify,
and fill preceding fields with zeros.

Kn 	Initialize a value label to n. Default value of
value label = zero.

L 	List all value label names and their final values at
the end of the result.

(continued)

UP-9662.5 	 7-35

CAL

(continued)

In field: 	 Enter:

Nn 	Substitute the numeric value n for nonnumeric
fields. The default value of nonnumeric fields is
zero; a nonnumeric field has either no data (all
spaces or tab characters) or data that has a
nonnumeric character in its leftmost significant
position.

0 	Omit data lines. Include only header lines and all
value label names and their final values.

Rn 	Round results to the nearest n:
R.0000000000000001 through R100000 (nearest
100,000 units).

NOTE: To control rounding equation by equation,
use the R option as an equation option.

S(x) 	Set character set interpretation to x. (The system
compares limited character set strings to limited
character set internal codes, and full character set
strings to full character set codes; it interprets
uppercase and lowercase alphabetic characters in
the same way.) x may be:

F 	Use full character set internal codes (use only
when processing Limited Character Set [LCS]
reports).

L 	Use limited character set internal codes (use
only when processing Full Character Set [FCS]
or Full Character Set Upper [FCSU] reports).

(continued)

7-36 	 UP-9662.5

CAL

(continued)

In field: 	 Enter:

S 	Use strict character set internal codes to
differentiate between uppercase and lowercase
alphabetic characters (use only when
processing FCS reports).

T 	Include both processed and unprocessed lines in
the result. Do not use the T option if you want to
include only the line type being processed.

V 	Process only those equations whose result values
are calculated from valid data (invalid data is
either nonnumeric data or an invalid date). Note
that a nonnumeric field has either no data (all
spaces or tab characters) or data that has a
nonnumeric character in its leftmost significant
position. Skip equations with an invalid value for
a result. Do not alter the receiving label.

X 	Exclude invalid values in minimum, maximum,
sum, and average computations (MIN, MAX, SUM,
AVG, VMIN, VMAX, VSUM, VAVG) and in
functions specified by vertical operators. (Invalid
values include field labels that represent
nonnumeric data and labels whose value was
calculated from nonnumeric data or from an
invalid date.)

* 	Flag all invalid results with asterisks (*) after the
value. Invalid results are values or labels
calculated from nonnumeric report data, or values
calculated from invalid dates. Note that a
nonnumeric field has either no data (all spaces or
tab characters) or data that has a nonnumeric
character in its leftmost significant position.

(continued)

UP-9662.5 	 7-37

CAL

(continued)

In field: 	 Enter:

cc 	 the column-character positions or names of the fields in
which to calculate.

Ityp 	the line type to process. (If you specify the A option,
leave this subfield blank.)

P 	 the parameters, which include:

Alphabetic field labels
Vertical operators (+, /,< , and >)

the equations in this format:

receiving-label Loptionsi=expression1; .

where:

receiving-label may have:

Alphabetic field labels

One- to six-character value labels (beginning
with alphabetic character, and containing both
alphanumeric characters and characters
$, %, !, and ?).

Constant labels PI, LINE, LT, and RLINE

(continued)

7-38 	 UP-9662.5

CAL

(continued)

In field: 	 Enter:

Note that receiving-label can be a partial label in
the format:

partial-receiving-label=receiving-label(x-y)

where is the starting column and y is the number
of characters.

option,

Equation options that override statement
options, if entered. Options E, I, J(x), Kn, Nn,
Rn, and * are valid (see statement options field
o). Enter the option followed by a minus sign
to override the statement option (for example,
N-). If you use the J option, the minus sign
must be enclosed in parentheses.

expression!:

Combination of one or more operands and zero
or more operators regarded as a single numeric
value.

vrslts 	the variables to capture the final results of vertical
operations and final values of value labels in the order
initialized. (Initialize variables for the number of results
and final values you want to capture.)

UP-9662.5 	 7-39

CAL

Reserved Words

Reserved words: 	STAT1$ and STAT2S

Word Content

STAT1$ Number of lines processed (i.e., number of lines of line type specified)

STAT2$ Total number of lines in report (excluding header lines)

Reserved word- 	TICS

If you use apostrophes in a CAL statement, use TICS if the run control report

is in Limited Character Set (LCS). 	Use TICS or quotation marks (") for FCS and FCSU

reports.

Table 7-4 shows the priority by which the calculator performs
arithmetic operations.

Table 7-4. CAL: Priority of Arithmetic Operations

Priority Operator Operation

First - Unary Minus

Second ** Exponentiation

Third *,/,// Multiplication, 	Division, Integer Division

Fourth +,- Addition, Subtraction

7-40
	

UP-9662.5

CAL

Table 7-5 shows the priority by which the MAPPER system evaluates
relational operations.

Table 7-5. CAL: Priority of Relational Operations

Priority Operator Relational Operation

First =

<> or ><

>

<= or =<

Compare equal to

Compare not equal to

Compare greater than

Compare not greater than (Less than or equal to)

<

>= or =>

Compare less than

Compare not less than (greater than or equal to)

Second & AND (Boolean)

Third OR (Boolean)

NOTE: The operators ampersand and comma (& and ,) don't perform
a numeric comparison, but are based on a true/false concept.

UP-9662.5
	

7-41

CAL

Table 7-6 shows the result of all possible true/false conditions. value]
and value2 are usually relational expressions (such as a>1000).

Table 7-6. CAL: AND and OR True/False Conditions

AND Operation

(valuel) & (value2)

OR Operation

(valuel) 	, 	(value2)

valuel value2 result valuel value2 result

TRUE

FALSE

TRUE

FALSE

TRUE

TRUE

FALSE

FALSE

TRUE

FALSE

FALSE

FALSE

TRUE

FALSE

TRUE

FALSE

TRUE

TRUE

FALSE

FALSE

TRUE

TRUE

TRUE

FALSE

Equations can include internal arithmetic and trigonometric functions,
as shown in Table 7-7.

Table 7-7. CAL: Internal Arithmetic/Trigonometric Functions

Function
	

Description

ABS(x) 	 Absolute value or magnitude of x
ACOS(x) 	 Arc cosine: angle in radians that has a cosine of x
ASIN(x) 	 Arc sine: angle in radians that has a sine of x
ATAN(x) 	 Arc tangent: angle in radians that has a tangent

of x
AVG(x/ xn) 	Average value of all subfields specified
CBRT(x) 	 Cube root of x
COS(x) 	 Cosine of x radians
CTN(x) 	 Cotangent of x radians

(continued)

7-42 	 UP-9662.5

CAL

(continued)

Function 	 Description

DEG(x) 	 x radians expressed in degrees
EXP(x) 	 Exponent: natural number "e" raised to power x
FRAC(x) 	 Fractional portion of x
HCOS(x) 	 Hyperbolic cosine of x
HSIN(x) 	 Hyperbolic sine of x
HTAN(x) 	 Hyperbolic tangent of x
INT(x) 	 Integer portion of x
LOG(x) 	 Logarithm of x in base "e"
LOGIO(x) 	 Logarithm of x in base 10
MAX(x/ xn) 	Maximum value of all subfields specified
MIN(xl 	xn) 	Minimum value of all subfields specified
MOD(x,y) 	 Modulus: remainder value of x//y
RAD(x) 	 x degrees in radians
RAN(x) 	 Random integer value in range x to y
SIN(x) 	 Sine of x radians
SQRT(x) 	 Square root of x
SUM(x/, 	,xn 	Sum: total value of all subfields specified
TAN(x) 	 Tangent of x radians
VAVG(xl 	xn) 	Vertical average of all subfields
VMAX(xl 	xn) 	Vertical maximum of all subfields
VMIN(x/ xn) 	Vertical minimum of all subfields
VSUM(xl 	xn) 	Vertical sum of all subfields

Equations can also include DEF statements in the format:

DEF(field-label)

to produce a numeric value that defines the contents of a report field
(see Table 7-8).

UP-9662.5 	 7-43

CAL

Table 7-8. CAL: DEF Statement Report Fields/Values

Contents of Report Field (field-label)* Value

All tab characters or spaces or both 0

All numeric characters 1

All alphabetic characters 2

Alphabetic and numeric characters 3

All special characters 4

Special and numeric characters 5

Special and alphabetic characters 6

Special, numeric, and alphabetic characters 7

The contents of a report field can include either just the characters indicated or both the characters

indicated and spaces.

Equations can include these conditional statements:

IF:expression1; . . .

and:

THEN:equationi; . .

and:

ELSE:equationt; . .

7-44 	 UP-9662.5

CAL

DATE AND TIME PROCESSING

You can use the CAL statement to perform computations on dates and
times. CAL converts the date and time data to numeric values and
processes them with equations.

The results of these computations represent numbers of days or hours.
You can then convert these numbers to a specific format. See Table 7-9
for the available formats.

Using the DATE functions, you can process dates from January 1, 1944,
through December 31, 2043.

Using the TIME functions, the CAL statement translates times into
numbers of hours relative to midnight. You can also process minutes
and times in computations; just convert them into hours by dividing
minutes by 60 and seconds by 3,600. All times are based on a 24-hour
clock.

There are two constant labels, which you can use directly in equations
when you want to perform calculations or comparisons with the current
date or time:

TODAY contains the current date expressed in the number of days
relative to January 1, 1944.

TIME 	contains the current time expressed in the number of hours
relative to midnight.

UP-9662.5 	 7-45

CAL

Input Functions

DATE INPUT functions translate dates in any of several formats into a
number of days relative to January 1, 1944. You can use this number
to compare dates or create a new date by adding or subtracting a
number of days. Its format is:

Dn(x)

where:

is a number (0 through 8) identifying the date format.

is a numeric date value or any type of label except a multiple
field label other than the receiving label.

TIME INPUT functions translate times in any of several formats into a
number of hours relative to midnight. You can use this number to
compare other times or create a new time by adding or subtracting a
number of hours. Its format is:

Tn(x)

where:

is a number (0 through 3) identifying the time format.

is a numeric time value or any type of label except a multiple
field label other than the receiving label.

7-46 	 UP-9662.5

CAL

Output Functions

The DATE OUTPUT functions translate the number of days relative to
January 1, 1944, into one of several formats. You enter a DATE
OUTPUT function as an equation option on an individual equation,
such as:

receiving-label,D(x)=expression

where:

receiving-label 	is a field label or value label.

(x) 	 is the output format the number of days is
to be translated into. The format must be
in parentheses.

expression 	 is a date calculation, usually the addition or
subtraction of days from a date.

TIME OUTPUT functions translate the number of hours relative to
midnight into one of several output formats. You enter a TIME
OUTPUT function as an equation option on an individual equation,
such as:

receiving-label,T(x)=expression

where:

receiving-label 	is a field label or value label.

(x) 	 is the output format the number of hours is
to be translated into. The format must be
in parentheses.

expression 	 is a time calculation, usually the addition
or subtraction of hours from a time.

UP-9662.5 	 7-47

CAL

When you specify a DATE or TIME OUTPUT function in an equation,
the E, I, J, and R function and equation options are disabled since they
also specify a type of output format.

If you specify a receiving label that is not large enough to contain the
output format or if the result value of the expression isn't a valid time,
CAL fills the field with asterisks (*) and assigns it a value of zero.

The system always right-justifies numeric formats and left-justifies
alpha formats in the output field. It fills any unused columns in the
output field with spaces.

DATE AND TIME FORMATS

Table 7-9 shows all available input and output formats for dates and
times. The Min Size field specifies the minimum number of columns
required to display that specific format.

7-48 	 UP-9662.5

Table 7-9. DATE and TIME Formats

Format Input Output Min Size

DATEOS (YMMDD) D0(x) D(0) 5

DATE1$ (YYMMDD) D1(x) D(1) 6

DATE2$ (DD MMM YY) D2(x) D(2) 9

DATE3S (YDAY) D3(x) D(3) 4

DATE4$ (YYDAY) 04(x) D(4) 5

DATE5$ (DDMMYY) D5(x) D(5) 6

DATE6$ (MM/DD/YY) 06(x) D(6) 8

DATE7$ (Month DO, YYYY) D7(x) D(7) 18*

DATE8$ (MMDDYY) D8(x) D(8) 6

TIMM (HH:MM:SS) TO(x) T(0) 8

TIME1S (HH:MM) T1(x) T(1) 5

T I ME2$ (HHMMSS) T2(x) T(2) 6

TIME3$ (HHMM) T3(x) T(3) 4

More Output Time Formats

Hour number T(H) 2

Minute number T(M) 2

Second number T(S) 2

More Output Date Formats

Month name D(C) 1**

Day D(D) 2

Julian day D(J) 3

Month D(M) 2

Day nunber 0(N) 1

Day name D(W) 1**

Year D(Y) 2

* *
	DATE7$ fields must be exactly 18 characters; fewer displays all asterisks.

The number of characters for output formats C and W depends on the field size of the

receiving label.

CAL

UP-9662.5 	 7-49

CAL

In addition to the date and time equation options (Dn and Tn), you can
use one of two W options in your equations:

Wn specifies the number of days in a work week, from 1 to 6.
(Default = 7.) A work week is considered to start on Monday.

W- overrides the W option.

The last example in this subsection shows date processing.

USING THE ICAL RUN TO CREATE A CAL STATEMENT

You can use the ICAL run to create a CAL statement. For information
on how to use the ICAL run, see the Manual Functions Reference.

To create a CAL run statement equivalent of an equation set, use the
ICAL run to process the equation set, press F4, and select the Display
Run Statement option. This displays a freeform Full Character Set
(FCS) type A result containing the CAL run statement. Note that you
can't use the ICAL run to create a CAL run statement if your site is
using a Limited Character Set (LCS) type for the freeform type A
reports.

The Manual Functions Reference shows a detailed example using ICAL.
If you try that example, pressing F4 and selecting the Display Run
Statement option, you receive the following statement:

@CAL,O,C,2 'R.01' 25-7.33-8.42-7,56-8 ❑ ,A,B,C,D k
C=B-A:D=C/B*100 .

CAL EXAMPLES

NOTE: All CAL examples except the last one process tab lines in RID
IC, mode 0.

7-50 	 UP-9662.5

CAL

Example 1: Multiplying Two Fields

@CAL,0,C,1 " 'SPACE-REW,'DEMO-OUAN',1
'DEMO-RESULTS' 0,A,B,C C=A*B .

where:

9.1
	

Use no options.

'SPACE-REQ'
	

Label the SPACE REQ field:
A
	

Field A.

'DEMO-QUAN' 	Label the DEMO QUANTITY field:
B 	 Field B.

'DEMO-RESULTS' 	Label the DEMO RESULTS field:
C 	 Field C.

C=A*B
	

Multiply the SPACE REQ field (A) by the
DEMO QUANTITY field (B) and place the
product in the DEMO RESULTS field (C).

Example 2: Moving Values into Fields Based on Values

The following example moves all values that exceed 24,000 from one
field into another field:

@CAL,O,C,1 " 'RETAIL $$$$','DEMO-RESULTS' X
D,A,B IF:A>24000;THEN:B=A .

where:

9 9
	

Use no options.

'RETAIL $$$$' 	Label the RETAIL $$$$ field:
A 	 Field A.

'DEMO-RESULTS' 	Label the DEMO RESULTS field:
B 	 Field B.

UP-9662.5 	 7-51

CAL

IF:A>24000; 	 Put all RETAIL $$$$ field (A)
THEN:B=A 	 values that exceed 24,000 into the DEMO

RESULTS field (B).

Example 3: Averaging Items in a Field

@CAL.0,C,1 R.01 42-7,65-15 ❑ ,A,B B=VAVG(A) .

where:

R.01 	 Use the R option. Round result to nearest
one hundredth.

42-7 	 Label the SALES COMMIS field (column 42
for 7 characters):

A 	 Field A.

65-15 	 Label the DEMO RESULTS field (column
65 for 15 characters):

B 	 Field B.

B=VAVG(A) 	 Put the cumulative vertical average of the
SALES COMMIS field (A) into the
DEMO RESULTS field (B).

Example 4: Using Apostrophes and Quotation Marks

The following example uses CAL in an LCS run control report. (Notice
the apostrophes around the string BLACKBOX; these are necessary for
the MAPPER system to distinguish between the string and the reserved
word TIC$):

@CAL,O,C,1„,99 C 2-8 ❑ ,A IF:A=TICVBLACKBOX'TIC$.

7-52 	 UP-9662.5

CAL

Here is the same example using an FCS/FCSU run control report. (Note
that if the string contained a space, it would need to be enclosed in
apostrophes as well as quotation marks.)

@CAL,O,C,1,„99 C 2-8 ❑ ,A IF:A="BLACKBOX' .

where:

99 	 Go to label 99 if no data exists.

C 	 Use the C option to include in the
result only those lines that meet a
true condition based on the last IF
statement.

2-8
	

Label the first eight characters of
the PRODUCT TYPE field (column
2 for 8 characters):

A
	

Field A.

IF:A=TICVBLACKBOX'TIC$ Include all lines with
IF:A="BLACKBOX" 	BLACKBOX in the first eight

characters of the PRODUCT TYPE
field.

UP-9662.5 	 7-53

CAL

Example 5: Calculating Vertical Totals and Maximum Values

@CAL,O,C,1„,99 L 25-7,33-8,65-15 0,A,B+,C+ X
MAXA.VMAX(A);MAX13.VMAX(B);C=B-A V119,V219,1
V319,V419 .

where:

99 	 Go to label 99 if no data exists.

L 	 Use the L option to list all value label
names and their final values at the end of
the result.

25-7,33-8,65-15

A,B+,C+

MAXA=VMAX(A);

MAXB=VMAX(B);

C=B-A

Label the WHOLE SALE$ field (column 25
for 7 characters), the RETAIL $$$$ field
(column 33 for 8 characters), and the DEMO
RESULTS field (column 65 for 15
characters):

Fields A, B, and C, with the vertical
operator + on fields B and C.

Put the highest value found in the WHOLE
SALE$ field (A) in the value label MAXA.

Put the highest value found in the RETAIL
$$$$ field (B) in the value label MAXB.

Subtract field A from field B and put the
difference in field C.

V119,V219, 	 Capture the vertical total of RETAIL $$$$
V319,V4I9 	 (field B) in VI, the vertical total of DEMO

RESULTS (field C) in V2, the contents of
the MAXA value label in V3, and the
contents of the MAXB value label in V4.

7-54 	 UP-9662.5

CAL

Example 6: Processing Dates

Here's an example of processing dates using CAL. It adds a constant
number of days to a date and specifies the same input and output date
format:

@CAL.0.13,2 V 50-6 ❑ ,A A,D(1)=D1(A)+30 .

where:

0,B,2 	 Process RID 2B in mode 0.

V 	 Use the V option to process only valid data.

50-6 	 Label the PRODUC PLAN field (column 50
for six characters):

A 	 Field A.

A,D(1)= 	 Add 30 days to the date in the
D 1(A)+3
	

PRODUC PLAN field (A); both the input
and output dates are in DATE1$ format.

UP-9662.5 	 7-55

CAR (Clear Abort Routine)

Use a CAR statement to cancel an abort routine previously registered
by an RAR statement (see RAR).

Format

@CAR .

7-56
	 UP-9662.5

CAU (Calculate Update)

The CAU statement performs arithmetic computations and conditional
evaluations on reports and creates an updatable result.

You can do one of the following:

❑ Follow the CAU statement with a DEL statement to delete the
found lines from the report (see DEL).

❑ Follow the CAU statement with an EXT statement to extract the
found lines from the report and create a result (see EXT).

❑ Make changes to the updatable result and follow the CAU
statement with a UPD statement to blend the updated lines from
the updatable result back into the report (see UPD).

You cannot execute a CAU statement against a result.

See CAL; the same information applies to CAU.

Format

@CAU,m,t,r[J,q,lab] o cc Ityp,p eq [vrslts] .

In field: 	 Enter:

m,t,r 	the mode, type, and RID number of the report to process.

the line number at which to start processing.

how many lines (quantity) to process.

the label or relative line number to go to if no data exists.

(continued)

UP-9662.5 	 7-57

CAU

(continued)

In field: 	 Enter:

options (use CALCULATE options from the CAL
statement).

the column-character positions or names of the fields in
which to calculate.

the line type to process. (If you specify the A option,
leave this subfield blank.)

the parameters, which include:

Alphabetic field labels
Vertical operators (+, /,< , and >)

equations in the format:

eceiving-label Loptions1=expressionr; . . . I

where:

receiving-label may have:

Alphabetic field labels

One- to six-character value labels (beginning with
an alphabetic character, and having both
alphanumeric characters and characters $, %, !,
and ?)

Constant labels PI, LINE, and RLINE

(continued)

7-58 	 UP-9662.5

Word Content

Reserved words: STAT1$ and STATn..

Number of lines processed (i.e., number of lines of line type specified) STAT1$

Total number of lines in report (excluding header lines) STAT2$

CAU

(continued)

In field: 	 Enter:

options

Equation options that override statement options,
if entered. Options E, I, J(x), Kn, Nn, Rn, and *
are valid (see statement options field o). Enter
the option followed by a minus sign to override
statement option (for example, N-). If you use
the J option, the minus sign must be enclosed in
parentheses.

expressionl; .

Combination of one or more operands and zero or
more operators regarded as a single numeric
value.

vrslts
	the variables to capture the final results of vertical

operations and final values of value labels in order
initialized. Initialize variables for the number of results
and final values you want to capture.

Reserved Words

UP-9662.5
	

7-59

CAU

Example

@CAU , 0 . D , 2 C 'ORDER(1 - 2) ' 0 , A I F : A=96 EXT .

where:

0,D,2 	 Process RID 2D in mode 0.

C
	

Use the C option to include in the result
only those lines that meet a true condition
based on the last IF statement.

'ORDER(1-2)' 	Label the first two characters of the
ORDER NUMBER field:

A 	 Field A.

0 	 Process tab lines.

IF:A=96 EXT 	If the first two characters of ORDER
NUMBER (A) equal 96, delete the lines
from RID 2D and place the lines in the
result.

7-60 	 UP-9662.5

CER (Clear Error Routine)

Use a CER statement to cancel an error routine previously registered by
an RER statement (see RER).

Format

@CER .

UP-9662.5 	 7-61

CHD (Command Handler)

Use a CHD statement to register a routine to be executed whenever the
user of the run enters information in the control line after a DSP,
OUT, or SC statement.

The command handler routine can be in the same run control report
(internal) or in another run control report (external). External
command handler routines must be in the same character set type as the
calling run control report.

NOTE: Don't use the CHD statement unless you're an advanced run
writer. Its use is intended primarily for intercepting and
interpreting commands that normally go to MAPPER software.

Without a CHD statement in the run, MAPPER software interprets all
entries made in the control line. With a CHD statement in the run,
however, the run itself interprets and processes input from the control
line, except for the RELEASE function (a caret); MAPPER software
continues to perform the RELEASE function unless you choose to give
control to the run.

Whenever a run user transmits with the cursor on the control line, the
run continues at the label for the report specified in the CHD
statement and cancels any active subroutines. For example, if a
subroutine contains a DSP, OUT, or SC statement, an ESR statement
won't work (see ESR).

7-62 	 UP-9662.5

CHD

Format

@CHD[,m,t,r,rel?] lab .

In field: 	 Enter:

• the mode, type, and RID number of the report that
contains an external command handler routine.

rel?
	 a Y to transfer release control (^) to the run. If you do

not specify a mode, type, and report, skip only two
subfields (for example, @CHD,,,Y 99 .).

lab
	

the label where the command handler routine starts (use 0
to cancel the currently registered command handler
routine).

You can also put a line number in the lab field. For
external routines, use the absolute line number (LIN n,
where n is 1 or greater); for internal routines, use the
relative line number (LIN nI LIN -11).

UP-9662.5 	 7-63

CHD

Reserved Words

Reserved words: 	ICVAR$ and FKEY$

ICVAR$ works only with a CHD statement; FKEY$ works with a CHD or KEY statement

Word Content

ICVAR$ Captures user input from the control line. 	Remember to put ICVAR$ before

the variable in the CHG statement, and put the CHG statement before the

DSP, OUT, or SC statement. 	If you specify Y in the forced transmit

(fxmit?) subfield of an OUT statement, it has the same effect as pressing

XMIT. 	If the cursor is on the control 	line, 	it also affects ICVAR$ input.

You should use string variables (type S), but you can use type A or type H

variables if the data fits in them. 	The system copies all 	input (except

leading tab characters) into the specified variable up to the end of the

variable.

Other reserved words used to capture input (INMSV$, INPUTS, INSTR$, 	INVAR$,

and INVR1$) are not affected if the user transmits with the cursor below

the control 	line.

FKEYS You can find out which key the user pressed with the reserved word FKEYS,

whose value is always 0 if a CHD or KEY statement hasn't been used.

Whenever the user presses a function key, the run continues executing at

the statement following the DSP, OUT, or SC statement--not in the CHD

routine--and FKEY$ contains a number indicating the key pressed:

-1 	MSG WAIT (not applicable with the KEY statement)

0 	XMIT (with cursor below control 	line)

1 	F1 or RSM

2 	F2 or PNT

3-22 	F3-F22

7-64
	

UP-9662.5

CHD

Examples

If the user presses XMIT from the control line, go to label 52 in this
run control report:

@CHD 52 .

If the user presses XMIT from the control line or enters a release
character, go to label 100:

@CHD„,Y 100 .

If the user presses XMIT from the control line, go to the current line
plus 3 in this run control report:

@CHD LIN +3 .

Cancel the currently registered command handler routine:

@CHD 0 .

Here is an example using ICVAR$, INVAR$, and FKEY$:

@CHD 10 .
@CHG ICVAR$ V1S80
@CHG INVAR$ V2Al2,V3A8
@OUT,O,A,-0,2,1,„Y .
@CHG V412 FKEY$.
@IF V4 = -1,(20),0,(30),1,(40),2,(50),3,(60),4,(70)

Processing continues at different points in the run, depending on which
key the user presses:

❑ If the user presses XMIT from the control line, the run goes to label
10, with VI capturing command input (entire control line).

If the user presses MSG WAIT, the run goes to label 20.

❑ If the user presses XMIT with the cursor below the control line, the
run goes to label 30, with V2 or V3 capturing data input.

UP-9662.5 	 7-65

CHD

❑ If the user presses Fl, the run goes to label 40.

❑ If the user presses F2, the run goes to label 50.

❑ If the user presses F3, the run goes to label 60.

❑ If the user presses F4, the run goes to label 70.

7-66 	 UP-9662.5

CHG (Change)

Use a CHG statement to initialize or redefine the contents of variables
(see Section 4 for more information about initializing and redefining
variables). You can initialize or redefine all variable types except
string variables with a CHG statement.

Also use a CHG statement for simple arithmetic computations. You can
add, subtract, multiply, divide, and integer divide numbers or the
contents of variables.

NOTE: To simply increase or decrease the numeric value of a
variable, use the INC or DEC statement.

Format

@CHG v vld .

In field: 	 Enter:

v 	 the variable and, optionally, the variable type.

vld
	

variables, literal data, arithmetic expressions, reserved
words, or any combination of these, to load the variable
with.

Examples

This statement initializes the variable <CHAR> as an SOE character:

@CHG <CHAR>H1 SOE$.

UP-9662.5
	

7-67

CHG

The following statement creates V3 from the computation. Note that the
CHG statement evaluates the computations from left to right.

@CHG V316 V1 + V10 * V12 - 3 .

In this statement, V3 contains 3 (2.5 rounded to 3):

@CHG V316 5 / 2 .

In this statement, V3 contains 2 (the integer portion of the answer):

@CHG V316 5 // 2 .

In this statement, V3 contains 2.50:

@CHG V3F5.2 5 / 2 .

NOTE: Precede and follow each operator (+, *, /, //) with a space.

USING CHG STATEMENTS WITH RESERVED WORDS

Use a CHG statement to place the contents of reserved words in
variables. Put the reserved word in the vld field, as in this example:

@CHG <RID>13 RIDS .

Put reserved words that capture user input be fore the variable. These
reserved words capture user input:

ICVAR$ 	(see CHD)
INMSV$ 	(see OUM)
INPUTS 	(see OUT)
INSTR$ 	(see OUT)
INVAR$ (see OUT)
INVR1$ 	(see OUT)

Here's an example:

@CHG INPUTS V1I3,V2A5 .

7-68 	 UP-9662.5

PROCESSING TYPE 0 VARIABLES

Type 0 variables have these additional operators:

A 	 logical AND
0 	 logical OR
X 	exclusive OR
L 	 left shift
R 	right shift
C 	 circular shift

NOTE: Right shift = +; left shift =

A shift of a type 0 variable is actually a bit-count shift. If the data
being loaded is a literal value, MAPPER software assumes an octal
value. If the data resides in another variable, MAPPER software
assumes a decimal value and converts it to octal before processing.

In this example, VI is changed to an octal variable with four
characters, with an initial value of 2:

@CHG V104 2 .

The following statement performs a logical AND of the contents of VI
with 7:

@CHG V1 V1 A 7 .

The following statement performs a circular shift on the contents of V I
to the left one bit:

@CHG V1 V1 C -1 .

CHG

UP-9662.5 	 7-69

CLK (Clear Link)

Use a CLK statement in a run that was started by a LNK statement to
clear the link to the original run (see LNK). Note that after you clear
the link, you can link to another run.

Format

@CLK .

7-70 	 UP-9662.5

CLT (Clear Label Tables)

Use a CLT statement to delete label tables in a run control report and
create a result.

A CLT statement is especially useful for deleting existing label tables
in a run control report for easier run development and testing.

NOTE: You will most of ten use the manual CLT function rather than
the run statement. To use the manual function, simply
display your run control report, enter clt, and replace the
result. See the Manual Functions Reference for more details.

Format

@CLT ,m,t,r[lab] .

In field: 	 Enter:

m,t,r 	the mode, type, and RID number of the run control report
in which to clear label tables.

lab
	

the label or relative line number to go to if there is an
error.

UP-9662.5 	 7-71

CLT

Example

@CLT,O,E,10,99 .

where:

0,E,10 	 Clear label table in RID 10E, mode 0.

99 	 Go to label 99 if no labels are found in the run
control report.

See BLT for information on building label tables in a run control
report.

7-72 	 UP-9662.5

CLV (Clear Variables)

Use a CLV statement to clear the definition and contents of a range of
variables.

Typically, you use a CLV statement to release string variable space,
where only a limited amount is available. After releasing the string
space, you can use it for other variables.

Format

@CLII,stvno,q1 .

In field: 	 Enter:

stvno 	the starting variable number to clear (q is assumed if
stvno is not specified).

q
	 how many variables (quantity) to clear. All variables are

cleared if this field is not specified.

Examples

This statement clears variables 1 through 10:

@CLV , 1 . 1 0 .

This statement clears all variables:

@CLV .

See also PSH.

UP-9662.5 	 7-73

CMU (Commit Updates)

Use a CMU statement to make updates that were previously deferred in
a report.

Use a CMU statement after a DFU statement if you want to commit the
updates made since the DFU statement executed.

Format

CMU .

7-74
	

UP-9662.5

CPY (Copy)

The CPY statement copies an OS 1100 program file or element, or a
data file, from one site to another through the remote run link. The
file must be a sector-formatted file with no read or write keys. A
remote run link (see RRN) must exist between the two sites.

If the receiving file does not exist, the Executive System (Exec) creates
it with a maximum granularity of 6400 tracks.

Format

@CPY,o Isfq,Ifn[,lelv] rms[ymq,rmfir,rme,rmv] rmu,rmd,rmpw[f] .

In field: 	 Enter:

0 	 options:

A 	Absolute element
O Omnibus element
R Relocatable element
S 	Symbolic element

the local site number.

the local qualifier.

the local file name.

le 	 the local element name.

/v 	 the local version.

rms 	the remote site number.

(continued)

UP-9662.5 	 7-75

CPY

(continued)

In field: 	 Enter:

rmq 	the remote qualifier.

rmfn 	the remote file name.

rme 	the remote element name.

rmv 	the remote version.

rmu 	the user-id registered at the remote site.

rmd 	the user department number registered at the remote site.

rmpw 	the user sign-on password at the remote site.

1 	 the line number on the screen where progress messages
start.

Example

This statement copies qualifier MAPPER, file 2, absolute element
THREE, version 1, to site number 2. Since the rest of the receiving
subfields are blank, the copied element has the same identification—
qualifier MAPPER, file 2, absolute element THREE, version 1.

JDOE is the user-id and 7 is the department number at the receiving
site:

@CPY,A 1,MAPPER,2,THREE,1 2 JDOE,7 .

7-76 	 UP-9662.5

CSR (Clear Subroutine)

Use a CSR statement in an external subroutine to clear the return path
to the calling run control report.

Once you use a CSR statement, you can no longer return to the calling
run control report. You must use a CSR statement in the external
subroutine run control report before calling another external
subroutine. (See also RSR.)

NOTE: Use a CSR statement only in conjunction with an equivalent
ESR statement. Use an ESR statement only in conjunction
with an RSR statement. Call your coordinator for further
details.

Register run control reports that have external subroutines with
associated calling runs.

Format

@CSR .

See RSR for examples using subroutines.

UP-9662.5 	 7-77

DAT (Date)

The DAT statement performs computations on dates (from 1964 to 2063)
within reports and results, and creates a result.

Format

@DAT,m,t,r o cc Ityp,p .

In field: 	 Enter:

the mode, type, and RID number of the report to perform
computations in.

options:

A 	Process all line types.

T 	Convert the time in a field designated with a plus
sign (+) to decimal hours, and place the converted
time in the field with an equal sign (=). If you
don't specif y an equal sign, the result overlays the
data in the time field.

NOTE: The only valid parameters are the plus and
equal signs. The input data must be in the
format hh:mm:ss or hhmm.

W Determine the day of the week.

n 	Specify the number of workdays in a week for
computations, where n is the number of workdays.

(continued)

7-78 	 UP-9662.5

DAT

(continued)

In field: 	 Enter:

the column-character positions or names of the fields
where dates are located in the report.

the line type to process. (If you specify the A option,
leave this subfield blank.)

the parameters:

date format: 	 arithmetic:

A ymmdd 	 + add
B yymmdd 	 subtract
C 	dd mmm yy 	= move result to this field
D yddd 	 K constant (integer)
E yyddd 	 place day of week here
F ddmmyy
G mm/dd/yy
I mmddyy

The parameters subfield tells you at a glance which
operations are performed in a DAT statement, how many
date fields are used, their format, and which arithmetic
functions are performed on each one. Always specify a
result date field, such as B= or =.

If you don't specify a format in either the + or - field,
format B is assumed in both fields.

If you specify a format for either the + or - field
(but not both), the specified format is assumed for both
fields.

If you don't specify a format for the = field, the format
specified for the + field (if one exists) is assumed;
otherwise, the format specified for the - field is assumed.

UP-9662.5 	 7-79

DAT

Example 1: Subtracting Dates

@DAT,0,13,2 " 'PRODUC-ACTUAL','PRODUC-PLAN',X
'SHIP-DATE' ❑ ,-,+,_ .

or:

.DAT,O,B,2 " 57-6,50-6,64-6 0, 	.

where:

0,B,2 	 Process RID 2B in mode 0.

Use no options.

'PRODUC-ACTUAL' Subtract the date in the
57-6 	 PRODUC ACTUAL field (column 57 for 6

characters)

'PRODUC-PLAN' 	from the PRODUC PLAN field
50-6 	 (column 50 for 6 characters)

'SHIP-DATE' 	and put the difference in the SHIP
64-6 	 DATE field (column 64 for 6

characters).

❑ Process tab lines.

7-80 	 UP-9662.5

DAT

Example 2: Converting Dates to a Different Format

@DAT,0,13,2 " 50-6,32-6 0,B,F=

where:

0,B,2 	 Process RID 2B in mode 0.

Use no options.

50-6 	 Convert the format B date in the
B 	 PRODUC PLAN field (column 50 for 6

characters)

32-6 	 to a format F date, and place it in
F= 	 the PRODUC COST field (column 32 for 6

characters).

0 	 Process tab lines.

UP-9662.5 	 7-81

DC (Date Calculator)

The DC statement performs arithmetic computations on dates (from
1944 to 2043) or times that reside in variables, or on literal dates or
times.

Format

@DC eq vrslts .

In field: 	 Enter:

eq 	equations. Separate equations with a semicolon.

vrslts 	variables to capture results of the equations in the order
presented.

For each date you use in an equation, specify its format first. Enter
dates in this format:

Dn (x)

where:

n
	

is the number (0 through 8) identifying the date format.

is the variable containing the date, or the actual date.

7-82 	 UP-9662.5

DC

Enter times in this format:

Tn (x)

where:

is the number (0 through 3) identifying the time format.

is the variable containing the time, or the actual time.

NOTE: 	If you add 1 to the time, it appears in the hours position.

Use these formats:

DO(x) 	DATEO$
D1(x) 	DATE1$
D2(x) 	DATE2$
D3(x) 	DATE3$
D4(x) 	DATE4$
D5(x) 	DATE5$
D6(x) 	DATE6$
D7(x) 	DATE7$

D8(x) 	DATE8$
TO(x) 	TIMEO$

T1(x) 	TIME1$
T2(x) 	TIME2$
T3(x) 	TIME3$

YMMDD
YYMMDD
DD MMM YY*
YDDD
YYDDD
DDMMYY
MM/DD/YY
MONTH DD, YYYY*

MMDDYY
HH:MM:SS

HH: MM
HHMMSS
HHMM

(format of constant
label TODAY)

(format of constant
label TIME)

*
Since these formats have spaces, enclose actual dates in apostrophes. Don't enclose variables that

have these formats in apostrophes.

UP-9662.5 	 7-83

DC

Each equation in a DC statement creates a label (A through Z,
consecutively) that you can use in subsequent equations in the same
statement. You don't need to specify the format of a date represented
by a label —it stays the same as the answer it represents and the system
remembers it. You cannot name your own labels (as you can with an
ART statement). However, two constant labels are available for
calculations based on current date and time (TODAY and TIME).

Your answer appears in the same format as the date you use in the
equation, unless you specifically change the format.

HOW TO CHANGE FORMATS

Change formats with these equations:

(DIT)(n1w).-:expression

where:

is the date.

is the time.

is the format number.

changes the answer of an expression to the day-of-the-week
name of the resulting date.

Examples

VI equals today's date plus 90 days in DATE7$ format:

@DC TODAY+90 V1H18 .

VI equals today's date in DATE1$ format; V2 equals current time in
TIMEO$ format:

@OC D1=TODAY;T1ME V116,V2I8 .

7-84
	

UP-9662.5

DC

V1 equals the day of the week that January 25, 1980, was; V2 equals
850125 plus five days, changed to DATE7$ format; V3 equals the
number of days difference between the date in V2 (label B) and today's
date:

@DC DW=D7('JANUARY 25, 1980');D7=D1(850125)+5:1
TODAY-B V1H1O.V2H18.1/314 .

VI equals 831007 (V5) plus 60 days in DATE1$ format; V2 equals the
day of the week that the date in VI (A) is; V3 equals the date in VI
(A) in DATE7$ format; V4 equals the date in V3 (C) minus two days in
DATE7$ format:

@LDV V516=831007 .
@OC D1(V5)+60;DW=A;D7=A;C-2 V116.V2H10,113H18.1/4H18 .

UP-9662.5 	 7-85

DCPY (DDP Copy)

Use a DCPY statement to copy an OS 1100 program file or element, or
data file, from one host to another using DDP 1100.

The MAPPER system implements the DDP file transfer capability
asynchronously. When the DCPY statement is executed, the MAPPER
system transfers the copy request to DDP. DDP then does preliminary
error checking and returns a status to the MAPPER system indicating
that the copy is in progress. If the preliminary error checking does not
pass, however, no error condition is returned. In either case, control is
returned to the MAPPER system. Because the MAPPER system does not
wait for the copy to complete, there are no reserved words that
determine the status of the copy; you must determine the status outside
of your MAPPER run.

Format

@DCPYLIabl host,fn,rhostin,typel,pos,transl] .

In field: 	 Enter:

lab
	

the label or relative line number to go to if an error
status is returned by DDP 1100.

host
	

the name of the host configured in DDP 1100 that
contains the file to be copied from. Specify the host here
as you specify it in the IPF environment.

fn
	

the name of the file contained on the host. If the file
name contains special characters, enclose the field in
single quotation marks.

rhost 	the name of the host configured in DDP 1100 that is to
receive the file.

(continued)

7-86 	 UP-9662.5

DCPY

(continued)

In field: 	 Enter:

the name of the file on the receiving host. If the file
name contains special characters, enclose the field in
single quotation marks.

the type of file or element to copy. If you need more
than one type, separate them with commas and enclose the
field in single quotation marks.

These are valid types:

DDP 	Copy the entire file
ALL 	Copy all elements of the program file
SYM 	Copy a symbolic element
REL 	Copy a relocatable element
ABS 	Copy an absolute element
OMN 	Copy an omnibus element

pos

transl

ADD to add to the end of a file, or REP to replace the
existing file or element. (Note that you cannot use ADD
if you are copying to an OS 1100 file.)

a data translation entry. Files transferred between two
OS 1100 sites must use transparent (TRA), which is also
the default.

(continued)

UP-9662.5 	 7-87

Word Content

STAT2$ CLASS-CODE

Reserved words STAT1$ STAT2$, and STAT3$ (error codes)

STAT1$ Interface error

STAT3$ DETAIL-STATUS code

DCPY

(continued)

In field: 	 Enter:

These are the valid entries (you need to specify only the
first three characters):

TRAnsparent 	Do not translate the file or element.

ASCii 	 Translate the file or element to
ASCII.

EBCdic 	Translate the file or element to
EBCDIC.

Please refer to the DDP-FJT Operations Guide, Vol. 1: IPF Interface for
more information about each field of the DCPY run statement.

Reserved Words

The reserved words STAT1$, STAT2$, and STAT3$ contain error codes.
These codes are listed in the DDP-PPC/DDP-FJT Messages Reference
Manual.

7-88
	

UP-9662.5

DCPY

Example

This statement copies all symbolic elements from the file A*B. located
on host RSL2 to the file D*E. on host TOC. The elements replace any
existing elements on host TOC. If there was an error in the statement
or DDP configuration, STAT1$, STAT2$, and STAT3$ contain the
status code and the label 1 exit is taken.

When the DCPY is in progress, the file cannot be completely copied
before control is returned. MAPPER software waits up to one minute
for a status from the other host. If the status is not received, a COPY
IN PROGRESS error is returned (STAT2$=1 and STAT3$=15).
Depending upon the system usage, it may take some time for the copy
to complete.

fOCPY.1 RSL2,'A*B.',TOC.'D*E.',SYM,REP .

UP-9662.5 	 7-89

DCR (Decode Report)

Use a DCR statement to decode a report that has been encoded with the
ENCODE function or ECR run statement (see ECR). The decoded report
becomes the current (-0) result.

Use caution when encoding and decoding reports. Here are some
important things to remember:

❑ Don't forget your key. A report cannot be decoded if you lose or
forget the key because no record of it is kept by the MAPPER
system. Your coordinator cannot tell you what it is.

❑ Invalid characters and corresponding error messages are produced
in these cases:

- You specified the wrong key.
- The encoded report has been corrupted.
- The report is not encoded.

❑ If you are using a normal ASCII terminal, you may not be able to
decode a report that was encoded from a National Character Set
(NCS) terminal. In addition, you may not be able to decode a
report that contains special NCS characters from a normal ASCII
terminal.

❑ Because of high processing overhead, you may impact system
performance if you use the DCR statement excessively.

7-90 	 UP-9662.5

DCR

Format

@DCR,m,t,r,key .

In field: 	 Enter:

m,tl 	the mode, type, and RID number of the report to decode.

key 	the one- to eight-character key that was used to encode
the report (A-Z and 0-9).

Examples

This statement decodes RID 10B of mode 0, which was encoded using
the key JMT6077:

WR,O,B,10.0.4T6077 .

UP-9662.5 	 7-91

DCRE (DDP Create)

Use a DCRE statement to create a file on a DDP 1100 host. Before a
file is copied with DCPY, it must already be created on the remote host
with DCRE.

Format

@DCREL jab] host,f4devAnit,gran,maxfz,vol,accessl .

In field: 	 Enter:

lab
	 the label or relative line number to go to if an error

status is returned by DDP 1100.

host
	 the name of the host configured in DDP 1100 where the

file is to be created or allocated. Specify the host
here as you specify it in the IPF environment.

the name of the file to be created or allocated. If the file
J.. 	

name contains special characters, enclose the field in
single quotation marks.

dev
	 the name of the device where the file is to be created.

(See the DDP-FJT Operations Guide, Vol. 1: IPF Interface
for a list of valid device types.)

init 	the initial file size in bytes. (Default = 0.) Note that on
an 1100 host, this number multiplied by the granularity
and divided by 7168 gives the number of tracks to
allocate.

gran
	the granularity of the file that specifies the size (in 9-bit

bytes) of the units used in the hilt and maxfz subfields.
(Default = 7168 bytes, which is one track.)

(continued)

7-92 	 UP-9662.5

Word Content

STAT2$ CLASS-CODE

Reserved words: STAT1$,.:,STT2S, and STAT3$ (error code

STAT1$ Interface error

STAT3$ DETAIL-STATUS code

DCRE

(continued)

In field: 	 Enter:

maxfz
	the maximum file size in bytes. (Default = system

default size.)

vol
	

the volume-id for a removable or system disk pack.
(Default = system fixed mass storage volume.)

access 	the access type for the file (you need to specify only the
first three characters):

PUBlic 	This is a public (shared) file.

PRIvate This is private (nonshared) file (default).

Please refer to the DDP-FJT Operations Guide, Vol. 1: IPF Interface for
more information about each field of the DCRE run statement.

Reserved Words

The reserved words STAT1$, STAT2$, and STAT3$ contain error codes.
These error codes are listed in the DDP-PPC/DDP-FJT Messages
Reference Manual.

UP-9662.5
	

7-93

DCRE

Example

This statement creates the file A*B in host RSL2 on an 8450 disk with
a movable head. The file is public and has an initial size of 10 tracks
with a maximum of 500 tracks.

@OCRE.1 RSL2,'A*B.',F50M.10..500„PUB .

This Exec control statement creates the same file in a batch or demand
program:

@CAT,P A*B.,F50M/10/TRK/500 .

7-94 	 UP-9662.5

DCU (Decommit Updates)

Use a DCU statement to decommit deferred updates and restore the
reports to their state before a DFU statement (see DFU).

Format

@Dcu .

UP-9662.5 	 7-95

DEC (Decrement Variables)

Use a DEC statement to decrease the numeric value of variables.

You cannot use a DEC statement with string (type S) variables. Also, if
the variable you're trying to change contains alphabetic or special
characters, the variable remains unchanged. A DEC statement is more
efficient than a CHG statement, and it requires fewer characters.

Format

qp, DECi,n1 v I,v,...v] .

In field: 	 Enter:

n 	 the floating-point or integer number by which you want
to decrease the value. (Default = 1.)

the variables you want to decrease by n.

Example

To subtract 1 from the numeric value of V3, use:

@DEC V3 .

instead of:

@CHG V3 V3 - 1 .

To subtract 5 from the numeric values in <COST> and <TOTAL>, use:

@DEC,5 cCOST>,<TOTAL>

7-96 	 UP-9662.5

DEF (Define)

Use a DEF statement to do the following:

❑ Test a variable, variable substring, or reserved word for its current
contents or characteristics

❑ Set another variable to a value based on the option used

Format

@DEFI,o,/abl (setv,testv I selv,testv) .

In field: 	 Enter:

o an option. If you use an option, use only one. These are
the options:

A Change the numeric form type in the test variable
(which must be a valid, positive octal number and
have a valid numeric form type number) to its
equivalent alphabetic designation. The variable
being set must be a type A or H variable.

C 	Set the variable to contain the number of significant
characters in the test variable. A significant
character is any nonspace character or tab character.

(continued)

UP-9662.5 	 7-97

DEF

(continued)

In field: 	 Enter:

I 	Set the variable to contain a number based on the
initialized type of test variable, as follows:

Test type: 	Set to:

A 	1
F 	 2
S 	 3
I 	 4
H 5
O 6

K If the test variable has Kanji characters, set the
variable to 8. Otherwise, set it to 0 through 7 (see the
testy and setv values at the end of the options in this
table).

M Change the numeric form type in the test variable to
its equivalent mode designation. A test variable must
have a valid octal number and a valid numeric form
type number. Set the variable to contain the mode
number in which its numeric form type resides. For
example, if the test variable's numeric type is 1 (form
type A), set the variable to equal 0 (mode zero).

N Define the numeric form type of the mode number
and alphabetic type in the test variable. The test
variable must contain modetype (for example, 24C).

P Set the variable to contain the packed size of the test
variable, as if it had been packed. (Packed size
equals the number of nonspace characters and any
intervening spaces.)

(continued)

7-98 	 UP-9662.5

DEF

(continued)

In field: 	 Enter:

S 	Set the variable to contain the size of the test
variable.

T 	Set the variable to contain the number of tab
characters in the test variable.

V 	Set the variable to contain the variable name that is
assigned to the test variable number. (If testy does
not have a variable name assigned, setv is loaded with
spaces.)

If you don't specify an option, the DEF statement sets the
setv variable to a value from 0 to 7, depending on the
contents of the testy variable:

Contents of testy Value of setv

All tab characters or spaces or both 0
All numeric characters 1
All alphabetic characters 2
Alphabetic and numeric characters 3
All special characters 4
Special and numeric characters 5
Special and alphabetic characters 6
Special, numeric, and alphabetic characters 7

Note that the contents of testy can include either just the
characters indicated or both the characters and spaces.

the label or relative line number to go to if testy is not
initialized.

the variable to set.

the variable or reserved word to test.

UP-9662.5 	 7-99

DEF

Examples

This example sets VI to the code defining the kinds of characters in
V2:

@DEF V1 V2

This statement sets <CODE> to the code defining the kinds of
characters in <CHARS>:

@DEF <CODE>I1 <CHARS> .

This statement sets V5 to equal the alphabetic form type of the valid
numeric form type in V6:

@DEF,A V5A1,V6 .

This statement sets <SIZE> to equal the number of characters in
<NAME>:

@DEF,S <SIZE>12 <NAME> .

If VI was previously assigned to the variable name CAT, the following
statement loads V199 with CAT:

@DEF,V V199H12 V1 .

7-100 	 UP-9662.5

DEL (Delete)

The DEL statement deletes the lines appearing in the result of an
update function from the report.

The following statements produce update results:

CAU
LCH (with the OU option)
LOC (with the OU option)
MAU
SRU

Format

@DEL .

Examples

In this example, the SRU statement searches tab lines for IP in column
2 for two characters. The DEL statement deletes all lines found in the
search update from the report:

@SRU,0,13.2 D 2-2 ❑ ,IP .
@DEL .

To save a logic line, put both statements on one line, as in this example:

@SRU,O,B,2 D 2-2 ❑ ,IP DEL .

UP-9662.5 	 7-101

DEV (Device)

The DEV statement lists auxiliary devices and their status for a
specified station. It creates a type A result if the device type you
specify exists at the station number specified, and you do not specify a
unit name.

Format

@DEV,snLdev,unit,lab] .

In field: 	 Enter:

sn
	 the station number.

dev
	 the device type:

C printers
D 	5 1/4" diskette
T 	tape cassettes/diskettes

If you use the dev field, you must also use the unit field.

unit
	 the name of the unit in the terminal configuration report

(such as COP, CQP, DS1, etc.). If you use the unit field,
you must also use the dev field.

lab
	 the label or relative line number to go to if no device or

unit exists at the station number specified.

7-102 	 UP-9662.5

DEV

Reserved Words

ReServed words: 	STAT1$, STAT2$, and STAT3$

Word Content

STAT1$ Number of devices specified in dev or unit subfield

STAT2$ Number of devices connected to the station

STAT3$ 0 if requested station does not exist

1 if requested station exists

Examples

@OEV.123 . LIST DEVICES AT STATION 123

The following statement lists type C devices, registered as COP, at
station 123; the run goes to label 99 if no device (as specified) is found:

@DEV.123,C.COP.99

UP-9662.5 	 7-103

DFU (Defer Updates)

Use a DFU statement in conjunction with CMU and DCU to control
multiple report updating. A DFU statement defers all updates to
reports (that is, the updates are not made) until a CMU statement is
executed.

If the run fails or aborts, the system restores all updates to the reports
to their state before the DFU statement.

If the system fails during a run before the CMU statement executes,
associated report updates are also decommitted.

You can control up to five reports with a DFU statement. Follow each
DFU statement with a CMU or DCU statement before specifying
another DFU statement.

If your run terminates for any reason, the system executes a DCU
statement automatically and terminates the run with an error. Once a
DFU statement executes, you must decommit or commit updates before
you end a run normally.

You cannot specify just the mode and type in an attempt to lock an
entire type.

These run statements cannot logically follow a DFU statement until a
CMU or DCU statement executes:

DFU 	set deferred update on a report
DSP 	display a report
LOK 	prevent other users from updating
OUM 	mask output to screen
OUT 	place lines on terminal screen
REL 	stop run by releasing
RTN 	return to a remote MAPPER run
RUN 	start another MAPPER run
SC 	create input screens or edit displayed data
WAT 	stall run for a timed wait
XIT 	sign user off from display terminal

7-104 	 UP-9662.5

DFU

Format

@DFUllabi 	 .

In field: 	 Enter:

the label or relative line number to go to if an update
lock cannot be granted for any of the reports.

the modes, form types, and RID numbers of the reports
to lock (up to five reports).

Example

This statement defers updating of reports 2B and 1C in mode 0; the run
goes to label 99 if either of these reports is locked:

@DFU,99 0,6,2.0.C.1 .

UP-9662.5 	 7-105

DIR (Directory Information)

Use the DIR statement to load variables with information about a data
name from the System Directory.

With the DIR statement, you can determine whether a data name is
valid and the kind of data the name represents (mode, form type, or
report).

Format

@DIR[Jab] name [vmode,vtype,vrid,vhiridr] .

In field: 	 Enter:

the label or relative line number to go to if the name is
invalid.

name
	the data name to define. The data name can include

nonsignificant characters, such as spaces or punctuation.
The name need not be enclosed within apostrophes unless
it contains embedded spaces.

vmode * 	the variable to capture the mode number.

vtype * 	the variable to capture the alphabetic form type.

vrid * 	the variable to capture the RID number.

vhiridr * 	the variable to capture the higher RID number if the data
name defines a range of reports.

* A data name can represent a mode, a form type, a report, or a range of reports. Variables that do not

apply for a particular data name are loaded with spaces.

7-106 	 UP-9662.5

DIR

Reserved Word

If the data name supplied is invalid, the run continues at the label.
Examine STAT1$ for error codes. If there is no label, the run errs.

Reserved Word 	STAT1$:

Code Error

1 Data name was not found in the System Directory.

2 Data name does not begin with an alphabetic character (A to Z).

3 Data name contains no alphanumeric characters (A to Z and 0 to 9).

4 Data name contains more than 16 alphanumeric characters.

Example

@OIR,99 ORDER-STATUS <MODE>14,<TYPE>H1,<RID>14,k
<HIRID>I4 .

where:

99 	 Go to label 99 if ORDER-STATUS does not
exist.

ORDER-STATUS Data name to obtain information about.

<MODE>I4 	Load <MODE> with the mode number of
ORDER-STATUS.

<TYPE>H1 	Load <TYPE> with its form type.

UP-9662.5 	 7-107

<RID>I4 	 Load <RID> with its report number.

<HIRID>I4 	Load <HIRID> with its higher range report
number.

DIR

7-108 	 UP-9662.5

DIS (Diskette)

Use a DIS statement to write data to and read data from a 5-1/4-inch
diskette drive connected to a Unisys UTS 30 display terminal.

The DIS statement is not supported on a UTS 60 display terminal. In
addition, both the DIS statement and the corresponding manual
function require level 3R4 microcode on UTS 30 display terminals.

NOTE: The DIS statement doesn't work on an IBM 3270 terminal.

Format

@DIS.m,a,r,f,labl code,dev,fn[,ext,tabs?,hdrs?,transp?1 .

In field: 	 Enter:

the mode, type, and report to write to or read from.

the report format to read or write.

lab 	the label or relative line number to go to if a diskette
error occurs.

code 	a W (for write), an R (for read), or a D (for delete).

dev 	a three-character device name.

fn 	a one- to eight-character file name.

ext 	a one- to three-character file name extension.

tabs? 	for writes: a Y to include tab characters.
for reads: a Y to replace spaces with tabs from RID 0, or
use predefined line type 0 to 9.

(continued)

UP-9662.5 	 7-109

,
Ree'rVed Word: 	STAT1$ (error codes)

Code Error

1 READY status was received when the diskette should be busy.

2 Diskette not ready or end of disk, directory, or file.

3 Diskette data error.

4 Diskette unable to proceed or no response.

5 Diskette device DLE 8.

6 Diskette timeout; THRU status wasn't received after BUSY.

7 Diskette file is empty or does not exist.

If you don t use a label, the run terminates and you get an error message (unless you

have an RER statement in the run to register an error routine).

If you use a label, STAT1$ indicates the type of error.

DIS

(continued)

In field: 	 Enter:

hdrs?
	

for writes: a Y to include headers from the report.
for reads: a Y to include headers from RID 0.

transp?
	

for writes: a Y to preserve lines longer than 80
characters. Enter Y for 132-character reports.

Reserved Word

7-110
	

UP-9662.5

Example

This statement writes RID 2B in mode 0 to a 5-1/4-inch diskette DS1
and gives it the file name FILE1:

@OIS,0,B,2 W,DS1,FILE1 .

DIS

UP-9662.5 	 7-111

DLL (Downline Load)

The DLL statement loads a precompiled program stored in a MAPPER
report into a Unisys UTS 400 master or UTS 40 display terminal.

NOTE: The DLL statement doesn't work on an IBM 3270 terminal.

Format

@DLL,m,t,r,trfadr,deitproglab] .

In field: 	 Enter:

m,t,r 	the mode, type, and RID number of the report to
downline load.

tr fadr
	the address to transfer control to after loading.

dev
	 the auxiliary device to load.

proglab
	

the program label reference to use when loading to
cassette/diskette.

Example

This statement downline loads the program in RID 10A into the
terminal's memory and transfers control to address A018 after loading:

@OLL,O,A,10,A018,MEM .

7-112 	 UP-9662.5

DLR (Delete Report)

The DLR statement deletes a MAPPER report, result, or renamed report.
Normally, only the last person who updated a report can delete that
report, but the DLR statement ignores this restriction, as well as read or
write password restrictions.

Format

@DL R,m,t,r[jab] .

In field: 	 Enter:

r 	 the mode, type, and RID number of the report or result to
delete.

the label or relative line number to go to if the report or
result does not exist.

Examples

@OLR,O,B,3 . DELETE REPORT 3B IN MODE 0

The following statement deletes the current result; the run goes to label
99 if the result does not exist:

@OLR,-0,99

UP-9662.5 	 7-113

DPUR (DDP Purge)

Use a DPUR statement to delete a file on a DDP 1100 host.
Here are some guidelines for using the DPUR statement:

❑ You can remove all evidence of a file's existence with the DPUR
statement.

❑ DDP provides protection to ensure that unauthorized deletion of
files does not occur. Therefore, the name you specify must include
any read/write keys.

❑ You can delete only one file with each DPUR statement.

❑ You can use the DPUR statement to delete only entire program or
data files; you cannot delete elements of a file.

Format

@DPUR[Jabl host,fn .

In field: 	 Enter:

lab
	

the label or relative line number to go to if an error
status is returned by DDP 1100.

host
	

the name of the host configured in DDP 1100 where the
file is to be deleted or purged. Specify the host here as
you specify it in the IPF environment.

fn
	 the name of the file to be deleted or purged. If the file

name contains special characters, enclose the field in
apostrophes.

7-114 	 UP-9662.5

Word Content

STAT2$ CLASS-CODE

Reserved wordst STAT1$ STAT2S, and STAT3$ (error codes)

STAT1$ Interface error

STAT3$ DETAIL-STATUS code

DPUR

Reserved Words

The reserved words STAT1$, STAT2$, and STAT3$ contain error codes.
These error codes are listed in the DDP-PPC/DDP-FJT Messages
Reference Manual.

Example

This statement deletes the file A*B. on host RSHS:

@DPHIL 1 RSHS, 'A*B

UP-9662.5 	 7-115

DSG (Display Graphics)

The DSG statement translates the primitive graphics code in a report
and displays it on your terminal or another terminal. If you specify
interim display, the run continues automatically; if you don't, you must
press Fl or enter rsm to continue the run.

NOTE: The DSG statement clears the output area after executing.

Format

@DSG,m,tAdisplay,interim?„sn,labl .

In field: 	 Enter:

m,t,r 	the mode, form type, and RID number of the report
containing the primitive graphics code.

display 	an A to display alphanumeric text, a G to display
graphics (default), or an M to display both text and
graphics.

interim? 	a Y for interim display (the run continues without the
user resuming). (Default = N.)

sn
	 the station number where the DSG is to be displayed. If

you leave this field blank or specify 0, the DSG is
displayed at the station that is executing the run.

lab
	

the label or relative line number to go to if a DSG to
another station cannot be successfully completed. If you
leave this field blank, and the DSG statement cannot be
successfully completed, the run is terminated with an
error. See "DSG TO ANOTHER STATION" in this section
for STAT1$ error codes.

7-116 	 UP-9662.5

DSG

DSG TO ANOTHER STATION

You use the sn and lab subfields to display graphics on terminals other
than the one executing the run.

If you do not specify lab and the DSG statement cannot be successfully
completed, the run is terminated with an error. Examine STAT1$ for
the status code.

Reserved Word

Reserved word: 	STAT1$

Code Error

1 Station does not exist or it is a batch port, remote run, MM, or

background station.

2 Station is not available because it is not currently connected to the

MAPPER system.

3 Either no one is signed on at the specified station and interim was not

specified, or the terminal 	is not a graphics terminal.

4 There is no answer. 	The user at the specified station did not respond to

the message wait signal within one minute.

When you send a DSG to another terminal where a user is signed on,
that user's message wait signal is activated and your run stalls. If the
user responds to the message wait signal, the DSG information is
displayed on the user's screen. If you specified N in the interim?
subfield, your run stalls until the user at the receiving terminal presses
any key; if you specified Y in the interim? subfield, your run continues
automatically.

UP-9662.5
	

7-117

DSG

If the user at the other terminal does not respond within one minute,
your run either continues at the specified label or terminates with an
error (STAT1$=4). If subsequent DSGs are sent to that station, the user
must respond to each message wait signal.

If you know that no user is signed on at the specified station, specify a
Y in the interim? subfield. In this case, the message wait signal is not
activated, the DSG information is displayed on the screen, and your
run continues. If you do not specify an interim DSG, your run
continues at the specified label or terminates with an error (STAT1$=3).

You cannot obtain exclusive use of any station. When more than one
run is sending a DSG to the same station, the outputs may be
intermixed and not displayed in the same order as they were sent. In
addition, the one minute time limit may elapse for the second DSG
before the first DSG is completed.

Examples

This statement displays text from the primitive graphics code in RID
1A, mode 0. The user must press Fl or enter rsm to continue:

00SG,O,A.1 .

The following statement displays text and graphics from the primitive
graphics code in RID 2B, mode 0. The run continues automatically:

alOSG.O.B.2.M.Y .

The following statement displays graphics from the primitive graphics
code in RID 3C, mode 0, on station 123. The run continues
automatically:

WSG,O,C,3„Y„123 .

7-118 	 UP-9662.5

DSM (Display Message)

Use a DSM statement to display your own one-line message at the top
of the screen in place of the control line. You can use DSM in one of
two ways:

❑ Display a message at the top of an existing screen.

❑ Display a report or result, placing a message at the top of the
screen. You can display the report or result beginning at line one
or at a specified line number.

The message to display resides in a report or result. You display it by
specifying its line number.

The DSM statement stalls the run until the user transmits or resumes,
unless you specify the interim display, in which case the run continues
automatically. Note that the DSM statement clears the output area.

Here are some characteristics of the DSM messages:

❑ The text appears as is does for MAPPER system error messages:
reverse video for most monochrome terminals and white characters
on a red background for color terminals.

❑ Less than (<) and greater than (>) signs are translated into blink
characters.

❑ If you have a 132-character terminal, the messages are
automatically centered.

UP-9662.5 	 7-119

DSM

Format

@DSM,m,t,rimsetabp,erase?,interim?,pdq,dm,d1.dr,dspl,dspfl .

In field: 	 Enter:

M,t,r

lmsg

tabp

erase:

interim?

pdq

dm

di

dr

dspl

dspf

the mode, type, and RID number of the report or result
containing the message.

the line number of the message in the report.

the tab position (maximum of 63) at which to place the
cursor after the message is displayed. If you use a
positive number (1-63), the cursor tabs forward from the
HOME position; if you use a negative number, it tabs
backwards from the HOME position.

a Y to erase the rest of the screen.

a Y to continue the run without the user transmitting or
resuming.

the number of lines to push down on the screen.

the mode number of the report to display.

the form type of the report to display.

the RID number of the report to display.

the line number of the specified report at which to start
the display.

the format (1-6) of the report to display.

7-120 	 UP-9662.5

DSM

Examples

This statement displays a message at the top of the current screen. The
message is located on line 4 of the current result.

@OSM,-0,4 .

The following statement displays RID 2D of mode 0, and places a
message (located on line 4 of RID 12A in mode 0) on the top of the
screen. The cursor is positioned at the 10th tab position.

@OSM.O.A.12,4,10„„0.D,2 .

UP-9662.5 	 7-121

DSP (Display Report)

The DSP statement displays a report or result on your display terminal
and clears the output area. To continue the run after the display, press
Fl or enter rsm .

You can use the DSP statement to display and manually update reports
during run execution or to print the reports that are on display.

NOTE: Don't put other run statements on the same line after a DSP
statement. The logic scan of the line terminates after
executing the DSP statement.

Format

@DSP,m,t,r1,1,tabp,f,interim?,hold,msg80] .

In field: 	 Enter:

m,t,r 	the mode, type, and RID number of the report to display.

1 	 the line number in the report at which to start the
display.

tabp 	the tab character after which to position the cursor in the
report. Keep in mind that if you are displaying a report
with a control line, the default cursor position is in the
RL field.

f 	 the report format.

interim? 	a Y for interim display (the run continues without the
user resuming). (Default = N.)

(continued)

7-122 	 UP-9662.5

DSP

(continued)

In field: 	 Enter:

hold 	the number of lines already on the display screen to hold.
The new report is displayed beginning at the first non-
held screen line.

msg80
	a message of up to 80 characters to display in the control

line. Remember to place significant spaces within
apostrophes.

Examples

fOSP,-0 . DISPLAY CURRENT RESULT

@DSP.-3 . DISPLAY RENAMED RESULT -3

fOSP,O,B,2 . DISPLAY REPORT 2B IN MODE 0

This statement displays format 5 of RID ID, mode 0, starting at line 3:

fOSP,0,D.1,3„5...' This line displayed on control
line. '

This example displays a simulated control line with a message. It
allows the user to select a line number or format or to roll the display
without first requesting line control:

fOSP. -0.1, 3 „ „ I ine'SOE$111 	fmt 'SOEST r I 'SOESX
'D 	 <Press Fl or enter RSM to return>' .

UP-9662.5 	 7-123

DUP (Duplicate Report)

Use the DUP statement to create a new report by duplicating an
existing report or result. The run loads the reserved word RID$ with
the number of the new report.

Format

@DUP,m,t,r[,rm,rt] .

In field: 	 Enter:

the mode, type, and RID number of the report to
duplicate.

rm,rt 	the receiving mode and type to duplicate the report into.

Reserved Word

Reserve0 - word: 	RIDS

Word Content

RIDS RID number of the new report

7-124
	

UP-9662.5

Example

This example duplicates RID 1B in mode 20 into mode 0, type B.
Variable <RID> captures the RID number of the new report.

@OUP,20,B,1,0,B .
@CHG <RID>13 RID$.

DUP

UP-9662.5 	 7-125

DVS (Define Variable Size)

Use the DVS statement to create variables equal to the size of report
fields. For example, use it to capture input parameters to be processed
against report fields, or to build screens whose input fields must be the
same size as report fields.

Generally, you'll use a DVS statement with named fields, because a
name does not directly specify the field size. The run defines the size
of the variable when it executes. Any input parameter or screen using
the affected variable dynamically adjusts to changes in field sizes.

In a DVS statement, you specify the variable number and its type; you
don't specify the variable's size. The run assigns a size to the variable
equal to its corresponding report field, then fills it with spaces.

Format

@DVS],m,t,r] field[,..., field] v[,v v] .

In field: 	 Enter:

m,t,r 	the mode, form type, and RID number of the report or
result where the fields reside. (Default = -0.)

field 	the field whose size you want to define (can be field
names or column-character positions).

v 	 the variables to define. Specify the variable number and
type (for example VIH, V2S, and so forth).

7-126
	

UP-9662.5

DVS

Examples

This example initializes a variable to the size of the CUST CODE field
in RID 2B, mode 0, for use as an input parameter:

@DVS,O,B,2 'GUST-CODE' V1H.
@CHG INPUT; V1 .

The following example initializes variables to the size of the ORDER
NUMBER and ORD QTY fields from the current -0, and creates a
screen using their sizes:

@DVS 'ORDER-NUMBER','ORD-QTY' <NUM,41,<OTY>1
@BRK .

Enter Order Number: O<NUM>,
Enter Quantity: O<OTY>.

Transmit from here: II ,
@IBRK OUT,-0,2,23,1,1,Y„,P
@CHG INPUT; <NUM>,<OTY> .

UP-9662.5 	 7-127

ECR (Encode Report)

Use an ECR statement to transform a report into code, making it
unreadable unless the correct key is specified. The encoded report
becomes the current (-0) result.

The ECR statement is particularly useful for highly sensitive reports
and messages. If used appropriately, it is more secure than read/write
passwords because no one, including the coordinator, can decode the
report without knowing the key.

You decode an encoded report with the DECODE function or the DCR
run statement (see DCR).

Use caution when encoding reports. Here are some important things to
remember:

❑ Don't forget your key. A report cannot be decoded if you forget
the key because no record of it is kept by the MAPPER system.
Your coordinator cannot tell you what it is.

❑ Don't update an encoded report. Any change to the encoded report
will corrupt it and you will not be able to decode it. Protect your
report from updates by using an update password (see the PSW
function in the Manual Functions Reference).

❑ You cannot move encoded data between form types with different
report widths because you will not be able to decode it. If a form
type width is changed, all encoded reports in that type will be
corrupted and they will not be able to be decoded.

❑ If you are using a normal ASCII terminal, you may not be able to
decode a report that was encoded from a National Character Set
(NCS) terminal. In addition, you may not be able to decode a
report that contains special NCS characters from a normal ASCII
terminal.

7-128 	 UP-9662.5

ECR

❑ Because of high processing overhead, you may impact system
performance if you use the ECR statement excessively.

❑ Encoding a report approximately doubles the size of that report.

Format

@ECR,m,t,r,key[,hdrs?] .

In field: 	 Enter:

m,t,r 	the mode, type, and RID number of the report to encode.

key 	a one- to eight-character key used to encode the report.
Valid characters are A-Z and 0-9. The more characters
(up to eight) you use, the more difficult it is for an
unauthorized user to guess the key.

hdrs? 	a Y if you want report headers to also be encoded.
(Default = N.)

Example

This statement encodes RID 10B of mode 0, including headers, using
JMT6077 as the key:

@ECR,0.13,10.JMT6077,Y .

UP-9662.5 	 7-129

ELT (Element)

The ELT statement copies a MAPPER report or result to a standard OS
1100 program file or symbolic element, or to a data file. The file must
be a sector-formatted file with no read or write keys.

If the file you're copying is not a currently assigned file, the ELT
statement assigns it with a maximum granularity of 6400 tracks.

Format

@ELT ,m,t,d,lab] qual,fn[,cyc,elt,ver,mapper f?,hdrs?,cs,newcyc?] .

In field: 	 Enter:

m,t,r 	the mode, type, and RID number of the report to copy.

lab 	the label or relative line number to go to if the run
encounters an error (see the STATI$ and STAT2$ codes
following this table).

qual 	the qualifier.

fn 	 the file name to transfer the report to.

cyc 	the file cycle.

elt 	 the element name.

ver 	the version.

mapper f? 	a Y to copy the report in MAPPER format.

(continued)

7-130 	 UP-9662.5

ELT

(continued)

In field: 	 Enter:

hdrs?

CS

newcyc?

a Y to include the form type headers. Note that if you
enter N in this subfield while processing a result, only
the date line is omitted.

the character set of the new report:

L Fieldata
F 	ASCII (default)
U ASCII, uppercase

a Y to create a new cycle (+1) for the file, and ignore the
entry in the cyc subfield. Note that the run errs if you
try to create a new cycle of a nonexistent file.

Reserved Words

Reserved - Words:. 	STAT1S (error COdes) and STAT2S

Code Error

1 File (relative cycle requested) does not exist.

2 File already assigned to MAPPER system.

3 File already assigned exclusively to MAPPER system.

4 File already assigned to another user.

5 File already assigned exclusively to another user.

(continued)

UP-9662.5
	

7-131

ELT

(continued)

Code Error

6 File rolled out.

7 Facilities currently unavailable.

8 Private file, under different project-id.

9 Read or write restrictions on file.

10 File not sector-formatted mass storage file.

11 File not program file (if element specified).

12 File is a MAPPER file.

13 System I/O error.

14 Facility warning or reject.

15 Insufficient or improperly formatted statement.

16 File not data file (if element not specified).

17 Cycle attempted on nonexistent file.

18 Attempt to write past end of file.

STAT2$ has a line number identifying the error message.

Use an ISM statement to read the message. 	Place the number in STAT2$ in the msgno

subfield in an LSM statement (see LSM).

7-132
	

UP-9662.5

ELT

Example

This statement creates qualifier MYQUAL file MYFILE and copies the
data in RID 2B, mode 0, to it; or the run goes to label 99 if there is an
error and the system cannot copy the data:

@ELT,O,B,2,99 MYOUAL,MYFILE .

DATA CONTROL COMMANDS

Use the same data control commands you use with an STR statement to
control data in the report you're copying (see Table 7-14 under STR).

Enter these commands on any line in the report; they take effect from
that point on in the data.

UP-9662.5 	 7-133

EL- (Element Delete)

The EL- statement deletes a standard OS 1100 program file or symbolic
element, or a data file. The file must be a sector-formatted file with
no read or write keys.

Format

@EL-[,lab] qual,f4cyc,elt,ver] .

In field: 	 Enter:

lab
	

the label or relative line number to go to if the run
encounters an error (see the the STAT1$ and STAT2$
codes following this table).

qua! 	the qualifier.

fn 	 the name of the file to delete, or the file name containing
the element to delete.

cyc 	the file cycle.

elt 	 the element name.

ver 	the version.

7-134 	 UP-9662.5

EL-

Reserved Words

Reserved words: 	STAT1$ (error codes) and STAT2$

Code Error

0 Requested element not found in specified file.

1 File does not exist.

2 File already assigned to MAPPER system.

3 File already assigned exclusively to MAPPER system.

4 File already assigned to another user.

5 File already assigned exclusively to another user.

6 File rolled out.

7 Facilities currently unavailable.

8 Private file, under different project-id.

9 Read or write restrictions on file.

10 File not sector formatted mass storage file.

11 File not program file (if element specified).

12 File is a MAPPER file.

13 System I/O error.

(continued)

UP-9662.5
	

7-135

EL-

(continued)

Code Error

14 Facility warning or reject.

15 Insufficient or improperly formatted statement.

STAT2$ has a line number identifying the error message.

Use an LSM statement to read the message. 	Place the number in STAT2$ in the msgno

subfield in an LSM statement (see LSM).

Example

This statement deletes file MYQUAL*MYFILE:

@EL- MYQUAL ,MYF I LE .

7-136 	 UP-9662.5

ESR (Exit Subroutine)

Use an ESR statement to exit a subroutine and return to a specified
line in the run control report that contains the calling RSR statement
(see RSR).

NOTE: Don't put other run statements on the same line after an ESR
statement. The logic scan of the line terminates after
executing the ESR statement.

Format

@ESRICq1,-q)] .

In field: 	 Enter:

the location in the run control report to return to, where
q is the relative number of lines after or before (-) the
line following the RSR statement that called the
subroutine. (Blank = 0.)

Example

This example shows a series of statements that could be used to run and
execute a subroutine:

UP-9662.5 	 7-137

ESR

@SRH 	RETURN HERE IF q =-5
@RNM 	RETURN HERE IF q =-4
@SRH 	RETURN HERE IF q =-3
@MCH 	RETURN HERE IF q =-2
@RSR 1 . GO TO INTERNAL SUBROUTINE AT LABEL 1; RETURN

HERE IF q=-1
@GTO . 	RETURN HERE IF q =0 OR IS NOT SPECIFIED
@DSP . 	RETURN HERE IF q =1
@1:SRH . RETURN HERE IF q =2
@TOT . 	RETURN HERE IF q =3
@WRL . 	RETURN HERE IF q =4
@RNM . 	RETURN HERE IF q =5
@ESR,q . EXIT SUBROUTINE AND GO TO q WHERE q IS A NUMBER

FROM -5 to 5

See RSR for other examples using an ESR statement.

7-138 	 UP-9662.5

EXT (Extract)

Use the EXT statement with updatable results to extract processed lines
from the report. The system deletes these lines from the report; these
lines become the current result (-0).

The following statements produce updatable results:

CAU
LCH (with the OU option)
LOC (with the OU option)
MAU
SRU

Format

@EXT .

Example

In this example, all lines found in the Search Update result are deleted
from the report; these lines become the current result (-0):

6GRU,O,B,2 DH 2-2 ❑ ,IP EXT .

UP-9662.5 	 7-139

FDR (Find and Read)

Use an FDR statement to find a line. Follow it with one or more RLN
statements (or an RDL statement) to read the line or lines.

Of the following two combinations, the first is more efficient because
it uses fewer I/Os.

@FDR . . . RLN ... (or RDL)

@FND . . . RDL...

See also RDC, RDL, and RLN.

NOTE: If a find is made, the report in which the find is made
becomes the current -0.

Format

@FDR,m,1[,0,q,lab] o cc ltyp,p vrid,v1no .

In field: 	 Enter:

the mode, type, and RID number of the report in which
to find (and later read) a line.

I 	 the line number at which to start the scan.

q 	 how many lines (quantity) to scan.

lab 	the label or relative line number to go to if no find is
made.

(continued)

7-140 	 UP-9662.5

FDR

(continued)

In field: 	 Enter:

options:

A
	

Process all line types.

C(x)
	

Alter normal character set processing:

C(F) 	full character set
C(L) 	limited character set
C(S) 	strict character set of report

Rx(-yl,y) 	 Scan a range of reports from report x
through report y; or reports x,y,...,y

Examples:

R2,5 	Scan reports 2 and 5
R2-10 	Scan reports 2 through 10
R2-10,14 	Scan reports 2 through 10 and 14

Find spaces

Find slashes

cc 	the column-character positions or names of the fields to
scan.

Ityp 	the line type to scan. (If you specify the A option, leave
this subfield blank.)

p 	 the find parameters.

vrid 	the RID number where the find was made.

vino 	the line number where the find was made.

UP-9662.5 	 7-141

FDR

Example 1: Finding a Particular Line in a Type

@FDR,O,B " 'ST-CD' 0 ,IP <RID>16,<LINE>16
@IRIN , <L I NE> , 99 'ORDER' <ORD> I

where:

0,13
	

Find a line in form type B, mode 0.

',
	

Use no options.

ST-CD
	

Look in the ST CD field (column 2 for two
characters).

0 	 Process tab lines.

IP 	 Look for the characters IP.

<RID>I6

<LINE>I6

RLN,<LINE>,99

'ORDER'

Capture the report number where the find was
made in <RID>.

Capture the line number where the find was
made in <LINE>.

Read the line (captured in <LINE>I6) and go
to label 99 if no line number exists.

Read the data in the ORDER field.

<ORD>I 	 Capture the order number from the ORDER
field of the line read.

7-142 	 UP-9662.5

FDR

Example 2: Finding a Line in a Report

@FDR,O,B,2,6,100,99 " 15-5 ❑ ,GREEN ,V1I6 .
@HLN,V1,99 39-5 V2I5 .

where:

0,B,2 	 Find a line in RID 2B in mode 0.

6 	 Start looking at line 6.

100 	 Scan 100 lines.

99 	 Go to label 99 if no finds are made.

Use no options.

15-5 	 Scan column 15 for five characters.

0 	 Process tab lines.

GREEN 	 Look for the characters GREEN.

V116 	 Capture in V1 the line number where the find
was made.

RLN,V1,99
	

Capture in V2 the order number on the
39-5 V2I5
	

found line in VI.

UP-9662.5 	 7-143

FMT (Format)

Use the FMT statement to create a display format by selecting which
fields of a report or result to display on a following DSP, OUM, or
OUT statement.

You can use directory names or standard column-character syntax to
define report fields:

❑ If you name the fields, the display includes the columns of each
field as well as the character immediately following the field.

❑ If you use the column-character positions, the run displays only the
columns specified.

The system always includes column 1, which contains the line type
designator, in the format.

You can list fields in any order; however, fields are always displayed
in the same order they appear in the report.

Format

@FMT[,m,t,r] field] 	field] .

In field: 	 Enter:

m,t,r
	the mode, form type, and RID number of the report or

result from which to display fields. (Default = -0.)

the fields to display (can be field names or column-
character positions).

7-144 	 UP-9662.5

FMT

Examples

This statement displays the ST CD, SHIP DATE, and CUST CODE
fields of the current -0:

WMT 'ST-CD','SHIP-DATE','CUST-CODE' .
@OSP,-0

This example displays column 2 for 3 characters, column 45 for 5
characters and column 64 for 7 characters from report 2B in mode 0:

@FMT,O,B,2 2-3,45-5,64-7 .
@OSP,O,B,2 .

UP-9662.5 	 7-145

FND (Find)

The FND statement scans vertically through a report for an item,
multiple items, or a range of items.

A find is different from a search. With a FND statement, you load a
variable with the line number where the find is made; a search creates
a result.

To update a single line, use a FND statement followed by a WRL
statement (see WRL).

NOTE: If a find is made, the report in which the find is made
becomes the current -0.

Format

@FND,m,d,r,l,lab] o cc ltyp,p vrid,v1no .

In field: 	 Enter:

m,t,r 	the mode, type, and RID number of the report in which
to find data.

1 	 the line number at which to start the find.

lab 	the label or relative line number to go to if no lines or
data are found.

o 	 options:

A 	 Process all line types.

(continued)

7-146 	 UP-9662.5

FND

(continued)

In field: 	 Enter:

C(x) 	 Alter normal character set processing:

C(F) 	Full character set
C(L) 	Limited character set
C(S) 	Strict character set of report

See also Appendix E.

Rx(-yf,y) 	Scan a range of reports from report x
through report y; scan reports x,y,...,y.

Examples:

R2,5 	Find in reports 2 and 5.
R2-10 	Find in reports 2 through 10.
R2-10,14 	Find in reports 2 through 10

and 14.

Find spaces.

Find slant as data.

CC
	 the column-character positions or names of the fields in

which to find.

ltyp
	the line type to scan. (If you specify the A option, leave

this subf ield blank.)

p
	 the find parameters.

vrid
	

the RID number where the find was made.

vino
	the line number where the find was made.

UP-9662.5 	 7-147

FND

Example 1: Searching a Type for an Item

This statement searches for IP in the ST CD field and captures the
report and line numbers where the find was made:

@FND,O,B " 'ST-CD' a. IP V116.11216 .

where:

0,B 	 Find data in form type B, mode 0.

f f
	

Use no options.

ST-CD 	 Look in the ST CD field (column 2 for two
characters).

0
	

Process tab lines.

IP
	

Look for the characters IP.

V116
	

Capture in V1 the report number where the find
was made.

V2I6 	 Capture in V2 the line number where the find
was made.

Example 2: Searching a Report for an Item

This statement uses traditional column-character syntax, searching for
GREEN in column 15 for five characters, and captures the line number
where the find was made:

WND.0,6.2.6,99 " 15-5 ❑ ,GREEN ,cLINE>16 .

where:

0,B,2 	 Find data in RID 2B in mode 0.

6 	 Start looking at line 6.

7-148 	 UP-9662.5

FND

99 	 Go to label 99 if no finds are made.

/9 	 Use no options.

15-5 	 Scan column 15 for five characters.

0 	 Process tab lines.

GREEN 	Look for the characters GREEN.

<LINE>I6 	Capture the line number where the find was
made in <LINE>.

Example 3: Searching for Spaces

This statement searches a field for spaces and captures the line number
where the find was made:

@F N D , 0 B 2 . 9 9 @ 25-6 0 @NW@ . V 1 I6 .

where:

0,B,2 	 Find data in RID 2B in mode 0.

99 	 Go to label 99 if no finds are made.

Use the @ option to find spaces.

25-6 	 Find spaces in the SERIAL NUMBER field
(column 25 for six characters).

0
	

Process tab lines.

@@@@@@
	

Look for spaces.

,V1I6 	 Capture in V1 the line number where the find
was made.

UP-9662.5 	 7-149

GOC (Generate Organization Chart)

Use a GOC statement to generate organization charts using the
statement's own command language.

Format

@GOC,m,14,1ab] ulv11,notxt?,ige?,igcz?,fxcz?] optmz?[,outrslt?,unp?
vlinesi,vlineso,vco,vbuffz] .

In field: 	 Enter:

m,t,r 	the mode, form type, and RID number.

lab 	the label or relative line number to go to in case of error.

ulvl?

notxt?

a Y if you want an upper level chart. If you type a Y,
the statement produces a special chart that contains only
one box at all levels except the bottom level.

a Y to eliminate all text. This produces a chart
containing boxes with no text (useful for determining the
size of the boxes).

ige? 	a Y to ignore all error conditions.

igcz?
	

a Y to ignore the character size. If you type a Y, the
statement does not check whether the resulting character
size is within the correct range for the selected display
device.

fxcz? 	a Y to select a fixed character size to use; this character
size is dependent upon the selected display device.

(continued)

7-150 	 UP-9662.5

GOC

(continued)

In field: 	 Enter:

optmz?

outrslt?

unp?

vlinesi

vlines.

VCO

a Y to optimize the result. A Y in this field reduces the
number of characters necessary to produce the chart. (If
you select the LOGO or FONT parameter, optmz? must be
Y.)

a Y to display the graphics result on the screen.

a Y to unpack the result. If you type a Y, the result is
displayed in unpacked format, where the resulting
primitive commands are not split across successive lines.
(Ignored if optmz?=Y.)

the variable to capture the number of input lines scanned
following the header-divider line (*=).

the variable to capture the number of output lines in the
result following the header-divider line (*=).

the variable to capture the number of characters to
output.

vbuffz 	the variable to capture the size of the buffer used to hold
chart information.

UP-9662.5 	 7-151

GOC

Reserved Words

If the run encounters an error in the data RID, it goes to the label in
the lab subfield and loads STAT1$ and STAT2$ with information about
the error.

Reserved wordt: !TAT1S and STAT2$

Word
	

Content

STAT1S
	

Message number. (Use an LSM statement to obtain the message.)

STAT2$
	

The line number where the error occurred.

Example

The Color Graphics Guide contains an example of an organization
chart and the code used to produce it. With that code in RID 81H,
mode 0, the following statement generates the organization chart:

@GOCA,H,81 N N .

See the Color Graphics Guide for more details about generating
organization charts.

7-152 	 UP-9662.5

GS (Graphics Scaler)

Use the GS statement to increase or decrease the size of your charts and
to create custom graphics using the expanded syntax.

See the Color Graphics Guide for more details about the GS statement
as well as information about using primitive graphics code.

Format

@GS,m,t,r[lab] maxyf,o,ige?,unp?,aga?,expand?,ighitxt?,outrs1t1
sfl,offx,offy] angle[,absx,absy vci,vco,vminx,vmidx,vmaxx,
vminy,vmidy,vmaxyl .

In field: 	 Enter:

m,t,r 	the mode, form type, and RID number of the report
containing the primitive graphics code.

lab 	the label or relative line number to go to in case of error.

maxy 	the maximum Y value to check the limits on (ranging
from 0 to 32767). Type 0 if you want 32767.

o 	 options:

A Put all absolute commands in the result (whenever
possible).

C 	Optimize and combine successive commands into a
single command separated by commas.

0 	Optimize resulting code.

(continued)

UP-9662.5 	 7-153

GS

(continued)

In field: 	 Enter:

S 	Strict interpretation of primitive graphics code.
(Without the S option, all lowercase characters not in
a text string are interpreted as uppercase characters.)
If you use the S option, the ige?, unp?, aga?, and
expand? subfields must all be N. (Type N or leave
them blank.)

Leave the options field blank or type N for normal mode
(where leading spaces, for example, are ignored).

ige? 	a Y to ignore errors. If you type a Y, values that are out
of range are truncated, and invalid commands and
sequences are ignored. (If you use the S option, ige? must
be N.)

unp?

aga?

expand?

ighitxt?

a Y to unpack the result. If you type a Y, the result is
displayed in unpacked format with one command per
line. (If you use the S option, or if outrslt? = Y, unp?
must be N.)

a Y to assume graphics active. If you type a Y, it is
assumed that ZI preceded the data, and no closing ZT is
required to end the data. (If you use the S option, or if
outrslt? = Y, aga? must be N.)

a Y to handle expanded syntax. (If you use the S option,
expand? must be N.)

a Y to ignore high text. If you type a Y, it is never
converted to high-quality text, even if it encounters a
CT2 or rotated text.

outrslt? 	a Y to display the graphics result on the screen. If you
type a Y, unp? and aga? must be N.

(continued)

7-154 	 UP-9662.5

GS

(continued)

In field: 	 Enter:

sf
	

the scaling factor (floating point 0.0 to 32767.0). 0 =
default value 1.0; 2.0 produces a result twice as large as
input; .5 a result half as large.

offx 	the offset value (-9999999999 to 9999999999) added to the
absolute X components.

offy 	the offset value (-9999999999 to 9999999999) added to the
absolute Y components.

angle 	the rotation angle (-360.0 to 360.0) used to rotate all X
and Y values and angles. Positive angles produce
counterclockwise rotation; negative angles produce
clockwise rotation.

absx 	the absolute X rotation value (-9999999999 to 9999999999).

ably 	the absolute Y rotation value (-9999999999 to 9999999999).

vci 	the variable to capture the number of characters scanned.

vco 	the variable to capture the number of characters to
output.

vminx 	the variable to capture the minimum X value.

vmidx 	the variable to capture the midpoint X value.

vmaxx 	the variable to capture the maximum X value.

vminy 	the variable to capture the minimum Y value.

vmidy 	the variable to capture the midpoint Y value.

vmaxy 	the variable to capture the maximum Y value.

UP-9662.5 	 7-155

GS

Reserved Words

If the run encounters an error in the data RID, it goes to the label in
the lab subfield and loads STAT1$ and STAT2$ with information about
the error.

Reserved words 	STATWand STAT2$

Word Content

STAT1$ Message number. 	(Use an LSM statement to obtain the message.)

STAT2$ One less than the Line number in report being processed where error

occurred.

Example 1

@GS,0,A,1 20000 1 0 .

where:

0,A,1 	 Scale RID 1A, mode 0.

20000 	 Create maximum Y values to 20,000.

1 	 Set scale factor to 1.

0 	 Rotate angle to 0.

7-156 	 UP-9662.5

GS

Example 2

@GS,0,13,2,10 23999,0,N,N,N,N,N,Y 0.75,2000,1000 k
45,16383,11399 V115,V215,V315,V415,V515,V615,k
V715,V815 .

where:

0,B,2 	 Scale RID 2B, mode 0.

10 	 Go to label 10 in case of error.

23999 	 Maximum Y value.

O 	 Optimize the results.

N,N,N,N,N
	

Do not ignore errors, unpack result, assume
graphics code, handle expanded syntax, or ignore
high text.

Y 	 Display the result on the screen.

0.75 	 Reduce to 3/4 size.

2000 	 Move to the right 2000.

1000 	 Move up 1000.

45 	 Rotate result 45 degrees counterclockwise.

16383 	 Rotate around the X value 16383.

11399 	 Rotate around the Y value 11399.

V115 	 Capture in VI the number of characters scanned.

V2I5 	 Capture in V2 the number of characters in the
result.

V3I5 	 Capture in V3 the minimum X value.

UP-9662.5 	 7-157

V4I5 	 Capture in V4 the midpoint X value.

V5I5 	 Capture in V5 the maximum X value.

V6I5 	 Capture in V6 the minimum Y value.

V7I5 	 Capture in V7 the midpoint Y value.

V8I5 	 Capture in V8 the maximum Y value.

GS

7-158 	 UP-9662.5

GTO (Go To)

Use a GTO statement to branch within a run.

Format

@GTO (lab I ENDLn,n,n] I LIN 14-In I LIN -n I RPX r) .

In field: 	 Enter:

lab 	 the line label number (may be a variable).

EN 1131,n,n,n1 END to indicate the end of run and display the
output area. For runs started from a LNK statement,
n,n,n are up to three status codes that the linked run
can return to the original run. Codes can be integers
(or variables with integer values) in the range
-34359738367 to +34359738367. The codes are ignored
if the run was not started via LNK (see LNK).

LIN to indicate the present line position.

the number of lines following the present line (rz must
be an integer greater than 0).

the number of lines preceding the present line (n
must be an integer greater than 0).

*
+n, -n, and r may be variables. Do not, however, type a minus sign in front of the variable. The plus

sign is optional with the line number, so if V1 contained 5, you could use @GTO LIN V1. Here's

another example: @GTO LIN V2, where V2 contains the value -5, is the same as saying @GTO LIN -5.

(continued)

UP-9662.5 	 7-159

GTO

(continued)

In field: 	 Enter:

RPX, which is the call to go to another run control report
in the same mode and type.

the RID number of a run control report in the same mode
and type (cannot be a result).

* +n, -n, and r may be variables. Do not, however, type a minus sign in front of the variable. The plus

sign is optional with the line number, so if Vi contained 5, you could use @GTO LIN V1. Here's

another example: @GTO LIN V2, where V2 contains the value -5, is the same as saying @GTO LIN -5.

Examples

This statement continues the run at label 7:

@GTO 7 .

The following statement continues the run at the line with the label
equaling the contents of V6:

@GTO V6 .

This statement stops the run and displays the contents of the output
area:

@GTO END .

This statement continues the run two lines beyond the current statement
line:

@GTO L IN +2 .

7-160 	 UP-9662.5

GTO

This statement causes the run to go to the MAPPER run in report 2 of
the same mode and type:

@GTO RPX 2

The GTO RPX statement executes the run statements in the specified
run control report, with these considerations:

❑ The run control report being entered must be in the same mode and
form type as the run that has the GTO RPX statement.

❑ All security checks for the first run must be met by the run control
report being entered.

❑ All variables established in the run having the GTO RPX statement
are valid in the run being entered. Labels are not valid.

❑ The run being entered by a GTO RPX statement need not be
registered. However, since the RPX run control report resides in a
form type especially for MAPPER runs, inform your coordinator
that you intend to use RPX in the form type as part of the plan.

For examples of computed IF/GTO statements, see IF.

UP-9662.5 	 7-161

IDU (Index User)

An IDU statement produces an index of users' reports by mode, form
type, date, and range, and creates a result. An IDU statement lets you
find reports created (or last updated) by a specific user.

NOTE: You cannot use the IDU statement to index a mode and type
in which your run control report is located.

Format

@IDU,m,t1,q,user,stdate,endate,strid,endrid vrids,v1ines,vridst,vhiridt1 .

In field: 	 Enter:

m,t

q

user

stdate

endate

the mode and type to index.

how many lines (quantity) to display. (Default = header
lines.)

the user-id to index or ALL to index all users).

the starting date for a date range (in format ddmmmyy).
This is the date of the most recent update to the report,
or the creation date if there are no updates.

the ending date for a date range (in format ddmmmyy).
This is the date of the most recent update to the report,
or the creation date if there are no updates.

strid 	the starting RID (for a range of reports).

end rid 	the ending RID (for a range of reports).

(continued)

7-162 	 UP-9662.5

IDU

(continued)

In field: 	 Enter:

vrids

vlines

vridst

vhiridt

the variable to capture the number of RIDs found.

the variable to capture the number of lines found.

the variable to capture the number of RIDs in the form
type.

the variable to capture the highest RID number in the
form type.

Examples

This statement indexes all of this user's form type A reports, including
header lines from each report in the result:

@IOU, 0.A .

The following statement indexes a range of reports under the user-id of
JDOE:

@IDU,0,13,7,JDOE,01JAN87,31DEC87,5,10 V113,V219,X
V314,V4I4 .

where:

0,B 	 Index mode 0, type B reports.

7 	 Display seven lines of data from each report
indexed.

JDOE 	 Index user-id JDOE.

01JAN87 	Index reports starting on January 1, 1987.

UP-9662.5 	 7-163

31DEC87 	Index reports ending on December 31, 1987.

5 	 Start indexing at report 5.

10 	 Stop indexing at report 10.

V113 	 Capture in VI the number of reports found.

V2I9 	 Capture in V2 the number of lines found.

V3I4 	 Capture in V3 the number of reports in the type
indexed.

V4I4 	 Capture in V4 the highest report number created.

[DU

7-164 	 UP-9662.5

IF (Conditional)

Use an IF statement to test and compare values and make logical
decisions.

Format 1 —Common

@InClvall op vall stmt ; .

Format 2—Logical OR

@IFLCII vall op val2,val3[,valn,...,valn] stmt ; .

Format 3 —Logical AND

@IF[,C] vall op va12 & op va13 [& op vain ... & op vain] stmt ; .

Format 4 —Computational IF/GTO

@IF[,C] vall op vall,(lab)[,valiz,(lab) 	valndlab)] ; .

In field: 	 Enter:

C
	

a C to distinguish uppercase from lowercase
characters.

vall
	

a value, usually in a variable or a reserved word
(reserved words must end with a dollar sign).

(continued)

UP-9662.5 	 7-165

IF

'continued)

En field: 	 Enter:

one of these relational operators:

= or EQ 	Equal

GE 	Greater than or equal to

> or GT 	Greater than

LE 	Less than or equal to

< or LT 	Less than

NE 	Not equal

NOT = or 	Not equal
NOT EQ

NOT < or
	Not less than

NOT LT

NOT > or
	

Not greater than
NOT GT

a value to compare to vall.

stmt 	 a statement indicating the action to take if the IF
statement condition is met (TRUE).

A;
	 space-semicolon to terminate the IF statement.

Always enter a space before the semicolon.

,val3,valn 	a comma (logical OR) and a third value, fourth value,
and so forth.

(continued)

7-166 	 UP-9662.5

IF

(continued)

In field: 	 Enter:

& op val3 &
	

an ampersand (logical AND), another
op vain 	 relational operator, and a third value, fourth value,

and so forth.

,(lab) 	 a comma and label number or location in the run to
go to if the IF statement condition is met (TRUE).

Here are valid GTO locations:

END 	End of run

LIN +n 	Number of lines following present line,
where n is an integer

LIN -n 	Number of lines preceding present line,
where n is an integer

RPX r 	RID r (another run control report),
where r is a RID number in the same
mode and form type

If the condition or conditions of the IF statement are met (TRUE), the
run executes the statement specified.

If the conditions of the IF statement are not met (FALSE), the run
continues executing at the next logical line. The next logical line
begins after the run encounters either a semicolon (;) or the end of the
actual line. Note that all examples contain a semicolon.

UP-9662.5 	 7-167

IF

Examples

If USER$ equals JDOE, go to label 2; or else continue:

@IF USERS = JDOE GTO 2 ; .

If VI equals V2, load VI with 1 and continue; or else continue:

@IF V1 = V2 LDV V1=1 ; .

If <VALI> and <VAL2> are not equal, go to label 3; or else continue:

@IF <VALI> NE <VAL2> GTO 3 ; .

If V21 is greater than V20, go to label 3; or else continue:

@IF V21 > V20 GTO 3 ;

If <NUM> equals 2 OR 4, go to label 1; or else continue:

@IF <NUM> Ea 2,4 GTO 1 ;

If V 1 is greater than 0 AND less than 100, go to label 3; or else
continue:

@IF V1 > 0 & < 100 GTO 3 ;

If V22 is greater than 10 AND less than 50, go to label in V99; or else
continue:

@IF V22 > 10 & < 50 GTO V99 ; .

This example uses two IF statements. If VI equals A and if V2 is less
than B, go to label 1; or else continue:

@IF V1 = A IF V2 LT B GTO 1 ;

7-168 	 UP-9662.5

IF

The following examples use a computed IF/GTO sequence.

If <TOTAL> equals 30, go to label 1; if <TOTAL> equals 40, go to label
2; if <TOTAL> equals 50 OR 60, go to label 3; or else continue:

@IF <TOTAL> = 30,(1),40,(2),50,60,(3) ;

If V2 equals 4, go to the next line, OR if V2 equals 5, go to the end of
the run; or else continue:

@IF V2 = 4,(LIN +1),5,(END) ; .

If V1 equals 2, execute the LDV statement (load V3 with the value 4),
go to label 1 and continue; if V1 does not equal 2, go to label 2:

@IF V1 = 2 LDV V3=4 GTO 1 ; GTO 2 .

Execute the LDV statement (load V3 with the value 4) only if V 1
equals 2; in either case (TRUE or FALSE), go to label 2 and continue:

@IF V1 = 2 LDV V3=4 ; GTO 2 .

Note that in the previous example, the run goes to label 2 even if the
condition of the IF statement is not met, because the GTO statement is
on the next logical line.

This example uses an unknown trailing substring. (The 0-3 specifies
the last three characters; the starting column position is unknown.) If
the last three characters of V 1 contain MON, go to label 25:

@IF V1(0-3) = MON,(25) ; .

This example uses a known trailing substring. (The 3-0 specifies the
known starting position of 3 for the remainder of the field.) If the
characters beginning with character 3 through the end of the field
contain FRI, go to label 26:

@IF V1(3-0) = FRI,(26) ;

UP-9662.5 	 7-169

INC (Increment Variables)

Use an INC statement to increase the numeric value of variables. You
cannot use an INC statement with string (type S) variables. Also, if the
variable you're trying to change contains alphabetic or special
characters, the variable remains unchanged.

An INC statement is more efficient than a CHG statement, and it
requires fewer characters.

Format

@INCI,n1 v[,v,...v] .

In field: 	 Enter:

n 	 the floating-point or integer number by which to increase
a value. (Default = 1.)

the variables you want to increase by n.

Examples

To add 1 to the numeric value of V2, use:

@I NC V2

instead of:

@CHG V2 V2 + 1

To add 3 to the numeric values in VI and V3, use:

@INC,3 V1.1/3 .

7-170 	 UP-9662.5

Word Content

:i.Rewyed words; STAT1$ and STAT2$

STAT1$ Number of reports in form type

STAT2$ Total number of lines in form type

IND (Index)

The IND statement indexes a specific form type in a specified mode,
and creates a result. The result contains a date line and lists the
number of reports in the form type, the total number of lines in the
form type, the number of lines contained in each report, and a
specified number of lines from each report.

NOTE: If you are indexing reports that are fewer than 80 characters
wide, the information containing the number of lines from
each report is added as trailer lines.

Format

@IND,m,t,q[jab] .

In field: 	 Enter:

ma 	the mode and type to index.

how many lines (quantity) to display from each report.

1 	 the label or relative line number to go to if no reports
exist in the specified form type.

Reserved Words

UP-9662.5 	 7-171

IND

Example

This example indexes mode 0, type A, and creates a result that has the
first four lines from each report in the form type. If no reports exist,
the run goes to label 99.

• IND.0.A.4,99 .

7-172
	

UP-9662.5

INS (Insert)

Use an INS statement to insert data from one variable into another.

Format

vld substry .

In field: 	 Enter:

vld
	

variables, literal data, reserved words, or any combination
of these, to insert.

substry 	a substring of a variable not exceeding 18 characters to
receive data.

Examples

This statement inserts ABCD in <STRING>, starting at column <COL>
for four characters:

@INS ABCD <STRING>(<COL>-4)

This statement inserts a portion of V2 from column V1 for V3
characters into V4 at column 6 for V3 characters:

@INS V2(V1-V3) V4(6-V3) .

This example uses a CHG statement to initialize V1 to QQ and V2 to
AAA, and an INS statement to insert VI in V2. V2 then equals AQQ:

@CHG V1H2 000 CHG V2H3 AAA .
@INS V1 V2(2-2) .

UP-9662.5 	 7-173

JUV (Justify Variables)

Use a JUV statement to numerically justify the contents of variables.
You can justify any numeric variable up to 18 characters. Once
justified, a variable retains that justification until its content is
altered. If the JUV statement finds the content of a requested variable
to be nonnumeric or finds that the variable's size is greater than 18
characters, it does not justify the variable.

Format

@JUV,o v[,v,...vJ .

In field: 	 Enter:

o 	 an option (you must use one of these options):

C 	Insert commas in the integer portion of the variable
every third digit, eliminate leading zeros and
nonsignificant trailing zeros, and insert the resulting
value in the rightmost portion of the variable.

NOTE: You must remove commas inserted by the C
option before executing a CHG or IF
statement against the variable. Use any other
option to remove commas.

D 	Delete commas, eliminate any leading zeros, and
insert the resulting value in the rightmost portion of
the variable.

(continued)

7-174 	 UP-9662.5

JUV

(continued)

In field: 	 Enter:

L
	

Left-justify the contents of the variable,
eliminate leading zeros and nonsignificant
trailing zeros, and insert the resulting value
in the leftmost portion of the variable
followed by spaces.

R 	Right-justify the contents of the variable,
eliminate leading zeros and nonsignificant
trailing zeros, and insert the resulting value
in the rightmost portion of the variable
preceded by spaces.

X 	Expand the contents of the variable;
eliminate leading zeros; insert the resulting
value in the leftmost portion of the variable,
add a decimal point where required, and
insert zeros in the rightmost portion of the
variable.

Z
	

Right-justify the contents of the variable and
insert leading zeros in the leftmost portion;
eliminate nonsignificant trailing zeros.

a variable or variables to justify.

Examples

In the following examples, A stands for a blank character position.

Initialize <STRING> to a type A, 12-character variable with a value of
6543.210:

OCHG <STRING>Al2 6543.210 . <STRING> = 6543.210AAAA

UP-9662.5 	 7-175

JUV

Insert commas in <STRING>:

ti,JUV,C <STRING> . <STRING> 	AAA6,543.210

Delete commas from <STRING>:

(Lb./MI.0 <STRING> . <STRING> 	AAAA6543.210

Left-justify the contents of <STRING>:

@JUV,L <STRING> 	<STRING> = 6543.210

Right-justify the contents of <STRING>:

@IJUV,R <STRING> . <STRING> = MALL6543.21

Expand the contents of <STRING>:

e*JUV,X <STRING> . <STRING> = 6543.2100000

Right-justify the contents of <STRING> and add leading zeros:

@JUV,Z <STRING> . <STRING> = 000006543.21

7-176 	 UP-9662.5

KEY (Function Key Input)

Use the KEY statement before a DSP, OUT, or SC statement to
determine which function key the user pressed after the noninterim
display.

Format

Reserved Word

R6Set'VOd* word:

The run continues executing after the DSP, OUT, or SC statement, and FKEY$ contains:

0 	MIT (with cursor below the control tine)

1 	F1 or RSM

2 	F2 or PNT

3-22 	F3-F22

FKEY$ always contains 0 if a KEY statement has not been executed.

Example

In this example, the KEY statement requests function key input, the
DSP statement displays RID 2B in mode 0, and the LDV statement loads
VI with the contents of FKEY$. VI can then be tested for its contents,
and the run can be processed accordingly.

@KEY .
@OSP,0.8.2 .
@LDV,PW V112=FKEY$.

UP-9662.5
	

7-177

LCH (Locate and Change)

The LCH statement scans specific column-character positions of a
report for a specified target string, changes it to a specified
replacement string, and creates a result.

Format

@LCH,m,14,1,1ab] o cc tgtstr/replstrI,v1ines,vridl .

In field: 	 Enter:

m,t,r 	the mode, type, and RID number of the report in which
to locate and change data.

1 	 the line number at which to start the scan.

lab 	the label or relative line number to go to if no target
string is located.

o 	 options (use the A, F, and M options to change strings
regardless of line type):

A 	Process all line types. (If used alone, it ignores
the first character of the target string and
changes the line type of all lines having finds to
the first character of the replacement string.)

C 	Distinguish between uppercase and lowercase
characters. (Applies only to FCS reports.) See
also Appendix E.

(continued)

7-178 	 UP-9662.5

LCH

(continued)

In field: 	 Enter:

F 	Process all line types and locate and change the
entire string. (Does not locate strings that start
in column 1.)

M 	Treat the first character of the target string as
the line type designator. (Use the M option
instead of a line-type subfield. Also, you must
use the M option to locate a string beginning in
column 1.)

0 	Create a result containing the items found.

OU 	Create a result; then do one of the following:

enter 	to delete the changed lines from the
report (see DEL),

enter ext to delete the changed lines from the
report and redisplay the result (see EXT), or

make changes in the result (if desired) and enter
upd to blend the changed lines from the result
back into the report (see UPD).

You cannot execute LCH with the OU option
against a result.

Sx 	Start the scan at line x, where x is a positive
number.

Sx-y 	Start the scan at line x and stop at line y.

(continued)

UP-9662.5 	 7-179

LCH

(continued)

In field: 	 Enter:

Sx,n 	Start the scan at line x and scan n lines.

Tx 	Set x to a transparent character to match any
character in that position. Don't use the
transparent character in the first character
position of the target string.

cc 	 the column-character positions or names of the fields in
which to scan.

tgtstr 	the string of characters to locate.

replstr

vlines

vrid

the string of characters with which to replace the target
string.

This subfield is not used in LCH statements. (Type the
comma if continuing the statement.)

the number of lines located that contain the target string.

the RID number where the target string was located.

7-180 	 UP-9662.5

LCH

Example

@ICH , 0 , A , 1,40,99 AFM 2-79 EXECUTION/PROCESSING ,\
<L 1 NES›I4 ..

where:

0,A,1 	 Process mode 0, type A, RID 1.

40,99 	 Start scan at line 40 and go to label 99 if no
target string is located.

AFM 	 Use A, F, and M options.

2-79 	 Start scan in column 2 for 79 characters.

EXECUTION/ Target and replacement strings: each time
PROCESSING 	EXECUTION is encountered, replace it with

PROCESSING.

<LINES>I4 	Capture number of lines located that contain the
target string in <LINES>i4.

UP-9662.5 	 7-181

LCV (Locate/Change Variable)

Use an LCV statement to locate (and optionally change occurrences of)
a string within a variable.

You can use an LCV statement to literally compare the contents of one
variable to another. Using an IF statement and a GTO statement to
compare the contents of variables limits you to 18 characters in the
variables. Using an LCV statement with a label lets you compare up to
132 characters, and it is more efficient than using IF and GTO
statements.

An LCV statement is to variables what a LOC or an LCH statement is
to data in reports.

You can use an LCV statement on all variable types, and you can use
substrings.

Format

@LCV[lab] o v tgtstr[/replstr vcol,voccs] .

In field: 	 Enter:

the label or relative line number to go to if no finds are
made.

options:

B{nln-x} "Bail out" option

Bn: Locate the nth occurrence of the target string
or change n occurrences.

(continued)

7-182 	 UP-9662.5

LCV

(continued)

In field: 	 Enter:

If you're locating but not changing, B1 is
assumed (thus, you don't need to specify the B
option). If you're locating and changing and you
know there's only one occurrence, use B1; if there
are two occurrences, use B2; etc.

Bn-x: Starting at the nth occurrence, change x
occurrences of the target string.

C 	Distinguish uppercase from lowercase characters.

Lx 	If the first character in the variable doesn't
match x, don't consider it a find. The L option
is especially useful for locating in lines that were
read from a report.

M 	When changing, do not insert transparent
characters (see Tx option) from the replacement
string in the variable, but leave these character
positions the same. (Valid only if the replstr
field is used.)

N 	Do not go to the label if no finds are made (or if
the bail-out quantity specified in the B option is
not found). Instead, go to the label if a find is
made.

Tx 	Set x to a transparent character to automatically
match any character in that position.

Since the transparent character's default value is
a space, you must use the T option to locate
spaces.

(continued)

UP-9662.5 	 7-183

LCV

(continued)

In field: 	 Enter:

tgtstr

replstr

vcol

the variable to locate (and optionally change).

the string of characters in a variable to locate (1
to 132 characters).

a string of 0 to 132 characters to replace the target string
in the variable with. If you don't use the B option, it
changes all occurrences.

the column number in the variable where the first
occurrence of the target string begins. With the B option,
it is the column of nth occurrence of the target string. It
contains 0 if there are fewer than n occurrences in the
variable.

voccs 	the number of occurrences of the target string found.
This is useful when doing a change or locate with the B
option.

Example 1: Locating Second Occurrence of an Item

Here are the contents of VI for this example:

V1=DOGHORSECOWPIGBIRDCATCATCATCATMOUSE

column 15 	 column 34
I 	locate columns I

7-184 	 UP-9662.5

LCV

This statement locates the second occurrence of CAT in VI starting at
column 15 for 20 characters:

@LCV.1 B2 V1(15-20) CAT V216 .

where:

1 	 Go to label 1 if fewer than two occurrences of
CAT are found.

B2 	 Bail out on the second occurrence of CAT.

V1(15-20) 	Scan VI starting in column 15 for 20 characters.

CAT 	 Locate target string CAT.

V2I6 	 Capture the column number where the second
occurrence of CAT begins in V2.

After the statement executes, V2 contains 22 (the column in VI where
the second occurrence of CAT was found).

Example 2: Counting Occurrences of an Item

In this example, VI contains:

CATdogCATDOGCATDogCATDOGCATdog

This statement counts the number of times DOG occurs in VI:

@LCV B99 V1 DOG .V316 _

where:

B99 	 Bail out on the 99th occurrence of DOG.

VI 	 Scan VI (the entire variable).

UP-9662.5 	 7-185

LCV

DOG 	 Locate target string DOG.

V3I6 	 Capture the number of occurrences of DOG in
V3.

In this example, the bail-out count was set to a value higher than the
number of occurrences of DOG because we didn't want to bail out. V3
continues to count each occurrence of DOG. After the statement
executes, V3 contains 5.

Example 3: Changing Character Strings

In this example, VI contains:

*CATDOGCATDOGCATDOGCATDOGCATDOG

This statement changes the second, third, and fourth occurrences of
DOG to CAT in VI:

(LCV L*B2-3 V1 DOG/cat V216 .

where:

L* 	 Make the change only if the first character of VI
is an asterisk (the line type indicator).

B2-3 	 Change target string starting at the second
occurrence for three occurrences.

V1 	 Scan VI.

DOG 	 Locate target string DOG.

cat 	 Change target string DOG to cat.

V2I6 	 Capture column number of first occurrence of
target string changed.

7-186 	 UP-9662.5

LCV

Since the first character of VI matches the character specified in the L
option, the change is made. V2 equals 11 and V1 contains:

*CATDOGCATca tCATca tCATca t CATDOG
1 	2 	3 	4 	5

v2=11

Example 4: Comparing Strings

Here are the contents of <STRING1> and <STRING2>:

<STRING1>=ABC123
<STRING2>=ABC+++

This statement compares <STRING1> to <STRING2>:

fCCV.1 " <STRING1> <STRING2> .

where:

1 	Go to label 1 if <STRING1> is not equal to <STRING2>.

Don't use any options.

VI V2 	Variables to compare.

Since <STRING1> is not equal to <STRING2>, the run goes to label 1.

Remember, if you use the N option, the run does NOT go to the label
unless the two variables are equal.

UP-9662.5 	 7-187

LCV

Example 5: Masking Transparent Characters in the Replacement String

For this example, VI contains:

BLACKBOX1*BLACKCAN1*BLACKBAG1*BLACKCUP I

This example uses the M option to locate each occurrence of BLACK
followed by any three characters, followed by the number 1. Each time
the locate string is found, the characters BLACK are changed to
GREEN, the next three characters remain unchanged, and the last
character, 1, is changed to 2.

@LCV M V1 'BLACK 	1'/'GREEN 	2' V216,V3I6 .

where:

M 	 Mask option—transparent characters in the
replacement string are not inserted into the
variable being changed.

V I 	 Variable in which to locate.

'BLACK 1' 	Target string (characters to locate).

Change string delimiter.

'GREEN 2' 	Replacement string (characters with which to
replace each occurrence of the target string).

V2I6 	 Variable to capture the column of the first
occurrence changed.

V3I6 	 Variable to capture the number of occurrences
changed.

Variable VI now contains:

GREENBOX2*GREENCAN2*GREENBAG2*GREENCUP2

7-188 	 UP-9662.5

LCV

Example 6: Using an Unknown Trailing Substring

For this example, VI contains:

FEATURE010101

This statement uses an unknown trailing substring and bails out after
the second find:

@LCV,1 B2 V1(0-6) 01 V2I3 .

where:

1 	 Go to label 1 if no finds are made.

B2 	 Bail out after the second occurrence.

V1(0-6)
	

Scan the last six characters of VI. (The 0-6
specifies the last six characters; the starting
character position is unknown.)

01 	 Locate the target string 01.

V2I3 	 Capture the column number where the second
occurrence of 01 begins in the specified
substring. (In this example, V2 contains 10
because the second 01 begins in the tenth column
of VI.)

UP-9662.5 	 7-189

LCV

Example 7: Using a Known Trailing Substring

In this example, <MONEY> contains:

$$$DOLL ARS

This example uses a known trailing substring to scan column 4 through
the end of the field and changes the word "DOLLARS" to the word
"YEN" in all occurrences:

@LCY,1 " <MONEY> (4 - 0) DOLLARS/YEN .

where:

1 	 Go to label 1 if no finds are made.

Use no options.

<MONEY>(4-0) Scan <MONEY> beginning with column 4 through
the remaining characters. (The 4-0 specifies the
known starting position of 4 through the end of
the field.)

DOLLARS/YEN Change the target string DOLLARS to YEN.

7-190 	 UP-9662.5

LDV (Load Variables)

Use an LDV statement to perform these tasks:

❑ Initialize variables

❑ Load variables from other variables

❑ Load variables already initialized, including those with a substring
of unlimited length

❑ Load variables with the contents of reserved words

❑ Load a variable with its own contents

When you load a variable with its own contents, you need only specify
the receiving variable. This is particularly useful for packing
variables. You can use, for example, @LDV,P V1,V2 rather than
@LDV,P V1=V1,V2=V2. Loading variables in this manner is also useful
when centering, left-justifying, right-justifying variables, and
initializing space filled variables without setting the characters equal
to spaces.

You cannot do arithmetic computations with an LDV statement as you
can with a CHG statement (see CHG). However, an LDV statement is
faster and more efficient than a CHG statement for loading literal data
and reserved words.

Whenever an LDV statement encounters a space or comma, it stops
loading the variable with data. To place a space or comma in a
variable without placing either character in a variable beforehand,
enclose spaces and commas in apostrophes.

UP-9662.5 	 7-191

LDV

Format

@LDVI,o1 v=v1dLy =yid , 	v=v1c11 .

In field: 	 Enter:

options:

C 	Center data within the variable.

H Test the remote run link.*

N Load the variable with a number based on the input.
(For case sensitivity, use the S option also.)*

L Left-justify the data being loaded.

P Pack the variable down to significant characters only.

R Right-justify the data being loaded.

S 	Treat the input as case sensitive (valid only with the
N option).*

U Convert all alphabetic characters to uppercase.

W Load the variable with the value of the reserved
word. (The reserved word value will be
left-justified.) Make sure the variable is large enough
to hold the information in the reserved word. You
can also use the P option to pack the variable. Use a
DEF statement with the S option (DEF,S) to
determine the size of the reserved word (see DEF).

* Don't use the v=vld subfield with these options. See further explanation in this subsection for the
format.

(continued)

7-192 	 UP-9662.5

LDV

(continued)

In field: 	 Enter:

Z 	Zero fill the data being loaded.

the variable being loaded.

the information to load (variables, literal data, reserved
words, or any combination of these).

LOADING MULTIPLE VARIABLES

In the following example, the first LDV statement loads VI through V4;
the second LDV statement then loads these four variables into V5:

64_13V V1A5=THIS,V2A3.1S,V3A3=AN,V4A8=EXAMPLE .
@LDV V5S40=V1V2V3V4 .

V5 now contains THIS IS AN EXAMPLE.

H OPTION — TESTING A REMOTE RUN LINK

The H option tests the remote run link between two sites to see whether
the remote site is online or offline.

NOTE: With a non-GCS remote run link, the H option only indicates
whether or not the remote site is configured.

UP-9662.5 	 7-193

LDV

Format

@LDV,H v=rms .

In field: 	 Enter:

v 	 the variable to capture test result:

0 	site is offline.
1 	site is online.

the remote site number.

N OPTION — LOADING A VARIABLE WITH A NUMBER BASED ON
INPUT

The N option produces a number within a specified range for a data
item such as a name, address, or item description. As long as the LDV
statement remains the same, the data item always receives the same
number. The number is especially useful for indexing related reports
to specific data.

7-194 	 UP-9662.5

LDV

Format

@LDV,N v=v1d,minmax

In field: 	 Enter:

the variable being loaded.

vld 	the information to load (variables, literal data, reserved
words, or any combination of these).

minmax 	the range within which the number being loaded is to
reside (for example, 3-12).

Example

Here are some comments about the following example:

❑ Part (a) displays the menu.

❑ Line (b) executes the LDV,N that produces a number between 1 and
20, which the run uses later on as the report number. This number
is based on the data entered and remains the same as long as the
LDV,N statement remains unchanged. Line (b) also checks to see
whether the user is attempting to add or display an item.

❑ Part (c) displays an existing product whenever requested by the
user. The number produced by LDV,N for the product name is
always the same, and is used by the run as the report number in
which to find the product.

❑ Part (d) finds a blank line to write and writes the line with the
new product name, whenever requested by the user. The number
produced by LDV,N for the product name is always the same, and
is used as the report number to write the new product name into.

UP-9662.5 	 7-195

LDV

❑ Part (e) displays an error message when the user attempts to display
a product that does not exist.

(a) @BRK LDV ,W V10H1=SOE$ 	MENU SECT ION
(a) @1:CHG 1NVAR$ V4H9 .
(a) 	ENTER
(a) 	PRODUCT TO ADDV100 	 , AND TRANSM I TO
(a) 	OR
(a) EXISTING PRODUCT
(a) 	TO DISPLAYV100 	 , AND TRANSM 1 TO
(a) @BRK OUT,-0,2,8,1,1,Y„,P
(b) @10 : LDV , N V2012=V4,1-20 IF CURV$ = 2 GTO 2
(c) @FND , 0, B , V20 „ 99 " ' PRODUCT ' 0 , V4 , V5 I 5
(c) @DSP , 0, B, V20, V5 	
(c) 	 ' PRESS F1 TO CONTINUE' .
(c) @GTO 1 .
(d) @2 :FND, 0 , B , V20 „ 4 @ ' PRODUCT ' ❑ ,@ , V2 I 4
(d) @LOK , 0 , B , V20 .
(d) @3:WRL , 0 ,B ,V20 ,V2 'PRODUCT' 0 ,V4 ULK GTO 5 .
(d) @4:10K,O,B,V20 LN+,0,B,V20,5,15 LDV V214=6 GTO 3.
(d) @5:DSP , 0 , B , V20 , V2 	 ' \
(d) 	PRODUCT ENTERED, PRESS F1 TO CONTINUE'
(d) @GTO 1 .
(e) @99:LDV,PU V4=V4 . 	ERROR SECT ION
(e) 	PRODUCT V4 NOT FOUND, PLEASE TRY AGAIN.
(e) @CHG 1NVAR$ V4H9 BRK OUT , - 0,2,1 „ 3 , N .
(e) @GTO 10 .

P OPTION — PACKING A VARIABLE

With the P option, you can delete leading or trailing spaces from a
variable. This is called packing a variable. Don't, however, pack a
variable to contain no characters at all. If you do, other functions
trying to use the variable will err.

Once you pack a variable to contain fewer than its original number of
characters, you must reinitialize the variable to make it larger. If you
try to place more than the original number of characters in a variable,
you'll lose the extra characters.

7-196 	 UP-9662.5

LDV EXAMPLES WITH VARIOUS OPTIONS

The following statements are shown as if in sequential order in a run.
The A stands for a blank character position.

This statement initializes VI to 1:

@LDV V112=1 .

The following statement initializes VI to A and V2 to 10:

@ILDV V1A1=A,V212=10 .

This statement loads VI with THIS IS DATAAAAAAAAA:

@LDV V1S20='THIS IS DATA'

This statement loads VI with AAAAAAAAA2AAAAAAAAAA:

@LDV,C V1=2 .

This statement loads VI with 2:

@LDV,P V1=2 .

This statement loads V1 with 	 1•

@LDV,R V1S20=1

This statement loads VI with 00000000000000000001:

@LDV,RZ V1=1 .

This statement loads Vi with AAAAAAAAAAAAAAAAAA-1.

@LDV,R V1=-1 .

This statement loads VI with -0000000000000000001:

@LDV,F1Z V1=-1 .

LDV

UP-9662.5 	 7-197

LDV

This statement loads VI with AAM0000000000000001:

@LDV.FI V1(1-4)=2 .

This statement loads VI with 00020000000000000001:

.I.DV,RZ V1(1-4)=2 .

This statement loads V1 with ABCAZSALSALSAUSLAZIALIAAA:

@IDV,U V1=abc .

In this statement, <MODE> contains the mode number, <TYPE> the
numeric form type number, and <RID> the RID number of the last
report or result processed or on display:

@CDV,W <MODE>14=MODE$,<TYPE>16=TYPE$,<R1D>14=RID$.

In the following statement, if JDOE is on station 12, V4 contains
ABCJDO12XYZ:

61-DV,PW V4S20='ABC'USER$(1-3)STNUM$XYZ

The following statement uses an unknown trailing substring to load V2
with the minutes and seconds (MM:SS) substring from VI. The 0-5
specifies the last five characters, but the starting character position is
unknown.

fILDV,W VIA8=TIME$. V1 NOW CONTAINS HH:MM:SS
@LDV V2I5=V1(0-5) . V2 NOW CONTAINS MM:SS

The following statement uses a known trailing substring to load V2
with the seconds (SS) substring from VI (from the previous example).
The 7-0 specifies the substring beginning with the seventh character
through the end of VI.

@LDV V2I2=V1(7-0) . V2 NOW CONTAINS SS

7-198 	 UP-9662.5

LFC (Load Format Characters)

Use an LFC statement to capture the format of the report currently on
display (the -0 RID).

An LFC statement works only in runs registered as format sensitive.

Format

@LFC v

In field: 	 Enter:

the variable to capture the format of the report currently
on display.

Example

In this statement, the variable receives a string of Xs and blank
characters. The Xs stand for character positions displayed, similar to
RID 0:

LFC V1S80 .

You'll probably want to use an SFC statement after an LFC statement.
See SFC for how to set format characters.

UP-9662.5 	 7-199

LFN (Load Field Name)

Use the LFN statement to load variables with the names of report
fields that correspond to the column-character positions supplied. See
Section 2 for a general description of named fields.

The LFN statement is especially useful for converting an existing run
to one that uses named fields. It is also useful for translating column
position data, such as that obtained from the OUM statement (see
OUM), into field names.

Here are some things to remember:

❑ You can have field names enclosed in apostrophes; this makes it
easier for you to create run statements.

❑ If a specified variable isn't large enough to contain an entire field
name, the statement truncates any trailing characters in the name.

❑ If the specified columns don't represent an entire field, the
statement loads the name followed by a partial field description.

❑ If the run cannot load a field name, it continues at the label.

❑ If the statement has no label and a field name cannot be loaded,
the run continues at the next statement, loading the variable with
column position data.

7-200 	 UP-9662.5

Code Error

„gpSqf.yed,.. word!„ STAI1S.

Report header is improperly formatted for field names.

2
	

Columns supplied do not fall within field boundaries.

3
	

Field name in report header has no significant characters.

4
	

Field name is not unique in the report header.

5
	

Field name was truncated because of variable size, and name is not unique

in report header.

LFN

Format

@LFNI,m,t,r,tics?,lab] cc vt,v vi .

In field: 	 Enter:

the mode, form type, and RID number of the report or
result to load field names from. (Default = -0.) If you
don't specify the m,t,r subfields, use only two commas to
represent these subfields rather than three.

tics? 	a Y to enclose the field name in apostrophes.

lab 	the label or relative line number to go to if the field
name cannot be loaded.

CC
	

the column-character positions of the fields.

the variables to load with field names.

Reserved Word

UP-9662.5
	

7-201

LFN

Example

@LFN.O.B.2,Y 2-2,45-3 V1H18,V2H18 .

where:

0,B,2 	 Load field names from RID 2B in mode 0.

Y 	 Enclose field names in apostrophes.

2-2,45-3

V1H18

V2H18

Get names from column 2 for two characters and
column 45 for three characters.

Load VI with the name from positions 2-2 (V1 =
'STCD').

Load V2 with the name from positions 45-3 (V2
= 'CUSTCODE(1-3)').

7-202
	

UP-9662.5

LLN (Last Line Number)

Use an LLN statement to set a variable equal to the last line number of
the specified report or result.

An LLN statement is especially useful for determining whether or not a
report or form type exists.

Format

@LLN,m,t4,1ab] vlines .

In field: 	 Enter:

the mode, type, and RID number of the report or result in
which to locate the last line.

the label or relative line number to go to if no report (or
result) or form type exists.

the variable to capture the number of lines in the report
or result.

UP-9662.5 	 7-203

LLN

Reserved Words

Reserved WordS 	STATWand STAT2$

Word Content

If report exists. 	. 	.

STAT1$ Date of last update in DATE1S format (yymmdd)

STAT2S Creation date of report in DATE1S format (yymmdd)

If report has never been updated. . .

STAT1S 0

If report does not exist. . 	.

STAT1$ RID number of highest report

STAT2S Disregard

If form type does not exist. 	. 	.

STAT1S 0

STAT2$ Disregard

If neither the report nor form type exists, the LLN statement goes to the label in the

lab subfield. 	If you don't specify a label, the run continues at the next statement.

Example

This statement determines the number of lines in RID 1B, mode 0, and
places that quantity in <LINES>. If the report or form type does not
exist, the run goes to label 99:

@tLN,0,13,1,99 <LINES>I3 .

7-204
	

UP-9662.5

LMG (List Merge)

The LMG statement extracts lines or partial lines from a standard
column-formed report (issuing report) and inserts them into the
receiving report according to the following control character sequences
within the receiving report. Note that each sequence begins with a
tilde (~) character.

—=cc-cq[,n]

—=0,y-z

—&cc-cq

extract part of line starting at column cc for cq
characters at line n beyond tab line (line n must
be 4 or less; to process the tab line, omit the ,n).
For example, ~=2-4,3.

extract full lines starting at line y beyond tab
line for z lines; (number of full lines that can
follow a tab line is unlimited). For example,
—=0,3-4.

extract tab lines starting at column cc for cq
characters and produce one line for each line
merged. For example, —&2-17. You can use up
to nine —& control characters on a line.

Format

@LMG,im,it,ir,rm,rt,rrl,lab] .

In field: 	 Enter:

im,it,ir 	the mode, type, and RID number of the issuing report.

rm,rt,rr 	the mode, type, and RID number of the receiving report.

lab
	

the label or relative line number to go to in case of an
error.

UP-9662.5 	 7-205

LMG

Example

This statement merges lines and partial lines from RID 7H into RID
8H, both in mode 0:

g_MG.O.H.7.0,H,8 .

7-206 	 UP-9662.5

LNI (Line Insert)

The LNI statement inserts lines in a report or result. It duplicates the
specified lines in the same report, but does not delete them from their
original location. The report expands to make room for the new lines.

Unless you are processing a result, you must precede an LNI statement
with a LOK statement. See LOK.

Format

@LNI,m,t,r1b4[,x],11,0 .

In field: 	 Enter:

m,t,r 	the mode, type, and RID number of the report in which
to insert lines.

IF'
	

the line number before the inserted lines. (The inserted
lines follow this line.)

how many times to insert the lines. (Default = 1.)

the number of the first line to insert.

how many lines (quantity) to insert for each x starting at
1. (Default = 1.)

Example

This statement inserts line 8 one time for two lines (lines 8 and 9) in
mode 0, RID 3B, after line 6:

VA1,0,13.3.6.1,8,2

UP-9662.5 	 7-207

LNK (Link to Another Run)

Use a LNK statement to execute another run in the MAPPER system.
A LNK statement is like a RUN statement (see RUN), except that after
the linked run executes a GTO END, the original run continues
executing.

The system can transfer up to 40 input parameters, as well as the
current result (-0), to the linked run. Pack or right-justify variables
used to specify either the run name or other input parameters.

The linked run can return up to three status codes and the current
result of the linked run to the original run via a GTO END statement
(see GTO). Following the LNK statement in the original run, you can
examine the reserved words STAT1$, STAT2$, and STAT3$ to obtain
the status codes.

If the linked run terminates because it encounters a REL statement,
because of an error, or because of manual intervention after a DSG,
DSP, OUM, OUT, or SC statement, the original run does not resume
executing.

You cannot nest LNK statements. Also, a run started by a LNK
statement cannot itself contain another LNK statement unless it first
clears the original link.

Use a CLK statement to terminate the link (see CLK).

7-208 	 UP-9662.5

LNK

Format

@LNK run[,vldl .

In field: 	 Enter:

run 	the name of the other run to start.

vld
	

input parameters: variables, literal data, reserved words,
or any combination of these, to send to the other run to
be picked up via INPUTS. The maximum number of
input parameters is 40; the maximum number of
characters per parameter is 18. Pack or right-justify all
variables.

Reserved Word

Reserved word: LINKS

	

Word
	

Content

	

LINKS
	

0 if the run was not started by a LNK statement or

non-zero if the run was started by a LNK statement.

Example

This example executes a run, TEST, with the contents of VI, V2, and
SAM as input parameters to be picked up via INPUTS, and continues at
the next statement when TEST executes a GTO END:

@LNK TEST,V1,V2,SAM .

UP-9662.5
	

7-209

LNK

This statement examines the status codes returned by the linked run:

601-DV,PN V116=STAT1$,V216=STAT2$,V316=STAT3S .

LINKING TO THE SCHEDULE RUN

You can also use the LNK statement to call the SCHEDULE run from
within a run. The SCHEDULE run schedules a registered background
run for execution at a later time. See the Manual Functions Reference
for more information on the SCHEDULE run.

Format

@LNK SCHEDULE,run,extime[,exdate,sn] .

In field: 	 Enter:

the name of the run to be scheduled. Note that this run
must be registered for execution as a background run
for the person executing your run.

the time (in the format hhmm) the run is to be executed
or NOW for the current time.

exdate 	the date (in the format yymmdd) the run is to be
executed. (Default = today's date.)

sn
	 the station number to be notified when execution of the

SCHEDULE run is complete or N if no one is to be
notified. (Default = user's station number.)

7-210 	 UP-9662.5

LNK

Reserved Word

Code
	

Error

0
	

The background run has been scheduled.

1
	

The background run name specified is not a registered background run

for the person executing your run.

2
	

The specified time is invalid.

3
	

The specified date is invalid.

4
	

The specified time and date have already passed.

Example

This example calls the SCHEDULE run to schedule the run called
"myrun" at 1:30 P.M. on July 5, 1988. It notifies station 123 when the
SCHEDULE run execution is complete.

@LNK SCHEDULE myrun.1330,880704,123 .

UP-9662.5
	

7-211

LNK

LINKING TO GRAPHICS RUNS

You can also use the LNK statement to call a chart run from within
your run control report. You receive a result containing the primitive
graphics code; the chart is not displayed. The primitive graphics code
is then sent to the linking run via the -0 result. If you are linking to
the MULTI run, see "Linking to the MULTI Run" in this subsection.
See the Color Graphics Guide for more information on graphics runs.

Format

@LNK chartrun,r1[,sn,psiz?,transpcy?] .

In field: 	 Enter:

chart run

rt

the name of the chart run to link to (for example, PIEG
or BARG).

the RID number and form type of the chart input report
(leave this subfield blank if you want the current -0
result).

the station number of the plotter.

psiz? 	a Y if you want to use 11 x 17 inch paper. (Default = N,
8 1/2 x 11 inches.)

transpcy? 	a Y if you are making transparencies. (Default = N.)

7-212 	 UP-9662.5

LNK

Linking to the MULTI Run

If you are linking to the MULTI run, use this format:

@LN K MULTI,o,f,sn,psiz?,transpcy?1,m,t,r,m,t,d,m,t,r,...] .

In field: 	 Enter:

q 	 the quantity (2-4) of the charts to place into one chart.

f 	 the format for the MULTI charts. Specify:

formats 1, 2, or 3 for two charts,
formats 1 or 2 for three charts, or
no formats (leave blank) for four charts.

Note that the f subfield is optional only if you specify
four charts.

sn 	 the station number of the plotter.

psiz?
	

a Y if you want to use 11 x 17 inch paper. (Default = N,
8 1/2 x 11 inches.) Specify this subfield only if you
specified a plotter station number in the sn subfield.

transpcy? 	a Y if you are making transparencies. (Default = N.)
Specify this subfield only if you specified a plotter
station number in the sn subfield.

m,t,r 	the mode, type, and RID number of the reports
containing the primitive graphics code. You must specify
at least two reports.

UP-9662.5 	 7-213

LNM (Line Move)

The LNM statement moves lines within a report or result. It deletes the
lines from their original location and moves them to the new location.

Unless you are processing a result, you must precede an LNM statement
with a LOK statement.

Format

@LNM,m,t,r1b41,4/1,q1 .

In field: 	 Enter:

the mode, type, and RID number of the report in which
to move lines.

1b4 	the line number before the moved line or lines. (The
moved lines follow this line.)

x
	

how many times to move the lines. (Default = 1.)

1
	

the number of the first line to move.

q
	

how many lines (quantity) to move for each x starting at
1. (Default = 1.)

Example

This statement moves line 8 one time for two lines (lines 8 and 9) in
mode 0, RID 3B, after line 6:

WAM.0,13.3,6,1,8.2 .

7-214 	 UP-9662.5

LNX (Line Duplicate)

The LNX statement duplicates lines within a report or result. The
report expands to make room for the new lines.

Unless you are processing a result, you must precede an LNX statement
with a LOK statement.

Format

@LNX,m,t,r,1,44] .

In field: 	 Enter:

m,t,r
	 the mode, type, and RID number of the report in which

to duplicate lines.

1
	

the number of the first line to duplicate.

how many times to duplicate the lines. You must enter a
number because x doesn't default to 1.

how many lines (quantity) to duplicate. (Default = 1.)

Examples

This statement duplicates line 12 five times in mode 0, RID 3B:

@LNX.O.B.3,12,5 .

The following example duplicates a three-line paragraph, starting at
line 6 of RID 3B in mode 0, five times:

WAX.0,B,3,6,5,3 .

UP-9662.5 	 7-215

LN+ (Line Add)

The LN+ statement adds lines to a report or result. The report expands
to make room for the new lines. The system automatically inserts tab
characters in the locations defined for the form type.

Unless you are processing a result, you must precede an LN+ statement
with a LOK statement.

Format

@LN+,m,t,r1b4,q1,pred111 .

In field: 	 Enter:

m,t,r

!b4

q

pred fl

the mode, type, and RID number of the report in which
to add lines.

the line number before the added lines. (The added lines
follow this line.)

how many lines (quantity) to add. You must enter a
number because q doesn't default to 1. (Maximum of 999
lines.)

the reference number of the predefined line to add from
RID 0 of the form type.

Example

This statement adds one type 2 predefined line to mode 0, RID 3B,
after line 5:

ftN+.0,B.3.5.1,2 .

7-216 	 UP-9662.5

LN- (Line Delete)

The LN- statement deletes lines from a report or result.

Unless you are processing a result, you must precede an LN- statement
with a LOK statement.

Format

@LN-,m,t,r,l,q

In field: 	 Enter:

mix
	the mode, type, and RID number of the report from

which to delete lines.

1
	

the number of the first line to delete.

q
	 how many lines (quantity) to delete. You must enter a

number because q doesn't default to 1.

Example

This statement deletes one line from mode 0, RID 3B, starting at line
15:

UP-9662.5 	 7-217

LOC (Locate)

The LOC statement locates a character string within a report or result,
and with the 0 or OU option, creates a result.

Format

@LOC,m,t,r1,1,1ab] o cc tgtstr vcol,vino,vrid .

In field: 	 Enter:

m,t,r
	 the mode, type, and RID number of the report in which

to locate a string of characters.

1
	 the line number at which to start the scan.

lab
	 the label or relative line number to go to if no target

string is located.

options (use the A, F, and M options to locate strings
regardless of the line type):

A 	Process all line types. (If used alone, it ignores
the first character of the target string.)

Bn 	Display the report n lines before the line where
the find was made, where n is a one-digit
number. Do not use the B option with the 0
option.

C 	Distinguish between uppercase and lowercase
letters.

(continued)

7-218 	 UP-9662.5

LOC

(continued)

In field: 	 Enter:

F 	Process all line types and locate the entire
string. (Does not locate strings that start in
column 1.)

M 	Treat the first character of the target string as
the line type designator. (Use the M option
instead of a line-type subfield. Also, you must
use the M option to locate a string beginning in
column 1.)

0 	Create a result that contains the items found.

NOTE: With the 0 option, vcol contains 0, vino
contains the total number of lines that
contain the target string (not the line
number where the target string was
located), and vrid contains the RID
number where the target string was
located.

OU 	Create a result; then do one of the following:

enter del to delete the lines in the result from the
report (see DEL).

enter 	to delete the lines in the result from the
report and redisplay the result (see EXT).

enter 	to make changes to the result and blend
these lines into the report (see UPD).

You cannot execute LOC with the OU option
against a result.

(continued)

UP-9662.5 	 7-219

LOC

(continued)

In field: 	 Enter:

Sx 	Start scan at line x, where x is a positive number.

Sx-y 	Start scan at line x and stop at line y.

Sx,n 	Start scan at line x and scan n lines.

Tx 	Set x to a transparent character to match any
character in that position. (Don't use the
transparent character in the first character
position of the target string. For example, the
character string A$$D, where $ is the transparent
character, locates all four-character strings, where
A is the first character and D is the fourth
character, such as ABCD, A 2D, and A%CD.)

cc 	 the column-character positions or names of the fields to
scan.

tgtstr 	the string of characters to locate.

vcol 	the column number where the target string was located.
This variable contains one less than the column number if
you use the F option; add one to get the actual column
number.

the line number where the target string was located.

vrid 	the RID number where the target string was located.

7-220 	 UP-9662.5

LOC

Example

@LOC 0 8,2 „ 99 AFM 2-79 FED <COL> , <L I NE>

where:

0,B,2 	 Process RID 2B in mode 0.

99 	 Go to label 99 if no target string is located.

AFM 	 Use the A, F, and M options.

2-79 	 Start scan in column 2 for 79 characters.

FED 	 Locate the target string FED.

<COL> 	Capture a number one less than the column
number where the target string was located
(leftmost column of report is column 0) in
<COL>.

<LINE> 	Capture the line number where the target string
was located in <LINE>.

UP-9662.5 	 7-221

LOG (Accounting Log)

Use a LOG statement to log each function executed in a run.

Normally, whenever a run is executed, the system logs only one entry in
the accounting log, which is a summary of the data compiled while the
run is executing.

A LOG statement, however, produces an entry in the accounting log for
each function executed in the run.

Enter a LOG statement in the run control report ahead of all other
statements (except :L statements, if your run has them). If the run
contains a REL statement, replace it with a GTO END statement. This
keeps the log list intact after the run completes.

When you're finished evaluating the log result, reinstate the REL
statement and delete the GTO END statement (if you added one).

Format

@LOG .

HOW YOU CAN USE THE LOG LIST

You can evaluate the general quality of your run by studying the log
result produced by the LOG statement. You can also submit your log
result to the RUNA run (see Section 5), a run analyzer.

After executing your run, wait a couple of seconds, then resume to
display the log list. If your run does not terminate normally because of
a loop or if you have other problems and cannot get a log list, call your
coordinator, who can obtain the log list for you.

7-222 	 UP-9662.5

LOK (Update Lock)

Use a LOK statement to get update control of a report and to prevent
.._./ 	other run users from updating your report until you release update

control.

You don't need a LOK statement to update results.

Use a LOK statement before these statements:

LNI
LNM
LNX
LN+
LN-
WRL

These statements release update control:

ADR 	 GTO END
AUX 	LOK
DEL 	 REP
DFU 	 SEN
DLR 	 SOR
DUP 	 ULK
EXT 	 UPD

NOTE: The MAPPER system releases update control whenever a run
terminates —for any reason. The run does not terminate until
the calling run and any runs called from within the run
terminate.

If another user already has update control of the report and if the LOK
statement in your run has no label, the run stalls until the other user
releases update control; otherwise, the run continues at the label
specified in the lab subfield.

UP-9662.5 	 7-223

LOK

Format

@LOK,m,t,r[fab] .

In field: 	 Enter:

m,t,r 	the mode, type, and RID number of the report in which
to get an update lock.

lab 	the label or relative line number to go to if another user
has update control of the report.

Reserved Word

lesOved itord: 	MT 1$

Word Content

STAT1$ Station number that has report locked

Example

This statement gets update control of mode 0, RID 6B:

@LOK,O,B,6 .

7-224
	

UP-9662.5

LSM (Load System Message)

Use an LSM statement to load a variable with the contents of a
MAPPER system message.

Messages can be up to 132 characters long, but usually take up one line
of data. They are formatted so that columns 1 through 80 have the
message and columns 82 through 88 have the message mnemonic.

Specify the number of characters of the message you want loaded in
the variable size.

Format

@LSM,msgnoLlabi vmsg .

In field: 	 Enter:

msgno 	the message number.

If using an LSM statement in an error subroutine, capture
this message number with the reserved word XERR$ (see
RER).

lab 	the label or relative line number to go to if the message
number does not exist.

the variable in which to place the message.

Example

This example loads V I with the message number and V2 with the
message:

@LDV.W V114=XERR$ LSM,V1 V2S80 .

UP-9662.5 	 7-225

LZR (Line Zero)

The LZR statement creates or loads variables with information from
line 0 of the designated report or result.

The LZR statement does not create a result. Results (-0) existing before
LZR executes continue to exist after LZR executes.

Format

@LZR,m,ty[,lab vlines,vcpl,vhdrs,vcs,vupds,vdept,vuser,vrpw,vwpw] .

In field: 	 Enter:

m,t,r
	 the mode, type, and RID number of the report that

contains the information.

lab
	

the label or relative line number to go to if no report (or
result) or form type exists.

NOTES: 1. Use the lab subfield without any of these
variables if you just want to find out
whether the report or form type exists.

2. Use any of the following variables to
capture the desired information.

3. If you specify a renamed result that is not
previously renamed with an RNM
statement, the run errs; it does not go to the
specified label.

(continued)

7-226 	 UP-9662.5

LZR

(continued)

In field: 	 Enter:

vlines

vcpl

vhdrs

VCS

the variable to capture the number of lines.

the variable to capture the number of characters per line.

the variable to capture the number of protected header
lines as defined in RID 0. The number of header lines
always equals I for a result on display.

the variable to capture the number of the character set
type: 0 = LCS, 1 = FCS, and 2 = FCSU.

vupds 	the variable to capture the number of updates to the
report since it was created.

NOTE: The next four variables contain 0 if no
password is set.

vdept

vuser

vrpw

the variable to capture the department number if the
report has a department-private read access lock.

the variable to capture the user-id if the report has a
user-private read access lock.

the variable to capture the read password, or the word
LOCKED* if the report has a read password.

the variable to capture the write password, or the word
LOCKED* if the report has a write password.

*
The word LOCKED is indicated unless access is by the key user sign-on accessible to coordinators.

UP-9662.5 	 7-227

LZR

Reserved Words

Resery0 words; 	STAT1S, STAT2S ,:and STAT3S

Word Content

If report exists. 	. 	.

STAT1S Date of last update in DATE1S format (yymmdd)

STAT2S Creation date of report in DATE1S format (yymmdd)

STAT3S Save flag date, if one exists

If report has never been updated. . .

STAT1S 0

If report does not exist. 	. .

STAT1S RID number of highest report

STAT2S Disregard

If form type does not exist. 	. 	.

STAT1S 0

STAT2S Disregard

If neither the report nor form type exists, the LZR statement goes to the label in the

lab subfield. 	If you don't specify a label, the run continues at the next statement.

Example

In this statement, <LINES> captures the number of lines in RID 2B,
mode 0, or the run goes to label 99 if no report or form type exists:

@LZR,O,B,2,99 <LINES>I5 .

7-228
	

UP-9662.5

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112
	Page 113
	Page 114
	Page 115
	Page 116
	Page 117
	Page 118
	Page 119
	Page 120
	Page 121
	Page 122
	Page 123
	Page 124
	Page 125
	Page 126
	Page 127
	Page 128
	Page 129
	Page 130
	Page 131
	Page 132
	Page 133
	Page 134
	Page 135
	Page 136
	Page 137
	Page 138
	Page 139
	Page 140
	Page 141
	Page 142
	Page 143
	Page 144
	Page 145
	Page 146
	Page 147
	Page 148
	Page 149
	Page 150
	Page 151
	Page 152
	Page 153
	Page 154
	Page 155
	Page 156
	Page 157
	Page 158
	Page 159
	Page 160
	Page 161
	Page 162
	Page 163
	Page 164
	Page 165
	Page 166
	Page 167
	Page 168
	Page 169
	Page 170
	Page 171
	Page 172
	Page 173
	Page 174
	Page 175
	Page 176
	Page 177
	Page 178
	Page 179
	Page 180
	Page 181
	Page 182
	Page 183
	Page 184
	Page 185
	Page 186
	Page 187
	Page 188
	Page 189
	Page 190
	Page 191
	Page 192
	Page 193
	Page 194
	Page 195
	Page 196
	Page 197
	Page 198
	Page 199
	Page 200
	Page 201
	Page 202
	Page 203
	Page 204
	Page 205
	Page 206
	Page 207
	Page 208
	Page 209
	Page 210
	Page 211
	Page 212
	Page 213
	Page 214
	Page 215
	Page 216
	Page 217
	Page 218
	Page 219
	Page 220
	Page 221
	Page 222
	Page 223
	Page 224
	Page 225
	Page 226
	Page 227
	Page 228
	Page 229
	Page 230
	Page 231
	Page 232
	Page 233
	Page 234
	Page 235
	Page 236
	Page 237
	Page 238
	Page 239
	Page 240
	Page 241
	Page 242
	Page 243
	Page 244
	Page 245
	Page 246
	Page 247
	Page 248
	Page 249
	Page 250
	Page 251
	Page 252
	Page 253
	Page 254
	Page 255
	Page 256
	Page 257
	Page 258
	Page 259
	Page 260
	Page 261
	Page 262
	Page 263
	Page 264
	Page 265
	Page 266
	Page 267
	Page 268
	Page 269
	Page 270
	Page 271
	Page 272
	Page 273
	Page 274
	Page 275
	Page 276
	Page 277
	Page 278
	Page 279
	Page 280
	Page 281
	Page 282
	Page 283
	Page 284
	Page 285
	Page 286
	Page 287
	Page 288
	Page 289
	Page 290
	Page 291
	Page 292
	Page 293
	Page 294
	Page 295
	Page 296
	Page 297
	Page 298
	Page 299
	Page 300
	Page 301
	Page 302
	Page 303
	Page 304
	Page 305
	Page 306
	Page 307
	Page 308
	Page 309
	Page 310
	Page 311
	Page 312
	Page 313
	Page 314
	Page 315
	Page 316
	Page 317
	Page 318
	Page 319
	Page 320
	Page 321
	Page 322
	Page 323
	Page 324
	Page 325
	Page 326
	Page 327
	Page 328
	Page 329
	Page 330
	Page 331
	Page 332
	Page 333
	Page 334
	Page 335
	Page 336
	Page 337
	Page 338
	Page 339
	Page 340
	Page 341
	Page 342
	Page 343
	Page 344
	Page 345
	Page 346
	Page 347

