UNISYS

UNISYS 0S 1100
MAPPER® Run Design

Operations
Reference Manual

Copyright © 1988 Unisys Corporation

All Rights Reserved

Unisys is a trademark of Unisys Corporation
MAPPER is a registered trademark

of Unisys Corporation

Relative to Reiease June 1988
Level 34R1

Printedin US America
Priced Item UP-9662.5

The names, places, and/or events used in this publication are not intended to correspond
to any individual, group, or association existing, living, or otherwise. Any similarity or
likeness of the names, places, and/or events with the names of any individual living or
otherwise, or that of any group or association is purely coincidental and unintentional.

NO WARRANTIES OF ANY NATURE ARE EXTENDED BY THE DOCUMENT. Any product
and related material disclosed herein are only fumished pursuant and subject to the
terms and conditions of a duly executed Program Product License or Agreement to
purchase or lease equipment. The only warranties made by Unisys, if any, with respect
to the products described in this document are set forth in such License or Agreement.
Unisys cannot accept any financial or other responsibility that may be the result of your
use of the information in this document or software material, including direct, indirect,
special, or consequential damages.

You should be very careful to ensure that the use of this information and/or software
material complies with the laws, rules, and regulations of the jurisdictions with respect to
which it is used.

The information contained herein is subject to change without notice. Revisions may be
issued to advise of such changes and/or additions.

Correspondence regarding this publication should be forwarded, using the remark form
in this manual, or remarks may be addressed directly to Unisys Corporation, MAPPER
System Test and Publications, P.0. Box 64942 MS: 4792, St. Paul, Minnesota,
55164-0942, US.A.

Page Status

Page Issue

ATM-1 through ATM-14 Original
Contents-1 through Contents-9 Original
Section 1 tab Original
1-1 through 1-7 Original
Section 2 tab Original
2-1 through 2-13 Original
Section 3 tab Original
3-1 through 3-10 Original
Section 4 tab Original
4-1 through 4-30 Original
Section 5 tab Original
5-1 through 5-17 Original
Section 6 tab Original
6-1 through 6-15 Original
Section 7 tab Criginal
7-1 through 7-7 Original
A-E tab Original
7-8 through 7-139 Original
F-O tab Original
7-140 through 7-264 Original
P-Z tab Original
7-265 through 7-414 Original
Appendixes tab Criginal
A-1 through A-18 Criginal
B-1 through B-11 Original
C-1 through C-8 Criginal
D-1 through D-10 Original
E-1 through E-10 Original
F-1 through F-26 Criginal
Glossary/Index tab Original
Glossary-1 through Glossary-35 Criginal
index-1 through Index-15 Original

UP-9662.5 PS-1

About This Manual

PURPOSE

This manual provides complete descriptions, formats, and examples for
all run statements, as well as instructions for designing runs and getting
them registered. By using this manual, the run designer can write and
update complete runs, obtain quick access to statement syntax, and
learn about efficiency techniques by following examples.

SCOPE

This manual contains reference information about run statements and
offers complete sample runs. It is not meant to teach run design; it is
designed to provide quick reference to run statement information.

AUDIENCE

The Run Design Reference is for all run designers —from beginning run
designers to advanced users who design sophisticated applications.

PREREQUISITES

Before using this manual, beginning run designers should feel
comfortable with using MAPPER software and should be familiar with
the demonstration database. Ideally, the beginning run designer should
understand basic run design concepts. To learn about writing runs,
read the OS 1100 MAPPER Run Design Operations Training Guide or
attend a MAPPER run design class.

UP-9662.5 ATM-1

About This Manual

HOW TO USE THIS MANUAL

If you are an experienced run designer, review "New Run Design
Features" in Section 1. Then use Section 7 and the appendixes as
references while writing runs.

If you are a novice run designer, read the first six sections before
beginning to write your own runs. Then use Section 7 and the
appendixes as references. In addition, you may want to review the
sample runs in Appendixes B and C for more insight into MAPPER
runs.

Until you’re a registered MAPPER run designer, sign on as JDOER to
practice writing runs. Ask your coordinator for a valid JDOER sign-
on,

Use the EXAM run to check your MAPPER run-writing skills on line.
See the OS 1100 MAPPER Manual Functions Operations Training Guide
for more information.

Conventions
To help you understand this manual and find MAPPER software easy
to use, certain style conventions are used. Following is a description of

how this manual handles run statement syntax, tab characters, examples,
key names, uppercase letters, italics, color, and important terminology.

ATM-2 UP-9662.5

About This Manual

Run Statement Syntax

The format of a MAPPER run statement consists of these conventions:

|

The call is capitalized (for example, CHG). However, you can type
it in either uppercase or lowercase letters.

Fields and subfields are italicized whenever they call for variable
data. Variable data is information you supply according to the
explanation that follows the statement.

NOTE: Field and subfield abbreviations are listed and described
in Appendix A.

Fields or subfields enclosed in brackets are optional. In this
example, field2, subfieldl, and subfield2 are optional:

fieldl | field2 subfieldlsub field2]

Whenever you make an entry in an optional subfield, you must
type all intervening commas. For example:

@AUX,0,B,2,123,COP,Y,.,.Y,.2

Braces around items separated by a vertical bar mean that you may
choose from among the items listed; for example:

{iteml | item2)

Tab Characters

A special character called a quadrate (0) always represents a tab
character. You can’t see tab characters on the screen, but when you
place the cursor over a tab character, the cursor blinks.

UP-9662.5 ATM-3

About This Manual

Examples

The examples in this manual appear in uppercase letters; however, you
can type them in lowercase. Some examples appear with brief
comments similar to comments you might type in your run control

report. These comments may start anywhere after the space-period-
space that follows a run statement. For example:

@DLR,0,B,3 . DELETE RID 3B IN MODE @

Some examples are presented with directory names as well as with

traditional column-character syntax. In these cases, both statements are

presented, followed by one set of field descriptions.

CAUTION: Be careful when trying examples that update the
demonstration (JDOE) database provided on the release
tape. If, for example, you want to try an example that
deletes lines in RID 2B, be sure to use a duplicate report
so you do not change RID 2B in the demonstration
database.

Keyboard Key Names

The key names used in this manual are based on the UTS family of

keyboards. If you need definitions for keys other than those on a UTS

keyboard, refer to your terminal documentation.

Uppercase Letters

These items appear in uppercase letters:

O MAPPER functions and run statement calls (for example, CHG)

O MAPPER runs (for example, FCC run, RUNA run)

O MAPPER files (for example, MAPERI file)

O Reserved words (for example, INPUTS)

ATM-4 UP-9662.5

About This Manual

ORGANIZATION

This manual contains seven sections and six appendixes:

Section 1. Introduction contains a list of new run design features and
provides a brief description of MAPPER runs.

Section 2. Using the Data Directory describes the Data Directory and
how to use it.

Section 3. Formulating Run Statements introduces you to run statement
formats and guidelines. It also explains how to use labels and special
characters in run statements.

Section 4, Variables and Reserved Words introduces you to variables
and reserved words and explains how to use them in runs.

Section 5. Using Online Runs describes how to use HELP and other
online run design aids.

Section 6. Designing and Debugging Runs discusses how to handle
reports and results and how to design, register, and debug runs.

Section 7. Run Statements presents the MAPPER run statements in
alphabetical order, along with their formats, field descriptions, and
examples.

A. Summaries: Statements and Options lists all MAPPER run statement
formats and field abbreviations.

B. Reserved Words provides a table of all reserved words, a detailed
example using reserved words, and a discussion of how to use reserved
words directly in run statements.

C. Sample Runs: DEMO, EDIT, and MARK provides three detailed
sample runs.

D. Efficient Run Techniques offers suggestions for making your runs
efficient.

ATM-6 UP-9662.5

About This Manual

E. Character Sets lists the Limited Character Set and the Full
Character Set.

F. Data Transfer Module explains how to use the DTM interface
through the QSND, QSNR, QRSP, QREL, and QCTL run statements.

RELATED PRODUCT INFORMATION

This manual is part of the MAPPER software level 34R1 library, which
contains documents that you may find helpful while using MAPPER
software. The following list provides the exact title of each document
in the library, followed by its short title in parentheses and its previous
title. The documents are listed in the order a new MAPPER site might
use them. A separate list describes how to order copies of the MAPPER
software level 34R1 manuals. In addition, there are several documents
of related Unisys products that are referenced throughout this manual;
these are listed under "Related Unisys Documents.”

Documents in This Library

O OS 1100 MAPPER Software installation Guide, UP-10786.9
(Installation Guide)

Previous titles: MAPPER Software Level 33R1, Installation Guide
MAPPER Software Level 33R1, Release Description

This guide is for systems analysts who install and maintain
MAPPER systems. It contains information previously found in the
Release Description, such as new features for this software level,
compatibility with other software and hardware, any restrictions
that apply, and information about product support. It also lists the
contents of the release tape and procedures used to install,
configure, verify, start, and generate MAPPER software level 34R1.

UP-9662.5 ATM-7

About This Manual

1 OS 1100 MAPPER Software Operations Guide, Vol. 1: Coordinators,
UP-9194.6 (Coordinator’s Guide)

Previous title: MAPPER Software Level 33RI1, Coordinator’s
Reference

This guide is for MAPPER system coordinators. It describes their
responsibilities and gives examples of the reports they use to
establish and monitor a MAPPER system.

1 OS 1100 MAPPER Software Operations Reference Card: Coordinators,
UP-14074 (Coordinator’s Reference Card)

This reference card lists the most commonly used runs, functions,
run statements, and reserved words for coordinators.

O OS 1100 MAPPER Software Operations Guide, Vol. 2: Operators,
UP-9195.6 (Operator’s Guide)

Previous title: MAPPER Software Level 33RI1, Operator’s Reference

This guide is for MAPPER system operators. It describes and gives
examples of all operator tasks, including starting the MAPPER
system, maintaining the system database, and creating recovery and
history tapes.

O OS 1100 MAPPER Software Operations Reference Card: Operators,
UP-14073 (Operator’s Reference Card)

This reference card lists directives used by MAPPER system
operators.

0O OS 1100 MAPPER Manual Functions Operations Reference Manual,
UP-9193.6 (Manual Functions Reference)

Previous title: MAPPER Software Level 33R1, Software Reference
This manual is for users who have a basic knowledge of the
MAPPER system. It provides comprehensive descriptions and

examples of the MAPPER functions. It also includes an overview
of form type design and run design.

ATM-8 UP-9662.5

About This Manual

O OS 1100 MAPPER Manual Functions Operations Reference Card,
UP-9196.7 (Manual Functions Reference Card)

This reference card provides a summary of formats for MAPPER
functions and runs, along with the available options.

O OS 1100 MAPPER Run Design Operations Reference Manual,
UP-9662.5 (Run Design Reference)

Previous title: MAPPER Software Level 33R1, Run Designer’s
Reference

This manual is for MAPPER run designers. It provides complete
descriptions, formats, and examples for all run statements, as well
as instructions for designing runs and getting them registered.

O OS 1100 MAPPER Run Design Operations Reference Card, UP-12999.1
(Run Design Reference Card)

This reference card provides all MAPPER run statement formats,
along with their field definitions and available options. It also
lists reserved words used for run design.

O OS 1100 MAPPER Word Processing Operations Guide, UP-11619.1
(Word Processing Guide)

Previous title: MAPPER Software Level 33R1, Word Processing
Guide

This guide is for all users of MAPPER word processing. It
provides complete descriptions and examples of MAPPER word
processing functions,

O OS 1100 MAPPER Word Processing Operations Reference Card,
UP-13019 (Word Processing Reference Card)

This reference card lists and describes all word processing control
parameters, control characters, and commands.

UP-9662.5 ATM-9

About This Manual

O OS 1100 MAPPER Color Graphics Operations Guide, UP-11615.1
(Color Graphics Guide)

Previous title: MAPPER Software Level 33R1, Color Graphics Guide

This guide is for all users of MAPPER color graphics. It provides
complete descriptions and examples of MAPPER color graphics
functions, runs, and graphics codes.

O OS 1100 MAPPER Color Graphics Operations Re ference Card,
UP-13020 (Color Graphics Reference Card)

This reference card lists all graphics runs, functions, primitive
graphics code commands, and expanded syntax commands. It also
contains GOC (Generate Organization Chart) commands and tables
for colors, marker symbols, line patterns, and fill patterns.

O OS 1100 MAPPER SCHDLR Interface Programming Reference
Manual, UP-11616.1 (SCHDLR Reference)

Previous title: MAPPER Software Level 33R1, SCHDLR
Programmer’s Reference

This manual is for COBOL programmers who want to use the
SCHDLR interface. It provides the procedures and coding needed
for a COBOL program to interface with the MAPPER system. This
manual assumes you have knowledge of COBOL and Transaction
Processing (TIP).

ATM-10 UP-9662.5

About This Manual

Optional Documents

These documents are not part of the standard MAPPER library and
must be ordered separately.

O OS 1100 MAPPER Manual Functions Operations Training Guide,
UP-13964 (Manual Functions Training Guide)

Previous title: A Guide to Using MAPPER Software

This guide helps beginners use MAPPER software productively. It
provides an overview of what MAPPER software is and how it can
be used, and it introduces the most commonly used MAPPER
functions. For complete details on all MAPPER functions, see the
Manual Functions Reference.

O OS 1100 MAPPER Run Design Operations Training Guide, UP-13965
(Run Design Training Guide)

Previous title: A Guide to Creating MAPPER Software Runs

This guide is for users who have never written a run. It covers
only basic information and should be read and followed, step by
step, at a MAPPER terminal. When you need more details than are
given in this manual, see the Run Design Reference.

O OS 1100 MAPPER Software Operations Quick-Reference Guide, UP-
11628.1. (Quick-Reference Guide)

This guide is a handy, durable summary for all users of MAPPER
systems. It contains MAPPER functions, run statements, function
and run statement options, and reserved words. It also lists color
graphics and word processing information, commands for the
MAPPER system coordinator, and directives for the operator.

UP-9662.5 ATM-11

About This Manual

O OS 1100 MAPPER Software Operations Guide, Vol. 3: Using an IBM®
3270 Terminal, UP-11632.1 (Using an IBM 3270 Terminal Guide)

Previous titlee MAPPER Software Level 33R1, Using an IBM 3270
Terminal

This guide explains how to use MAPPER software from an IBM
3270 series terminal (or equivalent). It shows examples for signing
on to the MAPPER system and using MAPPER software in one of
the two modes of operation, native or UTS emulation. It also lists
considerations for MAPPER run design and word processing.

0 OS 1100 MAPPER New Features Operations Reference Manual,
UP-11631.1 (New Features Reference)

Previous title: MAPPER Software Level 33R1, Summarizing Level
33R1 Features

This manual provides an overview of MAPPER software level

34R1. It is a handy summary of new features for users who have
previous experience with MAPPER software.

Ordering MAPPER Software Level 34R1 Documents

The MAPPER documentation is ordered by PL, PK, and UP numbers:

O Use the PL (Product Library) number to order an entire standard
library. Note that this does not include the optional MAPPER

documentation.

3 Use the PK (Package) number to order an individual manual with
its binder.

0 Use the UP number to order documents that do not have binders.

IBM is a registered trademark of International Business Machines Corporation.

ATM-12 UP-9662.5

About This Manual

Use the following PK, PL, and UP numbers to order MAPPER
documentation.

Standard Library

Reference cards are included in the binders of the corresponding
manuals. To order additional copies of the reference cards, order them
by the UP number.

PL-0284 MAPPER Software Level 34R1 Standard Library
PK-1328 Manual Functions Reference
UP-9196.7 Manual Functions Reference Card
PK-1329 Run Design Reference
UP-12999.1 Run Design Reference Card
PK-1330 Word Processing Guide

UP-13019 Word Processing Reference Card
PK-1331 Color Graphics Guide

UP-13020 Color Graphics Reference Card
PK-1333 Coordinator’s Guide

UP-14074 Coordinator’s Reference Card
PK-1332 Operator’s Guide

UP-14073 Operator’s Reference Card
PK-1334 SCHDLR Reference

PK-1335 Installation Guide

UP-9662.5 ATM-13

About This Manual

Optional Documents

These are optional documents that do not come with the standard
library and must be ordered separately:

PK-1834
PK-1336
PK-1835
PK-1836

UP-11628.1

Using an IBM 3270 Terminal Guide
New Features Reference

Manual Functions Training Guide
Run Design Training Guide

Quick-Reference Guide

Related Unisys Documents

These Unisys manuals are referred to in this documentation, but they
are not part of the MAPPER library. Use the version that corresponds
to the level of software in use at your site.

O OS 1100 Distributed Data Processing (DDP-PPC/DDP-FJT) Messages

Reference Manual, UP-13510 (DDP-PPC/DDP-FJT Messages

Reference Manual)

This reference contains information about all messages and error
codes for DDP-PPC and DDP-FJT.

O OS 1100 Distributed Data Processing File and Job Transfer (DDP-
FJT) Operations Guide, Vol. 1: IPF Interface, UP-9740.3 (DDP-FJT
Operations Guide, Vol. 1: IPF Interface)

This guide describes how to transfer files and jobs from terminals
in a DDP network.

ATM-14

UP-9662.5

Contents

Page Status ... seereereereeessterensstnnesennantersrontins PS-1
About This Manualreerrreerrcccccenrricssesscrnsseessssnsesesssesessesensns . ATM-1
1. INtroducCtion e ss e sssecs e ssars s s sesssansrs s e e ssn e e os 1-1
New Run Design FEatUrescoveiomronicoencrmsserssesssssonsssssssesssesseses 1-2
New RUN STAtCMENTS coorierrcenerrvmenesenecsseseressastescssessessssssssssonssesssses 1-2
Enhancements t0 EXisting Statementscovoeiecnrervesmneressensens 1-3

New Reserved WOrds ..voneneeseriseeressssessessssessenss . 1-4

Other New Features . reevereressrs s rireteaessessae e basabababe st sesarensarasarerentn 1-4
Discontinued RUNSececeeesrencstnnresssasesnssecesseesesestessssasasssesssssassens 1-6

What Is a MAPPER Run?iicineeesssenensensveessnssssssesssnsasssens 1-7

2. Using the Data Directory 2-1
NAMINE FIEldS oot etiientiesc s srsssse s essassessssasirasssassssessnossroscses 2-2
Report Headers and the Header-Divider Lineeneee. 2-2

Field NAMES e ieessessseeessensssasessssseseses . 2-4

Field Names in Variables .. ssssssesssssssenenns 2-4
Naming Partial Fields . 2-5

FIClA OTAEr et eess s s ssassssasssnss seassssssnsasanne 2-6

Field Size Variable Definition ..evveeievnnsvecnsseenennne 2-6
Selecting Fields to DisSplay ..ienvnnececnniniienns 2-6
Converting t0 Field NAMES ...ocvereerrsiersnssssesesresssessesiesssssssssseses 2-7
Efficiency Considerationscecrsceiscisissssssreesessesens 2-7
Naming Modes, Form Types, and Reportseveeereivreeenccens 2-8
Mode, Form Type, and Report Names .ooecvveeveceeeesnnenes 2-9

Names In VariableS ececceeeeeaenscssreseestsrsesesssssssasssmsaseses 2-9
Naming ReESults .oveeeeeeiirreeesersecscssessessasenns . 2-9
NAME — Updating the System Directorycerernnn 2-10
System Directory INformation ..ceneiernneeeeeesereseeesns 2-12
Naming Data Using Reserved Words 2-13

3. Formulating Run Statementsieciescecsctsssesesesesene 3-1
Run Statement FOormatieiciieeesereeciscrerecreeeennnans . 32
Valid Statements and Error MeSSages ...evenieesssseesesssssnsnens 3-3
Formulating Run Statementseieeinessesesssssssassssense 3-3

LabelS ettt s tes s st s sssrasssssssresessssssrnssranesesessasasassene 3-6

UP-9662.5 Contents-1

Contents

Label Table Definition Lines
Special Characters ...rneecrcceeerereesesesssasesessesessenssescnees
Semicolon — Field Delimiterceeneeeneereneseeenreseesserssresesnens
Slant —Multiple PArametereenereeenensesssssssessnsesnnns
Reverse Slant — Continue StatemMeENtceeveeieeeeenessssessessenes
Apostrophe — Literal Dataveeniercrennneereesnseesseesesssessees

4. Variables and Reserved Wordsinniercsrecenernnsenmesnsssnnenne
Variables — Names, Types, and Sizes
NaAming Variables ..ocuorcnineniornsrinssesssessssssssesssssassssssssssseses
Assigning Variable Types and SiZeS .coercnneencinneernsesenes
USINgG VATIADLES cicerercrinneneeseereniensssnssessssessmsassssssssssssasssssssasssssssassasns
Initializing and Redefining Variables
Using an LDV Statement
Using 2 CHG StatCImENtcvvneerecerennerrnesiresssssesesssesseresesesssessesenes
Initializing Variables with Other Statements
Changing the Contents of Variablesvvcninnriieennnes
Using Exponential Notation with Variables
Examples Using Variablesencrnennrnreseeesasnesesasressnns
Loading Variables with Screen Input and Initial Input
PArametersS ..occoieiereeeeceereeresmsessresrecssessessssssasessessssasessessssessesssras seosess
Using INPUTS to Capture Data from the Screen ...
Using INPUTS to Capture Initial Input Parameters ...
Using INSTRS to Capture Data from the Screen
Using INVARS to Capture Data from the Screen ...
Using INVRI1S$ to Capture Data from the Screen ...,
Using ICVARS to Capture Data from the Control Line ...
Using FKEYS to Capture Function Key Inputoevrveren.
VARIABLE Run — Testing Contents of Variables
BVT Run — Building Variable Tables and Converting
VATTADIES ettt st s s s st s ss s setetssssebosssens s sarnenes
Reserved Words

..

5. Using Online Runs
HELP RUD oot rteetseenassctenesaestsarssssrssssasssssasssssssesesassssasasssossans
Using HELP for Run Statement Formats

Using HELP with Error MESSABES ...cummenencisessrmnrsssmssasessssnns
LIMITS Run — Displaying Report and Line Limits

CC Run —Displaying Horizontal Column Count Positions
FCC Run — Examining Report Fieldsvinvrnreinnnens
FORM Run —Displaying Statement Fields and Subfields

..

.....................................

Contents-2 UP-9662.5

Contents

FORMC — Creating Statements for Functions

that Use Function Masks ..o enesesessssens 5-9
MARS Run —Creating Statements in Run Control Report ... 5-10
RUN Run — Automatically Generating and Registering

RUDS vttt sse e ns e sses s st sn s s s s sm s ssassas s 5-11

Controlling the Run Generationccennnernisssmemnnn 5-11
Displaying a Report or ReSult ... ccerenicrsvereeinenes 5-14
LIMITATIONS rieviernecsnnersisesessisesssesssssssessssesssssmsssossssorsessssssssssssssssssorsens 5-15
RUNA Run — Analyzing Your Runvvieirneer e, 5-16
6. Designing and Debugging RUNS ..o seessesssssesans 6-1
Handling Reports and ReSults ..o.ooooooooceeieeeceeeereeeereeeeseesesneesssnesenens 6-2
The OQULPUL ATCA ettt sseer s sttt ess e ersesenee 6-3
RESUILS oo crctccretstresnrtsnsresressrassssareasessses s ssssosasbosserssassssessssnessansseae 6-3
The Relationship Between Output Area and Results ... 6-4
Designing and Registering a RuUn ..o ceenreeessssseonans 6-5
Debugging Your RUN .ttt s v tsssesessseesessssosns 6-8
INtEractive DEDULEGINEG .ot reereestsesereesestsessssesnosessereeseaes 6-8
The HELP RUN e srssessssssnsssssssessssssssssssasssssssn sasmnes 6-8
Checkpoint DISPIAYS i iescsesveressese e sssssssnsessnssassssssanes 6-9
RDB Statement 0r FUNCHION ...oovieereveeeereererceeetescessesesessessnssssnenaes 6-9
RAR and RER Statements ... cereres st s sas e e ssa e anans 6-9
Using RDB (Run Debug) ... isvevescsae e seeeessesessssaos 6-10
RDB CommMandS et sesseessnssosssesssessssnossonns 6-12
RDB Efror MOAE ettt sessiss s esesseseenessessssnsnne 6-15

7. Run Statementsereiemenorenieenes 7-1
List of Statements DY NAMeE ..o eeerenersesssesssssresesens 7-2
Statements with No Corresponding Manual Functlon 7-6
ADD (ADPDPENd RePOFL) oottt oo seamesens 7-8
ADR (Add REPOTL) coecereeceenrenetes s e sesnasssnssssnsssssenssssensoraseanee 7-9
ART (AXItRINELIC) ettt eseeeeeesesssosenssuneeaas 7-11
AUX (AUXITIATY) ettt ess e eseeas 7-16
BFN (BIinary Find) et cvseese e sesseeseese e 7-18
BLT (Build Label Tables)ccooovevvinensirecsesseneenceeneeeneeessssessens 7-26
BR (Background RuUn) ..ot eeeen 7-28
BRG (Break Graphics) et 7-30
BRK (Break) ... veceresressnentsaeterrenereaes 7-32
CAL (CAlCUIATE) ottt ress e ceessnons 7-34
CAR (Clear Abort Routine)cveeeemcsineecieeesesceseeneeenens 7-56
CAU (Calculate Update)eeceiieecevnreeeereeserscessssssessesssisens 7-57

UP-9662.5 Contents-3

Contents

CER
CHD
CHG
CLK
CLT
CLV
CMU
CPY
CSR
DAT
DC
DCPY
DCR
DCRE
DCU
DEC
DEF
DEL
DEV
DFU
DIR
DIS
DLL
DLR
DPUR
DSG
DSM
DSP
DUP
DVS
ECR
ELT
EL-
ESR
EXT
FDR
FMT
FND
GOC
GS
GTO

Contents-4

(Clear Error Routine) ...cinnccnieeeecnscenisnienae 7-61
(Command Handler) ... seeeeensnsesesnsesees 7-62
(Change)cvecvrevreennens ceeerreeaesaraens 7-67
(Clear LINK) et sessesessesesesesesssssssessssnseseseses 7-70
(Clear Label Tables) ..., 7-71
(Clear Variables) .o, 7-73
(Commit Updates) .veeermreetnienminmnsiseseinai 7-74
(COPY) et sessesrersar s s sasesssorsanebsanestsssessssessaessssrsen 7-75
(Clear Subroutine)insercnerenssesesssescsescscssenccses 7-77
(DALR) e setee e res s et sesssesebans e e nens s ens 7-78
(Date Calculator) ...vienrnnrnreeerenereennesnnns 7-82
(DDP COPY) coorrevrerrenrnenesenesersmesseesessessssesersensssenersessssessrnsesseenss 7-86
(Decode Report) .vverreneerentsesrnensseesesesssessasesesesensssises 7-90
(DDP Create) ..ccovvcvcinvnnnennininee . . 192
(Decommit Updates) ... 7-95
(Decrement Variables) .ooeocccnnrencsneneerssenenssennnns 7-96
(Define) .ot se s reme s va st ae s s sae s seant e s 7-97
(Delete) ettt ot sssas s e nens 7-101
(DEVICE) et s et ses ettt e s s e nsnsrasa e b basanan 7-102
(Defer Updates) ..ocevrvevcvevnccnennns 7-104
(Directory Information)o.mrcvcecerennreseernnens . 7-106
(DISKELEE) oot ten s eess e es s asss s se e sanaes 7-109
(Downline Load) ..ccvnrrinnnnenesnensnsearesssesssssssoseses 7-112
(Delete RePOrt) et esernassesssssenes 7-113
(DDP PUIBE) ooerreeerrerrerrerereserenseeessnesssnressasesassnssssasassssssananes 7-114
(Display Graphics) ..o eaeersaans 7-116
(DiSplay MeSSALE) ccvveveeeceeereceeeenenveesseernseerrersseressssesessssonsses 7-119
(Display Report) .rveeeerererenereve s ssssessenens 7-122
(Duplicate Report) ...icenvennnrerenesseresneseseesessessesanns 7-124
(Define Variable Size) ..o, 7-126
(Encode Report) ..eeecreeveevvvnrenenn ererevevenesesrrssesbenes 7-128
(EISMENT) oottt errraessstes e ses s tesbersmnsnaens 7-130
(Element Delete) ..ottt aesess s senssaeene 7-134
(Exit Subroutine) ..o eseenesnene 7-137
(EXTPact) orcccenercnestensnnnr e ssessssssssasesssssssesassesnsnsosenns 7-139
(Find and Read) ... ressssnsesens 7-140
(FOrmat) ..oirrccnreeirnnsssseesnsesesscnsessssssesssessssesesssesessens 7-144
(FINA) sttt r e sse s s e e s mn e raens 7-146
(Generate Organization Chart)vvecverinnneane 7-150
(Graphics SCaler) .o rsesesrsessenses 7-153
(G0 TO) ettt ses s erssnerassassssesassssssssasssnssesnsassesonn 7-159

UP-9662.5

IDU
IF
INC
IND
INS
JUV
KEY
LCH
LCV
LDV
LFC
LFN
LLN
LMG
LNI
LNK
LNM
LNX
LN+
LN-
LOC
LOG
LOK
LSM
LZR
MAU
MCH
MOD
MSG
OK
OUM
ouT
PEK
POK
POP
PRT
PSH
RAR
RDB
RDC
RDL

-UP-9662.5

Contents

(INdeX USEE) occrrtrennsesercsesistsa s essasssessesssssssnsasssssssssesns 7-162
(Conditional) ... 7-165
(Increment Variables) . erteeetesesesesastates s s saeese et nesas 7-170
(INAEX) et sstss st ses e bses s s sesbasasse s bssnesanasns 7-171
(INSEEL) e cccanerseseassesssessan s s e e e et setenensstsesesesses 7-173
(Justify Variables) ... 7-174
(Function Key Input) .cinnncnnrereeerensseessserenescscsanessns 7-177
(Locate and Change) retete sttt st s sas ettt sae et eens 7-178
(Locate/Change Variable) ...iinvccnnnnecesnnsenenes 7-182
(Load Variables) ..o sesssssssasces 7-191
(Load Format Characters) ... 7-199
(Load Field Name) ... ceereteteteter sttt araresanen 7-200
(Last Line NUmbDer) ...ciieninnnccneensneecscsesesesesascnens 7-203
(LISt METZE) covcrinerrricesinnnesescsnnsssennacsesosen sssssnsessssssssssssssrssssnes 7-203
(Line INSert) .iciriseneseseneisese s sesesesesssesasassscsasesasases 7-207
(Link to Another Run) ...cninnnnnincnencecseneesnes 7-208
(Line Move) ..covveennnrcenrenas retonessnnentenarsetasanesenes 7-214
(Line Duplicate)ovveveeiiceresinerinsressasnsesesssssnssssssssanne 7-215
(Line Add) et assaseas s tsssates st easeesan 7-216
(Line Delete) rereenteetsee et neneass 7-217
(LOCATE) ottt eesss sttt en s sas st sn et e bebase 7-218
(Accounting Log) e sssnsssrresessnsnane 7-222
(Update LOCK) ottt st sesseseetesesesesessesons 7-223
(Load System MeSSAZE) ..cirvvecererensinsrnsesssssenssnsssssssnsssens 7-225
(LINe Zero) ..ociicrnivenrenensesinssnssssssssssassssssssesssessssrasssssssss 7-226
(Match Update) .vveicrieeercnie e eteresesesssemssessessnasessens 7-229
(MALCR) et ssse st s ssr s s s s sassenan 7-232
(MOAE) oot s et sassrebesas e s bessssenssessenensnas 7-236
(Message t0 ConSole) ...ceenieneierenininnreeresnsseessssssones 7-237
(Acknowledge Message) ereeienseeetersa s 7-239
(Output MasK) it eanssesssssssssstensssesssessns 7-240
(OUEPUL) ettt ensnes s eaes s s b rasassene 7-245
(Peek Variables) ..o 7-265
(Poke Variables)iniereivensresensseressesssssennns 7-267
(POP Variables) ...t ssssssesssessesesssonsaos 7-269
(PrIDt) et sere e sssas seastse eeasanes 7-271
(Push Variables)eeecennne, ceereeesesssnnnsreraraes 7-273
(Register Abort Routine)iicvnvinncnenireeeeeeeeenns 7-276
(RUD DeDUZ) et tsas s senssosssnne 7-279
(Read Continuous)iinnnnnnisissesnssesisnessenes 7-280
(Read Line)cvvviivervennne cteeeeeenreresnssrsnaaens 7-284

Contents-5

Contents

REH
REL
REP
RER
RET
RFM
RLN
RMV
RNM
RPW
RRN
RS
RSI
RSL
RSR
RTN
RUN
SC
SEN
SFC
SOR
SRH
SRU
STN
STR
SUB
TCS
TOT
TYP
ULK
UPD
USE
WAT
WDC
WDL
WPR
WRL
XCH
XIT
XQT

Contents-6

(Retrieve from HiStory) ...coccicennesoenieresenne 7-288
(Release Display) .o 7-290
(Replace RePort) eiiceeeseseceeeeee st sesestses s sssssssssese 7-291
(Register Error Routine) .cvnvencnenrencercenscncnrennes 7-292
(Retrieve File) .. crneeeersssnsnnees 7-295
(Reformat RePort) e cesere s sssesssensans 7-299
(Read Line Next) . sesinens 7-301
(Remove Variables) ..vniinrenencereeeeonsinens 7-305
(REMAME) oot e ssesessssassesesesnas e assaseessenssnas 7-307
(Read PassWord) .crcninceccenieiscssesnnsesessesssasessansne 7-309
(Remote RUN) ot e saees 7-311
(RUN STALUS) i csce et eseeesrasesesas e sas srsssssssnss 7-314
(Remote Symbiont Interface) ..ccoviceiiececcrivreceenns 7-315
(Create Result CoPY) ettt nesesenssne 7-318
(Run Subroutine) ...t sesssreseens 7-319
(Return RemOte) ...t iseseesessesassesasssssensane 7-323
(RUN SEATL) ottt e e e se e b sens s s e 7-325
(Screen Control) . e 7-330
(Send Report) .o ensseeee s sessssesesens 7-360
(Set Format Characters) ..o 7-361
(SOIL) e aesseaesanes cervernrarraarns 7-363
(SEAFCR) oo s s se st nas e en s 7-366
(Search Update)oovvecrnneceenee e s es 7-371
(Station Information) ..., 7-373
(Batch SLATt) ottt st staste e s s st st sne 7-376
(SUDBLOLAL) oottt en s et tnne 7-380
(Tape Cassette)ccoviricrinenercnesssasassassseisssnnins 7-385
(Totalize) .ot sa e et sene 7-388
(FOrm TYDE) e cesveireressiessassssseresasassssasassassassssesssins 7-393
(Unlock) e . 7-396
(UPAALE) o s eressensssessasses sessasssssase s onasnsasasassnes 7-397
(Use Variable Name) .vieerreneecneneseene e 7-398
(WRIL) et rreserasesssareasases 7-400
(Word CRANEE) e rrertrar st ssnsassr s sssnaenene 7-401
(Word Locate) ...ccooenenne erretereerenes cerereerereen s 7-403
(WOord ProcCess) .ot sasesseseaecssentnsssasacssasecss 7-405
(Write LIine) .t r v st s naeees 7-408
(Exchange Variables) .o 7-410
(SEgn-OFff) ettt s et s s 7-412
(Execute Run Statement)cnicinncncnncnnenns 7-413

UP-9662.5

Contents

Appendixes

A. Summaries; Statements and Options veersrerents e aessransterans A-1
MAPPER Run Statementsioneennnnessinssernesseserssssssesssen: A-2
Field and Subfield ADbreviations ..o A-6
Options for Ten Common Run Statementsveirererinenan. A-13
B. Reserved Words ... crstsnssasssassenssessresensssesssesssnssessssssone B-1
Table of Reserved Wordseceeeciececetersssreesseressssessensensnns B-2
Example Using Reserved Wordsooveeviveneenecceeevectensnnenns B-10
Using Reserved Words Directly . eeeesesseens B-11
C. Sample Runs: DEMO, EDIT and MARK ..o C-1
DEMO —Designing a Menu Screen ..o C-2
EDIT —Finding Status Codes in Form Type Bcccocovvevevcvnnnnene. C-4

MARK — Determining Orders and Retail Dollars per
CUSTOMET sttt eren s sssbas s s sestres C-7
D. Efficient Run Techniquesnvcceneesenesseneseseeseeseesensens D-1
Character Sets ..ot ss s s st oen D-2
Run Control REPOTtS .. crcrcrevneseveesrenesesessnsasssassasessasssssscnsaores D-2
Analysis/Registration ... D-3
Loading Variables ... ssesesesssensesnsens D-4
Statements/FUNCLIONS ...ocooiiiiiriiercirieenitieeseensecsssesesesasssesesasesssesessresenees D-5
Updating RePOTLS ..coieicrcnreecnrirerctennineiereteseserssissssssesssssasssassemsasssnsans D-7
LOZIC ettt et s s s s e ans sttt ene e san D-9
Batch ProcCesSing ...t etssser e enaastessaseasasen D-10
E. ChAaracter SetS sttt reseras s seasaneesassanns E-1
OVEIVIEW oottt eres st st sssea e sasm e ses s esass s st ann E-2
C OPLION e sssss st ess s entsstesserssresssmssss s ssbenmssaseeeseneene E-2
Limited Character Set ...t resseeessseessssasasasees E-4
Full Character Set .ottt enm et ss s ssaonsesesas E-7
F. Data Transfer Module ...t eeeseessesessanens F-1
Sending MeSSAZES oo tnres s tetse e sesres st sese s ss s s e F-2
QSND (Send Message, NO ReSPONSE) ocvreerneereeneereveemeraeseesessesseans F-3
QSNR (Send Message, Response Expected) ..o, F-7
Processing MeSSAZES oot sane st ssae oo F-13
QRSP (Send Response MeSSAEE) ..ccooveimeeeeeeerieeeeeerreeererecressnesssssessanes F-14
QREL (Release MeSSABe) .cvvererirecevaneresesreeenescsesse s ssessssssesnnes F-16
QCTL (Quete Control) ... eeeceeessaessesesssscarssonsssesas F-17

UP-95662.5 Contents-7

Contents

More on Input Process Runs
Processing a Response
Processing Delayed Responses

Glossary
Index

Evaluation Card

Contents-8

UP-9662.5

Tables

4-1. Variables: Types, Sizes, Limitations ..o 4-6
6-1. RDB CommMAandscocoviieevnnicnnneriesienmsssssissesssssssessesssesesssssasssasassans 6-12
7-1. ART: Arithmetic OPerators ... 7-12
7-2. ART: Priority of Arithmetic Operationsveviveenn. 7-13
7-3. ART: Arithmetic and Trigonometric Functions ... 7-15
7-4, CAL: Priority of Arithmetic Operationsiveevnen 7-40
7-5. CAL: Priority of Relational Operationsvvcvreivevinineenns 7-41
7-6. CAL: AND and OR True/False Conditionsccovvvvveveennns 7-42
7-7. CAL: Internal Arithmetic/Trigonometric Functions ... 7-42
7-8. CAL: DEF Statement Report Fields/Valuescovivevvvnenens 7-44
7-9. DATE and TIME FOIrmats ... s 7-49
7-10. M Characteristics ... esess e c sees 7-253
7-11. N CharacteriStics ..o sese e nensessessssessssassans 7-254
7-12. EmPhasis CRhAractersiieioieinreetessiesissessssessssessosssessens 7-255
7-13. Five-t0-0One Color Codes .irinncreerernresreessnsrmssssmonene 7-261
7-14, STR: Data Control Commandserreeinrnencenesseeseinnns 7-377
A-1. Options for Ten Common Run Statementsccoovvvcrerennns A-13
B-1. Reserved WordsS ...ciccnsienenrctsinenseseisessessessesssasersessssssesesssssasses B-2
E-1. Limited Character Set (Fieldata)vncneineniennsneseans E-4
E-2. Full Character Set (ASCII) .ot sessssssseseens E-7
F-1. INFO Function Variablesicnccnesveseeesessennseens F-18
F-2. STAT Function VariaDIes ... F-20
UP-9662.5 Contents-9

1. Introduction

This manual contains reference information about new and existing run
statements. By using this manual, you can write and update complete
runs, obtain quick access to statement syntax, and learn about
efficiency techniques by following examples.

This section contains:

O New Run Design Features

O What Is a MAPPER Run?

UP-9662.5 1-1

New Run Design Features

MAPPER software level 34R1 contains many new run statements,
enhancements to existing run statements, reserved words, and other new
run design features. Following are brief descriptions of these new
features.

NEW RUN STATEMENTS

BRG (Break Graphics)
Packs data, such as primitive graphics code, in the output area and
places it into a result.

DCR (Decode Report) :
Transforms an encoded report into a readable report by specifying
the key. See ECR.

DSM (Display Message)
Allows you to display your own one-line message at the top of the
screen.

ECR (Encode Report)
Encodes a report, changing the data from readable text into code
that can be read only if a key is specified.

RDB (Run Debug)
Halts the run and enters into debug mode, which allows you to

interactively examine the contents of variables, reserved words, and
renamed results.

SC (Screen Control)
Allows you to create menus and other input screens or to edit text

already on the screen. You can also use it to overlay existing OUT
or DSP screens.

1-2 UP-9662.5

New Features

STN (Station Information)
Provides you with information about a specific station number.
Use it when sending data to another terminal via a DSG, OUT, or
SC statement.
USE (Use Named Variables)
Allows you to assign a variable name to a specific variable number.
ENHANCEMENTS TO EXISTING STATEMENTS
ADR Allows you to specify the RID number to add in a particular
mode and type. You can also enter the label or relative line

number to go to in case of an error.

DEF Added the V option to define the variable name that is
assigned to a specific variable number.

DLR Allows you to delete results as well as reports.

DSG Allows you to send DSG displays to other terminals. You can
specify a label or line number to go to in case of error.

DUP Allows you to specify a different mode and type to duplicate a
report into.

LDV Allows you to specify only the receiving variable when loading
a variable with its own contents.

MAU Added the A option to allow match updates on all line types.
MCH Added the A option to allow matching all line types.

OUT Allows you to send OUT displays to other terminals. You can
specify a label or relative line number to go to in case of error.

REP Allows you to specify a particular receiving report to be
crecated by the REP statement.

UP-9662.5 1-3

New Features

SRH Added the vrid variable to capture the RID number where the

find is made when doing a range search. This is useful when
using the B(n) option.

TYP Added the vrimt variable to capture the highest RID number

allowed in the form type; the vilmt variable to capture the
highest number of lines allowed per report in the form type;
and the vrids variable to capture the total number of reports in
the form type.

NEW RESERVED WORDS

ELINES Contains the line number currently being executed in a run

control report.

MAXTYPS$ Contains the maximum octal form type available on your

MAPPER system,

MSECS Contains the current number of milliseconds since

midnight.

OTHER NEW FEATURES

O

1-4

The RDB (Run Debug) function and run statement allow you to
execute a run interactively and examine the contents of variables,
reserved words, and renamed results. You can step through the run
one line or command at a time; or you can set a breakpoint to halt
the run at a specific line number, label, run statement, or variable.

Type A variables now allow up to sixteen characters rather than
twelve.

The new LIMITS run displays the highest RID number and lines
per report that are allowed for the mode and type you are

currently in.

The SCHEDULE run can now be called from a run control report
using the LNK (Link to Another Run) statement.

UP-9662.5

New Features

O Chart runs can now be called from a run control report using the
LNK (Link to Another Run) statement.

O Variables can now be assigned meaningful names rather than
numbers. These variable names are enclosed in greater than and
less than signs; for example, you can use <Finds> rather than V1.

O The DEMO, EDIT, and MARK sample runs have been updated to
show the usc of named variables.

O The BVT (Build Variable Table) run allows you to build or rebuild
a variable table displaying the location of variables and convert
variables in your run control report. The BVT run replaces the
VAL run, which is no longer supported.

O The RUN run now includes function keys that allow you to control
the operation of runs and 2 screen that allows you to display,
execute, and register results or exit the run,

O You can use zeros in substring variables to specify two kinds of
trailing substrings. The first kind is a known trailing substring, in
which you indicate the starting character position and use the
remaining characters in the field. The second kind is an unknown
trailing substring, in which you don’t know the starting character
position, but indicate the number of ending characters to use.

O Run statements now check the specified report to determine
whether the requested column exists. If the column number does
not exist, the run errs rather than returning the message "No more
finds." This enhancement does not apply to four run statements:
LFN (Load Field Name), RDC (Read Continuous), RDL (Read
Line), and RLN (Read Line Next).

UP-9662.5 1-5

What Is a MAPPER Run?

A MAPPER run is a sequence of statements based on MAPPER
functions that specify step-by-step instructions for generating reports
or results or for executing other applications. You type these run
statements in a run control report (see Appendix C for examples).

MAPPER runs efficiently execute sets of MAPPER functions. Runs are
especially appropriate for repetitive processing because they provide
both report generating as well as automatic database updating
capabilities.

You can make logical decisions based on variables or results (for
example, jumping, branching, and decisions based on data content).
You can also design MAPPER runs that run users can interrupt to
display data on the screen or enter information to be captured and
processed by the run.

You can format reports in your MAPPER runs to suit your needs.

UP-9662.5 1-7

2. Using the Data Directory

The Data Directory is a run design tool that allows you to dynamically
identify fields, modes, form types, and reports in run statements by
naming them.

Database naming has its own special syntax; however, it does not
replace standard run syntax. You can use both conventions in the same
run, ¢even within the same run statement.

This section includes:

O Naming Fields

0 Naming Modes, Form Types, and Reports

3 Naming Data Using Reserved Words

UP-9662.5 2-1

Naming Fields

You can process fields in reports by name. The names are derived
either from the headers of the report, or from RID 0 if you’re
processing the entire form type. Field names, therefore, are an integral
part of the database.

For example, in standard run syntax, this statement searches the report
for customer code AMCO:

@SRH,0.D,1 '* 26-4 O0,AMCO .
Using named fields, this statement does the same thing:
@SRH,0,D,1 "’ *CUST CODE' 0O0,AMCO .

You don’t have to specify the starting column number or the field size;
only the field name is required.

If a field moves within a report or if the size of the field changes, you
don’t have to change the reference to it.

REPORT HEADERS AND THE HEADER-DIVIDER LINE

When a run recads the first named ficld in a statement, it scans the
report for a header-divider line (*=). The report must contain a header-
divider line within the first 16 lines of the report.

The run derives starting columns and field sizes from the grouping of
equal signs on the header-divider line, extracting field names from up
to two asterisk lines immediately preceding it. If the report has more
than two asterisk lines, the run recognizes only the last two.

2-2 UP-9662.5

Naming Fields

Examples
This example shows the first five fields in RID 2B in mode 0:

*ST.STATUS.BY. PRODUCT .SERIAL.
*CD. DATE .IN. TYPE -.NUMBER.

From these fields, the following field names are derived:

ST CD (2-2)

STATUS DATE (5-6)

BY IN (12-2)

PRODUCT TYPE (15-9)
SERTAL NUMBER (25-6)

This example shows the first fields of a report with three asterisk lines
containing field headers:

* MONTHLY. ANNUAL .
*INTEREST.DISCOUNT.
* RATE . STATUS .

The field names are:

INTEREST RATE (2-8)
DISCOUNT STATUS (11-8)

Therefore, if you’re using named fields for reports with three or more

asterisk type header lines, keep the important information in the two
header lines immediately preceding the header-divider line.

UP-9662.5 2-3

Naming Fields

FIELD NAMES

Enclose field names within apostrophes (*). Names can be either
uppercase or lowercase and can contain from 1 to 32 characters. Field
names must be unique within the report header; if duplicate names are
present, the run uses the leftmost one.

You can use any characters in your field names. However, the run
considers only alphanumeric characters (A to Z and 0 to 9) when
comparing the field name to the report header; it ignores any other
characters, such as spaces or special characters. For example,
’CUSTCODE’, '"CUST-CODE’, and *CUST CODE’ are all acceptable field
names.

You can also abbreviate field names by omitting trailing characters, as
long as the characters specified are unique to that field.

For example, you can specify a search of the CUST CODE field like
this:

@SRH,0,D,1 °* *CUST" O,AMCO .
This makes the run statement shorter, which generally makes it more

efficient.

FIELD NAMES IN VARIABLES

Enclose the name of a variable within apostrophes if it contains a field
name. Do not place any other characters, such as spaces, within
apostrophes. You can use any variable type, including a variable-
variable designation. However, you cannot use substrings of variables.

This example searches the CUST CODE field for AMCO; notice that
there are no spaces or other characters between the apostrophes in 'V1’;

@LDV V1iH18="CUST CODE" .
@SRH,0.D,1 " "vi® 0O,AMCO .

2-4 UP-9662.5

Naming Fields

NAMING PARTIAL FIELDS

You can also specify a partial field. For example, you may want to
scan a field for specific starting or ending characters.

To name a partial field, enclose the relative starting column position
and number of characters of the partial field in parentheses after the
field name.

For example, this statement searches the first character of the
PRODUCT TYPE field:

@SRH,0,D,1 *' °*PRODUCT TYPE(1-1)" O.,B
To process a named field from any column to the end of the field,
specify the starting column and define the number of characters as

ZCro.

For example, this statement searches the PRODUCT TYPE field
starting at the sixth column in the field for the remainder of the field:

@SRH,0,D,1 *° "PRODUCT TYPE(6-0)" 0O,BOX1

To name the trailing portion of a named field, specify a starting
column of zero and the number of characters to process.

This example searches the last character of the ORDER NUMBER
field:

@SRH,0,D,1 ** 'ORDER NUMBER(0-1)" O,S

UP-9662.5 2-5

Naming Fields

FIELD ORDER

You can list multiple named fields in any order; they don’t have to be
in the same order in which they appear in the report, as long as the
parameters and named fields are in the same order.

For example, these two statements perform the same search and have
identical results:

@SRH,0,D °* *ST CD’,'CUST CODE' O,0R,AMCO .

@SRH,0,D *' "CUST CODE’,’ST CD' 0 ,AMCO,OR .

FIELD SIZE VARIABLE DEFINITION

Whenever an input parameter is used to process a report field, the
variable used for input must match the field size. The input field size
on a screen may also need to match a corresponding report field.

You can use the DVS (Define Variable Size) statement to create
variables equal to the size of the report fields (see DVS in Section 7).
When the run executes, it defines the size of the variable; any input
parameter or screen using that variable dynamically adjusts to a change
in the size of the field.

You can also define the variable to a field size in these statements that
load variables with data from report fields: RDC (Read Continuous),
RDL (Read Line), RLN (Read Line Next), and SUB (Subtotal). See
RDC, RDL, RLN, and SUB in Section 7.

SELECTING FIELDS TO DISPLAY

Use the FMT (Format) statement to select which fields you want to
display in a following DSP, OUT, or OUM statement (see FMT in
Section 7).

2-6 UP-9662.5

Naming Fields

CONVERTING TO FIELD NAMES

Use the LFN (Load Field Name) statement to translate standard column
number syntax into field names (see LFN in Section 7). You can use it
to convert existing run statements to use field names, or to translate

data from the OUM statement into field names (see OUM in Section 7).

EFFICIENCY CONSIDERATIONS

When a run encounters a field name, it must read the report header,
which requires one additional I/O access. However, it does not read the
header for other field names in the same run statement. Also,
succeeding run statements that specify the same report, or a result
derived from it, do not cause the run to read the report header again.

In this example, the SRH statement causes the run to read the headers;
the SOR and TOT statements do not.

@SRH,0,D,1 ** *ST CD' O,0R .
@SOR.0,D,-0 "’ *ORDER NUMBER' 0,1
@107,0,D,-0 S 'ORDER NUMBER','ORD QTY® 0O,S,+

You typically reprocess the result of a previous function. This

distributes the overhead of reading report headers and minimizes its
impact on any individual statement.

UP-9662.5 2-7

Naming Modes, Form Types, and Reports

You can identify a mode, a form type, or a report by name in a run
statement.

In standard run syntax, for example, this statement searches mode 0,
RID 1D:

@SRH,0.,D,1 ** °CUST CODE" 0O,AMCO .
Using a named report, this statement does the same thing:
@SRH, *ORDER STATUS’® *® ’CUST CODE’ 0O,AMCO .

You don’t have to specify the mode, form type, and report number —only
the name of the report.

Mode, form type, and report names are defined in the System

Directory, which you can access and update using the NAME run. (See
"NAME — Updating the System Directory" in this section.) Before using a
named mode, form type, or report, you must enter it in the System
Directory.

Depending on how it is defined, this name replaces one or more of the
mode, type, and RID (m,tr) subfields in a run statement. If the name
defines a mode, it replaces only the first subfield. A name that defines
a report replaces all three subfields.

You can also assign a name to a range of reports in a form type. With
BFN (Binary Find), FND (Find), and SRH (Search), the system
automatically adds the R option to the run statement if you use a name
that defines a range of reports,

2-8 UP-9662.5

Naming Modes, Form Types, and Reports

MODE, FORM TYPE, AND REPORT NAMES

Enclose the names of modes, form types, and reports within apostrophes
(’). Names must start with an alphabetic character (A to Z), can be
either uppercase or lowercase, and can contain from 1 to 16 characters.

You can use any characters in your data names. However, the run
considers only alphanumeric characters (A to Z and 0 to 9) when
comparing the name to the System Directory; it ignores any other
characters, such as spaces. For example, 'ORDERSTATUS’, 'ORDER-
STATUS’, and 'ORDER STATUS’ are all acceptable names.

NAMES IN VARIABLES

Enclose the name of a variable in apostrophes if it contains a mode,
form type, or report name. Do not place any other characters, such as
spaces, within the apostrophes. You can use any variable type,
including a variable-variable designation. You cannot use substrings of
variables, however.

This example searches the ORDER STATUS report for AMCO in the
CUST CODE field; notice that there are no spaces or other characters
between the apostrophes in V1,

@LDV ViH18="ORDER STATUS" .

@SRH, V1* ** °*CUST CODE' 0O0,LAMCO .
NAMING RESULTS

Wherever you specify the current result (-0) or a renamed result (-1 to
-4), you can omit the mode and type (m and ¢) fields.

For example, instead of the following statement:
@DSP,0.B,-0
you can use this statement to do the same thing:

@DbsP, -0

UP-9662.5 2-9

In field:

Naming Modes, Form Types, and Reports

Enter:

Name

Mode*

Type*

RID Number (s)*

Department

USER-ID

Function

Update
Directory

the data name (up to 16 characters, beginning with an
alphabetic character). Only alphanumeric characters are
stored in the System Directory; any other characters
entered in this field are ignored.

the mode number.
the form type (A to I).

the RID number, or a range of RIDs defined by a
lower-higher designation (1-12, 500-999, and so forth).

the department number qualifier. (Default = user
department.) If you want to allow all departments to use
the name, enter ALL.

the sign-on. (Default = your user-id.) If you want to
allow all users to use the name, enter ALL.

the type of update to the System Directory, where ADD =
add new item (default), CHG = change the definition of
an existing item, and DEL = delete an existing item.

Note that only the user who entered a name can change or
delete it.

a Y to include the name in the System Directory.

If you are naming several reports, it is more efficient to
enter N for all but the last report. You must enter a Y for
the last report to include all reports that you named.

* To name a mode, leave the Type and RID Number fields blank. To name a form type, leave only the
RID Number field blank. When deleting a name, you can leave the Mode, Type, and RID Number fields

blank.

UP-9662.5

2-11

Naming Data Using Reserved Words

You can use reserved words directly in run statements, which means
you don’t have to load them in variables beforehand. Because many
reserved words represent data entities, such as form types, this is also a
form of data naming.

For example, instead of the following sequence:
@CHG V114 MODES$
@CHG V216 TYPES
@CHG V314 RIDS
@DSP,v1i,v2,V3
you can use just one statement to do the same thing:

@DSP ,MODES , TYPES ,RIDS

In addition, you can use reserved words that represent numeric form
types to replace the mode and type (m and ¢) fields of run statements.

For example, this statement can replace the preceding example:

@DSP,TYPES ,RID$

UP-9662.5 2-13

3. Formulating Run Statements

MAPPER run statements begin with an at sign (@) and follow a
specific format. The next page shows a typical run statement format.
In addition, run statements often contain labels and special characters.
This section includes:

0 Run Statement Format

O Labels

O Special Characters

UP-9662.5 3-1

Run Statement Format
V1I5 five-digit variable named V1, which captures the
number of finds
Y2I6 six-digit variable named V2, which captures the
number of lines searched
VALID STATEMENTS AND ERROR MESSAGES
MAPPER software considers any line in a MAPPER run that begins
with an at sign (@) a run statement line; the line must have a valid
statement. If the system finds something invalid in a line, it responds
with an error message like one of these:

YUNABLE TO FIND ALL THE FIELDS REQUIREDY

"THIS CONTROL WORD IS NOT VALIDY

FORMULATING RUN STATEMENTS

Follow these guidelines when formulating run statements:
O Type an @ in column 1.

O Enter multiple run statements on one line and separate them with
spaces. Use just one @ per line.

O Terminate a line with a space-period-space (A.A). Beginning a
line with an at sign-period (@.) or an at sign-label-period (@label .)
also terminates the line. You can begin comments (which are
useful for analyzing MAPPER runs) anywhere after the space-
period-space on any line.

O These statements terminate the line (the MAPPER system ignores

statements that follow them on the same line): DSP, ESR, LNK,
OUT, RDB, RRN, RSR, RTN, RUN, SC, and WAT.

UP-9662.5 3-3

Run Statement Format

3-4

You can specify fields to process in the cc (column-characters)

subfield in any order, regardless of their order in the report, as
long as you list the parameters in the same order. For example,

these two run statements work the same:

@SRH,0,C,1 *° 2-5,16-1 O0,BLACK,A

@SRH,0,C,1 ' 16-1,2-5 0,A,BLACK
Define columns only once in the cc (column-characters) field.
Terminate fields with spaces. A comma does not terminate a field.
Separate subfields with commas. This includes blank subfields.
Subfields that define character positions to process must correspond
to control parameter subfields. The subfields must be equal in
number to, and in the same sequence as, the character position
subfields they correspond to.
You can use variables in fields and subfields.
Never exceed 19 variables in a field or subfield. In some cases, the
maximum number of variables allowed is fewer than 19 and noted

as such.

Enclose fields or subfields that require significant spaces within
apostrophes.

The required fields and subfields for a run statement vary from
statement to statement. Inciude all required fields. Enter two
apostrophes (’) if you’re not entering options in the o (options)
field.

To get the literal representation of variables in the output area,
enclose them within apostrophes (for example, 'V1°).

Do not use an at sign or a colon (@ or :) in the first character
position of any line in the output area.

UP-9662.5

Run Statement Format

0O Whenever you use a comma for something other than a subfield
separator, enclose it within apostrophes; for example, to include a
comma in the replacement string of an LCH (Locate and Change)
statement, use ‘change, and’.

O In run statements that require an issuing and a receiving report,
designate the issuing report first and the receiving report second.

O Run statements that access or lock reports (IDU, LOK, RDL, SOR,
SRH) cannot access their own run control report.

See Appendix D for more ways to improve your MAPPER runs.

UP-9662.5 3-5

Special Characters

Use these special characters in MAPPER runs:
00 Semicolon (;) as a field delimiter

O Slant { /) to indicate multiple parameters (for example, in a range
search)

00 Reverse slant (\) for continuing a run statement on the next line

00 Apostrophe (*) to specify literal data in parameters fields of run
statements

SEMICOLON — FIELD DELIMITER

In an ART or CAL statement, use a semicolon (;) to separate
expressions. For example:

@ART V2+V3;V4*4 VIOI112,V11112
and:

@CAL,0.C,1 L 50-5,56-8,65-15 0,A,B,C \
C=A*B;AVRG=VAVG(A)

In an IF statement, use a semicolon to control more than one decision
on the same line. For example:

@IF V1 = 3 GTO 9 ; IF V1 = 6 GTO 8 ; GTO END .

See GTO and IF in Section 7 for more examples.

3-8 UP-9662.5

Special Characters

SLANT — MULTIPLE PARAMETERS

Use a slant (/) to separate multiple parameters in a statement. For
example:

@SRH,0,B,2 D 2-2 O, OR/O0,8C V113, ,val3

REVERSE SLANT — CONTINUE STATEMENT

Use a reverse slant (\) whenever a run statement is too long for one
line. For example:

@CAL,0,C,1,,,99 L 25-7,33-8,65-15 0 ,A,B+,C+ \
MAXA=VMAX (A) ;MAXB=VMAX(B);C=B-A V119,v219,\
v3i9,v4ls

The reverse slant at the end of the first line tells the system that this
statement continues on the second line.

For readability, use the reverse slant at the end of a subfield, and if
possible, avoid starting a second or succeeding line with a space.

You can use up to 640 characters in a run statement on multiple lines.

The system counts all characters in the last line, including unused
spaces.

UP-9662.5 3-9

Special Characters

APOSTROPHE — LITERAL DATA
Normally, characters in the parameters fields of run statements need
not be enclosed in apostrophes. The following characters, however,
must be enclosed in apostrophes:
O Spaces; for example:

@SRH,0,D,1 D 'CUSTOMER® O, 'DIGITAL CORP’.
O Slants; for example:

@SRH,0,D,1 / 'CUSTOMER® 0O, 'UNION STEEL/SULFR’

O Commas; for example:

@SRH,0,C,1 F "PRODUC COST" 0O,'13,500°

3-10 UP-9662.5

4. Variables and Reserved Words

Variables and reserved words are important aspects of run design, so
you should know how to use them properly and efficiently. This
section defines variables and reserved words and tells why you use
them in run design. It also presents two runs (VARIABLE and BVT)
that you use with variables,

This section includes:

Variables — Names, Types, and Sizes

Initializing and Redefining Variables

Changing the Contents of Variables

Using Exponential Notation with Variables

Examples Using Variables

Loading Variables with Screen Input and Initial Input Parameters

VARIABLE Run—Testing Contents of Variables

BVT Run —Building Variable Tables and Converting Variables

o o o o o o o g o

Reserved Words

UP-9662.5 4-1

Variables —Names, Types, and Sizes

A variable is a labeled entity that can assume different values. These
values are assigned by you or by the system.

When you use a variable, you must first initialize it. This means that
you assign it a name, a variable type, a size, and an initial value.

NAMING VARIABLES

You can name variables in two ways:

]

4-2

You can use the traditional naming conventions, in which you
name a variable with a V followed by a number from 1 to 199.
(You can use up to 399 variables if your system is set up to handle
more than 199. Ask your coordinator for the maximum number of
variables allowed at your site.) You refer to the variable with the
letter V and its number (for example, V10).

You can use the variable-naming method, in which you assign a
meaningful name for a variable rather than a number. The
variable name can be no greater than twelve characters, it must
begin with an alphabetic character (A-Z), and contain only
aphanumeric characters (A-Z and 0-9). You enclose the name in
less than (<) and greater than (>) signs (for example, <NAME>).

You can use these named variables anywhere you would use
numbered variables in a run. When a named variable is defined,
the system assigns it the lowest unused variable number. Therefore,
the first variable in a run is assigned to V1, the second is assigned
to V2, and so on. After a name is assigned to a variable, it can no
longer be referenced by its variable number.

UP-9662.5

Variables —Names, Types, and Sizes

Mixing named and numbered variables in the same run is not
recommended. However, if it is necessary to do so, you can use the
USE run statement, which allows you to assign a name to a specific
variable number. See USE (Use Variable Name) in Section 7.

NOTE: Named variables are slightly less efficient than numbered

variables. Although the difference is small, you may want to
consider it when using logic-intensive runs.

ASSIGNING VARIABLE TYPES AND SIZES

When you use a variable for the first time, you must assign it a type
and a size. There are six types of variables:

A Alphanumeric

F Fraction

H Hollerith (any characters)
1 Integer (whole numbers)
(@) Octal

S String

You specify the size by using a number (or another variable) to
indicate the number of characters the variable can have.

When you initialize a variable, you specify its name, its type, and its
size.

For example, this means that V9 is an integer variable with three
characters:

V39i3

Using the new variable-naming conventions, this means that <PHONE>
is an alphanumeric variable with eight characters:

<PHONE>AS8

Table 4-1 shows types and sizes of variables used in ART, CHG, and IF
statements.

UP-9662.5 4-3

Variables — Names, Types, and Sizes

USING VARIABLES
You can refer to parts (substrings) of a variable:
variable-name(position-characters)

where position-characters are the starting character in the variable and
the number of characters. For example, this means start at character
position 1 for three characters:

V10(1-3) or <PHONE>(1-3)

NOTE: Substrings of H, I, and S type variables are treated as A type
variables. See Table 4-1 for information about types, sizes,
and limitations of variables.

You can also use zeros in substrings to specify known (railing substrings
and unknown trailing substrings. To use a known trailing substring, you
specify the starting character position, then a zero to indicate the
remaining characters of the field. For example, this means start at
character position 3 for the remaining characters in V1:

V1(3-0)

To specify an unknown trailing substring, you specify zero because you
don’t know the starting character position; then specify the number of
ending characters to use. For example, this means to use the last two
characters of V1:

V1(0-2)
You can use another variable that has a number from 1 through 199 to
name a variable. For example, if V1 contains the value 2, this

references variable V2:

VVi

4-4 UP-9662.5

Variables — Names, Types, and Sizes

You can also use the new variable-naming conventions to reference a
variable with another variable. You specify this by enclosing the
variable name within two less than and greater than signs. For
example, if variable <ONE> contains the value TWO, this references
variable <TWO>:

<<ONE>>

You can use another variable that contains a valid number (depending
on the type of variable) to specify the size of a variable. For example:

viive
You can use variables in many places and for many purposes in
MAPPER runs. As you become increasingly familiar with MAPPER
run statement syntax and special commands, you are better able to
determine where a variable might be useful.

Here are just a few places you can use variables in place of hard-coded
data:

O In any field or subfield in run statements.

O In the run’s output area. See BRK in Section 7.

0 As counters and checks for logical decisions. See IF in Section 7.
Table 4-1 lists the maximum size, examples, and contents of each type

of variable. It also describes the contents of each type when used with
ART, CHG, and IF statements.

UP-9662.5 4-5

Variables — Names, Types, and Sizes

Table 4-1. Variables: Types, Sizes, Limitations

Type A (Alphanumeric):

Maximum Size:
Examples:
Contents:

ART:

CHG:

IF:

16
Vi0alé <PHONE>a8
Alphanumeric and special characters.

Must have exclusively numeric characters.
For arithmetic, numeric characters produce
numeric answers and change letters and special

characters to the next letter in the character set.

Treats spaces and some special characters (. + -) as
ZEer0S.

Type F (Fraction):

Maximum Size:
Examples:
Contents:

18

V10f18.10 <TOTAL>f18.10

Fractional numbers, positive and negative.
Positive numbers may be unsigned; that is, they
don’t need a plus sign (+). The maximum size of
18 includes the sign and decimal point. The
fractional portion may be up to ten characters. In
the above example, 18 characters are allowed —7
before the decimal point, the decimal point, and 10
after the decimal point. If more positive numbers
are added to the left of the decimal point, the
decimal portion is truncated.

ART, CHG, and IF are allowed.

4-6

(continued)

UP-9662.5

Variables — Names, Types, and Size:

Table 4-1. Variables: Types, Sizes, Limitations (cont.)

Type H (Hollerith):
Maximum Size:
Examples:
Contents:
ART:

CHG:

IF:

18
V10h16 <CODE>h18
Hollerith, any characters.

Not allowed.

Changes all characters to the next character in the
set, including numbers.

Characters must be identical to satisfy a true
condition.

Type I (Integer):
Maximum Size:
Examples:
Contents:

16

V10112 <FINDS>13

Integer (whole numbers), positive and negative.
Positive numbers may be unsigned; that is, they
don’t need a plus sign (+). Include the sign in the
variable size —it is a significant character.

ART, CHG, and IF are allowed.

UP-9662.5

(continued)

Variables — Names, Types, and Sizes

Table 4-1. Variables: Types, Sizes, Limitations (cont.)

Type O (Octal):

Maximum Size:
Examples:
Contents:

ART:

CHG:

IF:

12

Y5012 <TYPE>012
Numbers 0 through 7.
Not allowed.

For arithmetic, produces octal answers.

Considers the number’s decimal value, not its octal
representation.

Type S (String):

Maximum Size:
Examples:
Contents:

ART:
CHG:

IF:

132

v10s132 <ADDRESS>s540

Alphabetic, numeric, and special characters, any
combination (for a total of 2,016 characters in all
string variables combined).

Not allowed.
Not allowed.

Substrings up to 18 characters.

Full redefinition of string variables, of both size and type, is allowed.

4-8

UP-9662.5

Initializing and Redefining Variables

You can initialize and redefine variables in these ways:

O With an LDV statement

O With a CHG statement

O By way of another statement

NOTE: You can also initialize and redefine variables with a colon.

However, this method is no longer recommended because it is
less efficient and more difficult to use.

USING AN LDV STATEMENT
Using an LDV statement is the most efficient way to initialize and

load a variable, as in these examples. The first LDV statement

initializes V1 to I; the second redefines V1 to A and initializes V2 to
10:

@LDV V1l12=1

@LDV V1A1=A,V212=10

UP-9662.5 4-9

Initializing and Redefining Variables

USING A CHG STATEMENT

You can use a CHG statement against all variables except type S
variables. You can initialize multiple variables on one line with
multiple CHG statements, as in this example:

@CHG V10A3 XYZ CHG V11A5 ABCDE

This example shows how to name a variable with the contents of
another variable. If V2 contains 10, the following initializes V10 to
XYZ:

@CHG VV2A3 XYZ
This example also names a variable with the contents of another
variable. If <ONE> contains the value TWO, the following statement
initializes variable <TWO> with 2:

@CHG <<ONE>>12 2
Redefined variables lose their previous content. In the following
example, the first two CHG statements initialize V10 and V11, and the
last two CHG statements redefine them:

@CHG V10A3 AAA CHG V11A1 A

@CHG V10F4.2 1.23 CHG V1114 1234

4-10 UP-9662.5

Initializing and Redefining Variables

INITIALIZING VARIABLES WITH OTHER STATEMENTS

Several statements initialize variables (for example, RDC, RDL, and
RLN). Some statements (for example, FND and LOC) place certain
information in variables; some statements (for example, ART and TOT)
place values in variables. As you learn the functions and run
statements, you’ll discover these and other possibilities.

This example shows how to use an RDL statement to place the data in
column 5 for six characters in <DATE> and the data in column 71 for
five characters in <ORDER>:

@RDL,0,B,2,<LINE>12,99 5-6,71-5 <DATE>1,<ORDER>H

This example uses a FND statement to place the RID number of the
report where the find was made in <RID> and the line number in
<LINE>:

@FND,0,B " " "ST-CD' O,IP <RID>16,<LINE>16

This example uses a TOT statement to place the number of lines
processed in <LINES> and the sum of the values totalized in <SUM>:

@T0T,0,C,1 E 42-7 O,+ <LINES>14,<SUM>17

UP-9662.5 4-11

Changing the Contents of Variables

You can change a variable’s content several ways, as in these examples.
Note that these examples are shown as if in sequential order in a run.

@LDV V10A3=AAA . INITIALIZE V10 TO AAA
@LDV V10=BBB . CHANGE V10 TO BBB

@LDV Vi113=123 . INITIALIZE V11 TO 123
@INC V11 . INCREASE V11 BY 1

@LDV V12515=0123456789ABCDE .

The following statement loads the first three character positions of V12
with V10:

@LDV V12(1-3)=V10 . V12 = BBB3456789ABCDE

Note that this INS statement does the same as the preceding LDV
statement, but it is slower and less efficient:

@INS V10 V12(1-3)

The following statement loads two characters of V12 starting in column
14 with two characters of V11 starting in column 2:

@LDV Vi12(14-2)=V11(2-2) . V12 = BBB3456789ABC24

This LDV statement initializes V13 to 4 and changes V10 to equal the
three character positions starting in column V13 of V12:

@LDV V1311=4,V10=V12(V13-3) . V10 = 345

UP-9662.5

Using Exponential Notation with Variables

Type A, type I, and type F variables can have numbers in exponential
notation, as in this example:

@CHG V1A12 12E5 + 1 . V1 EQUALS 1200001
If the numbers in a variable get too large for the variable, the system
changes the value to exponential notation if variables are defined as A,

I, or F type. For example:

@CHG V218 12345678 * 10 . V2 EQUALS 1.234E+8

UP-9662.5 4-13

Examples Using Variables

This DSP statement:

@dsP,v1,V2,V3

is requesting that the following be displayed:

O

O

O

Mode V1 (that is, the mode number in V1)
Type V2 (that is, the form type in V2)

Report V3 (that is, the report number in V3)

Variables V1, V2, and V3 could be initialized in any number of ways.
Here are some possibilities:

O

4-14

You could load the variables earlier in the run so that if the data
you want to display is moved to another mode or report, you need
to change that information only once in your run control report —at
the place where you initialized V1, V2, and V3. This is especially
useful if the report is processed repeatedly in the run, and is much
easier than changing every applicable statement in the run.

You could write the run to pick up information entered on the
screen by the run user. For example:

ENTER THE LOCATION OF THE REPORT YOU WANT & TRANSMIT
MODE 0O , ALPHABETIC TYPE O , RID DO

@BRK OUT,-0,3,3,1,1,Y,,.P .

@CHG INPUTS$ V113,V2A1,V314 DSP,V1,V2,V3

In this example, V1 is initialized as the mode entered, V2 as the
type entered, and V3 as the report entered on the screen. The
MAPPER system displays the requested report on the screen.

UP-9662.5

Examples Using Variables

Certain statements load variables automatically with pertinent
information. For example, this statement executes a find across all
reports in mode 2, type D, and loads V3 with the report number of
the first find:

@LDV V113=0,V2A1=D
@FND,V1,V2 *' 22-30,' 1' V3l5

You could also load the variables with a combination of screen
information and internal run loading (LDV), as in this example:

ENTER CODE TO FIND & WHERE TO LOOK (MODE 0,TYPE B)
STATUS CODEO , R1DO .

@BRK OUT,-0,3,3,1,1,Y,,,P

@CHG INPUT$ V4A2,Vv3I14 LDV V1I11=0,V2A1=B

@FND,V1,v2,v3 ' 2-2 0,v4 V515

@dSP,Vv1,v2,V3, V5

In the last statement, V35, which is the line number of the find, is
the line the display is started on.

UP-9662.5 4-15

Examples Using Variables

O

You can use variables as counters that the MAPPER system
increases whenever logically necessary and then later checks to see
if looping should continue, as in this sequence of statements:

@LDV V113=0,V2A1=D,V314=1,V415=6
@LZR,V1,V2,V3 V515 . V5=NR.LINES
@FND,V1,V2,V3,V4,196 ** 22-3 0, 2' ,v4
@DSP,V1,V2,V3,V4 . V4=LINE
@INC V4 IF V4 NOT > V5 GTO LIN -2
@196:

No More Finds
@GTO END

In this example, V4 is the counter for the line to start the find on,
as well as the line number of the find for use in the display. V5 is
the number of lines in the report. As V4 is increased, the find
process begins further into the report. When V4 becomes greater
than V35, the entire report has been processed and the run ends.

You can use loops and counters like these in many other ways. In
the same example, you could execute a find across reports and
display the correct report at the appropriate line by using more
variables and checks.

UP-9662.5

Loading Variables with Screen Input and Initial Input Parameters

NOTE: All input captured from the screen using these reserved words

is in the character set of the run control report.

USING INPUT$ TO CAPTURE DATA FROM THE SCREEN

When using INPUTS to capture data from the screen, remember these

guidelines:

0 String variables are not allowed.

0O Specify @CHG INPUTS after an OUT or SC statement.

0 The data entered in variables starts from a tab character: the data
after the first tab character in the first variable, the data after the
second tab character in the second variable, and so on.

O The number of characters loaded from a field depends on the

defined length of the variable.

This example, a portion of a run, uses the reserved word INPUTS to
enter data from the screen:

NounkhwN =

@BRK,0,A

ENTER APPROPRIATE DATA AND TRANSMIT .

0 ,ENTER START DATE IN FORMAT YYMMDD
0 .ENTER END DATE IN FORMAT YYMMDD

PLACE CURSOR HERE ->0 , AND TRANSMIT
@BRK OUT,-0,2,6,1,1,Y .
@CHG INPUT$ <STDATE>16,<ENDATE>16

UP-9662.5

Loading Variables with Screen Input and Initial Input Parameters

Here are descriptions of the lines in this example:

I.

2-5.

The first BRK statement defines the next output area (that is, the
Iines that follow) as mode 0, type A. (See "Handling Reports and
Results" in Section 6 for an explanation of the output area.)

Place these lines in the output area.
The second BRK statement places the preceding lines from the
output area into the -0 result. The OUT statement displays the new

-0 result on the screen.

CHG INPUTS loads <STDATE> with the start date and <ENDATE>
with the end date that is entered.

USING INPUT$ TO CAPTURE INITIAL INPUT PARAMETERS

Here are some examples of initial input parameters:

a

a

a

Information the user enters after the run name (for example,
runname,ab,1234,99.99)

RUN (Run Start) statement (See RUN in Section 7.)

RRN (Remote Run) statement (See RRN in Section 7.)

LNK (Link to Another Run) statement (See LNK in Section 7.)
BR (Background Run) statement (See BR in Section 7.)

BPRUNS command in a batch runstream

When using INPUTS to capture initial input parameters, remember
these guidelines:

a

a

O

You can capture up to 40 variables.
Check the maximum size of the variable (see Table 4-1).

String variables are not allowed.

UP-9662.5 4-19

Loading Variables with Screen Input and Initial Input Parameters

This example, a portion of a run, uses the reserved word INPUTS to
capture input parameters and, later, to enter data from the screen;

1. @CHG INPUT$ ViIH2,v2i14,V3F5.2
(other run statements)

@BRK,0,A .

ENTER PART NUMBER O
ENTER QUANTITY O ,
@BRK OUT,-0,2,2,1,1.,Y
@CHG INPUT$ V1iH14,V218

Sk w

Here are descriptions of the lines in this example:

1. The first statement in the run captures three variables from initial
input parameters.

2. The first BRK statement clears the output area and defines the
next output area as mode 0, type A.

3. Place this line in the output area.
4. Place this line in the output area.

5. The second BRK statement places the output area in a result (-0);
the QUT statement displays the new -0 result on the screen.

6. CHG INPUTS loads the value of the part number into V1 and the
value of the quantity into V2.

4-20 UP-9662.5

Loading Variables with Screen Input and Initial Input Parameters

USING INSTR$ TO CAPTURE DATA FROM THE SCREEN

When using INSTRS$ to capture data from the screen, remember these
guidelines:

0 You can use string variables.
1 No leading tabs are required.
1 Input variables are terminated by the end of the line.

0 The maximum usable number of variables is the vertical screen
size.

O Specify @CHG INSTRS before the OUT or SC statement.

O Do not use INSTRS$ with formatted or protected output screens,
where the data received depends on the terminal type.

This example loads variables with two lines of data on the screen:
@CHG INSTR$ V1S80,Vv2S80

V1 contains up to 80 characters, starting with the first character

following the SOE. If there is no SOE on the screen, it contains the

first 80 characters starting with the home position. V2 contains up to

80 characters starting with the first character on the next line.

USING INVARS$ TO CAPTURE DATA FROM THE SCREEN

When using INVARS to capture data from the screen, remember these
guidelines:

0O You can enter up to 40 variables.
O You can use string variables.

00 Specify @CHG INVARS before the OUT or SC statement.

UP-9662.5 4-21

Loading Variables with Screen Input and Initial Input Parameters

O The data entered in variables starts from a tab character: the data
after the first tab character in the first variable, the data after the
second tab character in the second variable, and so on.

O The length of an input field varies; it depends on the variable’s
defined length.

This example, a portion of a run, uses the reserved word INVARS to
enter data from the screen:

@CHG INVARS V1517,V213,V316

@BRK .

ENTER DESCRIPTION O

ENTER QUANTITY O .

ENTER DATE IN FORMAT YYMMDD O .
@BRK OUT,-0,2,3,1,1,Y .

In this example, after the user enters the solicited information, the run
continues at the statement that follows the OUT statement. V1, V2, and
V3 contain the information the user entered.
USING INVR1$ TO CAPTURE DATA FROM THE SCREEN
INVR1S is similar to INVARS, but it allows you to load several fields
into one variable. When using INVRI1S to enter data from the screen,
remember these guidelines:
O You can capture up to 40 variables.

You can use string variables.

O
O Specify @CHG INVRI1S before the OUT or SC statement.
O

Do not use INVRI1S$ with formatted or protected output screens,
where the data received depends on the terminal type.

O The variable’s length determines how many characters, including

intervening tab characters, are loaded into each variable.
Characters beyond the current screen line are not loaded.

4-22 UP-9662.5

Loading Variables with Screen Input and Initial Input Parameters

In this example, after the user enters the solicited information, the run
continues at the statement that follows the OUT statement. V1 contains
both the first and last name the user entered. Note that protected
format is not used.
@CHG INVR1$ V1525
First Last

ENTER NAME 0O H
@BRK OUT,-0.2.,4,1,1.Y .
USING ICVARS$ TO CAPTURE DATA FROM THE CONTROL LINE

When using ICVARS to capture data from the control line, remember
these guidelines:

0O ICVARS captures information only when the user presses XMIT
from the control line and you have specified a CHD statement.

O Specify @CHG ICVARS before the DSP, OUT, or SC statement.
O No leading tabs are required.
O You can use string variables.

This example displays a report and loads V1 with input the user
transmitted from the control line:

@CHD 100

@CHG ICVARS V1S80
@DSP,0,B, 2

UP-9662.5 4-23

Loading Variables with Screen Input and Initial Input Parameters

USING FKEY$ TO CAPTURE FUNCTION KEY INPUT

In this example, the KEY statement requests function key input, the
DSP statement displays RID 2B in mode 0, and the LDV statement loads
V1 with the contents of FKEYS. V1 can then be tested for its contents,
and the run can be processed accordingly.

@KEY .

@DdsP,0,B,2
@L.DV.W V112=FKEY$

4-24 UP-9662.5

VARIABLE RUN

This is the result:

liner 2 fmt> rl» - shftr hld chrs» hid ln») <<<RESULT>>> »

Variable values for entry (100.00)

QACHG INPUTS V1 QCHG INVARS V2 CHG V3 V1 + 1 aINC V1

¢ 101y VIA6 = (¢ 101

VIA6 = (100.00) V2A6

(100.00) V3A6

vilté = (¢ 100y V216 =(100) V3I6 =(101 VII6 =(101
VIF6.3 = (100.00) V2F6.3 = (100.00) V3F6.3 = (101.00) VIF6.3 = (101.00)
vio6 = (100.00) V206 = (100) V306 = (N/A) V106 = (100.00)
VIH6 = (100.00) V2H6 = (100.00) V3H6 = (100.01) VIH6 = (101)

. Press F1 to enter another value

If you want to test another value, press F1.

4-26 UP-9662.5

BVT Run —Building Variable Tables and Converting
Variables

Use the BVT (Build Variable Table) run to build or rebuild a table that
displays the location of all the variables in your run control report.

You can also use it to name variables so you can easily convert to or
from named variables. (See "Variables—Names, Types, and Sizes" in this
section for information about named variables.) The variable table
result is displayed at the end of your run control report.

To use the BVT run, display your run control report and enter one of
these requests:

BVT The Build Variable Table request builds a variable table
and displays it as a result at the end of your run control
report.

BVT,Q The Quick build lists only the variables that are defined

(for example, V1A3 rather than V1),

CvVT The Convert request converts V-type variables (such as V1)
to named variables (such as <name>) using a previously
built variable table from the end of your run control
report.

CVT,N The Convert from Named Variables request converts all
named variables to V-type variables.

CYZ This request converts all V-type variables to three-
character variables (for example, V1 to VO0O1).

Note that each of the previous requests also calls the BLT (Build Label
Table) function, which builds or rebuilds the label table.

When you rebuild a variable table, the new table is matched with the
existing table to preserve any user-defined names or comments.

UP-9662.5 4-27

BVT Run

Building or rebuilding a variable table produces this information as a
result at the end of your run control report:

.VARIABLE TABLE

* Name .Vnum.Sq. Line Numbers . Comment

*============ ==z=_== e A A

Field Description

Name The variable name (<name>) to equate to the V-type
number. (Default = N00O.)

Vnum The V-type number to equate to the variable name
(<name>).

sq The sequence number used to match and save user

Line Numbers

Comment

4-28

comments.

The line number where the variables are located. The
line numbers containing defined variables are flagged
with asterisks.

Any user-supplied comments.

UP-9662.5

BVT Run

Here are some additional points to remember:

O When you use BVT or BVT,Q to build or rebuild a variable table
locating a named variable, the run first checks for an existing table
to determine a V-type variable to associate the named variable
with, The run does not read USE run statements to determine a
V-type variable (see USE in Section 7). For example,

@USE NAME=V 199 does not necessarily associate <NAME> with
V199.

O When you use CVT or CVT,N to convert variables, you are not
notified when a variable/variable is converted. For example, if
you convert YV199 to <<name>>, it may not execute correctly.

0O When you use CVT, CVT,N, or CYZ, and the size of the new
variable causes the run statement to extend beyond the end of the
line, the original report is displayed at that line number. No
changes are made to the run control report until you change that
run statement line.

Example

The run control report for the MARK Run, shown in Appendix C, is in
RID 3E of mode 0. After the BVT run is executed against this run
control report, this information is displayed at the end of the run
control report:

.VARIABLE TABLE

* NAME .VNUM.SQ. LINE NUMBERS COMMENT

*============-====.==._ ===

QTY vee1 o1 7*,13,18%,19 ORDER QUANTITY

RETAIL veez o1 7*,8,13,18%*,19 RETAIL $33%

CUsT Vo3 81 18*,19 CUSTOMER NAME
..... END REPORT

UP-9662.5 4-29

Reserved Words

A reserved word is a character string that is reserved for specific use in
a MAPPER run.

You can initialize a variable with the value of a reserved word using
CHG and LDV statements. For example, this CHG statement initializes
V2 as an SOE character:

@CHG V2H1 SOES$

This LDV statement initializes <MODE> to contain the mode number,
<TYPE> to contain the numeric form type number, and <RID> to
contain the report number of the last report or result processed or on
display:

@LDV,W <MODE>14=MODES . <TYPE>16=TYPES,<RID>14=RID$
See also CHG and LDV in Section 7.

You can also use reserved words directly —where you might otherwise
use a variable —in these subfields of a run statement:

Mode

Form type
RID number
Line number
Format
Parameters

"™ TNY Ty

NOTE: You cannot use reserved words in the output area, where
MAPPER software reads them literally. You can use
variables in the output area, however. (See BRK and OUT in
Section 7 and "Handling Reports and Results" in Section 6 for
more details.)

See Appendix B for a list of all reserved words and more examples.

4-30 UP-9662.5

FORM Run

System Response

LINEP 1 FMTP RLP - SHFTP HLD CHRSP HLD LNP
.DATE 15 FEB 88 08:24:20 RID 75 15 FEB 88 JDOER

*RUN FUNCTION DATA: EXAMPLE OF USE OF THE RUN DESIGN AID 'FORM!'
*

4

fcs

E0210

ASRH,m, t(,r,L,q,lab) o cc Lltyp,p (vlines,vls,vrid) .
ASOR,m,t,r o cc Lltyp,p .

aMcH,im, it,ir,rm,rt,rr(,lab) o icc iltyp,ip rcc rltyp,rp .
Q0SP,m,t,r(,L, tabp,f,int?,hold,msg8@)

5-8

UP-9662.5

RUN Run

When you press F4 to end the automatic run generation, this screen is

displayed:

RUN

Automatic Run Generation Terminated

Display the result
Execute it

Register it in Type (B-1)
Exit

(You are in mode nnn)

Place the cursor in one of the fields and press XMIT, or if you want to
register your run, enter the form type (B-1) in which to register it.

Field Description

Displaytheresut ~ Display the run as a result. If you want to return to
this menu, press F1.

Execute it Execute the run that has been generated. Note that you

Register it in Type

Exit

must press F1 for each DSP in the result. After the run
has finished executing, the menu is redisplayed.

Place the generated result in the form type you specify
and register it as a run. The run name is your user-id
and only you can execute it. Because the system deletes
any runs previously generated with the same name, you
may want to ask your coordinator to change the name.

Exit Automatic Run Generation.

*
Note that the RUN run may be restricted on some systems; contact your coordinator if you have
problems registering the run.

UP-9662.5

KUN Kun

These functions generate run statements and terminate automatic run

generation:

X Generates an XIT statement. When the XIT is
encountered in the run, the user is signed off.

REL Generates a2 REL statement. When the REL is
encountered in the run, the screen is released.

You can use most manual functions, except these:

A
AL

CALL

CUT (PASTE)
LANG

Lz

PC

PL

PUNCH

PSW

RPSW

RSI

SP
SS
WP

You also cannot use:

OK

Arithmetic

Alarm

Interactive message switching
Cut (Paste)

Language

Line Zero

Phrase Change

Phrase Locate

Punch

Password

Read Password

Remote Symbiont Interface
(demand mode)

Spelling Check
Station-to-Station Message
Word Process

Acknowledge a message

or these auxiliary device directives:

SI
SQ
SR
SX

UP-9662.5

Activate a screen bypass to an offline terminal
Resend a report to an auxiliary device
Reactivate printing at the specified page number
Terminate printing on an auxiliary device

RUN Run

These functions work when you are entering them as manual functions,
but do not generate run statements:

FUN Function

L Line Control
PNT Paint

RSM Resume

T Type

DISPLAYING A REPORT OR RESULT

While you are executing manual functions within automatic run
generation, the RUN run generates a DSP (Display Report) statement
each time you display a report and when you terminate automatic run
generation with a report or result on display. If you don’t want the
final DSP statement, press F3 to get the Automatic Run Generation logo
before pressing F4.

The RUN run does not generate a DSP statement for each function
result. For example, if you execute the S (Search), SORT (Sort), and
TOT (Totalize) functions, the generated run statements are entered into
your run and only the final result is displayed. If you want your run
to display each result, enter d - after each result is displayed.

You can also display a result at a specified line number and in any
format. To display the result at a specific line, roll the line to the top
of the screen. To display the result in a different format, enter the
format in the control line. Remember to enter d - if you want your run
to display this result.

5-14 UP-9662.5

6. Designing and Debugging Runs

Before writing a run, it’s important to know how to handle reports and
results. In addition, you should follow a step-by-step procedure in
creating your run. Finally, you need to know some debugging methods
in order to create an error-free run.

This section includes:

O Handling Reports and Results

O Designing and Registering a Run

O Debugging Your Run

00 Using RDB (Run Debug)

UP-9662.5

Handling Reports and Results

You can process several reports in a single MAPPER run. The simplest
run acts on a report or result from a previously executed function and
produces a result or updated report, as shown in this figure:

Report/Result
Input

Report/Result
Output

You can use several reports and results from different modes for input,
provided your coordinator has registered the modes for access. This
figure shows a run using reports and results from different modes:

Reports/Results Reports/Results Reports/Results
Input Input input

Run

6-2 UP-9662.5

Handling Reports and Results

THE OUTPUT AREA

The output area is a temporary scratch area that you build in your run
control report to hold information. This information is composed of
output lines, which are lines of data that do not have @ signs or colons
in column one (and are not continuations of run statement lines). They
may be, for example, messages or special screen displays you create that
you want to display later in the run.

To examine the output area at any time during the run, enter a GTO
END statement. This displays the contents of the output area as a
result.

You can use output area data as a result at any time by executing a
BRK statement (see BRK in Section 7). The BRK statement places the
output area into the current result and clears the output area. You can
then use the DSP or OUT statement to display the result. The output
area is now empty, so you can place new data in it.

RESULTS

A result is a temporary copy of data obtained by executing a MAPPER
function or run statement. The current result is the latest result, and its
report number is always -0. Only one current result (result -0) exists at
any moment. In addition to the current result, a MAPPER run can save
up to four results for subsequent access. To save up to four results,
rename them with an RNM statement (see RNM in Section 7).

To access results, specify the result identifier (the renamed result, such
as -1, or the current result, -0) in the appropriate subfields of a
MAPPER run statement. To access a report or result on display before
the run started, refer to it as -0 until your run creates another result.

UP-9662.5 6-3

Handling Reports and Results

THE RELATIONSHIP BETWEEN OUTPUT AREA AND RESULTS

Do not confuse the output area with a result. You create a result using
a function or run statement, such as SRH or TOT. You create the
output area by adding output lines to your run control report. You can
create an output area without affecting the current result or previously
renamed results.

The following figure shows how runs use the output area and results:

Run -

Output
Area

- M

For more detailed information about the output area and results, see
the Run Design Training Guide.

6-4 UP-9662.5

Designing and Registering a Run

When you’re ready to write a MAPPER run, follow this logical step-by-

step procedure:

1. Plan the run. Determine which statements you want to execute
and whether you’re going to use any logical decisions, paths, or

loops. It may be helpful to draw a flow chart, as shown here, to

map out the processing steps:

STATEMENT
1

Y

STATEMENT
2

Y

STATEMENT
3

.

STATEMENT
4

UP-9662.5

6-5

Designing and Registering a Run

6-6

If you’re unsure what effect a run statement has in a run, you can
usually test the statement by running it separately. If it uses a
manually executable processing function, test it manually first.

Register your run control report through your MAPPER system
coordinator. First, execute the T (Type) function to see which
form type is available in your mode for MAPPER runs. Next, use
the AR (Add Report) function to add a report in that form type.
Give your coordinator such information as report number, form
type number, modes to be used, and your proposed run name.
Explain the general plan of the run to your coordinator to assess
its impact on the MAPPER system. If everything is acceptable,
your coordinator registers the run for online debugging.

Enter the required run statements in the run control report. With
manual updating, natural pauses between transmissions disperse
the processing load; but in a run, where the statements are
executed rapidly one after the other, virtually no pauses occur
between the execution of statements. A run that executes several
individual functions may put a severe load on the MAPPER
system. You should consider loading effects of the run and adjust
run user response expectations accordingly.

When the run is designed and ready for use, execute it in a
production mode with logging (see LOG in Section 7) turned on.
Have your coordinator assess your run’s impact on the MAPPER
system by examining the log list. Your coordinator may suggest
improvements for your run.

After accepting your run and obtaining a final log list, your
coordinator registers it by its name. The coordinator may restrict
user accessibility, mode accessibility, time of execution,
input/output quantity, logic line count, and station numbers for
your run.

If you change your run significantly, your coordinator must
reanalyze it.

UP-9662.5

Debugging Your Run

CHECKPOINT DISPLAYS

If your run has several stages of processing, add DSP (Display Report)
run statements to display intermediate results. You can check the
results to see if the previous run statements have executed properly. If
you write your run in modules, where each module performs a specific
task, you can easily run each module with a checkpoint display to test
it. As you debug the run, take the checkpoint displays out.

RDB STATEMENT OR FUNCTION

You can use the RDB (Run Debug) function or run statement to debug
your run while it executes. This is different from interactive
debugging because you can do the following:

O Display or change the value of any variable

O Display a window of the run control report or another report or
result

O Examine a specific run statement line
0O Stop the run when it comes to a specific variable

See "Using RDB (Run Debug)" in this section for more information.

RAR AND RER STATEMENTS

Additional bugs may be found while the run is being used in
production. The RAR and RER run statements help track down the
type of errors that occur so you can correct the run and produce a
better version.

Sometimes a run stops because a user presses MSG WAIT, or a run
statement error causes a problem. You can add the RAR statement so
that your run jumps to a subroutine in case a user presses MSG WAIT.
You can use the RER statement to jump to a subroutine if a run
statement error occurs. See RAR and RER in Section 7 for more
information.

UP-9662.5 6-9

Using RDB

If you use the manual function, the run halts before executing line 3 of
the run control report and displays a screen. If you use the run
statement, the run halts when it encounters the RDB statement and
displays a screen. The following example illustrates the lines from the
screen that is displayed:

RDBF
RUN=testrun MODE=0 RID=2E

3b3SRH,,D, 1 D 'Cust Code! *,AMCO .

Each line on the screen serves a specific purpose:

O The first line is the RDB prompt line; you enter RDB commands
after the SOE (») on this line.

O The second line is the RDB Status Line. It displays the run name,
mode number, report name, and other information.

O The third line is blank.

O The fourth line contains the line in the run control report to
execute. It contains the line number and up to 70 characters of the
line (up to 122 characters on a 132-character terminal). If you used
the manual function, this line contains the first line (line 3) of the
run control report. If you used the RDB run statement, this line
contains the line in the run control report following the RDB
statement,

The lines that follow the fourth line of the screen contain subsequent

run statements as they are executed. Whenever a run halts, the next
statement to ¢xecute is always the bottom line on the screen.

UP-9662.5 6-11

7. Run Statements

This section presents the MAPPER run statements in alphabetical order
by the abbreviated call name.

The first subsection contains a reference list of all run statements in
alphabetical order by the complete run statement name. The second
subsection lists all run statements that have no manual counterpart.
The rest of this section lists all MAPPER run statements; each
subsection includes the run statement, its format, and brief examples.
Here’s an overview of this section:

O List of Statements by Name

O Statements with No Corresponding Manual Function

O All Run Statements

UP-9662.5 7-1

List of Statements by Name

Name

Accounting Log
Acknowledge Message
Add Report

Append Report
Arithmetic
Auxiliary
Background Run
Batch Start

Binary Find

Break

Break Graphics
Build Label Tables
Calculate

Calculate Update
Change

Clear Abort Routine
Clear Error Routine
Clear Label Tables
Clear Link

Clear Subroutine
Clear Variables
Command Handler
Commit Updates
Conditional

Copy

Create Result Copy
Date

Date Calculator
DDP Copy

DDP Create

DDP Purge

Decode Report
Decommit Updates
Decrement Variables
Defer Updates
Define

7-2

Call

LOG
OK
ADR
ADD
ART
AUX
BR
STR
BFN
BRK
BRG
BLT
CAL
CAU
CHG
CAR
CER
CLT
CLK
CSR
CLV
CHD
CcMU
IF
CPY
RSL
DAT
DC
DCPY
DCRE
DPUR
DCR
DCU
DEC
DFU
DEF

UP-9662.5

Define Variable Size
Delete

Delete Report
Device

Directory Information
Diskette

Display Graphics
Display Message
Display Report
Downline Load
Duplicate Report
Element

Element Delete
Encode Report
Exchange Variables

Execute Run Statement

Exit Subroutine
Extract

Find

Find and Read
Form Type

Format

Function Key Input

Generate Organization Chart

Go To

Graphics Scalar
Increment Variables
Index

Index User

Insert

Justify Variables
Last Line Number
Line Add

Line Delete

Line Duplicate
Line Insert

Line Move

Line Zero

Link to Another Run
List Merge

Load Field Name

UP-9662.5

DVS
DEL
DLR
DEV
DIR
DIS
DSG
DSM
DSP
DLL
DUP
ELT
EL-
ECR
XCH
XQT
ESR
EXT
FND
FDR
TYP
FMT
KEY
GOC
GTO
GS
INC
IND
IDU
INS
Juv
LLN
LN+
LN-
LNX
LNI
LNM
LZR
LNK
LMG
LFN

List of Statements by Name

7-3

List of Statements by Name

Load Format Characters
Load System Message
Load Variables

Locate

Locate and Change
Locate/Change Variable
Match

Match Update

Message to Console
Mode

Output

Output Mask

Peek Variables

Poke Variables

Pop Variables

Print

Push Variables

Read Continuous

Read Line

Read Line Next

Read Password
Reformat Report
Register Abort Routine
Register Error Routine
Release Display
Remote Run

Remote Symbiont Interface
Remove Variables
Rename

Replace Report
Retrieve File

Retrieve from History
Return Remote

Run Debug

Run Start

Run Status

Run Subroutine

Screen Control

Search

Search Update

Send Report

7-4

LFC
LSM
LDV
LOC
LCH
LCV
MCH
MAU
MSG
MOD
ouT
OoUM
PEK
POK
POP
PRT
PSH
RDC
RDL
RLN
RPW
RFM
RAR
RER
REL
RRN
RSI
RMV
RNM
REP
RET
REH
RTN
RDB
RUN
RS
RSR
SC
SRH
SRU
SEN

UP-9662.5

Set Format Characters

Sign-Off

Sort

Station Information
Subtotal

Tape Cassette
Totalize

Unlock

Update

Update Lock

Use Variable Name
Wait

Word Change

Word Locate

Word Process

Write Line

UP-9662.5

SFC
XIT
SOR
STN
SUB
TCS
TOT
ULK
UPD
LOK
USE
WAT
WwDC
WDL
WPR
WRL

List of Statements by Name

7-5

Statements with No Corresponding Manual

Function

Most MAPPER run statement calls have corresponding manual function
counterparts. These statements, however, cannot be done manually:

BRG
BRK
CAR
CER
CHD
CHG
CLK
CLV
CMU
CSR
DCPY
DCRE
DCU
DEC
DEF
DFU
DIR
DPUR
DSM
DVS
ESR
FDR
FMT
GTO
IF
INC
INS
JUvY
KEY
LCV
LDV
LEFC
LFN
LLN

7-6

Break Graphics
Break

Clear Abort Routine
Clear Error Routine
Command Handler
Change

Clear Link

Clear Variables
Commit Updates
Clear Subroutine
DDP Copy

DDP Create
Decommit Updates
Decrement Variables
Define

Defer Updates
Directory Information
DDP Purge

Display Message
Define Variable Size
Exit Subroutine
Find and Read
Format

Go To

Conditional
Increment Variables
Insert

Justify Variables
Function Key Input
Locate/Change Variable
Load Variables
Load Format Characters
Load Field Name
Last Line Number

UP-9662.5

LNK
LOG
LOK
LSM
MSG
OUM
OUT
PEK
POK
POP
PSH
RAR
RDC
RDL
RER
RLN
RMV
RNM
RPW
RRN
RSR
RTN
SC
SFC
STN
TYP
ULK
USE
WAT
WRL
XCH
XQT

UP-9662.5

Functions and Statements

Link to Another Run
Accounting Log
Update Lock

Load System Message
Message to Console
Qutput Mask

Output

Peek Variables

Poke Variables

Pop Variables

Push Variables
Register Abort Routine
Read Continuous

Read Line

Register Error Routine
Read Line Next
Remove Variables
Rename

Read Password
Remote Run

Run Subroutine
Return Remote

Screen Control

Save Format Characters
Station Information
Form Type

Unlock

Use Variable Name
Wait

Write Line

Exchange Variables
Execute Run Statement

7-7

ADR

Reserved Word

Res
Word Content
RIDS RID number of the report you just added

Example 1: Adding a New Report

This example uses an ADR statement to add a new report in mode 0,
type B. The LDV statement captures the new RID number:

@ADR, 0,B
@LDV,.PW <RID>13=RI1D$.
Example 2: Adding a New Report to Specified RID Number

The following example adds RID 10B to mode 0. The run goes to label
99 if 10B already exists or if type B is full.

@ADR,0,B,10,99

7-10 UP-9662.5

ART

OPERATORS

Table 7-1 lists arithmetic operators that you can combine to form an
expression.

Table 7-1. ART: Arithmetic Operators

Operator Operation Expression Gives

+ Addition a+b value a plus value b.

- Subtraction a-b value a minus value b.

/ Division a/b value a divided by value b.
// Integer Division a//b value a integer divided by value b.

* Multiplication a*b value a times value b.
*k Exponentiation a**b value of a raised to the power of value b.
- Unary Minus -a negative the value of a.

NOTE: Values a and b are real integers and numbers and can include
decimal fractions or expressions composed of such numbers.

FORMULATING ARITHMETIC EXPRESSIONS

When formulating expressions, specify arithmetic operators for every
operation; for example, enter the operation a times b as a*b. Forms
such as (a)(b) or ab are not valid.

Table 7-2 shows the priority by which the FORTRAN-based calculator
of the MAPPER system performs arithmetic operations.

7-12 UP-9662.5

ART

Table 7-2. ART: Priority of Arithmetic Operations

Priority Operator Operation
First - Unary minus
Second *x Exponentiation
Third * /.07 Multiplication, division,integer division
Fourth +,- Addition, Subtraction
Example

This statement raises 3 to the 4th power, divides the result into 2, and
places the answer in V1:

@ART 2/3**4 V1F6.2

Don’t precede or follow operators with spaces.

MULTIPLE EXPRESSIONS

Evaluating multiple expressions in a single statement is more efficient
than using a separate ART statement for each expression. This example
adds V33 to V34 and puts the answer in V3613. It then subtracts V34
from V33 and puts the answer in V37I3. Note that a semicolon (;)
scparates the expressions.

@ART V33+4V34;V33-V34 V3613,V3713

UP-9662.5 7-13

ART

INTERNAL COMPUTATION

You can refer to variables that are created internally by an ART
statement (A, B, etc.), then use these variables for computing
expressions within the same ART statement, as in this example:

@ART V1i+V2;A*V3;B+5 ,V413,V513

In this example, the addition of V1 to V2 produces answer A, which is
used in the second expression. The second expression, A*V3, produces
answer B, which is used in the third expression. The first subfield in
the variables field is skipped and a comma is used in its place, so the
answer from the first expression (A) is not captured in a variable.
Variable V4 contains the answer to the second expression, and V5
contains the answer to the third expression.

NEGATIVE NUMBERS

If it’s possible that a variable used in an arithmetic expression has a
negative number, place the variable in parentheses; otherwise, the
calculator reads it as part of an expression and the run errs. Place all
negative numbers in arithmetic expressions in parentheses. For
example, in this statement, V5 contains a negative number:

@ART 34+(V5) V613

CHANGING THE HIERARCHY OF EXPRESSIONS

Use parentheses to change the hierarchy of expressions. In this
example, 2 is divided by 3, the product is raised to the power of 4, and
the answer is placed in V1:

@ART (2/3)**4 V1F6.2

7-14 UP-9662.5

ART

ARITHMETIC AND TRIGONOMETRIC FUNCTIONS

You can perform the arithmetic and trigonometric functions shown in
Table 7-3 using an ART statement. Note that x is a numeric value
(whole or fraction) or an arithmetic expression.

Table 7-3. ART. Arithmetic and Trigonometric Functions

Function Description

ABS(x) absolute value or magnitude of x

ACOS(x) arc cosine: angle in radians that has a cosine of x
ASIN(x) arc sine: angle in radians that has a sine of x
ATAN(x) arc tangent: angle in radians that has a tangent of x
CBRT(x) cube root of x

COS(x) cosine of x radians

CTN(x) cotangent of x radians

DEG(x) x radians expressed in degrees

EXP(x) exponent: natural number “"e" raised to power x
FRAC(x) fractional portion of x

HCOS(x) hyperbolic cosine of x

HSIN(x) hyperbolic sine of x

HT AN(x) hyperbolic tangent of x

INT(x) integer portion of x

LOG(x) logarithm of x in base "e"

LOGI10(x) logarithm of x in base 10

Pl pi (1)

RAD(x) x degrees in radians

SIN(x) sine of x radians

SQRT(x) square root of x

TAN(x) tangent of x radians

The calculator uses double-precision arithmetic. This produces a
greater number of digits, resulting in greater accuracy.

UP-9662.5 7-15

BFN (Binary Find)

The BFN statement finds items very quickly in a sorted list. It does so
by sampling the data at midpoint in the report or series of reports to
determine whether or not the data to find precedes or follows this point
(thus, the term "binary"). BFN ignores blank lines within the report. It
continues sampling, dividing, and sampling until it finds the first
occurrence of the data. With the N or O option, it creates a result.

NOTE: 1If a find is made, the report in which the find is made
becomes the current -0. Any previous -0 result is destroyed.

The data in a report must be sorted on the fields the find is to be done
on. If you want to perform a binary find on a range of reports, make
sure the data is sorted across all reports.

If BFN detects a sort order discrepancy, doesn’t find data, or doesn’t
find blanks when looking for them, it gives control to the label
specified in the lab subfield.

If you specify a range of reports, make sure there are no empty reports
(containing no valid data or headers only) within the range. If the
BFN statement encounters an empty report, then finds the data that
matches the search criteria in a subsequent report, it ignores any
reports preceding the empty report. In this case, no error message is
supplied because a valid find i3 made.

. 7-18 UP-9662.5

BFN

(continued)

In field:

Enter:

C(x)

I[n]

If you would like the RID number placed in a
field, enter an equal sign in the corresponding
parameter field.

Alter normal character set processing:

C(F) Full character sct
C(L) Limited character set
C(S) Strict character set of report

See also Appendix E.

Display last item only if item appears more
than once.

Index in type at report n. Enter only I for the
default report (report 2); BFN scans report 2 or
report n to determine where to find items,
assuming that the reports having data to scan
follow the index report.

Verify that reports are sorted in ascending
order. Enter a K in the corresponding
parameter field. Note that when you specify
the K option, BFN tests each line of every
report specified, so use it with discretion on
large databases.

(continued)

UP-9662.5

(continued)

In field:

BFEN

Enter:

UP-9662.5

Create a result containing a separate line for
each item with the number of times the item
appears. Enter a K in the corresponding
parameter field to compare. Place an equal sign
in the parameter field if you want to store the
number of times the item appears in the
database.

To subtotal a field, enter =N in the parameter
field. The =N subtotals only fields containing
integer values. Note that you cannot use the =
and =N parameters at the same time.

Create a result containing the items found,
including their trailer lines. (Also, you can
capture the information in four variables
instead of just two. See the end of this table.)
You cannot use the O option with the N option.

Include trailer lines (all line types other than
the target line type) from the last valid find in
the result. Valid only with the N option.

Quick-find an item that appears only once in
the report. Use the Q option if you know that
the item appears only once in the report. When
used with the O option, no trailer lines are
included.

(continued)

BFN

Reserved Word

Code Error
1 Data not found
2 ALl lines with space fields filled ¢ @ option)
3 Data not sorted

Example 1: Finding All Occurrences of an Item

@BFN,0,C,1 O "PRODUCT-TYPE® O,BLACKBOX4

where:
0,C,1 Search in RID IC in mode O.

0] Use the O option to create a result.
’PRODUCT-TYPE’ Look in the PRODUCT TYPE field.
0 Process tab lines.

BLACKBOX4 Find BLACKBOX4s.

7-24 UP-9662.5

BFN

Example 2: Finding the Only Occurrence of an Item

The following example uses the Q option and captures the line number
where the find was made in <LINE>:

@BFN,0,C,1,,99 Q 2-9 0,BLACKBOX4 ,<LINE>I13

where:
0,C,1
99

Q
2-9

0
BLACKBOX4

<LINE>

UP-9662.5

Search in RID 1C in mode 0.
Go to label 99 in case of no finds or an error.
Use the Q option to find it quickly.

Look in the PRODUCT TYPE field (column 2 for
nine characters).

Process tab lines.
Find the only BLACKBOXA4.

Capture the line number where the find was
made in <LINE>.

7-25

BLT

Example

@BLT,.0,.E. 10,99

where:
0,E,10 Build a label table in RID 10E, mode 0.
99 Go to label 99 in case of error.

See also CLT.

UP-9662.5 7-27

BR

Reserved Word

Word Content

ORSTANS Station number from the BR statement that started the run, or originating

station number if not supplied in the BR statement. ORSTAN$ always equals
zero for nonbackground runs.

Example

This statement starts the background run KISMET, picking up input
from USERS, and notifies station 123 when the run completes. If the
number of active background runs has already reached the maximum
allowed at this site, the run goes to label 99,

@BR, 123,99 KISMET,USERS .

UP-9662.5 7-29

BRG

Example 1: Packing Primitive Graphics Code
In this example, the first BRG statement places the current output area
into a scratch result. (Note that a BRK could also be used here.) The
primitive graphics code then becomes the current output area in the
same mode and type as the run control report. The second BRG
statement packs the primitive code and places it into a result that can
be processed by MAPPER chart runs.

@BRG .

Primitive Graphics Code

@BRG .

Example 2: Estimating Subsequent Qutput Lines

This statement places the output area into a result and estimates that
the following output area will be 2,500 lines:

@BRG, ,2500

Example 3: Specifying Next Qutput Area

This statement places the output area into a result. The next output
area will reside in mode 2, type B.

@BRG,2,B

UP-9662.5 7-31

Example

This example uses multiple BRK statements:

1. @BRK
DATA1
2. @BRK,0,B
DATA2

3. @BRK,,2500
DATA3
4. @BRK
Here is an explanation of each BRK statement:

1. The output area that follows resides in the same mode and type as
the run control report.

2. DATAI is now the -0 in the same mode and form type as the run
control report; the output area that follows resides in mode 0, type
B.

3. DATA2 is now the -0 result in mode 0, type B.

4. DATA3 is now the -0 result, at an estimated 2,500 lines, in mode O,
type B.

UP-9662.5 7-33

(continued)

In field:

CAL

Enter:

UP-9662.5

J(x)

Erase fields (fill with spaces) if the answer equals
ZEero.

Produce integer results: Truncate any fractional
part (that is, any numbers on the right side of the
decimal point) in the result.

Justify result value, where x is the justification:

C

Insert commas in the integer portion every
three digits; eliminate nonsignificant zeros;
place the resulting value in the leftmost
portion of the field.

Left-justify, eliminate nonsignificant zeros,
and place the resulting value in the leftmost
portion of the field.

Right-justify, eliminate nonsignificant zeros,
and place the resulting value in the rightmost
portion of the field.

Expand: Eliminate nonsignificant zeros, place
the resulting value in the leftmost column, and
fill the remaining fields with zeros.

Eliminate nonsignificant zeros, right-justify,
and fill preceding fields with zeros.

Initialize a value label to n. Default value of
value label = zero.

List all value label names and their final values at
the end of the result.

(continued)

7-35

CAL

(continued)

In field:

Enter:

7-36

S(x)

Substitute the numeric value n for nonnumeric
fields. The default value of nonnumeric fields is
zero; a nonnumeric field has cither no data (all
spaces or tab characters) or data that has a
nonnumeric character in its leftmost significant
position.

Omit data lines. Include only header lines and all
value label names and their final values.

Round results to the nearest n:
R.0000000000000001 through R 100000 (nearest
100,000 units).

NOTE: To control rounding equation by equation,
use the R option as an equation option.

Set character set interpretation to x. (The system
compares limited character set strings to limited
character set internal codes, and full character set
strings to full character set codes; it interprets
uppercase and lowercase alphabetic characters in
the same way.) x may be:

F Use full character set internal codes (use only
when processing Limited Character Set [LCS]
reports).

L Use limited character set internal codes (use
only when processing Full Character Set [FCS]
or Full Character Set Upper [FCSU] reports).

(continued)

UP-9662.5

(continued)

In field:

CAL

Enter:

UP-9662.5

S Use strict character set internal codes to
differentiate between uppercase and lowercase
alphabetic characters (use only when
processing FCS reports).

Include both processed and unprocessed lines in
the result. Do not use the T option if you want to
include only the line type being processed.

Process only those equations whose result values
are calculated from valid data (invalid data is
either nonnumeric data or an invalid date). Note
that a nonnumeric field has either no data (all
spaces or tab characters) or data that has a
nonnumeric character in its leftmost significant
position. Skip equations with an invalid value for
a result. Do not alter the receiving label.

Exclude invalid values in minimum, maximum,
sum, and average computations (MIN, MAX, SUM,
AVG, VMIN, VMAX, YSUM, VAVG) and in
functions specified by vertical operators. (Invalid
values include field labels that represent
nonnumeric data and labels whose value was
calculated from nonnumeric data or from an
invalid date.)

Flag all invalid results with asterisks (*) after the
value. Invalid results are values or labels
calculated from nonnumeric report data, or values
calculated from invalid dates. Note that a
nonnumeric field has either no data (all spaces or
tab characters) or data that has a nonnumeric
character in its leftmost significant position.

(continued)

7-37

CAL

Reserved Words

Reserved words: ~STAT1$ and STAT2S. .

Word Content

STAT1$ Number of lines processed (i.e., number of lines of line type specified)

STAT2$ Total number of lines in report (excluding header lines)

served word: TICS

If you use apostrophes in a CAL statement, use TIC$ if the run control report
is in Limited Character Set (LCS). Use TIC$ or quotation marks (") for FCS and FCSU
reports.

Table 7-4 shows the priority by which the calculator performs
arithmetic operations.

Table 7-4. CAL: Priority of Arithmetic Operations

Priority Operator Operation

First - Unary Minus

Second fald Exponentiation

Third *1.07 Multiplication, Division, Integer Division
Fourth +,- Addition, Subtraction

7-40 UP-9662.5

CAL

Table 7-5 shows the priority by which the MAPPER system evaluates
relational operations,.

Table 7-5. CAL: Priority of Relational Operations

Priority Operator Relational Operation
First = Compare equal to
<> or >< Compare not equal to
> Compare greater than
<= or =< Compare not greater than (less than or equal to)
< Compare less than
>= or => Compare not less than (greater than or equal to)
Second & AND (Boolean)
Third , OR (Boolean)
NOTE: The operators ampersand and comma (& and ,) don’t perform

UP-9662.5

a numeric comparison, but are based on a true/false concept.

7-41

CAL

Table 7-6 shows the result of all possible true/false conditions. valuel
and value2 are usually relational expressions (such as a>1000).
Table 7-6. CAL: AND and OR True/False Conditions
AND Operation OR Operation
(valuel) & (value2) (valuetl) , (value2)
valuel value2 result valuel value2 result
TRUE TRUE TRUE TRUE TRUE TRUE
FALSE TRUE FALSE FALSE TRUE TRUE
TRUE FALSE FALSE TRUE FALSE TRUE
FALSE FALSE FALSE FALSE FALSE FALSE

Equations can include internal arithmetic and trigonometric functions,
as shown in Table 7-7.

Table 7-7. CAL: Internal Arithmetic/Trigonometric Functions

Function

Description

ABS(x)
ACOS(x)
ASIN(x)
ATAN(x)

AVG(xl,..xn)
CBRT(x)
COS(x)
CTN(x)

7-42

Absolute value or magnitude of x
Arc cosine: angle in radians that has a cosine of x
Arc sine: angle in radians that has a sine of x
Arc tangent: angle in radians that has a tangent

of x

Average value of all subfields specified

Cube root of x

Cosine of x radians
Cotangent of x radians

(continued)

UP-9662.5

CAL

DATE AND TIME PROCESSING

You can use the CAL statement to perform computations on dates and
times. CAL converts the date and time data to numeric values and
processes them with equations.

The results of these computations represent numbers of days or hours.
You can then convert these numbers to a specific format. Sce Table 7-9
for the available formats.

Using the DATE functions, you can process dates from January 1, 1944,
through December 31, 2043,

Using the TIME functions, the CAL statement translates times into
numbers of hours relative to midnight. You can also process minutes
and times in computations; just convert them into hours by dividing
minutes by 60 and seconds by 3,600. All times are based on a 24-hour
clock.

There are two constant labels, which you can use directly in equations
when you want to perform calculations or comparisons with the current
date or time:

TODAY contains the current date cxpressed in the number of days
relative to January 1, 1944,

TIME contains the current time expressed in the number of hours
relative to midnight,

UP-9662.5 7-45

CAL

When you specify a DATE or TIME OUTPUT function in an equation,
the E, I, J, and R function and equation options are disabled since they
also specify a type of output format.

If you specify a receiving label that is not large enough to contain the
output format or if the result value of the expression isn’t a valid time,
CAL fills the field with asterisks (*) and assigns it a value of zero.

The system always right-justifies numeric formats and left-justifies

alpha formats in the output field. It fills any unused columns in the
output field with spaces.

DATE AND TIME FORMATS
Table 7-9 shows all available input and output formats for dates and

times. The Min Size field specifies the minimum number of columns
required to display that specific format.

7-48 UP-9662.5

Table 7-9. DATE and TIME Formats

_ Format Input o putput Min size
DATE@$ (YMMDD) DO(x) D(@) 5
DATE1$ (YYMMDD) D1(x) DI@ D] 6
DATE2$ (DD MMM YY) D2(x) D(2) 9
DATE3$ (YDAY) D3{x) D(3) 4
DATE4$ (YYDAY) D4(x) D(4) 5
DATESS (DDMMYY) D5({x) D(5) 6
DATE6$ (MM/DD/YY) D6(X) D(6) 8
DATE7$ (Month DD, YYYY) D7{x) D(7) 18*
DATE8$ (MMDDYY) D8(x) D(8) 6
TIMEO$ (HH:MM:SS) TO(x) T(@®) 8
TIME1S (HH:MM) T1(x) TH 5
TIME2$ (HHMMSS) T2(x) T(2) 6
TIME3$ (HHMM) T3(x) T(3) 4
.. More Output Time Formats.
Hour number T(H) 2
Minute number T(M) 2
Second number (S 2
More Output Date Formats
Month name D(C) ik
Day D(D) 2
Julian day D¢J) 3
Month D(M) 2
Day number D{N) 1
Day name D(W) Th*
Year DCY) 2

UP-9662.5

DATE7?$ fields must be exactly 18 characters; fewer displays all asterisks.
The number of characters for output formats C and W depends on the field size of the
receiving label.

CAL

7-49

CAL

In addition to the date and time equation options (Dn and Tn), you can
use one of two W options in your equations:

Wn specifies the number of days in a work week, from I to 6.
(Default = 7.) A work week is considered to start on Monday.

W- overrides the W option.

The last example in this subsection shows date processing.

USING THE ICAL RUN TO CREATE A CAL STATEMENT

You can use the ICAL run to create a CAL statement. For information
on how to use the ICAL run, see the Manual Functions Reference.

To create a CAL run statement equivalent of an equation set, use the
ICAL run to process the equation set, press F4, and select the Display
Run Statement option. This displays a freeform Full Character Set
(FCS) type A result containing the CAL run statement. Note that you
can’t use the ICAL run to create a CAL run statement if your site is
using a Limited Character Set (LCS) type for the freeform type A
reports,

The Manual Functions Reference shows a detailed example using ICAL.
If you try that example, pressing F4 and selecting the Display Run
Statement option, you receive the following statement:
@CAL,0,C,2 'R.01" 25-7,33-8,42-7,56-8 0,A,B,C,D \
C=B-A;D=C/B*100
CAL EXAMPLES

NOTE: All CAL examples except the last one process tab lines in RID
1C, mode 0.

7-50 UP-9662.5

CAL

Example 1: Multiplying Two Fields

@CAL,0.C,1 "' 'SPACE-REQ’, 'DEMO-QUAN’,\
‘DEMO-RESULTS® O,A,B,C C=A'B .

where:

?”

'SPACE-REQ’
A

'DEMO-QUAN’
B

'DEMO-RESULTS’
C

C=A*B

Use no options.

Label the SPACE REQ field:
Field A.

Label the DEMO QUANTITY field:
Field B.

Label the DEMO RESULTS field:
Field C.

Multiply the SPACE REQ field (A) by the
DEMO QUANTITY field (B) and place the
product in the DEMO RESULTS field (C).

Example 2: Moving Values into Fields Based on Values

The following example moves all values that exceed 24,000 from one

field into another field:

@CAL.,0,C,1 "' 'RETAIL $$$$°, 'DEMO-RESULTS® \
O0,A,B IF:A>24000;THEN:B=A

where:

'RETAIL $3$3%°
A

"DEMO-RESULTS’
B

UP-9662.5

Use no options.

Label the RETAIL $$3$$ field:
Field A.

Label the DEMO RESULTS field:
Field B.

7-51

CAL

IF:A>24000; Put all RETAIL 3%$ field (A)
THEN:B=A values that exceed 24,000 into the DEMO
RESULTS field (B).

Example 3: Averaging Items in a Field

@CAL.0,C,1 R.01 42-7,65-15 0 ,A,B B=VAVG(A)

where:

R.01 Use the R option. Round result to nearest
one hundredth.

42-7 Label the SALES COMMIS field (column 42
for 7 characters):

A Field A.

65-15 Label the DEMO RESULTS ficld (column
65 for 15 characters):

B Field B.

B=VAVG(A) Put the cumulative vertical average of the

SALES COMMIS field (A) into the

DEMO RESULTS field (B).
Example 4: Using Apostrophes and Quotation Marks
The following example uses CAL in an LCS run control report. (Notice
the apostrophes around the string BLACKBOX; these are necessary for
the MAPPER system to distinguish between the string and the reserved
word TICS):

@CAL,0,C,1,,,99 C 2-8 O0,A IF:A=TIC$ BLACKBOX'TICS

7-52 UP-9662.5

CAL

Here is the same example using an FCS/FCSU run control report. (Note
that if the string contained a space, it would need to be enclosed in
apostrophes as well as quotation marks.)

@CAL.0.C.1,,.,99 C 2-8 O0,A [F:A="BLACKBOX"

where:
99

C

2-8

A

IF:A=TIC$ BLACKBOX’TICS
IF:A="BLACKBOX"

UP-9662.5

Go to label 99 if no data exists.

Use the C option to include in the
result only those lines that meet a
true condition based on the last IF
statement.

Label the first eight characters of
the PRODUCT TYPE field (column
2 for 8 characters):

Field A.

Include all lines with

BLACKBOX in the first eight
characters of the PRODUCT TYPE
field.

CAL

Example 5: Calculating Vertical Totals and Maximum Values

@CAL,0,C,1,,,99 L 25-7,33-8,65-15 0 ,A,B+,C+ \
MAXA=VMAX(A) ;MAXB=VMAX(B);C=B-A V119,V219,\

v3ig,v4li9
where:
99

L

25-7,33-8,65-15

A,B+,C+

MAXA=VMAX(A);

MAXB=VYMAX(B);

C=B-A

V119,V2I9,
V3I19,V419

7-54

Go to label 99 if no data exists.

Use the L option to list all value label
names and their final values at the end of
the result.

Label the WHOLE SALES$ field (column 25
for 7 characters), the RETAIL $3$3$ field
(column 33 for 8 characters), and the DEMO
RESULTS field (column 65 for 15
characters):

Fields A, B, and C, with the vertical
operator + on fields B and C.

Put the highest value found in the WHOLE
SALES field (A) in the value label MAXA.

Put the highest value found in the RETAIL
$339% field (B) in the value label MAXB.

Subtract field A from field B and put the
difference in field C.

Capture the vertical total of RETAIL $3$3%%
(field B) in V1, the vertical total of DEMO
RESULTS (field C) in V2, the contents of
the MAXA value label in V3, and the
contents of the MAXB value label in V4.

UP-9662.5

CAL

Example 6: Processing Dates

Here’s an example of processing dates using CAL. It adds a constant
number of days to a date and specifies the same input and output date

format:

@CAL,0,B,2 VvV 50-6 0,A A,D(1)=D1(A)+30

where:
0,B,2
A\

50-6

A,D(1)=
DI(A)+3

UP-9662.5

Process RID 2B in mode 0.
Use the V option to process only valid data.

Label the PRODUC PLAN field (column 50
for six characters):
Field A.

Add 30 days to the date in the
PRODUC PLAN field (A); both the input
and output dates are in DATE1$ format.

CAU

Example

@CAU,0,D,2 C "ORDER(1-2)" O,A IF:A=96 EXT

where:

0,D,2 Process RID 2D in mode 0.

C Use the C option to include in the result
only those lines that meet a true condition
based on the last IF statement.

'ORDER(1-2) Label the first two characters of the
ORDER NUMBER field:

A Field A.

0 Process tab lines.

IF:A=96 EXT If the first two characters of OQORDER

NUMBER (A) equal 96, delete the lines
from RID 2D and place the lines in the
result.

7-60 UP-9662.5

CHD (Command Handler)

Use a CHD statement to register a routine to be executed whenever the
user of the run enters information in the control line after a DSP,
OUT, or SC statement.

The command handler routine can be in the same run control report
(internal) or in another run control report (external). External
command handler routines must be in the same character set type as the
calling run control report.

NOTE: Don’t use the CHD statement unless you’re an advanced run
writer. Its use is intended primarily for intercepting and
interpreting commands that normally go to MAPPER software.

Without a CHD statement in the run, MAPPER software interprets all
entries made in the control line. With a CHD statement in the run,
however, the run itself interprets and processes input from the control
line, except for the RELEASE function (a caret); MAPPER software
continues to perform the RELEASE function unless you choose to give
control to the run.

Whenever a run user transmits with the cursor on the control line, the
run continues at the label for the report specified in the CHD
statement and cancels any active subroutines. For example, if a
subroutine contains a DSP, OUT, or SC statement, an ESR statement
won’t work (see ESR).

7-62 UP-9662.5

CHD

Reserved Words

‘Reserved words:

ICVAR$ works only with a CHD statement; FKEY$ works with a CHD or KEY statement

Word

Content

ICVARS

Captures user input from the control tine. Remember to put ICVAR$ before
the variable in the CHG statement, and put the CHG statement before the
DSP, OUT, or SC statement. If you specify Y in the forced transmit
(fxmit?) subfield of an OUT statement, it has the same effect as pressing
XMIT. 1f the cursor is on the control line, it also affects ICVAR$ input.

You should use string variables (type S), but you can use type A or type H
variables if the data fits in them. The system copies all input (except
leading tab characters) into the specified variable up to the end of the
variable.

Other reserved words used to capture input (INMSVS, INPUTS, INSTR$, INVARS,
and INVR1$) are not affected if the user transmits with the cursor below
the control line.

FKEY$

You can find out which key the user pressed with the reserved word FKEY$,
whose value is always @ if a CHD or KEY statement hasn't been used.
Whenever the user presses a function key, the run continues executing at
the statement following the DSP, OUT, or SC statement--not in the CHD
routine--and FKEY$ contains a number indicating the key pressed:

-1 MSG WAIT (not applicable with the KEY statement)
0 XMIT (with cursor below control Line)

1 F1 or RSM

2 F2 or PNT

3-22 F3-F22

7-64

UP-9662.5

CHD

Examples

If the user presses XMIT from the control line, go to label 52 in this
run control report:

@CHD 52

If the user presses XMIT from the control line or enters a release
character, go to label 100:

@CHD,, .Y 100

If the user presses XMIT from the control line, go to the current line
plus 3 in this run control report:

@CHD LIN +3 .
Cancel the currently registered command handler routine:
@CHD 0 .
Here is an example using ICVARS, INVARS, and FKEY$S:
@CHD 10 .
@CHG ICVARS V1S80 .
@CHG INVARS V2A12 _ V3AS8
@UT101A1-012'_1111Y
@CHG V412 FKEYS$.
@IF V4 = -1,(20),0,(30),1,(40),2,(50).3,(60),4,(70)

Processing continues at different points in the run, depending on which
key the user presses:

O If the user presses XMIT from the control line, the run goes to label
10, with V1 capturing command input (entire control line).

If the user presses MSG WAIT, the run goes to label 20.

O If the user presses XMIT with the cursor below the control line, the
run goes to label 30, with V2 or V3 capturing data input.

UP-9662.5 7-65

CHD

O 0o o O

7-66

If the user presses F1, the run goes to label 40.
If the user presses F2, the run goes to label 50.
If the user presses F3, the run goes to label 60.

If the user presses F4, the run goes to label 70.

UP-9662.5

CHG
The following statement creates V3 from the computation. Note that the
CHG statement evaluates the computations from left to right.
@CHG V3l6 V1 + V10 * V12 - 3
In this statement, V3 contains 3 (2.5 rounded to 3):
@CHG V3I6 5 / 2
In this statement, V3 contains 2 (the integer portion of the answer):
@CHG V316 5 // 2
In this statement, V3 contains 2.50:
@CHG V3IF5.2 5 / 2

NOTE: Precede and follow each operator (+, -, ¥, /, //) with a space.

USING CHG STATEMENTS WITH RESERVED WORDS

Use a CHG statement to place the contents of reserved words in
variables. Put the reserved word in the vid field, as in this example:

@CHG <RID>13 RIDS

Put reserved words that capture user input before the variable. These
reserved words capture user input:

ICVARS (sce CHD)
INMSVS (see OUM)
INPUTS (see OUT)
INSTRS (see OUT)
INVARS (see OUT)
INVRI1S (sce OUT)

Here’s an example:

@CHG INPUTS$ V113,V2A5

7-68 UP-9662.5

CHG

PROCESSING TYPE O VARIABLES

Type O variables have these additional operators:

right shift
circular shift

A logical AND
0] logical OR
X exclusive OR
L left shift

R

C

NOTE: Right shift = +; left shift = -,

A shift of a type O variable is actually a bit-count shift. If the data
being loaded is a literal value, MAPPER software assumes an octal
value. If the data resides in another variable, MAPPER software
assumes a decimal value and converts it to octal before processing.

In this example, V1 is changed to an octal variable with four
characters, with an initial value of 2:

@CHG V104 2

The following statement performs a logical AND of the contents of V1
with 7:

@CHG V1 V1 A 7

The following statement performs a circular shift on the contents of V1
to the left one bit:

@CHG V1 Vi C -1

UP-9662.5 7-69

CLT

Example

@CLT,0,E, 10,99

where:
0,E,10 Clear label table in RID 10E, mode 0.
99 Go to label 99 if no labels are found in the run

control report.

See BLT for information on building label tables in a run control
report.

7-72 UP-9662.5

DAT

Example 1: Subtracting Dates

@DAT,0,B,2 *° ’'PRODUC-ACTUAL’, 'PRODUC-PLAN’,\
"SHIP-DATE @I, - ,+,=

or:
@DAT,0,B,2 *° 57-6,50-6,64-6 0,-,+,=

where:

0,B,2 Process RID 2B in mode 0.

"

Use no options.

'PRODUC-ACTUAL’ Subtract the date in the

57-6 PRODUC ACTUAL field (column 57 for 6
characters)

'PRODUC-PLAN’ from the PRODUC PLAN field

50-6 (column 50 for 6 characters)

+

'SHIP-DATE’ and put the difference in the SHIP

64-6 DATE field (column 64 for 6

= characters).

D Process tab lines.

7-80 UP-9662.5

DAT

Example 2: Converting Dates to a Different Format

@DAT,0,B,2 °’ 50-6,32-6 0,B,F=

where:

0,B,2 Process RID 2B in mode 0.

” Use no options.

50-6 Convert the format B date in the

B PRODUC PLAN field (column 50 for 6
characters)

32-6 to a format F date, and place it in

F= the PRODUC COST field (column 32 for 6
characters).

O Process tab lines.

UP-9662.5 7-81

DC

V1 equals the day of the week that January 25, 1980, was; V2 equals
850125 plus five days, changed to DATE7S format; V3 equals the
number of days difference between the date in V2 (label B) and today’s
date:

@DC DW=D7 (' JANUARY 25, 1980°);D7=D1(850125)+5;\
TODAY-B V1H10,V2H18,V314

V1 equals 831007 (V5) plus 60 days in DATE1S$ format; V2 equals the
day of the week that the date in V1 (A) is; V3 equals the date in V1
(A) in DATE7S format; V4 equals the date in V3 (C) minus two days in
DATE7$ format:

@LDV V516=831007
@C D1(V5)+60;DW=A;D7=A;C-2 VI116,V2H10,V3H18,V4H18

UP-9662.5 7-85

DCPY

(continued)

In field: Enter:

These are the valid entries (you need to specify only the
first three characters):

TRAnsparent Do not translate the file or element.

ASCii Translate the file or element to
ASCII.

EBCdic Translate the file or element to
EBCDIC.

Please refer to the DDP-FJT Operations Guide, Vol. 1: IPF Interface for
more information about each field of the DCPY run statement.

Reserved Words

The reserved words STATI1S, STAT2S, and STAT3S$ contain error codes.

These codes are listed in the DDP-PPC/DDP-FJT Messages Reference
Manual.

Word Content

STAT1$ Interface error

STAT2$ CLASS-CODE

STAT3$ DETAIL-STATUS code

7-88 UP-9662.5

DCPY

Example

This statement copies all symbolic elements from the file A*B. located
on host RSL2 to the file D*E. on host TOC. The elements replace any
existing elements on host TOC. If there was an error in the statement
or DDP configuration, STATIS$, STAT2$, and STAT3$ contain the
status code and the label 1 exit is taken.

When the DCPY is in progress, the file cannot be completely copied
before control is returned. MAPPER software waits up to one minute
for a status from the other host. If the status is not received, a COPY
IN PROGRESS error is returned (STAT2$=1 and STAT3$=15).
Depending upon the system usage, it may take some time for the copy
to complete.

@DCPY,1 RSL2,A*B.",TOC,'D*E.",SYM,REP

UP-9662.5 7-89

DCR (Decode Report)

Use a DCR statement to decode a report that has been encoded with the
ENCODE function or ECR run statement (see ECR). The decoded report
becomes the current (-0) result.

Use caution when encoding and decoding reports. Here are some
important things to remember:

O Don’t forget your key. A report cannot be decoded if you lose or
forget the key because no record of it is kept by the MAPPER
system. Your coordinator cannot tell you what it is.

(0 Invalid characters and corresponding error messages are produced
in these cases:

- You specified the wrong key.
- The encoded report has been corrupted.
- The report is not encoded.

O If you are using a normal ASCII terminal, you may not be able to
decode a report that was encoded from a National Character Set
(NCS) terminal. In addition, you may not be able to decode a
report that contains special NCS characters from a normal ASCII
terminal.

O Because of high processing overhead, you may impact system
performance if you use the DCR statement excessively.

7-90 UP-9662.5

DCRE

Example

This statement creates the file A*B in host RSL2 on an 8450 disk with
a movable head. The file is public and has an initial size of 10 tracks
with a maximum of 500 tracks.

@DCRE,1 RSL2,'A*B."' ,F50M,10,,500, ,PUB .

This Exec control statement creates the same file in a batch or demand
program:

@CAT,P A*B.,F50M/10/TRK/500

7-94 UP-9662.5

DEF

(continued)

In field: Enter:

I Set the variable to contain a number based on the
initialized type of test variable, as follows:

Test type: Set to:
A 1
F 2
S 3
I 4
H 5
0] 6

K If the test variable has Kanji characters, set the
variable to 8. Otherwise, set it to 0 through 7 (see the
testv and setv values at the end of the options in this
table).

M Change the numeric form type in the test variable to
its equivalent mode designation. A test variable must
have a valid octal number and a valid numeric form
type number. Set the variable to contain the mode
number in which its numeric form type resides. For
example, if the test variable’s numeric type is 1 (form
type A), set the variable to equal 0 (mode zero).

N Define the numeric form type of the mode number
and alphabetic type in the test variable. The test
variable must contain modetype (for example, 24C).

P Set the variable to contain the packed size of the test
variable, as if it had been packed. (Packed size
equals the number of nonspace characters and any
intervening spaces.)

(continued)

7-98 UP-9662.5

DEF

Examples

This example sets V1 to the code defining the kinds of characters in
V2.

@DEF V1 V2

This statement sets <CODE> to the code defining the kinds of
characters in <CHARS>:

@DEF <CODE>11 <CHARS>

This statement sets V5 to equal the alphabetic form type of the valid
numeric form type in V6:

@DEF.A V5A1.,V6

This statement sets <SIZE> to equal the number of characters in
<NAME>:

@DEF,S <SIZE>12 <NAME>

If V1 was previously assigned to the variable name CAT, the following
statement loads V199 with CAT:

@DEF .,V V199H12 V1

7-100 UP-9662.5

DEV

Reserved Words

128, and STAT

Word Content

STAT1$ Number of devices specified in dev or unit subfield

STAT2$ Number of devices connected to the station

STAT3S @ if requested station does not exist
1 if requested station exists

Examples
@DEV,123 . LIST DEVICES AT STATION 123

The following statement lists type C devices, registered as COP, at
station 123; the run goes to label 99 if no device (as specified) is found:

@DEV, 123,C,COP,99 .

UP-9662.5 7-103

DFU (Defer Updates)

Use a DFU statement in conjunction with CMU and DCU to control
multiple report updating. A DFU statement defers all updates to
reports (that is, the updates are not made) until a CMU statement is
executed.

If the run fails or aborts, the system restores all updates to the reports
to their state before the DFU statement.

If the system fails during a run before the CMU statement executes,
associated report updates are also decommitted.

You can control up to five reports with a DFU statement. Follow each
DFU statement with a CMU or DCU statement before specifying
another DFU statement.

If your run terminates for any reason, the system executes a DCU
statement automatically and terminates the run with an error. Once a
DFU statement executes, you must decommit or commit updates before
you end a run normally.

You cannot specify just the mode and type in an attempt. to lock an
entire type.

These run statements cannot logically follow a DFU statement until a
CMU or DCU statement executes:

DFU set deferred update on a report
DSP display a report

LOK prevent other users from updating
OUM mask output to screen

OUT place lines on terminal screen
REL stop run by releasing

RTN return to a remote MAPPER run
RUN start another MAPPER run

SC create input screens or edit displayed data
WAT stall run for a timed wait
XIT sign user off from display terminal

7-104 UP-9662.5

DIR

Reserved Word

If the data name supplied is invalid, the run continues at the label.
Examine STATIS for error codes. If there is no label, the run errs.

Code Error
1 Data name was not found in the System Directory.
2 Data name does not begin with an alphabetic character (A to 2).
3 Data name contains no alphanumeric characters (A to Z and @ to 9).
4 Data name contains more than 16 alphanumeric characters.
Example

@D IR, 99 ORDER-STATUS <MODE>14,<TYPE>H1,<RID>14,\
<HIRID> 14

where:

99 Go to label 99 if ORDER-STATUS does not
exist.

ORDER-STATUS Data name to obtain information about.

<MODE>14 Load <MODE> with the mode number of
ORDER-STATUS.

<TYPE>HI1 Load <TYPE> with its form type.

UP-9662.5 7-107

DIR

<RID>I4 Load <RID> with its report number.
<HIRID>14 Load <HIRID> with its higher range report
number.

7-108 UP-9662.5

DIS

Example

This statement writes RID 2B in mode 0 to a 5-1/4-inch diskette DS1
and gives it the file name FILEIL:

@15,0,B,2 W,DS1,FILE1

UP-9662.5 7-111

DPUR

Reserved Words

The reserved words STATIS, STAT2$, and STAT3S$ contain error codes.
These error codes are listed in the DDP-PPC/DDP-FJT Messages
Reference Manual.

Word Content

STAT1$ Interface error

STAT2$ CLASS-CODE

STAT3$ DETAIL -STATUS code

Example
This statement deletes the file A*B. on host RSHS:

@DPUR, 1 RSHS, "A*B’ .

UP-9662.5 7-115

DSG

DSG TO ANOTHER STATION

You use the sn and lab subfields to display graphics on terminals other
than the one executing the run.

If you do not specify lab and the DSG statement cannot be successfully

completed, the run is terminated with an error. Examine STATIS for
the status code.

Reserved Word

Code Error

1 Station does not exist or it is a batch port, remote run, MTQ, or
background station.

2 Station is not available because it is not currently connected to the
MAPPER system.

3 Either no one is signed on at the specified station and interim was not
specified, or the terminal is not a graphics terminatl.

4 There is no answer. The user at the specified station did not respond to
the message wait signal within one minute.

When you send a DSG to another terminal where a user is signed on,
that user’s message wait signal is activated and your run stalls. If the
user responds to the message wait signal, the DSG information is
displayed on the user’s screen. If you specified N in the interim?
subfield, your run stalls until the user at the receiving terminal presses
any key; if you specified Y in the interim? subfield, your run continues
automatically.

UP-9662.5 ‘ 7-117

DSG

If the user at the other terminal does not respond within one minute,
your run either continues at the specified label or terminates with an
error (STAT1$=4). If subsequent DSGs are sent to that station, the user
must respond to each message wait signal.

If you know that no user is signed on at the specified station, specify a
Y in the interim? subfield. In this case, the message wait signal is not
activated, the DSG information is displayed on the screen, and your
run continues. If you do not specify an interim DSG, your run
continues at the specified label or terminates with an error (STAT1$=3).

You cannot obtain exclusive use of any station. When more than one
run is sending a DSG to the same station, the outputs may be
intermixed and not displayed in the same order as they were sent. In
addition, the one minute time limit may elapse for the second DSG
before the first DSG is completed.

Examples

This statement displays text from the primitive graphics code in RID
1A, mode 0. The user must press F1 or enter rsm to continue:

@DSG,0,A,1 .

The following statement displays text and graphics from the primitive
graphics code in RID 2B, mode 0. The run continues automatically:

@DSG,0,B,2,M,Y
The following statement displays graphics from the primitive graphics
code in RID 3C, mode 0, on station 123. The run continues

automatically:

@bsG,0,C,3,.,Y,,123

7-118 UP-9662.5

DSM (Display Message)

Use a DSM statement to display your own one-line message at the top
of the screen in place of the control line. You can use DSM in one of
two ways:

O Display a message at the top of an existing screen.
00 Display a report or result, placing a message at the top of the
screen. You can display the report or result beginning at line one

or at a specified line number.

The message to display resides in a report or result. You display it by
specifying its line number.

The DSM statement stalls the run until the user transmits or resumes,

unless you specify the interim display, in which case the run continues

automatically. Note that the DSM statement clears the output area.

Here are some characteristics of the DSM messages:

O The text appears as is does for MAPPER system error messages:
reverse video for most monochrome terminals and white characters

on a red background for color terminals.

O Less than (<) and greater than (>) signs are translated into blink
characters.

O If you have a 132-character terminal, the messages are
automatically centered.

UP-9662.5 7-119

DSM

Examples

This statement displays a message at the top of the current screen. The
message is located on line 4 of the current result.

@DSM, -0,4 .
The following statement displays RID 2D of mode 0, and places a
message (located on line 4 of RID 12A in mode 0) on the top of the

screen. The cursor is positioned at the 10th tab position.

@DSM,0,A,12,4,10,,,,0,D,2

UP-9662.5 7-121

DUP

Example

This example duplicates RID 1B in mode 20 into mode 0, type B.
Variable <RID> captures the RID number of the new report.

@ur,20.B,1,0,B .
@CHG <RID>13 RID$

UP-9662.5 7-125

DVS

Examples

This example initializes a variable to the size of the CUST CODE field
in RID 2B, mode 0, for use as an input parameter:

@VS.,0,B.2 'CUST-CODE' V1H.
@CHG INPUTS V1

The following example initializes variables to the size of the ORDER
NUMBER and ORD QTY fields from the current -0, and creates a
screen using their sizes:

@DVS 'ORDER-NUMBER’, "ORD-QTY’ <NUM>H, <QTY>1
@BRK

Enter Order Number: O<NUM>,

Enter Quantity: O0<QTY>,

Transmit from here: O ,

@BRK OUT,-0,2,23,1,1,Y,,.P
@CHG INPUT$ <NUM>,<QTY>

UP-9662.5 7-127

ECR (Encode Report)

Use an ECR statement to transform a report into code, making it
unreadable unless the correct key is specified. The encoded report
becomes the current (-0) result.

The ECR statement is particularly useful for highly sensitive reports
and messages. If used appropriately, it is more secure than read/write
passwords because no one, including the coordinator, can decode the
report without knowing the key.

You decode an encoded report with the DECODE function or the DCR
run statement (see DCR).

Use caution when encoding reports. Here are some important things to
remember:

O Don’t forget your key. A report cannot be decoded if you forget
the key because no record of it is kept by the MAPPER system.
Your coordinator cannot tell you what it is.

O Don’t update an encoded report. Any change to the encoded report
will corrupt it and you will not be able to decode it. Protect your
report from updates by using an update password (see the PSW
function in the Manual Functions Reference).

O You cannot move encoded data between form types with different
report widths because you will not be able to decode it. If a form
type width is changed, all encoded reports in that type will be
corrupted and they will not be able to be decoded.

O If you are using a normal ASCII terminal, you may not be able to
decode a report that was encoded from a National Character Set
(NCS) terminal. In addition, you may not be able to decode a
report that contains special NCS characters from a normal ASCII
terminal.

7-128 UP-9662.5

ELT

(continued)
Code Error
6 File rolled out.
7 Facilities currently unavailable.
8 Private file, under different project-id.
9 Read or write restrictions on file.
10 File not sector-formatted mass storage file.
11 File not program file (if element specified).
12 File is a MAPPER file.
13 System 1/0 error.
14 Facility warning or reject.
15 Insufficient or improperly formatted statement.
16 File not data file (if element not specified).
17 Cycle attempted on nonexistent file.
18 Attempt to write past end of file.
STAT2$ has a line number identifying the error message.
Use an LSM statement to read the message. Place the number in STAT2$ in the msgno
subfield in an LSM statement (see LSM).

7-132

UP-9662.5

ELT

Example

This statement creates qualifier MYQUAL file MYFILE and copies the
data in RID 2B, mode 0, to it; or the run goes to label 99 if there is an
error and the system cannot copy the data:

@ELT,0,B,2,99 MYQUAL ,MYFILE

DATA CONTROL COMMANDS

Use the same data control commands you use with an STR statement to
control data in the report you’re copying (see Table 7-14 under STR).

Enter these commands on any line in the report; they take effect from
that point on in the data.

UP-9662.5 7-133

EL-

Reserved Words

Error
0 Requested element not found in specified file.
1 File does not exist.
2 File already assigned to MAPPER system.
3 File already assigned exclusively to MAPPER system.
4 File already assigned to another user.
5 File already assigned exclusively to another user.
6 File rolled out.
7 Facilities currently unavailable.
8 Private file, under different project-id.
9 Read or write restrictions on file.
10 File not sector-formatted mass storage file.
11 File not program file (if element specified).
12 File is a MAPPER file.
13 System 1/0 error.
(continued)
UP-9662.5 7-135

EL-

(continued)

Code

Error

14

Facility warning or reject.

15

Insufficient or improperly formatted statement.

Use an LSM statement to read the message.
subfield in an LSM statement (see LSM).

STAT2$ has a line number identifying the error message.

Place the number in STAT2$ in the msgno

Example

This statement deletes file MYQUAL*MYFILE:

@EL- MYQUAL,MYFILE .

7-136

UP-9662.5

ESR

@SRH .
@RNM .
@SRH

@MCH .
@RSR 1

@GTO .
@DSP .
@1:SRH
@T0T

@WRL .
@RNM .
@ESR. q

RETURN
RETURN
RETURN
RETURN

RETURN
RETURN

. RETURN

RETURN
RETURN
RETURN

EXIT SUBROUTINE AND GO TO q WHERE gq
FROM -5 to 5

HERE
HERE
HERE
HERE

HERE
HERE
HERE
HERE
HERE
HERE

IF
IF
1F
IF

. GO TO INTERNAL
HERE IF g=-1

IF
IF
IF
IF
IF
IF

LH.0.0.0.0..0

=0 OR
=1
=2
=3
=4
=5

IS NOT SPECIFIED

Sece RSR for other examples using an ESR statement.

7-138

RETURN

IS A NUMBER

UP-9662.5

FDR

Example 1: Finding a Particular Line in a Type

@DR,0,B "' 'ST-CD' O,IP <RID>16,<LINE>16
@RLN,<LINE>,99 "ORDER' <ORD>I

where:

0,B

"

ST-CD

0
IP

<RID>]6

<LINE>I6

RLN,<LINE>,99

’ORDER’

<ORD>I

7-142

Find a line in form type B, mode 0.
Use no options.

Look in the ST CD field (column 2 for two
characters).

Process tab lines.
Look for the characters IP.

Capture the report number where the find was
made in <RID>.

Capture the line number where the find was
made in <LINE>.

Read the line (captured in <LINE>I6) and go
to label 99 if no line number exists.

Read the data in the ORDER field.

Capture the order number from the ORDER
field of the line read.

UP-9662.5

FDR

Example 2: Finding a Line in a Report

@FDR,0,B.2,6,100,99 '* 15-5 1 ,GREEN ,V116
@RLN,V1,99 39-5 V215

where:
0,B,2 Find a line in RID 2B in mode 0.
6 Start looking at line 6.
100 Scan 100 lines.
99 Go to label 99 if no finds are made.
» Use no options.
15-5 Scan column 15 for five characters.
Qg Process tab lines.
GREEN Look for the characters GREEN.
V16 Capture in V1 the line number where the find
was made.
RLN,V1,99 Capture in V2 the order number on the
39-5 V215 found line in V1,
UP-9662.5

7-143

FMT

Examples

This statement displays the ST CD, SHIP DATE, and CUST CODE
fields of the current -0:

@FMT 'ST-CD', "SHIP-DATE', 'CUST-CODE"
@DSP, -0

This example displays column 2 for 3 characters, column 45 for 5
characters and column 64 for 7 characters from report 2B in mode 0:

@FMT,0,B,2 2-3,45-5,64-7
@DSP,0,B,2

UP-9662.5 7-145

FND

Example 1: Searching a Type for an Item

This statement searches for IP in the ST CD field and captures the
report and line numbers where the find was made:

@FND,0.B ** °"ST-CD’ O,1P V116,V216
where:
0,B Find data in form type B, mode O.

k24

Use no options.

ST-CD Look in the ST CD field (column 2 for two
characters).

0 Process tab lines.

1P Look for the characters IP.

V116 Capture in V1 the report number where the find
was made.

V216 Capture in V2 the line number where the find
was made.

Example 2: Searching a Report for an I[tem

This statement uses traditional column-character syntax, searching for
GREEN in column 15 for five characters, and captures the line number
where the find was made:

@FND,0,B,2,6,99 " 15-5 O0,GREEN ,<LINE>16
where:

0,B,2 Find data in RID 2B in mode 0.

6 Start looking at line 6.

7-148 UP-9662.5

FND

99 Go to label 99 if no finds are made.

”

Use no options.

15-5 Scan column 15 for five characters.

0 Process tab lines.

GREEN Look for the characters GREEN.

<LINE>I6 Capture the line number where the find was

made in <LINE>.

Example 3: Searching for Spaces

This statement searches a field for spaces and captures the line number
where the find was made:

@FND,0,B,2,,99 @ 25-6 0,Q00@@@ .V116

where:
0,B,2 Find data in RID 2B in mode 0.
99 Go to label 99 if no finds are made.
@ Use the @ option to find spaces.
25-6 Find spaces in the SERIAL NUMBEK ficld
(column 25 for six characters).
0 Process tab lines.
@@E@E@E@E@ Look for spaces.
,V116 Capture in V1 the line number where the find

was made.

UP-9662.5 7-149

GOC

Reserved Words

If the run encounters an error in the data RID, it goes to the label in
the lab subfield and loads STATIS and STAT2$ with information about
the error.

Word Content
STAT1S$ Message number. (Use an LSM statement to obtain the message.)
STAT2$ The line number where the error occurred.

Example

The Color Graphics Guide contains an example of an organization

chart and the code used to produce it. With that code in RID 81H,

mode 0, the following statement generates the organization chart:
@GOC,0,H,81 N N

See the Color Graphics Guide for more details about generating
organization charts.

7-152 UP-9662.5

GS

Reserved Words

If the run encounters an error in the data RID, it goes to the label in
the lab subfield and loads STAT1S$ and STAT2$ with information about

the error.

Word Content
STAT1%$ Message number. (Use an LSM statement to obtain the message.)
STAT2% One less than the line number in report being processed where error
occurred.
Example 1

@GS,0.A,1 20000 1 0

where:
0,A,1
20000
1

0

7-156

Scale RID 1A, mode 0.
Create maximum Y values to 20,000.
Set scale factor to 1.

Rotate angle to 0.

UP-9662.5

Example 2

GS

@GS,0.B,2,10 23999,0,N,N_N.N,N,Y 0.75,2000,1000 \
45,16383,11399 V115,V215,V315,V415,V515,V615,\

V715,V8l5

where:

0,B,2
10
23999
0]

N,N,N,N,N

0.75
2000
1000
45
16383
11399
V115

V215

V3I5

UP-9662.5

Scale RID 2B, mode 0.

Go to label 10 in case of error.

Maximum Y value.

Optimize the results.

Do not ignore errors, unpack result, assume
graphics code, handle expanded syntax, or ignore
high text.

Display the result on the screen.

Reduce to 3/4 size.

Move to the right 2000.

Move up 1000.

Rotate result 45 degrees counterclockwise.
Rotate around the X value 16383.

Rotate around the Y value 11399,

Capture in V1 the number of characters scanned.

Capture in V2 the number of characters in the
result.

Capture in V3 the minimum X value.

7-157

GS

7-158

V415
V5I5
VoI5
V715

V8IS

Capture
Capture
Capture
Capture

Capture

in V4 the midpoint X value.

in V5 the maximum X value.

in V6 the minimum Y value.

in V7 the midpoint Y value.

in V8 the maximum Y value.

UP-9662.5

GTO
This statement causes the run to go to the MAPPER run in report 2 of
the same¢ mode and type:
@GTO RPX 2

The GTO RPX statement executes the run statements in the specified
run control report, with these considerations:

0O The run control report being entered must be in the same mode and
form type as the run that has the GTO RPX statement.

00 All security checks for the first run must be met by the run control
report being entered.

0 All variables established in the run having the GTO RPX statement
are valid in the run being entered. Labels are not valid.

0O The run being entered by a GTO RPX statement need not be
registered. However, since the RPX run control report resides in a
form type especially for MAPPER runs, inform your coordinator
that you intend to use RPX in the form type as part of the plan.

For examples of computed IF/GTO statements, see IF.

UP-9662.5 7-161

(DU

31DECS87 Index reports ending on December 31, 1987.

5 Start indexing at report 5.

10 Stop indexing at report 10.

V113 Capture in V1 the number of reports found.

V2I9 Capture in V2 the number of lines found.

V3i4 Capture in V3 the number of reports in the type
indexed.

V414 Capture in V4 the highest report number created.

7-164 UP-9662.5

IF

Examples

If USERS equals JDOE, go to label 2; or else continue:
@1F USERS$ = JDOE GTO 2

If V1 equals V2, load V1 with | and continue; or else continue:
@IF Vi = V2 LDV Vi=1 ;

If <VAL1> and <VAL2> are not equal, go to label 3; or else continue:
@IF <VAL1> NE <VAL2> GTO 3

If V21 is greater than V20, go to label 3; or else continue:
@IF v21 > V20 GTO 3

If <NUM> equals 2 OR 4, go to label 1; or else continue:
@IF <NUM> EQ 2,4 GTO 1

If V1 is greater than 0 AND less than 100, go to label 3; or else
continue:

@IF Vi > 0 & < 100 GTO 3 ;

If V22 is greater than 10 AND less than 50, go to label in V99; or else
continue:

@IF V22 > 10 & < 50 GTO V99

This example uses two IF statements. If V1 equals A and if V2 is less
than B, go to label 1; or else continue:

@IF Vi = A IF V2 LT B GTO 1

7-168 UP-9662.5

IF

The following examples use a computed IF/GTO sequence.

If <TOTAL> equals 30, go to label 1; if <TOTAL> equals 40, go to label
2; if <TOTAL> equals 50 OR 60, go to label 3; or else continue:

@IF <TOTAL> = 30,(1),40,(2).50.60.(3) :

If V2 equals 4, go to the next line, OR if V2 equals 5, go to the end of
the run; or else continue:

@IF V2 = 4, (LIN +1),5,(END) ;

If V1 equals 2, execute the LDV statement (load V3 with the value 4),
go to label 1 and continue; if V1 does not equal 2, go to label 2:

@IF V1 = 2 LDV V3=4 GTO 1 ; GTO 2

Execute the LDV statement (load V3 with the value 4) only if V1
equals 2; in either case (TRUE or FALSE), go to label 2 and continue:

@IF V1 = 2 LDV V3=4 ; GTO 2
Note that in the previous example, the run goes to label 2 even if the

condition of the IF statement is not met, because the GTO statement is
on the next logical line.

This example uses an unknown trailing substring. (The 0-3 specifies
the last three characters; the starting column position is unknown,) If
the last three characters of V1 contain MON, go to label 25:

@IF V1(0-3) = MON, (25) ;
This example uses a known trailing substring. (The 3-0 specifies the
known starting position of 3 for the remainder of the field.) If the
characters beginning with character 3 through the end of the field
contain FRI, go to label 26:

@IF V1(3-0) = FRI,(26) ;

UP-9662.5 7-169

IND

Example

This example indexes mode 0, type A, and creates a result that has the
first four lines from each report in the form type. If no reports exist,
the run goes to label 99.

@IND.0.A,4,99 .

7-172 UP-9662.5

JUV

Insert commas in <STRING>:

@JUV,C <STRING> . <STRING> AAAG,543.210

Delete commas from <STRING>:

@JUV,D <STRING> . <STRING> AAAAE6543.210

Left-justify the contents of <STRING>:
@JUV,.L <STRING> . <STRING> = 6543.21AAAAA
Right-justify the contents of <STRING>:

@JUV,R <STRING> . <STRING> AAAAAE543 .21

Expand the contents of <STRING>:

@JUV,X <STRING> . <STRING> 6543.2100000

Right-justify the contents of <STRING> and add leading zeros:

@JUV,Z <STRING> . <STRING> = 000006543.21

7-176 UP-9662.5

LCH

Example

@LCH,0.A,1,40,99 AFM 2-79 EXECUTION/PROCESSING .\

<LINES>14
where:
0,A,1 Process mode O, type A, RID 1.
40,99 Start scan at line 40 and go to label 99 if no
target string is located.
AFM Use A, F, and M options.
2-79 Start scan in column 2 for 79 characters.

EXECUTION/ Target and replacement strings: each time
PROCESSING EXECUTION is encountered, replace it with
PROCESSING.

<LINES>14 Capture number of lines located that contain the
target string in <LINES>i4,

UP-9662.5 7-181

(continued)

In field:

LCV

Enter:

Lx

Tx

UP-9662.5

If you’re locating but not changing, Bl is
assumed (thus, you don’t need to specify the B
option). If you’re locating and changing and you
know there’s only one occurrence, use Bl; if there
are two occurrences, use B2; etc,

Brn-x: Starting at the nth occurrence, change x
occurrences of the target string,

Distinguish uppercase from lowercase characters.

If the first character in the variable doesn’t
match x, don’t consider it a find. The L option
is especially useful for locating in lines that were
read from a report.

When changing, do not insert transparent
characters (see Tx option) from the replacement
string in the variable, but leave these character
positions the same. (Valid only if the replistr
field is used.)

Do not go to the label if no finds are made (or if
the bail-out quantity specified in the B option is
not found). Instead, go to the label if a find is
made.

Set x to a transparent character to automatically
match any character in that position.

Since the transparent character’s default value is
a space, you must use the T option to locate
spaces.

(continued)

7-183

LCY

This statement locates the second occurrence of CAT in V1 starting at
column 15 for 20 characters:

@LCV,1 B2 V1(15-20) CAT V216

where:
1 - Go to label 1 if fewer than two occurrences of
CAT are found.
B2 Bail out on the second occurrence of CAT.
V1(15-20) Scan V1 starting in column 15 for 20 characters.
CAT Locate target string CAT.
V2i6 Capture the column number where the second

occurrence of CAT begins in V2,
After the statement executes, V2 contains 22 (the column in V1 where
the second occurrence of CAT was found).
Example 2: Counting Occurrences of an Item
In this example, V1 contains:
CATdogCATDOGCATDogCATDOGCATdog
This statement counts the number of times DOG occurs in VI:

@LCV B99 V1 DOG .V3I6

where:
B99 Bail out on the 99th occurrence of DOG.
Vi Scan V1 (the entire variable).

UP-9662.5 7-185

LCV

DOG Locate target string DOG.
V316 Capture the number of occurrences of DOG in
V3.

In this example, the bail-out count was set to a value higher than the
number of occurrences of DOG because we didn’t want to bail out. V3
continues to count each occurrence of DOG. After the statement
executes, V3 contains 5.

Example 3: Changing Character Strings

In this example, V1 contains:

*CATDOGCATDOGCATDOGCATDOGCATDOG

This statement changes the second, third, and fourth occurrences of
DOG to CAT in V1I:

@LCV L*B2-3 V1 DOG/cat V216 .

where:

L* Make the change only if the first character of V1
is an asterisk (the line type indicator).

B2-3 Change target string starting at the second
occurrence for three occurrences.

\'A! Scan V1.

DOG Locate target string DOG.

cat Change target string DOG to cat.

V2I6 Capture column number of first occurrence of

target string changed.

7-186 UP-9662.5

LCV
Since the first character of V1 matches the character specified in the L
option, the change is made. V2 equals 11 and V1 contains:
*CATDOGCATcatCATcatCATcatCATDOG
1 2 3 4 5
ve=11
Example 4: Comparing Strings
Here are the contents of <STRINGI1> and <STRING2>:

<STRING1>=ABC123
<STRING2>=ABC+++

This statement compares <STRINGI1> to <STRING2>:
@LCV.,1 "' <STRING1> <STRING2> .

where:

1 Go to label 1 if <STRINGI1> is not equal to <STRING2>,
” Don’t use any options.

V1 V2 Variables to compare.
Since <STRINGI1> is not equal to <STRING2>, the run goes to label 1.

Remember, if you use the N option, the run does NOT go to the label
unless the two variables are equal.

UP-9662.5 7-187

LCY

Example §5: Masking Transparent Characters in the Replacement String
For this example, V1 contains:
BLACKBOX1*BLACKCAN1*BLACKBAG1*BLACKCUP1

This example uses the M option to locate each occurrence of BLACK
followed by any three characters, followed by the number 1. Each time
the locate string is found, the characters BLACK are changed to
GREEN, the next three characters remain unchanged, and the last
character, 1, is changed to 2.

@LCV M V1 'BLACK 1’/ GREEN 2° V216,V316 .

where:

M Mask option —transparent characters in the
replacement string are not inserted into the
variable being changed.

Vi Variable in which to locate.

'BLACK I’ Target string (characters to locate).

/ Change string delimiter.

'GREEN 2’ Replacement string (characters with which to
replace each occurrence of the target string).

V216 Variable to capture the column of the first
occurrence changed.

V316 Variable to capture the number of occurrences

changed.
Variable V1 now contains:

GREENBOX2*GREENCAN2*GREENBAG2*GREENCUP2

7-188 UP-9662.5

LCV

Example 6: Using an Unknown Trailing Substring
For this example, V1 contains:
FEATUREO10101

This statement uses an unknown trailing substring and bails out after
the second find:

@.Cv.1 B2 Vi(0-6) 01 V213

where:

1 Go to label 1 if no finds are made.

B2 Bail out after the second occurrence.

V1(0-6) Scan the last six characters of V1. (The 0-6
specifies the last six characters; the starting
character position is unknown.)

01 Locate the target string O1.

V2I3 - Capture the column number where the second

occurrence of 0l begins in the specified
substring. (In this example, V2 contains 10
because the second 01 begins in the tenth column
of V1)

UP-9662.5 7-189

LCV

Example 7: Using a Known Trailing Substring
In this example, <MONEY> contains:
$$SDOLLARS

This example uses a known trailing substring to scan column 4 through
the end of the field and changes the word "DOLLARS" to the word
"YEN" in all occurrences:

@LCV,1 "' <MONEY>(4-0) DOLLARS/YEN
where:
1 Go to label 1 if no finds are made.
” Use no options.
<MONEY>(4-0) Scan <MONEY> beginning with column 4 through
the remaining characters. (The 4-0 specifies the
known starting position of 4 through the end of
the field.)

DOLLARS/YEN Change the target string DOLLARS to YEN.

7-190 UP-9662.5

LDV (Load Variables)

Use an LDV statement to perform these tasks:
O Initialize variables
O Load variables from other variables

O Load variables already initialized, including those with a substring
of unlimited length

O Load variables with the contents of reserved words
O Load a variable with its own contents

When you load a variable with its own contents, you need only specify
the receiving variable. This is particularly useful for packing
variables. You can use, for example, @LDV,P V1,V2 rather than

@LDV,P v1=v1i,v2=V2. Loading variables in this manner is also useful
when centering, left-justifying, right-justif ying variables, and
initializing space filled variables without setting the characters equal
to spaces.

You cannot do arithmetic computations with an LDV statement as you
can with a CHG statement (see CHG). However, an LDV statement is
faster and more efficient than a CHG statement for loading literal data
and reserved words.

Whenever an LDV statement encounters a space or comma, it stops
loading the variable with data. To place a space or comma in a
variable without placing either character in a variable beforehand,
enclose spaces and commas in apostrophes.

UP-9662.5 7-191

LDV

O Part (¢) displays an error message when the user attempts to display
a product that does not exist.

(a) @BRK LDV,W V10H1=SOE$. MENU SECTION
(a) @1:CHG INVARS$ V4H9

(a) ENTER

(a) PRODUCT TO ADDvV1i00O , AND TRANSMITO
(a) OR

(a) EXISTING PRODUCT

(a) TO DISPLAYV100O , AND TRANSMITO

(a) @BRK OUT,'0,2|8'1111Y111P -
(b) @10:LDV,N V2012=V4,1-20 IF CURV$ = 2 GTO 2

(c) @FND,0,B,V20,,99 '* "PRODUCT' 0O,v4 ,V515
(¢c) @bsp,0,B,v20,V5,,,,,\

(c) * PRESS F1 TO CONTINUE®

(c) @GTO 1

(d) @2:FND,0,B,V20,,.4 @ 'PRODUCT' 0,@ ,V214

(d) @LOK,0,B,v20

(d) @3:WRL,0,B,v20,v2 "PRODUCT’ 0O,V4 ULK GTO 5§ .

(d) @4:L0K,0,B,v20 LN+,0,B,V20,5,15 LDV V214=6 GTO 3.

(d) @5:DSP,0,B,v20,v2,,,.," \

(d) PRODUCT ENTERED, PRESS F1 TO CONTINUE’
(d) @GTO 1 .

(¢) @99:LDV,PU V4=V4 . ERROR SECTION

(e) PRODUCT V4 NOT FOUND, PLEASE TRY AGAIN.
(¢) @CHG INVARS$ V4H9 BRK OUT,-0,2,1,,3,N
(e) @GTO 10

P OPTION — PACKING A VARIABLE

With the P option, you can delete leading or trailing spaces from a
variable. This is called packing a variable. Don’t, however, pack a
variable to contain no characters at all. If you do, other functions
trying to use the variable will err.

Once you pack a variable to contain fewer than its original number of
characters, you must reinitialize the variable to make it larger. If you
try to place more than the original number of characters in a variable,
you’ll lose the extra characters.

7-196 UP-9662.5

LDV

LDV EXAMPLES WITH VARIOUS OPTIONS

The following statements are shown as if in sequential order in a run.
The A stands for a blank character position.

This statement initializes V1 to 1:
@LDV Vii2=1

The following statement initializes V1 to A and V2 to 10:
@LDV V1A1=A,V212=10

This statement loads V1 with THIS IS DATAAAAAAAAA:
@LDV V1S20="THIS IS DATA’

This statement loads V1 with AAAAAAAAAZ AAAAAAAAAN:
@LDV.C Vi1=2

This statement loads V1 with 2:
@LDV,P Vi=2

This statement loads V1 with AAAAAAAAAAAAAAAAAAAT:
@LDV,R V1S20=1

This statement loads V1 with 00000000000000000001:
@LDV,RZ Vi=1

This statement loads V1 with AAAAAAAAAAAAAAAAAA-T:
@LDV,R Vi=-1

This statement loads V1 with -0000000000000000001:

@LDV,RZ V1=-1

UP-9662.5 7-197

LDV

This statement loads V1 with AAA20000000000000001:
@LDV,R V1(1-4)=2
This statement loads V1 with 00020000000000000001:
@LDV,.RZ V1(1-4)=2
This statement loads V1 with ABCAAAAAAAAAAAAAAAAN:
@LDV.,U Vi=abce
In tflis statement, <MODE> contains the mode number, <TYPE> the
numeric form type number, and <RID> the RID number of the last
report or result processed or on display:

@LDV.,W <MODE>|4=MODES ,<TYPE>I6=TYPES$,<RID>14=RID$.

In the following statement, if JDOE is on station 12, V4 contains
ABCIDO12XYZ:

@LDV,PW V4520="ABC'USERS$(1-3)STNUMSXYZ .

The following statement uses an unknown trailing substring to load V2
with the minutes and seconds (MM:SS) substring from V1. The 0-5
specifies the last five characters, but the starting character position is
unknown.

@LDV.W V1A8=TIMES . Vi NOW CONTAINS HH:MM:SS
@LDV V215=V1(0-5) . V2 NOW CONTAINS MM:SS

The following statement uses a known trailing substring to load V2
with the seconds (SS) substring from V1 (from the previous example).
The 7-0 specifies the substring beginning with the seventh character
through the end of V1.

@LDV V212-V1(7-0) . V2 NOW CONTAINS SS

7-198 UP-9662.5

LFN (Load Field Name)

Use the LFN statement to load variables with the names of report
fields that correspond to the column-character positions supplied. See
Section 2 for a general description of named fields.

The LFN statement is especially useful for converting an existing run
to one that uses named fields. It is also useful for translating column
position data, such as that obtained from the OUM statement (see
OUM), into field names.

Here are some things to remember:

O You can have field names enclosed in apostrophes; this makes it
easier for you to create run statements.

O If a specified variable isn’t large enough to contain an entire field
name, the statement truncates any trailing characters in the name.

O If the specified columns don’t represent an entire field, the
statement loads the name followed by a partial field description.

O If the run cannot load a field name, it continues at the label.
O If the statement has no label and a field name cannot be loaded,

the run continues at the next statement, loading the variable with
column position data.

7-200 UP-9662.5

LFN

Example

@LFN,0,B,2,Y 2-2,45-3 V1H18,V2H18

where:
0,B,2 Load field names from RID 2B in mode 0.
Y Enclose field names in apostrophes.
2-2,45-3 Get names from column 2 for two characters and
column 45 for three characters.
V1HI18 Load V1 with the name from positions 2-2 (V1 =
STCD?).
V2H18 Load V2 with the name from positions 45-3 (V2
= *CUSTCODE(1-3)").
7-202

UP-9662.5

LLN

Reserved Words

Word Content

1f report exists. . .

STAT1$ Date of last update in DATE1$ format (yymmdd)

STAT2$ Creation date of report in DATE1$ format (yymmdd)

If report has never been updated. . .

STAT1$ 8

If report does not exist. . .

STAT1$ RID number of highest report

STAT2$ Disregard

If form type does not exist. . .

STAT1$ 0

STAT2$ Disregard

If neither the report nor form type exists, the LLN statement goes to the label in the
lab subfield. If you don't specify a label, the run continues at the next statement.

Example

This statement determines the number of lines in RID 1B, mode 0, and
places that quantity in <LINES>. If the report or form type does not
exist, the run goes to label 99:

@LLN,0.B,1,99 <LINES>13

7-204 UP-9662.5

LMG

Example

This statement merges lines and partial lines from RID 7H into RID
8H, both in mode O:

@LMG,0,H,7,0,H,8 .

7-206 UP-9662.5

LNK (Link to Another Run)

Use a LNK statement to execute another run in the MAPPER system.
A LNK statement is like a RUN statement (see RUN), except that after
the linked run executes a GTO END, the original run continues
executing.

The system can transfer up to 40 input parameters, as well as the
current result (-0), to the linked run. Pack or right-justify variables
used to specify either the run name or other input parameters.

The linked run can return up to three status codes and the current
result of the linked run to the original run via a GTO END statement
(see GTO). Following the LNK statement in the original run, you can
examine the reserved words STATI1S$, STAT2$, and STAT3$ to obtain
the status codes.

If the linked run terminates because it encounters a REL statement,
because of an error, or because of manual intervention after a DSG,
DSP, OUM, OUT, or SC statement, the original run does not resume
executing.

You cannot nest LNK statements. Also, a run started by a LNK
statement cannot itself contain another LNK statement unless it first
clears the original link.

Use a CLK statement to terminate the link (see CLK).

7-208 UP-9662.5

LNK

Reserved Word

Code Error
"] The background run has been scheduled.
1 The background run name specified is not a registered background run

for the person executing your run.

2 The specified time is invalid.

3 The specified date is invalid.

4 The specified time and date have already passed.
Example

This example calls the SCHEDULE run to schedule the run called
"myrun”" at 1:30 P.M. on July 5, 1988. It notifies station 123 when the
SCHEDULE run execution is complete.

@LNK SCHEDULE myrun,1330,880704,123

UP-9662.5 7-211

Example

LOC

@L0C,0,B,2,.99 AFM 2-79 FED <COL>,<LINE>

where:
0,B,2
99
AFM
2-79
FED

<COL>

<LINE>

UP-9662.5

Process RID 2B in mode 0.

Go to label 99 if no target string is located.
Use the A, F, and M options.

Start scan in column 2 for 79 characters.
Locate the target string FED.

Capture a number one less than the column
number where the target string was located
(leftmost column of report is column 0) in

<COL>.

Capture the line number where the target string
was located in <LINE>.

7-221

LOK (Update Lock)

Use a LOK statement to get update control of a report and to prevent
other run users from updating your report until you release update
control.

You don’t need a LOK statement to update results.
Use a LOK statement before these statements:

LNI
LNM
LNX
LN+
LN-
WRL

These statements release update control:

ADR GTO END
AUX LOK

DEL REP

DFU SEN

DLR SOR

DUP ULK

EXT UPD

NOTE: The MAPPER system releases update control whenever a run
terminates —for any reason. The run does not terminate until
the calling run and any runs called from within the run
terminate,.

If another user already has update control of the report and if the LOK
statement in your run has no label, the run stalls until the other user
releases update control; otherwise, the run continues at the label
specified in the lab subfield.

UP-9662.5 7-223

LZR

Reserved Words

Word Content

If report exists. . .

STAT1$ Date of last update in DATE1$ format (yymmdd)

STATZ2$ Creation date of report in DATE1$ format (yymmdd)

STAT3$ Save flag date, if one exists

If report has never been updated. . .

STAT1$ 8

1f report does not exist. . .

STAT1$ RID number of highest report

STAT2%$ Disregard

1f form type does not exist. . .

STAT1S 8

STAT2$ Disregard

If neither the report nor form type exists, the LZR statement goes to the Label in the
lab subfield. If you don't specify a label, the run continues at the next statement.

Example

In this statement, <LINES> captures the number of lines in RID 2B,
mode 0, or the run goes to label 99 if no report or form type exists:

@LZR,0,.B.2,99 <LINES>15 .

7-228 UP-9662.5

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112
	Page 113
	Page 114
	Page 115
	Page 116
	Page 117
	Page 118
	Page 119
	Page 120
	Page 121
	Page 122
	Page 123
	Page 124
	Page 125
	Page 126
	Page 127
	Page 128
	Page 129
	Page 130
	Page 131
	Page 132
	Page 133
	Page 134
	Page 135
	Page 136
	Page 137
	Page 138
	Page 139
	Page 140
	Page 141
	Page 142
	Page 143
	Page 144
	Page 145
	Page 146
	Page 147
	Page 148
	Page 149
	Page 150
	Page 151
	Page 152
	Page 153
	Page 154
	Page 155
	Page 156
	Page 157
	Page 158
	Page 159
	Page 160
	Page 161
	Page 162
	Page 163
	Page 164
	Page 165
	Page 166
	Page 167
	Page 168
	Page 169
	Page 170
	Page 171
	Page 172
	Page 173
	Page 174
	Page 175
	Page 176
	Page 177
	Page 178
	Page 179
	Page 180
	Page 181
	Page 182
	Page 183
	Page 184
	Page 185
	Page 186
	Page 187
	Page 188
	Page 189
	Page 190
	Page 191
	Page 192
	Page 193
	Page 194
	Page 195
	Page 196
	Page 197
	Page 198
	Page 199
	Page 200
	Page 201
	Page 202
	Page 203
	Page 204
	Page 205
	Page 206
	Page 207
	Page 208
	Page 209
	Page 210
	Page 211
	Page 212
	Page 213
	Page 214
	Page 215
	Page 216
	Page 217
	Page 218
	Page 219
	Page 220
	Page 221
	Page 222
	Page 223
	Page 224
	Page 225
	Page 226
	Page 227
	Page 228
	Page 229
	Page 230
	Page 231
	Page 232
	Page 233
	Page 234
	Page 235
	Page 236
	Page 237
	Page 238
	Page 239
	Page 240
	Page 241
	Page 242
	Page 243
	Page 244
	Page 245
	Page 246
	Page 247
	Page 248
	Page 249
	Page 250
	Page 251
	Page 252
	Page 253
	Page 254
	Page 255
	Page 256
	Page 257
	Page 258
	Page 259
	Page 260
	Page 261
	Page 262
	Page 263
	Page 264
	Page 265
	Page 266
	Page 267
	Page 268
	Page 269
	Page 270
	Page 271
	Page 272
	Page 273
	Page 274
	Page 275
	Page 276
	Page 277
	Page 278
	Page 279
	Page 280
	Page 281
	Page 282
	Page 283
	Page 284
	Page 285
	Page 286
	Page 287
	Page 288
	Page 289
	Page 290
	Page 291
	Page 292
	Page 293
	Page 294
	Page 295
	Page 296
	Page 297
	Page 298
	Page 299
	Page 300
	Page 301
	Page 302
	Page 303
	Page 304
	Page 305
	Page 306
	Page 307
	Page 308
	Page 309
	Page 310
	Page 311
	Page 312
	Page 313
	Page 314
	Page 315
	Page 316
	Page 317
	Page 318
	Page 319
	Page 320
	Page 321
	Page 322
	Page 323
	Page 324
	Page 325
	Page 326
	Page 327
	Page 328
	Page 329
	Page 330
	Page 331
	Page 332
	Page 333
	Page 334
	Page 335
	Page 336
	Page 337
	Page 338
	Page 339
	Page 340
	Page 341
	Page 342
	Page 343
	Page 344
	Page 345
	Page 346
	Page 347

