
Advanced UNIX®
(System V, Release 4)
Usage Workshop

Student Guide

Unisys Release 1.0.1 	 March 1992

Printed in U S America
AL 3823 	 UE 7417

Advanced UN IX®
(System V, Release 4)
Usage Workshop

Student Guide

Copyright* 1992 Unisys Corporation.
Unisys is a registered trademark of Unisys Corporation.
UNIX is a registered trademark of UNIX System Laboratories, Inc.

Unisys Release 1.0.1 	 March 1991

Printed in U S America
AL 3823 	 UE 7417

The names, places, and/or events used in this publication are purely fictitious and are not
intended to correspond to any real individual, group, company, or event. Any similarity or likeness
to any real individual, company, or event is purely coincidental and unintentional.

NO WARRANTIES OF ANY NATURE ARE EXTENDED BY THE DOCUMENT. Any product and
related material disclosed herein are only furnished pursuant and subject to the terms and
conditions of a duly executed license or agreement to purchase or lease equipment. The only
warranties made by Unisys, if any, with respect to the products described in this document are set
forth in such license or agreement. Unisys cannot accept any financial or other responsibility that
may be the result of your use of the information in this document or software material, including
direct, indirect, special or consequential damages.

You should be very careful to ensure that the use of this information and/or software material
complies with the laws, rules, and regulations of the jurisdictions with respect to which it is used.

The information contained herein is subject to change without notice. Revisions may be issued to
advise of such changes and/or additions.

Correspondence regarding this publication should be forwarded to Unisys Corporation, Education
Publications, P.O. Box 1110, Princeton, NJ 08543 U.S.A.

Advanced UNIX (System V, Release 4) Usage Workshop

Contents

Course Description 	

Agenda 	 vii

About This Course 	 ix

Module 1. 	Basic UNIX Review

Module 2. 	Command Input/Output Redirection

Module 3. 	Command Execution Management

Module 4. 	Shells

Module 5. 	Shell Programming Fundamentals

Appendix A Command Summary

AL 3823 	 iii

Advanced UNIX (System V, Release 4) Usage Workshop

Course Description

Audience

Application users, programmers, and system support personnel

Prerequisites

AL 3822 	Basic UNDC (System V, Release 4) Usage Workshop or a working knowledge of
basic UNIX usage concepts and commands

Objective

Upon successful completion of this course, the student should be able. to perform advanced user
functions using the UNIX operating system.

Description

This course teaches the skills needed to use UNIX to perform advanced user functions. It also
satisfies prerequisites for advanced UNIX cousses.

This instructor-led course includes a review of basic UNIX concepts and commands, section
summaries, and practical exercises to supplement structured discussions. Hands-on activities are
provided throughout this course.

Topics

• Input/output redirection
• Command execution management
• UNIX shells
• Shell programming fundamental

Duration

2 days

AL 3823

Advanced UNIX (System V, Release 4) Usage Workshop

Agenda

Day 1

• Module 1. Basic UNIX Review

• Module 2. Command input/Output Redirection
- Standard input, standard output, and standard error
- Redirection

- Symbols
- Redirect standard input

Redirect standard output
- Redirect standard error

• Module 3. Command Execution Management
Process structure overview

- Display process status
- Execute multiple commands

Group commands for execution
- Execute commands in background
- Terminate processes

Prevent command termination
- Execute commands later

Day 2

• Module 4. Shells
- Review of UNIX shell functions
- UNIX shell types

Korn shell overview
Features

- Setup
- Command history
- Line edit mode

Command alias
- Job control
- Options and variables

• Module 5. Shell Programming Fundamentals
- Shell programming overview
- Create shell program
- Check program for errors

Use variables
Modify user environment

- Control flow of program execution

AL 3823 	 vii

Cans TIN

Mor Heeding

This Sod refers to the material located on the oppoalte page.

Reference

U NIX System V Raises. 4.0 Uses Reference Manual (4357 0348-020)

1.2 	 Course Number

Couple Mt%

Page Heading

home usr bin var

• Directory

Course Number 	 1.3

Advanced UNIX (System V, Release 4) Usage Workshop

About This Course

Student Guide Organization

This course is directed towards individuals with diverse data processing experience. It presents
additional fundamental UNIX principles and provides practical guidance to perform more
advanced UNIX user functions. References to product documentation are provided to direct the
student.

This student guide consists of five modules, or sections, and a command summary in the appendix.
Each module begins with a set of learning objectives providing structure and purpose to the body
of information contained within the module. A module summary and written and/or practical
exercises are provided in each module. Longer modules contain multiple, staggered practical
exercises providing hands-on activities on selected topics in addition to the module summary and
the final module exercise.

The format for module pages in this student guide is shown below. The left page contains
descriptive text pertaining to the information appearing on the right page. Product information
documentation is listed at the bottom of the left page. The right page generally contains text,
tables, or graphics.

Left Page 	 Right Page

Figure 1. Page Layout

AL 3823 	 ix

Advanced UNIX (System V, Release 4) Usage Workshop

Typographic Conventions

The following conventions are used throughout this document.

Convention Represents

Bold Command name
Command line entry

Italics File name
Directory name
Variable information
Documentation title

Courier Terminal entry .
Terminal display

< > Input that does not appear on the
screen when typed, such as
TAB, ESCAPE, and RETURN keys

< A char> Control characters that do not
appear on the screen when typed.
The circumflex (A) represents the
control key, usually labeled Ctrl.

To type a control character, hold
down the control key while
pressing the specified character.
For example, to enter <Ad>, hold
down the control key while
pressing the letter d key — the
letter d does not appear on the
screen.

[) Command options and arguments
considered optional are enclosed in
brackets. Brackets should not be
entered as part of the command
line.

x 	 AL 3823

Advanced UNIX (System V, Release 4) Usage Workshop

Unisys Reference Documentation

Abundant information on UNIX is available in Unisys publications and in commercial textbooks.
It is important to be familiar with the available resources in order to locate desired information
quickly and efficiently.

This section presents an orientation to Unisys reference documentation. Descriptions of key
standard reference documentation are provided below.

• Release Notes
	 Describe the capabilities and features of the 4.0 UNIX operating

system

• Software Installation
	Contains operating system and software product installation

and Operations Guide 	procedures, and basic startup and maintenance procedures

• Administrator's Guide 	Describes system administration and maintenance functions such
as system setup and configuration, user and device management,
file system administration, backup and restore procedures, print
service administration, and system security functions

• Administrator's
	Contains descriptions of administrative commands, file

Reference Manual(s) 	formats, and special files

• Error Message Manual 	Provides assistance in interpreting error messages and
determining probable causes and solutions for hardware and
software problems; contains an index of alphabetic error messages
to facilitate quick access

• Programmers's Guide 	Presents an overview of the UNIX system programming
environment and tutorials on various programming tools

• Programmer's Reference Describes programming commands, system calls, library
Manual(s) 	 routines, formats, and miscellaneous utilities

• User's Guide 	 Presents an overview of the UNIX operating system and tutorials
on user-related topics like text editing, print services, electronic
mail, and network communication

• User's Reference 	Describes user commands
Manual

Network User's and 	Directed to users of remote services and to the system
Administrator's Guide 	administrator setting up and maintaining file sharing capability

Of the documents listed above, the organization of the reference manuals containing command
descriptions requires further examination.

AL 3823 	 xl

Advanced. UNIX (System V, Release 4) Usage Workshop

Unisys Reference Documentation

Document Title Number

Release Notes 4357 7592-000

UNIX System V Release 4 Installation and Operation Guide 3915 2483-000
,

UNIX System V Release 4 Administrator's Guide 3915 2442-000
,

UNIX System V Release 4 Network User's and Administrator's Guide 3915 2467-000

UNIX System V Release 4 Error Message Manual 3915 2624-000

UNIX System V Release 4 X Window Access Operation Guide 7431 1473-000

Commescial Secure: Security Features User's Guide 7431 2810-000
,

Commercial Secure: Trusted Facility Tuning Manual 7431 2802-000

UNIX System V Release 4 Tuning Guide 3915 2525-000
,

UNIX System V Release 4 Administrator's Reference Manual VI - 4357 7451-000
V2 - 4357 7469-000

UNIX System V Release 4 User's Reference Manual 4357 7444-000

UNIX System V Release 4 User's Reference Manual Supplement 3915 2962-000

UNIX System V Release 4 User's Guide 3914 9398-000

UNIX System V Release 4 Programmer's Guide Supplement 3915 2921-000

UNIX System V Release 4 Programmer's Guide: Support Services
and Application Tools

3914 9463-000

UNIX System V Release 4 Programmer's Guide: ANSI C and
Programming Support Tools

3914 9414-000

UNIX System V Release 4 Programmer's Guide: Character User
Interface: FMLI, ETI

3914 9406-000

UNIX System V Release 4 Programmes's Guide: STREAMS 3915 2608-000

UNIX System V Release 4 International Enhancements Guide 3915 2566-000

UNIX System V Release 4 Programmer's Guide: Networking
Interfaces

3914 9422-100

UNIX System V Release 4 Device Driver Programmer's Guide 3915 2988-000

UNIX System V Release 4 BSD/XENIX Compatibility Guide 3915 2574-000

UNIX System V Release 4 ANSI C Transition Guide 3915 2590-000

XII
	

AL 3823

Advanced UNIX (System V, Release 4) Usage Workshop

Unisys Reference Manual Organization

Traditionally, UNIX reference manuals containing command descriptions adhere to the
organization used by AT&T, the developer of UNIX. The AT&T organizational model consists of
eight standard sections described below.

Section 1 	Contains alphabetic descriptions of commands and utilities for administrators,
users, and programmers

Section 2 	Describes the system calls used to interact with the kernel

Section 3 	Describes the library of subroutines available for programmers

Section 4 	Describes main system files

Section 5 	Contains various information and miscellaneous facilities, like character set
tables and macro packages

Section 6 	Games, not included in Unisys documentation

Section 7 	Describes system special files, like device files

Section 8 	System maintenance procedures, not included in Unisys documentation

Unisys has grouped the Section 1 commands for users, administrators, and programmers into
separate volumes containing commands and file format references extracted from the standard
AT&T documents and Unisys customized commands.

Each set of reference manuals contains a table of contents listing the command entries in
alphabetic order by section where multiple sections exists in the document, a permuted index to
locate a command by topic followed by command entry descriptions.

Each command name appears in the format command (AT&T section_number), for example the
date(1) command. The section number may also include a letter designating a grouping of like
commands. For example, C refers to communication, M refers to maintenance, and G refers to
graphics.

AL 3823 	 xiii

Advanced UNIX (System V, Release 4) Usage Workshop

Unisys Reference Manual Organization

Unisys Manual Extracted AT&T Section Example

User's Reference
Manual

1 	User commands
commands and utilities

mandex(1)
passwd(1)
uucp(C)

Administrator's
Reference Manual

1 	Administrator
commands and utilities

4 	File formats

5 	Miscellaneous facilities

7 	Special files

boot(1 M)
fsck(1M)
mkts(1 M)

I nittab(4)
passwd(4)
profile(4)

regexp(5)
signal(5)
term(5)

fllesystem(7)
termio(7)

Programmer's Reference
Manual(s)

1 	Programmer
commands and utilities

2 	System calls

3 	Subroutines

4 	File formats

5 	Miscellaneous facilities

cc(1)
lint(1)
sdb(1)

sysfs(2)
symIlnk(2)

sleep(3C)
basename(3G)
trig(3M)

a.out(4)
core(4)

ascll(5)
math(5)

xiv 	 AL 3823

Advanced UNIX (System V, Release 4) Usage Workshop

Reference Manual Entries

Each manual entry is formatted to include an appropriate subset of the following headings.

NAME

SYNOPSIS

DESCRIPTION

EXAMPLES

FILES

EXIT STATUS

RETURN VALUES

NOTES

SEE ALSO

DIAGNOSTICS

WARNINGS

BUGS or
RESTRICTIONS

Entry name and function; may include related (secondary) entries

Format of command, system call or library routine

Overview of command usage or topic

Examples of command syntax or usage, where appropsiate

File names referenced by the command

Value(s) set when command terminates

Value(s) returned during command execution

Helpful information or special considerations

Pointers to related information

Diagnostic message interpretations

Potential misuse, restrictions, limitations, or boundaries

Known faults, deficiencies, or limitations.

Two sample manual pages are illustrated on the next page. The corresponding software utility
package, Essential Utilities in this case, appears across from the command entry. Notice that the
headings are not identical for each command description.

AL 3823 	 xv

Advanced UNIX (System V, Release 4) Usage Workshop

Reference Manual Entries

pwd

pwd(1) 	 Essential Utilities

NAME
pwd - working directory name

SYNOPSIS
pwd

DESCRIPTION
pwd prints the path name of the working (current) directory.

SEE ALSO
cd(1).

DIAGNOSTICS
Cannot open .. and Read error in .. indicate possible file
system trouble and should be referred to a UNIX system
administrator.

NOTES
If you move the current directory or one above it, pwd may
not give the correct response. Use the cd(1) command with a
full path name to correct this situation.

cd(1)
	

Essential Utilities

NAME
cd - change working directory

SYNOPSIS
cd [directory)

DESCRIPTION
The cd command changes to a new working directory. If
directory is not specified, the value of shell parameter
$HOME is used as the new working directory. If directory
specifies a complete path starting with /, ., or ..,
directory becomes the new working directory. If neither
case applies, cd tries to find the designated directory
relative to one of the paths specified by the $CDPATH shell
variable. $CDPATH has the same syntax as, and similar
semantics to, the $PATH shell variable. cd must have
execute (search) permission in directory.

Because a new process is created to execute each command, cd
would be ineffective if it were written as a normal command;

therefore, it is recognized by and is internal to the shell.

SEE ALSO
pwd(1), sh(1).
chdir(2) in the Programmer's Reference Manual.

xvi 	 AL 3823

Advanced UNIX (System V, Release 4) Usage Workshop

Online Reference Commands

The following UNIX commands provide online access to reference manual information.

man

This command accesses reference manual entries on the system. The information displayed is the
same as the printed reference manuals described previously.

mandex

This command provides access to a menu-driven indexing system to search selected online manuals
for a subject or command.

AL 3823 	 xvii

Advanced UNIX (System V, Release 4) Usage Workshop

Online Reference Commands

• man

Online reference manual

• mandex

Menu-driven indexing system to online manuals

xviii 	 AL 3823

Basic UNIX
Review

Basic UNIX Review

Module Objectives

The purpose of this module is to review fundamental UNIX terms and usage.

Reference

Documentation referenced in this module

• UNIX System V Release 4 User's Guide (3914 9398-000)

• UNIX System V Release 4 User's Reference Manual (4357 7444-000)

• Basic UNIX (System V, Release 4) Usage Workshop (UE-7415)

AL 3823 	 1-1

home

userl user2

Basic UNIX Review

The following questionnaire consists of three sections (general, text editors, and commands).

Complete the questionnaire according to the instructions provided by yous instructor. The
questions will be reviewed in order to check and/or correct your understanding of basic UNIX
terms and usage. You will be provided opportunity to ask questions on these and related topics.

General

1. Name the three layers of the UNIX operating system. Briefly describe each.

2. 	Describe the types of UNIX files.

3. Use the diagram below to answer the following questions pertaining to UNIX file
hierarchy. Assume the current directory is /home/userl for all items.

1-2 	 AL 3823

Basic UNIX Review

a. Name the full path name to userl's home directory.

b. Name the relative path name to userl's file.c file.

c. Name the reference to userl's parent directory.

d. Name the full path name to user2's memos.feb file.

e. Name the relative path name to user2's memos.feb file.

4. Describe the components of the UNIX command format.

5. Write the command to move to the parent directory.

6. List several file-naming conventions.

7. Name and describe three special characters used in file name expansion by the shell.

8. How can special characters be used literally?

Text Editors

1. Name and describe two UNIX text editors.

2. 	Distinguish between command and text input modes.

3. List the basic steps to create a file in ed, enter text, save text and exit the editor. Contrast
with the steps to create a file through vi.

4. Write the ed command to display lines seven through nine with line numbers.

AL 3823 	 1-3

Basic UNIX Review

5. Describe three text input commands used in vi.

6. The command to undo the last change is 	

7. Describe a method to copy text in vi. To move text.

8. Name two vi commands to delete text in command mode.

9. Which symbol indicates a forward search for a character string? A backward search?

10. Write the vi command to substitute all occurrences of unix with UNIX throughout a file.

11. Name the command that displays the file name with which the editing buffer is currently
associated.

12. Write the command used in vi to replace the contents of the editing buffer with another
file.

13. Which command reads the contents of another file into the current editing buffer?

14. Name the command to discard changes in the editing buffer without exiting the editor.

15. The option to invoke vi in read-only mode is 	. The command to override this option
and save the contents of the editing buffer is 	.

16. Write the command that temporarily exits the editor to execute the shell command that
will display your current directory.

1-4 	 AL 3823

Basic UNIX Review

Commands

	

1. 	Write the commands that perform the following functions:

a. Assign or change a login password 	

b. Print your working directory 	

c. List the contents of a directory 	

d. Display the contents of a file 	

e. Determine who is logged into the system 	

f. Display the current system date and time 	

g. Get online assistance 	

h. Copy a file 	

i. Move or rename a file 	

j. Create links to a file 	

k. Create a directory 	

1. 	Remove a directory 	

m. Format a file for printing 	

n. Print a file 	

o. Display the current terminal settings 	

	

2. 	Which command searches selected online reference manuals and displays the pages
containing the search string?

	

3. 	Name the command that prints status information for all printers on the system.

	

4. 	Which command is used to remove a print request?

	

5. 	Printer ptrl was disabled due to a paper jam which has been corrected. Write the
command to restart printer ptrl.

AL 3823 	 1-5

Basic UNIX Review

6. Write the command that displays your user/group name and id.

7. Which command classifies files by their contents (for example, ASCII, executable, empty)?

8. Write the command to find your files that have not been accessed within the last 60 days
and remove them.

9. Write the command to change access permission to the salaries file so that the owner can
view the file and all others are completely restricted from accessing the file.

10. Write the command that sorts fileX numerically on the third field only and saves the sorted
output to fi/eXsrt.

11. Write the command that searches all files for the pattern UNIX at the beginning of a line
and displays the file names containing the pattern once (if multiple matches occur in the
same file).

12. Write the command that changes the default permissions for new files and new directories
to read and write access for the owner and read only for all other users.

13. Describe three UNIX commands that allow users to communicate with one another on the
same system.

14. Which command displays information concerning a terminal's ability to receive messages
from another terminal?

15. Distinguish between the mail and mails utilities. What are tilde escape commands
(minx)? How are they used?

1-6 	 AL 3823

Command
input/Output
Redirection

Command Input/Output Redirection

Module Objectives

Upon completion of this module, you should be able to redirect the flow of command input and
output.

The supporting module objectives include the ability to

1. Redirect standard input from a file.

2. Redirect standard output to a file.

3. Redirect standard output to another command.

4. Redirect standard output to multiple destinations.

5. Redirect standard error to a file.

Reference

Documentation referenced in this module

• UNIX System V Release 4 System User's Reference Manual (4357 7444-000)

AL 3823 	 2-1

Command Input/Output Redirection

Standard Input, Standard Output, and Standard Error

Most commands accept input from a source called standard input. By default, this source is the
terminal screen, unless otherwise designated. Similarly, a command sends its output to a
destination called standard output, the terminal screen by default. Error messages generated by a
command are directed to standard error, again the terminal screen by default.

The UNIX shell directs the source and destination of a command program's standard input,
standard output, and standard error. This is illustrated in the next figure. In effect, the command
program is "unaware" whether the standard input is actually from the terminal keyboard or from a
file. Likewise, the command program is unaware whether the standard output is directed to the
terminal screen, to a file, to another command, or to multiple destinations.

The shell can be instructed to redirect a command program's standard input, standard output, and
standard error. This capability illustrates the shell's utility and flexibility.

2-2 	 AL 3823

Command Input/Output Redirection

Standard Input, Standard Output,
and Standard Error

Shell
Command

Standard Output

Standard Error

Standard Input

14401-1

AL 3823 	 2-3

Command Input/Output Redirection

Standard Input and Standard Output

The cat command illustrates how the terminal is used as standard input and standard output.
cat accepts input from a file name (argument) designated on the command line and copies the
file's contents to its standard output, directed by the shell to be the terminal screen. When a file
name is not specified, cat takes input from standard input, the terminal keyboard.

Examples

In the first example, the cat command is executed without supplying a file name. After the
<RETURN> key is pressed, the cursor (indicated by the filled square below the $ prompt) is
stationary and no other activity is taking place. The shell is waiting for input from the terminal to
pass to the cat command.

In the second example, each line of text that is entered and followed by a <RETURN> is passed to
cat. This input is then copied by cat to standard output — back to the terminal screen — until
<Ad> is pressed to indicate the end of the file. cat finishes execution and returns control to the
shell which displays another command prompt. The input is not stored (saved) since a destination
was not specified other than standard out.

2-4 	 AL 3823

Command Input/Output Redirection

Standard Input and Standard Output

Example 1
cat<RE TURN>

■

Example 2
$cat
Entering a line of text.
Entering a line of text.
cat continues to copy text
cat continues to copy text
until Ctrl-d is pressed
until Ctrl-d is pressed
on a line by itself.
on a line by itself.
<Ad>

AL 3823
	

2-5

Command Input/Output Redirection

Redirection Symbols

The term redirection refers to the various ways the shell alters the source of standard input and
the destination for standard output and standard error.

The special characters used in a command line to instruct the shell to redirect a program's input,
output, or error are listed on the following page and described below. The shell interprets these
characters before the command is executed.

Input Redirection

The < symbol instructs the shell to redirect the input to a program from the named file.

Output Redirection

Output redirection diverts the output from a command to a destination other than the terminal
screen. A program's output can be directed to a file, to another command, or to both files and
commands.

The > symbol instructs the shell to redirect the output of a program to the named file.

The » symbols cause standard output from the command to be appended to the named file.

The I symbol allows two or more commands to be connected together. This is called a pipe
because the output of one command is piped as input to the next command.

The tee command "splits" the output of a command and redirects it to multiple destinations, for
example, to the named file and to the next command in the pipe.

Each form of redirection is presented separately.

2-6 	 AL 3823

Command Input/Output Redirection

Redirection Symbols

Redirection Designation Interpretation

Input < Redirects input from
named file

Output > Redirects output to
named file

›> Appends output to
named file

i Redirects output to
named command

tee Redirects output to
(command) multiple destinations

AL 3823 	 2-7

Command inpuVOutput Redirection

Input Redirection

The redirect input symbol, <, tells the shell to take input for a command from a file instead of the
terminal keyboard. Input redirection can be used with any command that accepts standard input
from the terminal.

The format for a command line using input redirection is shown at the right. Spaces before and
after the < symbol are not required, although they are generally used by convention.

Another form of input redirection is in-line input redirection, also referred to as a here document.
It is useful in shell programs to specify standard input to a command directly in the program
without creating a separate file first. The <<label designation, consisting of one or more characters
following the << symbols, tells the shell to use the lines that follow up to the next label designation
(at the beginning of a line) as input to the command. This is illustrated later in the shell
programming module.

Examples

In the first example, the shell is instructed to take input for the cat command from the file called
test. The cat command then displays this input on the standard output, the terminal screen. In
this case the input redirection yields the same result as if the cat command were executed without
the < symbol. Many commands, like cat, are already designed to accept input from a file.

The mail command allows a user to send or receive electronic mail. Often the message sent to a
user is entered as standard input at the keyboard. In the second example, however, the message
is already stored in a file called reminder which is redirected as input to the mail command.

Generally, input redirection is not used as frequently as output redirection.

2-8 	 AL 3823

Command Input/Output Redirection

Input Redirection

command [-options] [arguments] < input file

«label

Example 1
$ cat test
This is a sample text file.
$ cat < test
This is a sample text file.

Example 2
$ mail userl < reminder

AL 3823
	

2-9

Command Input/Output Redirection

Redirecting Output to a File

The > symbol indicates output redirection to a file. This can be used with any command that
provides standard output. The command structure including output redirection is depicted on the
next page. Again, spaces around the > symbol are not significant, but generally they are used.

Examples

In Example 1, standard output is redirected to text file. Since an input file is not specified, the
shell directs the cat command to accept input from the keyboard until a <' d> is encountered
indicating the end of the file. Notice the text is not echoed (repeated) back to the screen when the
<RETURN> key is pressed because it is diverted to text file. This use of the cat command
provides a quick way to create short files without using a text editor. However, it does not allow
corrections easily.

If the text file already exists containing data, as in Example 2, it is overwritten. The Bourne shell
erases the contents of the existing file to prepare for the output of the cat command. To avoid
inadvertently losing the contents of a file, use the >> symbols to append (add) the output to the
end of the named file. This is illustrated in Example 3.

An existing file may also be overwritten by the Bourne shell, if the same file name is used for both
input and output files. In the example cat names morenames > names, the names file would only
contain the contents of the morenames file. The shell first empties the file name to the right of the
redirection symbol. Since names file is now empty, the only input passed to the cat command is
the contents of the morenames file. To avoid accidental loss of data when using redirection, use
different input and output file names.

Note: The Korn shell's noclobber variable prevents accidentally overwriting a file when output
redirection is used. It also prevents creating a file when output is appended to a
nonexistent file.

2-10 	 AL 3823

Command Input/Output Redirection

Redirecting Output to a File

command [-options] [arguments] output file

›› output file

Example 1
$ cat > text
Text is not echoed to the screen because
it is redirected to the named file.
<Ad>
$ cat text
Text is not echoed to the screen because
it is redirected to the named file.

Example 2
$ cat > text
This text replaces
<' d>
$ cat text
This text replaces

the original text.

the original text.

Example 3
$ cat >> text
Adding more text to the file.
<^ d>
$ cat text
This text replaces the original text.
Adding more text to the file.

AL 3823 	 2-11

Command Input/Output Redirection

Redirecting Output to a Command

The UNIX pipe is a method to connect two or more commands. Although the same results can be
achieved using output redirection to a file, this method is more efficient because it avoids the
user's having to create extra files. The pipe symbol, I (vertical bar), indicates output redirection to
another command. Any command that accepts standard input and produces standard output can
be used in a pipeline.

The format for a pipeline is illustrated on the next page. Each additional command in the pipeline
is preceded by the I symbol.

Examples

The first method in Example 1 uses file redirection to count the current number of users on the
system. The output of the who command is saved to a file, users.tmp. Next, the we -1 command
is used to count the number of lines in the users.tmp file. Finally, the temporary file is removed
since the information it contains is variable. The second method shows how these three steps can
be combined into one using a pipeline construction. The output of the who command is not
displayed; it is directed by the shell as input to the next command, we -1 in this case. The
terminal displays only the final output, that is, the number of current users.

Example 2, shows a more complex structure to combine the contents of two files into one using cat,
to sort it, and to print the sorted version. In this pipeline construction, the sorted output is not
displayed, nor is it captured in a file. This can be done, however, using the tee command,
presented subsequently.

Some commands, like we and sort, transform or change the input in some way and output the
altered data. These commands are called filters; they are frequently used in pipelines.

2-12 	 AL 3823

Command Input/Output Redirection

Redirecting Output to a Command

Standard Output
of Command-1

Standard Input
for Command-2

14401.3

commandl command2 I command3 • •

Example 1
File Redirection Method: $ who > users.tmp

$ wc -1 < users.tmp
$ rm users.tmp

Pipeline Method: 	 $ who I wc -1

Example 2
File Redirection Method:
	

$ cat names morenames > allnames
$ sort allnames > allnames.srt
$ ip allnames.srt

Pipeline Method: 	 $ cat names morenames I sort I 1p

AL 3823 	 2-13

Command Input/Output Redirection

Redirecting Output to Multiple Destinations

The tee command captures the output of a command in a pipe by copying standard input to
standard output, to another command in a pipeline, or to one or more files. This is illustrated on
the next page.

The format of the tee command appears on the next page. The tee command overwrites the
output file(s) if it exists, unless the -a option is used to append output to the named file(s).

Examples

In Example 1, the reportl file is formatted using the pr command. The formatted output is copied
to the reportl.pr file and to standard output, the screen since no other command is included in this
pipeline.

The tee •a command prevents accidental overwriting of the existing file. The formatted output of
the report2 file, in Example 2, is appended to the report.prl file. The output is not displayed as in
the previous example because it is piped to the 1p command for printing.

Example 3 copies the formatted output of the inventory file to the inventory. pr file, to the terminal
(more correctly, to the device file I dev 1 term114 representing the terminal), and pipes the
formatted output to the default system printer.

2-14 	 AL 3823

144014

Command Input/Output Redirection

Redirecting Output to Multiple Destinations

Standard Output
of Command-1

To Standard
Output Device

command [-options] [arguments] I tee [-a] file(s)

Example 1
$ pr reportl tee reportl.pr

Example 2
$ pr report2 I tee -a reportl.pr I 1p

Example 3
$ pr inventory tee -a inventory.pr /dev/term/14 1p

AL 3823 	 2-15

Command Input/Output Redirection

Redirecting Standard Error

The error message produced by a command is normally directed by the shell to standard error,
which is the same destination as standard output — the terminal. This can also be redirected to a
file using the > symbol. Since this symbol is also used to redirect standard output, further
distinction is required to avoid ambiguity.

The following file descriptors specify standard input, standard output, and standard error
explicitly.

0 	standard input
1 	standard output
2 	standard error

The file descriptor immediately precedes the redirection symbols. For example, I> refers to
standard output, while 2> refers to standard error. The prgm 2> errfile command instructs the
shell to direct any standard error to the file errfile. The explicit designations for standard input
(0<) and standard output (1>) are required only to avoid ambiguity.

Examples

In Example 1, three files, one of which does not exist, are concatenated (serially appended). The
combo file contains the contents of fuel and file2. Since the error message was not redirected, it
is displayed as standard output on the screen.

Example 2 illustrates standard error redirection using file descriptors to explicitly distinguish
between standard output and standard error. The combo file contains the contents of fuel and
file2. The expected error message is not displayed. Instead, it has been captured and diverted to
the file oops. To append standard error to an existing file, use the designation 2» errfile, where
errfile is the name of the original file containing standard error.

Example 3 shows how to redirect standard error to the same file specified for standard output.
The 1> redirects standard output to the combo file. The notation 2>&I declares file descriptor 2 to
be a duplicate of file descriptor 1, thus redirecting standard error to the same destination as
standard output. Again, the expected error message is not displayed since it has been redirected to
the combo file.

2-16 	 AL 3823

Command Input/Output Redirection

Redirecting Standard Error

command [-options] [arguments] 2> file

Example 1
$ cat filel file2 nofile > combo
cat: cannot open nofile
$ cat combo
This is file 1.
This is file 2.

Example 2
$ cat filel file2 nofile 1> combo 2> oops
$ cat combo
This is file 1.
This is file 2.
$ cat oops
cat: cannot open nofile

Example 3
$ cat filel file2 nofile 1> combo 2>61
$ cat combo
This is file 1.
This is file 2.
cat: cannot open nofile

AL 3823 	 2-17

Command Input/Output Redirection

Summary

• Standard input is the input or information used by a command. By default, this is the
terminal keyboard.

• Standard output is the output or result of a command. By default, this is also the terminal
screen.

• Error messages generated by a command are directed to standard error, again, the
terminal screen by default.

• The shell directs a program's standard input, standard output, and standard error.

The shell can be instructed to redirect a program's standard input, standard output, and/or
standard error.

• The redirect input symbol (<) instructs the shell to take input for a command from a file
instead of the terminal keyboard.

• The redirect output symbol (>) tells the shell to redirect the standard output of a command
from the terminal to a file.

• The append output symbol (») instructs the shell to add new information to the end of a
file. Appending to output prevents accidentally overwriting data.

• A pipe (1) connects commands together so that the standard output of one command
becomes the standard input to the next command in the pipeline.

• A filter is a command that takes its input from standard input, transforms it in some way,
and produces its result on the standard output.

•
	

The tee command splits the direction of the standard output and redirects it to multiple
destinations. The -a option appends the modified data to the named file preventing
accidental overwriting of data.

• File descriptors are used to explicitly distinguish between standard input, standard output,
and standard error. By convention, 0 refers to standard input, 1 refers to standard output,
and 2 refers to standard error.

2-18 	 AL 3823

Command Input/Output Redirection

Practical Exercise

1. Create a file named format using the cat command and output redirection. Enter the
following text in the file:

I am creating this file using the cat command
and the redirect output symbol. This text will
be stored in the format file.

2. Append the following text to the file named format:

This text will be added to the format file.

3. Using the editor of your choice, create two files in your home directory called studentsl and
students2 with the text provided below. These files contain the following student names:

studentsl 	 students2

Zollow, George
	 Adams, Mary

Brady, Mike
	 Green, Bob

Christensen, Alice
	Thompson, Dave

Brenton, Rick

Write the command lines used to perform the following steps in the space provided below
each item.

a. Use the cat command to concatenate the studentsl and students2 files. Redirect
the output to a file called students.all.

b. Remove the students.all file, and cat the files again, this time misspell the
studentsl file name. What happened? What is the content of students.all?

c. Repeat Step b above, again misspelling the studentsl file. This time, redirect error
messages to a file name students.err. What does each file contain?

d. 	Concatenate the studentsl and students2 files, save the results in a file called
students. temp, and simultaneously display the results on the terminal and send the
output to the printer.

AL 3823 	 2-19

Command Input/Output Redirection

Optional Exercise

	

1. 	Define standard input, standard output, and standard error.

	

2. 	True or false. Redirection is performed by the command program. If false, explain.

a. True

b. False

	

3. 	Match the descriptions in column B with the corresponding redirection symbol in column A.

Column A 	 Column B

a. Appends to output

b. Redirects input

c. Appends to input

d. Redirects output

	

4. 	Select the answer(s) that complete(s) the following statement correctly.

A filter is a command that

a. Redirects input to a program

b. Redirects output of a program

c. Alters standard input

d. Is used in UNIX pipelines

	

5. 	Write the designation that redirects standard error to the same file as the standard output.

2-20
	

AL 3823

Command Execution
Management

Command Execution Management

Module Objectives

Upon completion of this module, you should be able to manage command execution.

The supporting module objectives include the ability to

1. Determine command process status.

2. Execute multiple commands in one command line.

3. Group commands for execution.

4. Execute commands in background.

5. Terminate processes.

6. Run command ignoring hangups and quits.

7. Schedule command execution for a later time.

8. List and remove jobs from schedule queue.

Reference

Documentation referenced in this module

• UNIX System V Release 4 System User's Reference Manual (4357 7444-000)

AL 3823 	 3-1

Command Execution Management

Processes

A process is the execution of a program. When a command line is executed, a process is initiated.

Process Structure

Like the UNIX file system, the organization of processes is hierarchical. It has parents and
children, even a root. A parent process creates a child process, which can also create other
processes. The term spawn is used to refer to the creation of processes. The first process started
when the system is booted is init. Like the superuser root, init is the grandparent of all processes.

Command Execution

When a command line is executed, the shell usually spawns a child process to execute the
command. While a child process is executing, the parent process is in an inactive state called
sleep. A sleeping process does not use any computer time. When the child process completes
execution, it dies. The parent process (running the shell) awakens and issues another command
prompt.

Process identification

When a process is spawned, UNIX assigns it a unique number. This number is called the process
identification, also referred to as PID. A process keeps the same PID number as long as it exists.
For example, during a given session, the same PID is associated with the login shell. The process
identification of the init process is always PID 1.

Some commands display the PID as part of the output. The ps command provides status
information about processes. The kill command terminates processes.

3-2 	 AL 3823

Command Execution Management

Processes

• A program during execution

• Organized in a hierarchy

Grandparent of all processes is inft

Parent process

Child process

• identified by a unique number called PID

init has PID 1

PID remains the same while the process exists

• Display status of processes

ps command

• Terminate processes

kill command

AL 3823 	 3-3

Command Execution Management

Displaying Process Status

ps — Display information about active processes

Description

The ps command displays information about active processes according to the designated options.
The column headings displayed depend on the options specified. For example, the 4 option
displays eight columns of information; the -1 option displays 15 columns. Colum.n!descriptions are
provided below. Multiple options can be combined. Some!options accept lists of arguments.
If options are not specified, information is displayed about processes running under the user's ID
and associated with the current terminal only. The output, in this case, contains the process ID,
terminal identifier, cumulative execution time, and command name.

Options
-a 	 Prints information about processes owned by others
-f 	 Generates a full listing (eight columns)
-1 	 Displays a long listing (15 columns)
-e 	 Lists information about every process currently running
-u (user) 	 Displays process information about named user
-t (terminal) 	Prints process data for specified terminal

Column Headings
F 	 Flags associated with the process
S 	 Process state
UID 	 User ID of the process owner
PID 	 Process ID
PPID 	 Parent process ID
C 	 Processor (CPU) utilization
PRI 	 Process priority (higher values mean lower priority)
NI 	 Nice value used in priority computation
ADDR 	 Memory address of the process
SZ 	 Process size (in pages or clicks) in memory
WCHAN 	 Address of event for which process is sleeping or waiting;

if blank, process is running
STIME 	 Starting time of process
rrY 	 Controlling terminal
TIME 	 Cumulative execution time for process
COMD 	 Command name; full command line printed with -f option

Examples

Example 1 shows ps output of current processes associated with terminal 12. Example 2 shows a
full listing of eight columns for the current user/terminal. Notice the complete command line
entries. Example 3 shows the output of all columns of process information for the current
user/terminal. In Example 4, processes associated with all other users is displayed. Example 5
illustrates the ps command with an option (-u) and an argument (logname). In this example,
process information is obtained for two users, newuser and user5. In the last example, the -t
option is used to display information pertaining to the terminal associated with 1 dev term' 10.

Reference
• UNIX System V Release 4 User's Reference Manual, ps(1)

• A 	 Al ner105

Command Execution Management

Displaying Process Status

ps [-options] [arguments]

Example 1
$ ps
PID TTY

11558 term/12
11566 term/12
11680 term/12

Example 2
$ ps -f

UID 	PID
user2 1067
user2 1085
root 1066

TIME COMD
0:01 login
0:02 sh
0:00 ps

PPID C STIME
1066 3 05:58:47
1067 23 05:59:52
684 0 05:58:39

TTY
term/12
term/12
term/12

TIME
0:01
0:00
0:01

COMD
-sh
ps -f
/usr/bin/login

PID
1067
1084
1066

Example 3
$ pa -1
F S UID
10 S 	105
10 0 	105
10 S 	0

PPID C PRI NI 	ADDR
1066 1 30 20 c06d05f8
1067 16 50 20 c06d0b98
684 0 30 20 c06d0520

SZ 	WCHAN TTY
28 dllce000 term/12
22 	 term/12
67 d1174600 term/12

TIME COMD
0:01 sh
0:00 ps
0:01 login

Example 4
$ ps -a
PID TTY

19694 term/16
21917 term/00
23058 term/10
23101 term/10

TIME COMD
0:01 ksh
0:02 ksh
0:00 sh
0:00 ps

Example 5
$ ps -u newuser -u uaer5

PID TTY
1090 term/13
1113 term/13
23058 term/10
23101 term/10

TIME COMD
0:01 sh
0:00 ps
0:00 sh
0:00 ps

Example 6
$ ps -t terra/10

PID TTY 	TIME COMD
19694 term/10 0:01 sh
21917 term/10 0:02 date

AL 31321.4 	 3-5

Command Execution Management

Command Execution

So far, commands have been executed one at a time. Depending on special circumstances or need,
other alternatives are available.

• Multiple commands can be entered in the same command line using the semicolon, ; .

Commands can be grouped together for a combined output using parentheses, Q .

Commands can be executed in background using the ampersand, & .

These alternatives to single command execution are described separately on the following pages.

AI elflArl

Command Execution Management

Command Execution

• Semicolon — ;

Executes multiple commands in the same command line

• Parentheses —)

Groups commands for a combined output

Ampersand — &

Executes commands in background

Al ♦!12702 	 '1_17

Command Execution Management

Executing Multiple Commands

When a command line is executed, the shell spawns a process to execute the command progsam
and sleeps until the process terminates, returning control to the shell process. The user cannot
initiate other commands while the current process is running. Instead of issuing commands
individually and waiting for each to execute in turn, multiple commands can be designated in a
single command line.

The semicolon (;) permits serial execution of multiple commands in a single command line. Each
command is separated from the next by a semicolon. The <RETURN> signals the end of the
command line. Spaces around the semicolon are not significant, although they are generally used
by convention. The commands are executed in the sequence specified in the command line.

Example

The example at the right shows a command line consisting of three commands separated by
semicolons. The output confirms that the order of the commands is preserved.

3-8
	

A t g119g

Command Execution Management

Executing Multiple Commands

commandl ; command2 ; command3

Example
$ date ; pwd ; who
Mon Aug 12 09:28:50 EDT 1991
/home/user2
user2 	term/12 Aug 12 09:30
newuser term/10 Aug 12 10:47

AL 3823 	 3-9

Command Execution Management

Grouping Commands

Multiple commands can be grouped together by enclosing them in parentheses; the semicolon is
still used to separate commands. The shell treats each group of commands within the parentheses
as a single job and forks child processes as needed. The order of command execution is preserved.
Command grouping is generally used when the comcined output of multiple commands is desired.

Examples

In the first example, the pwd and Is -al commands are executed sequentially. The combined
output is redirected to filedst. Without parentheses, the output of pwd is directed to standard
output, the terminal, and file.lst only contains the output of the Is -al command.

Example 2 illustrates a subtlety when using command grouping. Commands enclosed in
parentheses are actually executed by a subshell. In this example, the-cd command is effective only
during its execution in the subshell. The pwd output confirms that the present working directory
remains =changed. Alternatively, commands enclosed in braces are executed in the current shell.
In this case, the current directory changes to 'etc.

3-10 	 AL 3823

Command Execution Management

Grouping Commands

(commandl ; command2)

Example I
$ (prod ; is -al) > file.lst

Example 2
pwd

/home/user5
$ (cd /etc ; is -al)
(ls -al /etc output)

$ pwd
/home/user5

AL 3823
	

3-11

Command Execution Management

Executing Commands in Background

Typically, the shell remains inactive during command execution. Another command cannot be
executed until the previous command has completed and the shell displays another command
prompt. This is referred to as foreground execution. A program that is time-consuming results in
decreased efficiency as the user waits for the program to complete.

Alternatively, commands can be executed in background. While a program runs in background,
the shell is immediately available to execute programs in foreground. Background execution is
generally used for long-running programs. The ampersand (&) following a command directs the
shell to execute the preceding command in background. The process ID number (PID) is displayed
automatically, followed by the shell prompt. The background process is executed as system load
permits and the output is sent to standard output, the terminal monitor. For this reason, output
redirection is often used.

The Korn shell, described in the next module, permits greater manipulation and control of
command execution. Tasks can be alternated between foreground and background; they can be
suspended, resumed, or stopped altogether.

Examples

In Example 1, the user-created program, prog5, is executed in background. The output is
redirected to the stats.pgm5 file to avoid the background output also displaying on the terminal
along with foreground output. A process ID is displayed immediately followed by a shell prompt.
This PID can be used to obtain process status information using the pa command or to terminate
the process using the kill command.

Example 2 illustrates comcining background and foreground execution in the same command line.
An ampersand follows each command in a series of commands scheduled for background execution.
The order of output is determined by the execution time required for each command. The output
of the pwd command is displayed first since its execution time is shorter than the is command
used in this example.

3-12 	 AL 3823

Command Execution Management

Executing Commands in Background

command&

Example 1
$ pgm5 stats > stats.pgm5&
1238

Example 2
$ is -al /etc& pwd
3318
/home/eps
(ls -al /etc output)

AL 3823 	 3-13

Command Execution Management

Terminating Processes

kill — Terminate or send designated signal to a process

Description

This command is generally used by the system adminstrator who manages the overall operation of
the system.

The kill command sends the designated signal to the specified process(es). Signal names can be
listed using the kill -1 command. If no signal is designated, the default is signal 15 (software
termination). Some processes are unaffected by certain signals; signal 9 is effective in terminating
these processes. Signal designations may be symbolic or numeric. kill -1 lists the symbolic names
only. For a complete listing of signal names, numeric values, and event descriptions, refer to
signal(5) using online man or the User's Reference Manual.

Process 0 refers to all processes associated with the current login. When multiple processes are
specified, parent processes should be listed before child processes. The named processes must
belong to the current user, unless the user is superuser.

Options

List signal names

[-signal designation]
	

Signal can be specified using symbolic name or numesic value

Examples

Example 1 shows a listing of signal names using kill -1.

In the second example, multiple processes are terminated with the default signal, software
termination. Notice the parent process (PPID), the shell, is the same for each forked child process.

Example 3 illustrates using a numeric signal designation. In this case, the "sure kill", signal 9, is
sent to the process.

In the last example, the symbolic name for signal 15 is used to terminate the process.

Finally, the ps command confirms that the processes were terminated.

Reference

• UNIX System V Release 4 User's Reference Manual, kill(1), signal(5)

3-14 	 AL 3823

Command Execution Management

Terminating Processes

kill [-options] [-signal] PID(s)

Example 1
$ kill -1
HUP INT QUIT
SYS PIPE ALRM
STO TSTP CONT
XFSZ

ILL
TERM
TTIN

TRAP
US R1
TTOU

AB RT
USR2

VTALRM

EMT
CLD
PROF

FPE KILL BUS SEGV
PWR WINCH URG POLL
XCPU

Example 2
$ ps -f
UID PID
root 4283
userb 4284
userb 4308
userb 4303
userb 4304
userb 4305
userb 4306

PPID
643
4283
4284
4284
4284
4284
4284

C 	STIME
0 11:14:30
3 11:14:44

21 11:16:00
0 11:15:32
0 11:15:39
0 11:15:41
0 11:15:45

TTY
term/12
term/12
term/12
term/12
term/12
term/12
term/12

TIME
0:01
0:01
0:00
0:00
0:00
0:00
0:00

COMD
/usr/bin/login
-sh
ps -f
sleep 100
sleep 200
sleep 400
sleep 600

$ kill 4306 4305
4306 Terminated
4305 Terminated

Example 3
$ kill -9 4304
4304 Killed

Example 4
$ kill -TERM 4303
4303 Terminated
$ ps -f

	

UID 	PI PPID C 	STIME TTY

	

userb 	4309 4284 19 11:16:50 term/12

	

root 	4283 	643 0 11:14:30 term/12

	

userb 	4284 4283 3 11:14:44 term/12

TIME COMD
0:00 ps -f
0:01 /usr/bin/login
0:01 -sh

AL 3823 	 3-15

Command Execution Management

Preventing Command Termination

nohup — Run designated command ignoring hangups and quits

Description

All processes are terminated when a user logs out. The nohup command executes the designated
command so that the command continues after the user logs out. nohup is used frequently with
long-running programs executed in background.

If output is not redirected, nohup sends the output of the designated command and standard error
to a nohup.out file in the current directory. If a file by this name already exists, the current
nohup output is appended to the nohup.out file. If the current directory does not have write
permission, nohup sends the output to the nohup.out file in the home directory.

If multiple commands need to be executed with nohup, it is advisable to designate them in a
single file and execute it with nohup. nohup applies to all commands contained in the file.
Semicolons should be avoided since nohup affects only the first command. Command grouping is
syntactically incorrect.

Example

The example shows the current directory is 1 home I userb. Notice the subdir directory does not
have write permission.

The cd command is used to change the current directory to subdir. userb designates the allnames
file to be sorted in background, with interrupts ignored, and then logs out.

When userb logs in again, the /home 1 userb 1 nohup.out file contains the sorted output since the
current directory at the time nohup was executed does not have write permission.

Reference

• UNIX System V Release 4 User's Reference Manual, nohup(1)

3-16 	 AL 3823

Command Execution Management

Preventing Command Termination

nohup command line

Example
pwd

/home/userb
$ is -al
total 10
drwxr-xr-x
drwxrwxrwx
-rw-r--r--
-rw 	
dr-xr-xr-x

3 userb other
7 root root
1 userb other
1 root other
2 userb other

512 Sep 3 11:49 .
512 Sep 3 10:16 ..
144 Sep 3 10:15 .profile
58 Sep 3 11:19 .sh_history

512 Sep 3 11:49 subdir
$ cd subdir ; pard
/home/userb/subdir
$ nohup sort allnames&
4419
$ Sending output to nohup.out
$ exit
Logout.
real 	36:19.65
user 	4.38
sys 	16.21

(userb logs in)

$ pwd
/home/userb
$ is -al
total 10
drwxr-xr-x
drwxrwxrwx
-rw-r--r--
-rw 	
-rw-r--r 	
dr-xr-xr-x

3 userb other
7 root root
1 userb other
1 root other
1 userb other
2 userb other

512 Sep 27 11:50 .
512 Sep 27 10:16 ..
144 Sep 27 10:15 .profile
58 Sep 27 11:19 .sh_history

5932 Sep 27 11:50 nohup.out
512 Sep 27 11:49 subdir

AL 3823 	 3-17

Command Execution Management

Executing Commands Later

The at and batch commands execute commands at a later time. In order to use these commands,
the user must be listed in the I etc 1 cron.d /at.allow file. If this file does not exist, the at.deny file
in the same directory is checked if the user should be denied access to these commands. If neither
file exists, only root has access permission to use these commands.

at and batch accept commands from standard input or input redirection. batch executes the
commands as system resources are available, while at executes commands at the designated time.

When at or batch are executed, a job identification is displayed consisting of nine digits and a .a
(at) or .b (batch) suffix. A separate file, having the same name as the job ID and containing
control information and the actual commands, is created for each job in the /var.' spool 1 cron 1 atjobs
directory.

The output of at and batch is mailed to the user, unless redirected.

3-18 	 AL 3823

Command Execution Management

Executing Commands Later

at

Executes commands at specified time

Executes commands from standard input or from named file

• batch

Executes commands as system resources permit

Executes commands from standard input or input redirection

AL 3823 	 3-19

Command Execution Management

Executing Commands Later

at — Schedule commands for execution at the designated time

Description

The user must be listed in the at.allow file in order to use this command. The command structure
includes time, date, and increment designations.

Time The time designation is mandatory. Time can be specified as a 1- to 4-digit number
or using the values noon, midnight, or now. A 24-hoxis clock is assumed unless
a.m. or p.m. is specified. For example, at 8, at 0800, at 8:00am are all acceptable
designations for 8 a.m.

Date 	The optional date specifies the day of the week or day of the month to execute the
job. The values today and tomorrow can also be used. If date is not designated, the
job is executed on the current day if the specified time is greater than the current
hour, or tomorrow if the specified time is less than the current hour. Examples of
specifying the date are at 8 Friday, at 8 Apr 26, at 8 tomorrow.

Increment 	The optional increment is a relative designation using numbers and one of the
following values: minute(s), hour(s), day(s), week(s), month(s), or year(s). For
example, at 8 next day or at now + 2 hours correctly designate an increment.

at accepts commands from standard input or from a named file using the -f option. The named
file can be created using a text editor. Corrections and modifications can be made more easily
using a text editor. A program file can also be reused as needed. Command standard output is
sent to the user's mail, unless redirected.

Options

4 file 	 Accepts commands contained in named file
-m 	 Sends mail to user when job completes
-1 [jobiD(s)) 	Lists all or designated job(s) queued for execution
-r job_ID(s) 	Removes specified job(s)

Examples

The first example shows the use of standard input to enter commands for execution the following
day at the current hour. The last command entered is followed by <^d> on a line by itself. The job
ID is automatically displayed before the next shell prompt. The -1 option is used to list this job in
the schedule queue. Another, more flexible, command to list queue information is described later.
In the second example, the commands are contained in the cleanup Me. The job is scheduled to
execute at 4 p.m. two weeks from Friday. The user will be notified by mail that the job completed.
In Example 3, the -1 option shows the two jobs are scheduled in the queue. In the last example,
the -r option is used to remove a job. This is verified by listing the jobs again. Another, more
flexible, command to remove queued jobs is described later.

Reference

• UNIX System V Release 4 User's Reference Manual, at(1)

3-20 	 AL 3823

Command Execution Management

Executing Commands Later

at [-options] time [date] [increment]

Example 1 — Standard Input Method
$ at now tomorrow
1p .profile
cal
date
who -H
<Ad>
warning: commands will be executed using /usr/bin/sh
job 686010600.a at Sat Sep 7 15:30:03 1991

Example 2 — Input Redirection Method
$ cat cleanup
date
is -1R > /home/user2
find /home/user2 -atime +60 -exec rm {} \;
$ at -m -f cleanup 1600 fri +2 weeks
warning: commands will be executed using /usr/bin/sh
job 686013999.a at Fri Sep 20 16:00:00 1991

Example 3
$ at -1
686010600.a at Sat Sep 7 15:30:03 1991
686013999.a at Fri Sep 20 16:00:00 1991

Example 4
$ at -r 686013999.a
$ at -1
686010600.a at Sat Sep 7 15:30:03 1991

AL 3823 	 3-21

Command Execution Management

Executing Commands Later

batch — Schedule commands for execution as system load permits

Description

The user must be listed in the at.allow file in order to use this command. batch accepts
commands as standard input or as input redirection naming the file containing the commands to
be executed. Output is sent to the user's mail unless redirected. The job identification for a batch
job contains a .b suffix.

Examples

In Example 1, the sort command is entered as standard input. Output is redirected to
long_file.srt, formatted, and printed. The job identification with a .b suffix is displayed.

In the second example, the same progsam is contained in a file that is redirected as input to
batch. The program file can be created using any text editor. Again, corrections and
modifications can be made more easily using this method, and the program file can be reused.

Reference

• UNIX System V Release 4 User's Reference Manual, batch(1)

3-22 	 AL 3823

Command Execution Management

Executing Commands Later

batch

Example 1 — Standard Input Method
$ batch
sort -o long_file.srt long_file I pr 1p
<^d>
warning: commands will be executed using /usr/bin/sh
job 685986443.b at Fri Sep 6 11:47:23 1991

Example 2 — Input Redirection Method
$ cat job file
sort -o fag file.srt 	 pr 1p
$ batch < job file
warning: commands will be executed using /usr/bin/sh
job 685986237.b at Fri Sep 6 11:58:57 1991

AL 3823 	 3-23

Command Execution Management

Listing Scheduled Jobs

atq — Displays queue of scheduled jobs

Description

The atq command is another way of displaying the at jobs for the current user. The output of atq
provides more descriptive information than the at -1 command. Without options, the jobs are
displayed in the designated execution time sequence.

If the superuser invokes atq, all jobs in the queue are displayed. The superuser can also specify
individual users to obtain a listing of jobs belonging to only the named user(s).

Options

-c 	 Displays queued jobs in the order submitted for scheduled execution

-n 	 Lists the total number of jobs in the queue

Examples

Example 1 shows the jobs scheduled for execution by user2. The jobs are listed (ranked) in order
of the designated execution time. The -c option in Example 2 lists the jobs in the order they were
submitted for scheduled execution. In Example 3, the -n option displays the total number of jobs
scheduled by user2 in the queue.

Reference

• UNIX System V Release 4 User's Reference Manual, atq(1)

3-24 	 AL 3823

Owner
userb
userb
userb
userb

Job
685987320. a
685989060.a
685992660. a
685996200.a

Queue Job Name
a 	stdin
a 	stdin
a 	stdin
a 	stdin

Owner
userb
userb
userb
userb

Job
685996200.a
685992660. a
685989060.a
685987320. a

Queue Job Name
a 	stdin
a 	stdin
a 	stdin
a 	stdin

Command Execution Management

Listing Scheduled Jobs

atq [-options] juser(s)]

Example 1
$ at -1
685996200.a
685992660.a
685989060.a
685987320.a
$ atq
Rank Execution Date
1st
	

Sep 6, 1991 12:02
2nd
	

Sep 6, 1991 12:31
3rd
	

Sep 6, 1991 13:31
4th
	

Sep 6, 1991 14:30

Example 2
$ atq -c
Rank Execution Date
1st 	Sep 6, 1991 14:30
2nd 	Sep 6, 1991 13:31
3rd 	Sep 6, 1991 12:31
4th 	Sep 6, 1991 12:02

Fri Sep 6 14:30:00 1991
Fri Sep 6 13:31:00 1991
Fri Sep 6 12:31:00 1991
Fri Sep 6 12:02:00 1991

Example 3
$ atq -n
4

AL 3823 	 3-25

Command Execution Management

Removing Scheduled Jobs

atrm — Remove designated job(s) from queue

Description

The atrm command is another way of removing scheduled jobs from the queue for the current
user. It provides greater control in removing scheduled jobs.

The superuser may remove any queued jobs for any named user(s).

Options

-a
	 Removes all jobs in the queue for the current user, displaying confirmation of the

jobs removed

Interactive mode; prompts user to confirm semoval of each job

-f
	

Force; no status messages are displayed

Examples

The first example displays a list of jobs scheduled for execution with at. The atrm command is
used to remove a specific job. A confirmation message is displayed automatically.

In Example 2, the -f option is used to remove a job. No status message is displayed with this
option.

Example 3 illustrates using multiple options, -i (interactive) and -a (all jobs). Each job is listed
individually followed by a prompt requesting confirmation to remove the job. Any key other than y
(yes) indicates a negative response. In this example, no jobs are removed.

The last example illustrates using the -a option to remove all queued jobs. A status message is
displayed automatically. The output of atq verifies that all jobs for the current user are removed.

Reference

• UNIX System V Release 4 User's Reference Manual, atrm(1)

3-26 	 AL 3823

Owner
userb
userb
userb
userb

Job
685987320.a
685989060.a
685992660.a
685992600.a

Queue Job Name
a 	stdin
a 	stdin
a 	stdin
a 	stdin

Command Execution Management

Removing Schedule Jobs

atrm [-options] gob ID(s)] [user]

Example 1
$ atq
Rank Execution Date
1st 	Sep 6, 1991 12:02
2nd 	Sep 6, 1991 12:31
3rd 	Sep 6, 1991 13:31
4th 	Sep 6, 1991 15:38
$ atrm 685996200.a
685996200 . a: removed

Example 2
$ atrm -f 686000460.a

Example 3
$ atrm -ia
685992660.a: remove it? n
685989060.a: remove it? n
685987320.a: remove it? n

Example 4
$ atrm -a
685992660.a: removed
685989060.a: removed
685987320.a: removed
$ atq
no files in queue.

AL 3823 	 3-27

Command Execution Management

Summary

• A process is an executing command. Processes are organized hierarchically.

• Each process has an identification number (PID) associated with it.

• The ps command displays status information about current processes.

• Multiple commands can be executed sequentially in a single command line by separating
each command by a semicolon.

• Commands can be grouped together for a combined output by enclosing them in
parentheses.

• The ampersand (&) following a command directs the shell to execute the command in
background. The process ID associated with background execution is displayed when the
command is executed. The shell is immediately available to execute other commands in
foreground. Command output is directed to standard output; output redirection is
recommended.

• Processes can be terminated using the kill command. It is generally used by the system
administrator.

• The nohup command can be used to prevent termination of a command after logging out.

• Commands can be scheduled to ecute at a designated time using the at command. The
user must be listed in the I etc /c n.d /at.allow file to use this command. Commands may
be scheduled for execution using standard input or by designating the file containing the
commands. Output is sent to the user's mail, unless redirected.

• Commands can also be scheduled to execute as system resources b • me available using
the batch command. Again, the user must be listed in the I etc I n.d /at.allow file to use
this command. Commands may be scheduled for execution using standard input or by
designating the file containing the commands using input redirection. Output is sent to
the user's mail, unless redirected.

The at -1 or atq commands display jobs queued for execution.

The at -r or atrm commands remove jobs queued for execution.

3-28 	 AL 3823

Command Execution Management

Practical Exercise

Write and execute the command lines for the following.

1. Display a full listing of processes associated with your login.

2. 	Display process status information for all other logins.

3. Execute the commands to display the date, your current directory, and a long listing of the
directory contents in one command line.

4. In background, find all files on the system modified within the last 10 days. Redirect the
file names to another file, excluding error messages from the output. Terminate the
backgraund process.

5. Terminate all processes associated with your terminal.

Log in to continue with this exercise. The items below are performed sequentially. Review these
steps before proceeding.

6. Execute the following commands in 10 minutes. Request mail notification that the job
completed.

id
who am i
groups

7. Create progfile containing the following commands. Schedule this file to execute in
eight minutes.

date
cal
pwd
is

8. List your jobs in the order in which they were submitted.

9. Remove the second job created in Step 7 interactively.

10. Locate and verify the output of the first job scheduled (Step 6) by executing the mail
command. Within the mail program, press <RETURN> to display mail messages; press
<q> to quit mail.

AL 3823 	 3-29

Command Execution Management

Optional Exercise

1. 	Indicate whether each of the following statements are true or false. If false, explain.

a. A process is a program executing in memory.
b. Each process has an identification number associated with it.
c. Processes are organized hierarchically.
d. Commands use the same PID whenever they are executed.
e. The first process started at boot time is called init.

2. 	Which command lists the status of processes?

a. is
b. ps
c. stat

3. 	How is the semicolon used in a command line?

4. 	Select the command line that combines the ouput of multiple commands into a single file.

a. commandl ; command2 > outfile
b. commandl ; (command2 > outfile)
c. (commandl; command2) > outfile

5. 	What is the significance of the number displayed after a command line is executed in
background?

6. 	Distinguish between the at and batch commands.

7. 	True or false. Any valid user may execute the at and batch commands. If false, explain.

a. True
b. False

8. 	Describe the two methods to schedule commands for execution using at.

9. 	Which of the following command lines is(are) incorrect?

a. at -f progsrt + 3 hours
b. at now
c. at 4 script 7:15pm
d. at •f progfile
e. at 1730 Friday

10. 	Describe the use of the nohup command.

3-30 	 AL 3823

4
Shells

Shells

Module Objectives

Upon completion of this module, you should be able to

1. Describe the functions of the UNIX shell.

2. Differentiate the four shells available in UNIX.

3. Use Korn shell features to recall and edit command line entries, to use command aliases,
and to control command execution.

Reference

Documentation referenced in this module

• UNIX System V Release 4 User's Reference Manual (4357 7444-000)

AL 3823

Shells

The UNIX Shell

The shell is a program that enables the user to interact with the resources of the computer. As a
command interpreter, the shell is the interface between the user and the system. The user enters
commands to the shell, and the shell interprets them to the operating system for execution.

The shell has other responsibilities. Some have been described in previous modules. They are
summarized below.

• Program execution

UNIX commands are entered at the shell prompt, usually the $ symbol, in the format
command [-options] [argument(s)]. The shell analyzes the command line entry and
parses it into recognizable components, passing on all valid options and arguments to the
command program. It forks a process to execute the program and sleeps until the command
program completes execution.

• File name substitution

The shell interprets and expands metacharacters used in file name substitution before the
program is executed.

• Input 1 Output redirection

Input and/or output redirection specified in the command line is interpreted before the
command is executed.

• Pipeline hookup

If pipes are designated in the command line, the shell connects the standard output of the
first command to the standard input of the next command before the command line is
executed.

• Environment control

The shell provides flexibility in customizing the user environment. Some of these features
include modifying the command search path, defining individual environmental variables,
and redefining the shell prompts. These topics are explored in the next module.

The shell can also be used as a programming language. Users can combine command sequences to
create new programs. These programs are known as shell programs, or shell scripts. The
fundamentals of creating shell programs are described in the next module. A thorough coverage of
this topic is presented in the Shell Programming course.

4-2 	 AL 3823

Shells

The UNIX Shell

• User interface to the system

• Command interpreter

• Programming language

• Other shell responsibilities include

Program execution

File name substitution

Input/output redirection

Pipeline hookup

Environment control

AL 3823 	 4-3

Shells

UNIX Shells

Four different shell programs are available for use in UNIX. The system administrator usually
defines a shell for the user in the 1 etc I passwd file. If a shell is not designated, the default Bourne
shell is established as the user's login shell. Only one shell is used at a time; however, a user may
use other shells as needed.

Bourne Shell (sh)

The Bourne shell was developed by Steven Bourne (AT&T Bell Laboratories) in 1975. It is
included in all versions of the UNIX operating system and has been the most widely used shell. It
supports a variety of powerful programming facilities. Some of these programming features are
described in the next module.

A variation of the Bourne shell is the restricted shell, rsh, which may be assigned by the system
administrator for a user whose activities should be limited. The restricted shell inhibits the user
from changing directory, changing the value of the PATH variable used in command searches,
designating path or command names containing I, and redirecting output. This shell does not
provide complete restriction. Other setup actions should be considered to establish the appropriate
operating environment for the user.

Additionally, a user may be assigned a specific program, like a text editor, at the login. This is
also restrictive in the sense that the user logs into the defined program and is limited to its use.
When the program is terminated, the user is logged out.

Bourne Shell with Job Control (jsh)

Essentially, the features of this shell are the same as the Bourne shell, except that it also supports
the job control environment to manage job execution, much like the C and Korn shells.

C Shell (csh)

T♦he C shell was developed by Bill Joy (University of California, Berkeley). It is reported to be the
most commonly used shell in the Berkeley and XENIX environments. It features a command
history mechanism, command aliases, and job control. However, its major drawback is that
programs written in the C shell environment are not compatible with the Bourne shell
environment. csh shell language structure is similar to that of C language.

Kom Shell (ksh)

This shell was developed by David Korn (AT&T Bell Laboratories). It provides a subset of the best
features of both the Bourne and C shells, as well as many new features. Importantly, it is
compatible with the Bourne shell. Most shell programs written in the Bourne shell can be used in
the Korn shell environment. As a result, the Korn shell is rapidly gaining popularity. The salient
and useful features of the Korn shell are described in this module. The programming features of
the Korn shell are described in the Shell Programming course.

4-4 	 AL 3823

Shells

UNIX Shells

• Bourne shell (sh)

Written by Steven Bourne, AT&T
Standard UNIX shell

• Bourne shell with job control (jsh)

Variant of the Bourne shell
Supports job control

• C shell (csh)

Written by Bill Joy, UC Berkeley
Incompatible with Bourne shell
Attractive features include

— Command history mechanism
— Job control
— Command aliases

• Korn shell (ksh)

Written by David Korn, AT&T
Compatible with Bourne shell
Includes C shell features

Command history mechanism
Job control
Command aliases

AL 3823 	 4-5

Shells

Korn Shell Features

The Korn shell has most of the features of the Bourne shell and contains several of the best
features of the C shell. The Korn shell also has unique features of its own. Most shell scripts
written for the Bourne shell can be used without modification in the Korn shell. The Bourne shell,
however, remains the default shell for 4.0 UNIX.

Like the Bourne shell, ksh reads the .profile file containing environmental settings when it is
executed. The ksh also reads an environment file created by the user, if one exists. The location of
this file is defined by the variable ENV, which may be included in the .profile located in the user
home directory.

The useful features of the Korn shell are summarized below and described later in this module.
Shell variables unique to the Korn shell are also described.

Command history 	 The command history mechanism maintains a history file containing
executed commands. This history file can be accessed using a
designated editor to modify and/or to reexecute previous commands.

Command alias 	 Command line entries can be customized for use by defining a
shorthand name, called an alias, to represent frequently used
commands.

Job control 	 The Korn shell provides facilities for controlling jobs, which are
.:ommand sequences. Jobs can be stopped or resumed and moved
between foreground and background.

Options and variables 	Unique Korn shell options and variables can be used to modify the
user environment.

Restricted Shell (rksh)

The Korn shell provides a restricted shell (rksh) similar to the restricted Bourne shell (rsh).

Reference

• UNIX System V Release 4 System User's Reference Manual, ksh(1)

4-6 	 AL 3823

Shells

Korn Shell Features

• History

Aliases

• Job control

• Shell variables

• Restricted shell (rksh)

AL 3823 	 4-7

Shells

Korn Shell Setup

Usually, the Korn shell is assigned as the login shell for user in the 1 etc 1 passwd file. It may also
be defined by the SHELL variable, or executed using the ksh command.

When the Korn shell is invoked, it reads I etc I profile (systemwide environment file) and .profile
(user's local environment file) and looks for a variable called ENV, naming the file containing other
setup information for the Korn shell environment. Other Korn shell commands can be added to
this file (or to the .profile) to customize the shell environment.

Command History

Once the Korn shell is invoked, it stores each command line in a list called history. These
commands can be accessed for editing or reexecution.

Line Edit Mode

There are several ways to enable line edit mode.

Assign the name of the editor as the value of the EDITOR variable. For example,
EDITOR=vi defines vi as the command line editor. Do not include spaces in this
designation.

• Assign the name of the editor as the value of the VISUAL variable. For example,
VISUAL=vi. The value of VISUAL overrides the EDITOR variable.

• 	Execute the set command using the •o mode option, where mode is the name of the
editor; for example, set -o vi. The set command overrides both EDITOR and VISUAL
variables.

Any one of these methods can be included in the ENV file or in the user's .profile to automatically
enable the edit mode when the Korn shell is invoked.

4-8 	 AL 3823

Shells

Korn Shell Setup

• Access

Assigned as login shell in /etc/passwd file

Set by SHELL variable

Executed by ksh command

Command history

Commands are stored in history list

Commands can be modified and reexecuted

• Line edit mode

Define editor

EDITOR=vi 	(variable)
— VISUAL=vi 	(variable)
— set -o vi 	(command)

Include editor designation in ENV file or .profile to
execute automatically when ksh is invoked

AL 3823 	 4-9

Shells

Command History

The list, or history, of executed commands is contained in the file associated with the H1S7'FILE
variable. By default, this file is named .sh_history and is located in the user's home directory.
Because the history is stored in a file, the commands can be accessed when the user logs in. The
variable HISTSIZE determines the maximum number of commands (relative to the current
command) that can be referenced for modification and/or reexecution. The default value is 128
command entries; this can be adjusted by the user by redefining the value of the variable,
HISTSIZE=new_value. As the number of command entries exceeds the value of HISTSIZE, the
least recent commands become inaccessible, although they remain in the history file.

The history command lists the 16 most recently executed commands. The output includes a
command sequence number corresponding to the execution sequence and the complete command
entry.

Commands can be reexecuted without editing using the r (redo) command. The r command
without arguments executes the previous command. The format r sequence number, executes
the command line associated with the designated sequence number.

Commands can also be edited and/or reexecuted in line edit mode using the editor defined for the
EDITOR or VISUAL variables or by the set command, described earlier.

4-10
	

AL 3823

Shells

Command History

• HISTFILE

Variable designates file containing command entries

• .sh history

Default file contains command entries

HISTSIZE

Variable defines maximum number of commands that can be
referenced for editing and/or execution

• Command access

history command lists command entries

r command reexecutes previous or specified command

Line edit mode edits and/or reexecutes designated command line

AL 3823 	 4-11

Shells

Line Edit Mode

In command line editing, the actual command in history is not changed. Only a copy of the
command line is edited, which itself becomes the next command in the history.

To edit a command, enter the editor command mode by pressing the <ESCAPE> key. In command
mode, the cursor can be moved without disturbing the command line. Press < k > to recall
previously entered commands, or press < j > to recall the next command in the history. Enter the
appropriate editor command(s) to correct or to modify the (current) command line. Frequently
used vi commands are listed on the following pages. To exit the editor command mode and to
execute the command line, press the <RETURN> key.

To search through history for a command containing the designated character pattern, press
<ESCAPE> to access the editor command mode and enter I pattern.

4-12 	 AL 3823

Shells

Line Edit Mode

• Edit command lines in history

Press <ESCAPE> to enter editor command mode

Display the desired command

Press < k > to display previous commands
Press < j > to display next command

Edit command line using editor commands

Press <RETURN> to execute command line

AL 3823 	 4-13

Shells

vi Line Edit Commands

The following table summarizes frequently used vi editor commands. These commands function as
they do in the text editor. Some of these commands only reposition the cursor for editing, while
others modify the entry text.

For a complete listing and description of vi edit commands, refer to the documentation on ksh.

Reference

• UNIX System V Release 4 User's Reference Manual, ksh(1)

4-14 	 AL 3823

Shells

vi Line Edit Commands

Command Description

k Retrieve previous command from history
j Retrieve next command from history

h Move left one character
Move right one character

b Move left one word
w Move right one word
0 Move to beginning of line
$ Move to end of line

u Undo change

x Delete character at cursor
d(range) Delete text specified by range

a(A) Add text after cursor (line)
i(I) Insert text before cursor (line)

c(range) Change text specified by range
R Replace text

/pattern Search for character string in history

AL 3823 	 4-15

Shells

Command Alias

An alias is a shorthand notation for a longer command line entry. The Korn shell maintains a list
of aliases that is searched when a command is executed. If the first "word" (characters up to the
first space) of a command line has a corresponding alias, it is replaced by the assigned value. The
alias command lists current aliases, creates new aliases, and displays the value (entire command
line) of the named alias.

List Aliases

Some aliases are set automatically by the Korn shell. The command alias without arguments lists
the current aliases alphabetically.

autoload=typeset -fu
cat=/usr/bin/cat
false=let 0
functions=typeset -f
hash=alias -t -
history=fc -1
integer=typeset
ls=/usr/bin/ls
mail=/usr/bin/mail
nohup=nohup
r=fc -e -
sh=isbin/sh
stop=kill -STOP
suspend=kill -STOP $$
true=:
type=whence -

Alternatively, the format alias name lists the value of the named alias.

Create Alias

An alias is defined using the alias command. The format is alias namearcom.mandline. For
example, alias ll='ls •al' assigns the command is •al to the alias named 11. Spaces are not
permitted between the alias name and its associated command value. Special characters, like the
space, used in the command line entry must be enclosed in quotes.

Remove Alias

The unalias command removes the named alias from the alias list. The format is unalias name.
For example, unalias 11 removes the 11 alias from the alias list.

Examples

The first example illustrates the command structure to list all current aliases, the alias command
without arguments. The output is similar to the listing above and includes any newly defined
aliases. Example 2 assigns the find command entry to the clean alias. Notice that the entire
command designation is enclosed in quotes because it contains metacharacters. Also, the Korn
shell variable tilde () is used to represent the user's home directory. (Korn shell variables are
described later in this module.) Example 3 displays the full command line associated with the
named alias. In the last example, the unalias command is used to remove the alias clean.

Reference
• UNIX System V Release 4 User's Reference Manual, alias(1), unalias(1)

4-16 	 AL 3823

Shells

Command Alias

• Shorthand notation for longer command line

• alias Command

Displays all command aliases

Defines alias and associated command line

Lists command value associate with named alias

• unalias Command

Removes named alias from alias list

Example 1
$ alias
(Lists current aliases)

Example 2
$ alias clean='find -atime +60 -exec rm {} \;'

Example 3
$ alias clean
find - -atime +60 -exec rm {} \;

Example 4
$ unalias clean

AL 3823 	 4-17

Shells

Job Control

When ksh, csh, and jsh are invoked, job control is enabled. A job is any command sequence. The
job control feature allows a user to suspend, to resume, or to terminate jobs, as well as to move
jobs between foreground and background execution.

Each job exists in one of the following states:

• Foreground

• Background

• Suspended

• Terminated

Foreground

A job is processed immediately before control is returned to the shell and another shell prompt is
displayed.

Background

A job is executed and the shell immediately returns control back to the user while the system
continues to complete the job. The ampersand (&) directs the shell to execute the preceding
command in background.

If a background job tries to read (input) from the terminal, it is stopped and an appropriate
message is displayed. Output from a background job is directed to the terminal. The command
stty tostop prevents a background job from writing to the terminal and interfering with
foreground output.

Stopped (Suspended)

An active job that is temporarily halted. This job can be restarted or terminated. If the user
attempts to log out with jobs rimming or stopped, a reminder message is displayed, but the user is
not logged out until <' d> or exit is issued a second time.

Terminated (Killed)

A job that is stopped and terminated. This job cannot be restarted.

Reference

• UNIX System V Release 4 User's Reference Manual, ksh(1) (includes jsh)

4-18 	 AL 3823

Shells

Job Control

• Foreground

• Background

• Suspended

• Terminated

AL 3823 	 4-19

Shells

Job Control Commands

The following commands to manipulate jobs are available in the ksh, csh, and jsh environments.
They are referred to as shell built-in commands.

jobs -option 	 List status of all jobs

•1 option is a long listing of all jobs including PIDs
-p displays only PIDs associated with running jobs

fg job_Id 	 Place job in foreground

<Az> 	 Suspend foreground job

bg job_Id 	 Place named job in background

stop job_Id 	 Suspend named background job

kill -signal job_Id 	 Terminate the designated job

Description of the job_Id designation follows.

4-20 	 AL 3823

Shells

Job Control Commands

• jobs

• fg

<Az>

• bg

• stop

• kill

AL 3823 	 4-21

Shells

Job Identification

When a command is executed in background (&), the Korn shell displays identifying information.
In the Bourne shell, the process Id associated with the background execution is displayed. The
Korn shell displays a job number within brackets and the process Id number. When the job
finishes, the message

[job Id] + Done 	Commancliine_sequence

is displayed.

The jobs command displays the status of jobs that have not finished. The + and - following the
job Id identify the current and previous jobs, respectively.

The following job designations can be specified with job control commands to manipulate job
execution.

• + 	 Current job

• - 	 Previous job

• %jobId(s) 	 Designated job number

• PID 	 Designated process Id

• %pattern 	 Job containing pattern in the command line

Examples

The first example executes a job in the background. Notice that a job Id and the PID number are
displayed.

Example 2 lists the current jobs using the jobs command without arguments. The command
output includes the job number enclosed in brackets, the job status (current, previous, running,
stopped, terminated), and the complete command line. A + following the job number indicates the
most current job; a - indicates the previous job.

In the third example, job 1 is moved to the foreground using the job number designation, %1.

In Example 4, < Az > suspends the current foreground job. Notice the Stopped status in the
display.

The last example uses the bg command to move the job containing the pattern %sleep in its
command line to the background.

4-22 	 AL 3823

Shells

Job Identification

• Job designations used with job control commands

%job_ld

PID

%pattern

Example 1
$ sleep. 300&
[1] 3105

Example 2
$ jobs
[1] + running

Example 3
fg %1

sleep 300

Example 4
$ <CTRL z>
[1] + Stopped

sleep 300&

sleep 300&

Example 5
$ bg %sleep
[1] 	sleep 300&

AL 3823 	 4-23

Shells

Korn Shell Options

The ksh offers several options to enable or disable special functions. They are enabled/disabled
using the •o or +o options of the set command. The set options usually can be abbreviated by the
first letter of the name.

set -o 	 Lists current state of all options

set -o [option] 	 Turns the option ON

set +o [option] 	 Turns the option OFF

Korn Shell Options

Frequently used options are described below. The reference manual contains complete descriptions
of all options.

noclobber
	 Prevents ouput redirection (>) from truncating existing files.

ignoreeof
	

Prevents logout with <Ad . Requires exit command.

allexport
	

All subsequent variables assigned are automatically exported.

noglob
	

Turns off interpretation of wildcard characters for file names;
other special characters remain in effect

Examples

The first example executes the command to display all the options and their current states. In the
second, the noclobber option is enabled using the -o option designation. Multiple options are
enabled in the third example. In the last example, the noclobber option is disabled using the +o
option designation.

Reference

• UNIX System V Release 4 User's Reference Manual, ksh(1)

4-24 	 AL 3823

Current option
allexport
bgnice
emacs
errexit
gmacs
ignoreeof
interactive
keyword
markdirs
monitor
noexec
noclobber
noglob
nolob
nounset
privileged
restricted
trackall
verbose
vi
viraw
xtrace

settings
off

on
off
off
off
off

on
off
off

on
off
off
off
off
off
off
off
off
off
off
off,
off

Shells

Korn Shell Options

Examples

$ set -o

$ set -o noclobber

$ set -o noglob -o ignoreeof

$ set +o noclobber

AL 3823 	 4-25

Shells

Korn Shell Variables

Variables are names with associated values. Variables are frequently used in programming.
Variables related to the environment are often placed in the .profile or ENV file to be set
automatically on login. Some variables are defined and maintained by the shell; their values
cannot be changed. Other variables, like VISUAL or HISTSIZE, can be changed by users. Users
can also create their own variables.

Most of the variables described below are unique to the Korn shell. Several of them have already
been used in this module.

PS41

The PSI variable is treated the same as in the Bourne shell, but can be used in conjunction with
the history facility. Since ksh interprets the 1" as the number of commands since history was
last cleared, it could be included in the value for PSI as shown below.

$ PSlarniusera> "
[1]usera> pwd
/home/usera
[2]usera>

The number of the shell prompt is also the number of the command in the history file. This
command reference can be used to reexecute previous commands.

PS3

PS3 is a new variable that is used with the select construct. It defines the prompt used by this
construct when requesting input.

PS4

The PS4 variable defines the debug symbol displayed when the set -x or ksh -x commands are
run.

VISUAL

The value of the VISUAL variable is a method of identifying the editor to be used within the
history facility. For convenience, this variable can be included in the .profile file.

EDITOR

The EDITOR variable also defines the editor to be used with the history facility. VISUAL will
supersede EDITOR if both are defined.

Reference

• UNIX System V Release 4 User's Reference Manual, ksh(1)

4-26 	 AL 3823

Shells

Korn Shell Variables

• Psi

• PS3

• 	PS4

• VISUAL

• EDITOR

AL 3823 	 4-27

Shells

Korn Shell Variables

PWD

In the Korn shell, PWD is now a variable that tracks your current location. In the following
example, it is used to create a shell prompt that identifies the current directory location.

PS1se[I]$PWD: '
/home/userl:

OLDPWD

Contains the value of the previous directory location. It can be used by executing cd with a —.
The following example changes the current directory to the previous working directory.

$ cd -

TMOUT

TMOUT represents the number of seconds to wait for keyboard input before timing out and
exiting.

HISTSIZE

The HISTSIZE specifies the number of commands that can be referenced to edit and/or reexecute.

Tilde (

The tilde () represents the user's HOME directory path name. It can be used as a replacement
for the full path name of any user's HOME directory as shown below:

$ cd -./dira

4-28 	 AL 3823

Shells

Korn Shell Variables

• PWD

• OLDPWD

• TMOUT

• H1STSIZE

• Tilde

AL 3823 	 4-29

Shells

Summary

• The UNIX shell is a command interpreter and a programming language. Its functions as a
command interpreter include

Program execution

File name substitution

Input 1 output redirection

Pipeline hookup

Environment control

•
	The four UNIX shells are the Bourne shell (sh), the Bourne shell with job control (jsh), the

C shell (csh), and the Korn shell (ksh).

•
	

Features of the Korn shell include

Command history

Command alias

Job control

Options and variables

• The Korn shell can be designated as the login shell for a user in the 1 etc I passwd file, as
defined by the SHELL variable, or executed using the ksh command.

• Korn shell environment information can be included in the user .profile or in a file named
by the ENV variable.

• Executed commands are stored in a list called history. These commands can be accessed
for editing and/or reexecution.

• The editor used in command line edit mode can be designated in one of three ways.

EDITOR=vi

VISUAL=vi

set -o vi

•
	

The list of executed commands is maintained in the file assigned to the HISTFILE
variable. By default, the file is called .sh_history, and it is located in the user's home
directory.

•
	

The value of the variable HISTSIZE determines the maximum number of commands,
relative to the most recently executed command, that can be accessed for editing and/or
reexecution.

4-30 	 AL 3823 -

Shells

Summary

• The history command lists the 16 most recently executed commands, including the
command sequence number and the complete command entry.

• Commands can be reexecuted without editing using the r (redo).

• To edit the current command line

1. Press <ESCAPE> to enter editor command mode

2. Correct/modify the command line using editor commands

3. Press <RETURN> to execute the command line

• To edit other command lines in history

1. Press <ESCAPE> to enter editor command mode

2. Press <k> to display previous commands or press cj> to display the next command

3. Edit the target command line using editor commands

4. Press <RETURN> to execute the command line

•
	

An alias is a shorthand notation for a longer command line entry.

• A list of current aliases is maintained by the Korn shell, and it can be displayed using the
alias command without arguments.

• The format to create an alias is alias namencommand_line.

• The format to remove an alias is unalias name.

•
	

The job control feature allows a user to suspend, to resume, to terminate, or to move
command sequences, called jobs, between foreground and background execution. Job
control is automatically enabled when the ksh, csh, or jsh shells are invoked.

•
	

Jobs exist in one of the following states:

Foreground

Background

Suspended

Terminated

AL 3823 	 4-31

Shells

Summary

• Job control commands are

jobs -option 	 List status of all jobs; -1 option is a long listing of all jobs
including PIDs; -p displays only PIDs associated with
running jobs

fg job_Id 	 Place job in foreground

<Az> 	 Suspend foreground job

bg job_Id 	 Place named job in background

stop job Id 	 Suspend named background job

kill -signal job_Id 	Terminate the designated job

• The following job designations can be specified with job control commands to manipulate
job execution.

%job-id(s)

PID

%pattern

Current job

Previous job

Designated job number

Designated process Id

Job containing pattern in the command line

• Options to modify the Korn shell environment are enabled or disabled using the following
set commands.

set -o 	 Lists current state of all options

set -o [option] 	 Turns the option ON

set +o [option] 	 Turns the option OFF

•
	

Variables are names with associated values. Variables are frequently used in
programming. Variables related to the environment are often placed in the .profile or ENV
file to be set automatically on login. Some variables are defined and maintained by the
shell; their values cannot be changed. Other variables, like VISUAL or HISTSIZE, can be
changed by users. Users can also create their own variables.

The Korn shell offers several unique variables.

4-32 	 AL 3823

Shells

Practical Exercise

Access the Korn shell from your home directory using the ksh command to perform the following
activities. Record the commands used to perform these steps.

1. Set the line editor to vi.

2. Execute the following commands to build a command history:

is -1 .profile
pg .profile
date
mkdir korndir
cd korndir
pwd
cd (return to home directory)

3. 	List the commands executed in step 2.

4. Conarm that a .sh_history file has been created in your home directory. What does this file
contain?

5. Reexecute the date command using the Korn shell history command, r.

6. Edit the following commands as indicated and reexecute them:

pg .sh_history
nadir histdir
cd histdir
is -1 histdir
cd (return to home directory)

7. Display the current command aliases.

8. Create an alias called dir that displays a listing of your files and directories recursively.
Verify that the dir alias exists.

9. Execute the dir alias.

10. Remove the dir alias and verify that it is no longer available.

AL 3823 	 433

Shells

Practical Exercise

11. Execute several sleep commands in background at intervals of 300, 400, and 500 seconds.
Record the associated process id numbers. Display the current jobs.

12. Bring the first job (sleep 300) to the foreground using its job number designation.

13. Suspend this job and place it in background using its process id number.

14. Repeat Steps 12 and 13 for one of the other jobs. Use the a pattern in the command line to
refer to the job.

15. List the current jobs. Terminate all remaining jobs started in step 11.

16. List the state of current Korn shell options.

17. Turn on the Korn shell noglob and the ignoreeof options. Verify these altered settings.

18. What is the effect of listing all of your files using the * (wildcard) character? What
happens when you log out using <Ad>?

19. Turn the options from Step 17 off and verify the restored settings.

20. Change your current directory to korndir and verify the present working directory. What
is the effect of designating a tilde () as the argument to the cd command? What is the
effect of the command cd -/histdir?

4-34 	 AL 3823

Shells

Optional Exercise

1. 	Name the two functions of the UNIX shell, and describe the shell's major responsibilities.

2. 	Mark the item(s) that represent UNIX shells. Select and contrast three shells.

a. vfs 	 e. 	sh

b. ksh
	

f. 	ufs

c. s5 	 g. 	rsh

d. csh 	 h. 	jsh

3. 	True or false. Programs written in the Korn shell can be used in the Bourne shell
environment. If false, explain.

a. True

b. False

4. 	Select and describe the feature common to csh, jsh, and ksh environments.

a. 	Command history

_b. 	Job control

c. Command alias

d. Command line editing

5. 	Mark the item(s) below that does(do) not define an editor in the Korn shell.

a. EDITOR

b. ENV

c. set

d. ksh

e. VISUAL

AL 3823 	 4-35

Shells

Optional Exercise

6. 	Name the key that invokes the command line editor.

7. 	List the steps to edit and execute a (copied) command line.

8. 	Select the item(s) below that correctly describe(s) the Korn shell's history mechanism.

a. A list of executed commands is maintained in the file name associated with the
variable HISTFILE, if one exists.

b. The default history file, .shilistory, is located in the user's parent directory.

c. The history command displays the 16 most recent commands.

d. The maximum number of commands maintained in the history file is defined by the
value of the HISTSIZE variable.

e. The r command executes commands from history without editing.

f. The command line editor is invoked by executing the ed or vi command to edit the
history file.

9. 	Define the term alias.

10. 	Describe how aliases are used (assigned, listed, and removed) in the Korn shell.

11. 	Define the term job and briefly describe the job control feature.

12. 	Name the four states in which jobs may exist.

4-36 	 AL 3823

Shells

Optional Exercise

13. Match the job description in column B with the corresponding item in column A.

Column A 	 Column B

jobs 	 a. 	Suspend background job

fg 	 b. 	Place job in background

%job_id 	 c. 	List of executed commands

bg 	 d. 	Refer to job containing pattern in the
command line

+ or — 	 e. 	Terminate a job

stop 	 f. 	Job designation by job Id

%pattern 	 g. 	List status of jobs

< Az> 	 h. 	Suspend foreground job

kill 	 i. 	Place job in foreground

j. 	Refer to current or previous jobs

14. Describe how Korn shell options are listed, enabled, and disabled using the set command
options.

15. Define the term variable. How are variables generally used in UNIX? Describe the use of
two variables introduced in this module.

AL 3823 	 4-37

Shell Programming
Fundamentals

Shell Programming Fundamentals

Module Objectives

Upon completion of this module, the student should be able to perform basic shell programming
functions.

The supporting module objectives include the ability to

1. Create basic shell programs.

2. Execute shell programs.

3. Check and correct basic shell program errors.

4. Initialize variables.

5. Modify the .profile to alter the user environment.

6. Describe shell programming features to enhance shell programs.

Reference

Documentation referenced in this module

UNIX System V Release 4 User's Reference Manual (4357 7444000)

AL 3823 	 5-1

Shell Programming Fundamentals

Shell Programming

Previous modules focused on using the shell as a command interpreter. Module 3 described
methods to execute multiple commands in a single command. However, if the command sequence
is needed again, it must be reentered. This module introduces the basic use of the Bourne shell as
a programming tool to combine existing commands as customized procedures stored in files called
shell programs. These files of commands enable a user to initiate complex tasks or to execute
repetitive procedures simply and quickly.

The main topics in this module include writing and executing a basic shell program, and checking
and corsecting program syntax errors. Other topics include

• 	Using shell variables in programs

• Creating functions containing command sequences that execute quicker than shell
programs

• Using alternative methods to execute shell programs

• Using shell programming features to embellish basic programs

Display prompts to user executing program

Read user input

Insert descriptive comments within programs

Redirect input directly within programs

Use program flow control structures

Students are referred to the Shell Programming course for information pertaining to shell
programming features in the Korn shell environment.

Reference

• UNIX System V Release 4 Reference Manual, sh(1)

5-2 	 AL 3823

Shell Programming Fundamentals

Shell Programming

• Purpose

Executes a complex series of tasks as a single command

Executes repetitive procedures

• Commands stored in a shell program file

• Features

Variables

Functions

Comments

User prompts

Input redirection within program

Program flow control structures

AL 3823 	 5-3

Shell Programming Fundamentals

Creating a Shell Program

A basic shell program, or shell script, is a file containing commands and other programming
features that is executed as a single command. The program file is usually created using a text
editor. Although the cat command can also be used for short or basic programs, this method
provides limited capability to correct or to modify the program.

Avoid naming a program file the same name as a UNIX command.

The examples on the next page show the same basic program file created using the cat command
and the ed line editor. The screen editor vi is more convenient to use for more complex programs.
This program contains UNIX commands to display the date, the current users on the system, the
user's working directory, and a listing of directory files. The commands can be listed on separate
lines, or they can be entered on the same line separated by semicolons, although this method is not
appropriate for more complex programs.

5-4
	

AL 3823

Shell Programming Fundamentals

Creating a Shell Program

• Use editor to create program file

List the commands on separate lines

Enter commands on same line separated by
semicolons

Examples

$ cat > progl
date ; who ; pwd ; ls
<^ci>

$ ed progl
?progl
a
date
who
pwd
is

w

AL 3823 	 5-5

Shell Programming Fundamentals

Executing a Shell Program

The default permissions for files (rw-rw-rw-) does not include execute permission. Although our
sample shell program contains executable commands, the pragl file itself is not recognized by the
shell as an executable file.

There are two primary methods to execute a shell program.

• Use the sh command to execute the commands in the program file.

• Use the chmod command first to make the program file executable; then execute the
program file as a command.

sh

The sh command executes the commands in a program file as if they were entered at the terminal.
sh causes the shell to fork another shell. This subshell is actually a copy of the parent shell,
which can handle only one process at a time. Since the pro am file is considered one process, any
commands contained in the program are handled by the subshell. The first example on the next
page uses the sh command to execute prog1.

chmod

The chmod command is used to give execute permission to the program file in order to execute it
as a command. The shell forks a new process to execute the program file. Octal or symbolic
notation can be used to designate the execute access mode. The second example on the next page
first uses the octal mode to give the owner execute permission to the progi file. Then, progl is
executed as a command.

Reference

• UNIX System V Release 4 User's Reference Manual, sh(1) and chmod(1)

5-6 	 AL 3823

Shell Programming Fundamentals

Executing A Shell Progsam

• sh command

$ is -1 progi
-rw-rw-rw- 1 userl admin 1672 Jul 7 13:23 progi
$ sh progi
(Program output)

• chmod command

$ chmod 744 progl
$ is -1 progi
-rwxr--r-- 1 userl admin 1672 Jul 7 13:23 progi
$ progi
(Progsam output)

AL 3823 	 5-7

Shell Programming Fundamentals

Alternative Program Execution

When a command, or program file, is executed, the shell searches the disk for the program file
having the same name as the command. When the shell finds the program, it continues to process
the command line and forks a new process to execute the program.

There are two commands to execute a program without creating a new process, the . (dot) and
exec commands.

• . (Dot)

The . (dot) command executes a program as part of the current process, which continues to
execute after the program has terminated. The . command does not require execute
permission for the program file. Compiled (binary) programs cannot be executed with this
command.

The format for this command is . program.

• exec

exec is one of several built-in shell commands. No new process is created to execute the
program because the program is immediately available to the shell.

The exec command executes the named program overlaying, or replacing, the current
process; it does not return to the original program. It does execute compiled programs.

The format for this command is exec program.

Refer to the sh(1) entry in the User's Reference manual for descriptions of other built-in
shell commands.

Reference

• UNIX System V Release 4 Users Reference Manual, sh(1)

5-8 	 AL 3823

Shell Programming Fundamentals

Alternative Program Execution

• Shell does not fork a new process to execute program

• . (Dot)

Executes program in current process

Execute permission for program is not required

Compiled programs cannot be used

• exec

Replaces program Funning in current process

Compiled progpams can be used

AL 3823 	 5-9

Shell Programming Fundamentals

Programming Errors

The sh command also finds program errors. It provides two useful options to locate errors in
progsams. These options can be used separately or together.

-v 	 Displays each line as it is executed

Displays the commands and their arguments as they are executed

Errors are corrected in the program file using an editor.

These options of sh are generally used with more complex programs.

5-10 	 AL 3823

Shell Programming Fundamentals

Programming Errors

• Locate error(s)

$ sh -v progl

$ sh -x progl

sh -xv progl

• Correct error(s) in program file using editor

•

AL 3823 	 5-11

Shell Programming Fundamentals

Practical Exercise

Perform the following activities at yous terminal.

	

1. 	Create a basic shell program named myprog using an editor. The program should perform
the following actions:

a. Display the current date.

b. Display the current directory.

c. List the file names in the current directory.

d. Create a directory called newdir.

e. Print a long list of your files on the local printer using output redirection.

	

2. 	Execute myprog. Correct any errors and reexecute the program.

AL 3823 	 5-13

Shell Programming Fundamentals

Variables

A variable is a named storage area in memory containing information that can change. It is often
used as a shorthand notation to reference longer information or information that changes. There
are several types of variables: named variables, shell variables, special (read-only) variables, and
positional parameters.

Named variable

Shell variable

Special variable

Positional parameter

Defined and changed by user

Defined by the shell; can be changed by user

Defined by the shell; cannot be changed by user

Variable referenced in program file; its value is specified as
an argument to the program at the command line

Variables and their assigned values are available only to the current process for the current login
session. Variables may be passed to other processes using the export command. Variables can be
set automatically at login by entering them in the startup file, .profile. The echo command can be
used to display the values of variables. Variables can be removed using the unset command
designating the variable name to be removed, as in unset TERM.

Each variable type is described separately on the following pages.

5-14 	 AL 3823

Shell Programming Fundamentals

Variables

• A name containing information that can change

• Stored in memo#/y

• Types

Named variable

Shell variable

Special (read-only) variable

Positional parameters

AL 3823 	 5-15

Shell Programming Fundamentals

Named Variable

The format to create a variable and to assign it a value is

name=value

A variable name can consist of any sequence of nonblank characters beginning with a letter or an
underscore. Do not include spaces before or after the equal (m) sign. If the value contains spaces
(as in a command entry with options and arguments, or a multiple-word character string), enclose
the entire value in quotes. Enclose command values (dirdpwd') in a pair of back quotes (grave
accent) to indicate command substitution. Do not include pipe, redirection, or ampersand symbols
in command values.

The variable name and the assigned value can be entered at the shell prompt, or in the .profile to
be set automatically at login.

Examples

The first example assigns a numeric string to a variable. The second example assigns a command
as the value to the ll variable. Notice the use of back quotes to direct the shell to substitute the
output of the designated command. The last example assigns a lengthy character string to the
named variable. Quotes are used because the value contains spaces.

The use of variables is described following the description of the remaining variable types.

5-16
	

AL 3823

Shell Programming Fundamentals

Named Variable

• Created by user

• User can change value

• Format

name= value

Examples

$ var1=1991

$ 11=`113 -al'

$ msg="Reminder: Staff meeting today at 4 p.m."

AL 3823
	

5-17

Shell Programming Fundamentals

Shell Variable

The shell provides variables containing information related to the user's shell environment. These
variables are initially set by the shell, but they can be changed by the user. For example, the shell
uses some of these variables to set the user's home directory, or the shell prompt.

The format of a shell variable is similar to the format of a named variable.

NAME=value

Shell variable names are all uppercase. Again, spaces are not used before or after the = sign.
Values containing spaces are enclosed in quotes.

To change the value of a shell variable, replace the old value with the new value at the shell
prompt. For example, the entry PS 1='cmd? ' changes the shell prompt $ assigned to the shell
variable PS 1 to cmd? followed by spaces (to easily distinguish command line from shell prompt
entries).

Commonly used shell variables are:

HOME 	 Login directory pathname

IFS 	 Internal field separator used by the shell

LOGNAME 	User login name

LPDEST 	 Designates printer other than default printer

MAIL 	 User mail file (mailbox)

PATH 	 List of directories searched during command execution

PS1 	 Primary shell prompt

PS2 	 Secondary shell prompt displayed when shell expects more input

TERM 	 Terminal name

5-18 	 AL 3823

Shell Programming Fundamentals

Shell Variable

• Contains information about user's shell environment

• Created by the shell

• User can change value

• Format

NAME:.-value

Examples

$ PS1=' cmd?

$ TERM=terminalname

AL 3823 	 5-19

Shell Programming Fundamentals

Special Variable

Special read-only variables, also set by the shell, contain information about the status of command
lines and command execution. The values of these variables cannot be changed by a user.

Frequently used special variables are:

$#
	

References the number of command line arguments

$*
	

References all command line arguments

so
	

References the current program name

$$
	

References the current process Id

References the process Id of the last background execution

5-20 	 AL 3823

Shell Programming Fundamentals

Special Variable

• Contains status information about command lines and
command execution

• Set by the shell

• User can only reference values

AL 3823
	

5-21

Shell Programming Fundamentals

Positional Parameter

A positional parameter is another type of variable. Instead of assigning the exact value to a
variable within a progsam, the value can be assigned at the command line. It is referenced in the
shell program, but its value is defined as an argument in the command line when the program is
executed.

While a command line can include at least 128 arguments, the shell only stores the values of the
first nine command line arguments in the variables $1 through $9. Therefore, a shell program can
reference up to nine positional parameters. In the command line

prog2 argl arg2 arg3

argl is the value for the positional parameter $1 in the program file; arg2 is the value for $2, and
arg3 is the value for $3.

The special variable $* represents all command line arguments. The variable $# contains the
number of command line arguments.

The shift command is used in programs to access additional command line arguments. The first
shift command accesses the tenth argument. Successive shift commands access additional
arguments. In effect, argl becomes unavailable, arg2 shifts to $1, arg3 shifts to $2, and so on.

5-22 	 AL 3823

Shell Programming Fundamentals

Positional Parameter

• Value of variable is defined at command line,
not in program file

• Position of value (argument) in command line
is referenced in program

• Bourne shell allows nine positional parameters
($1 through $9) in a program

shift command allows access to additional command
line arguments

AL 3823 	 5-23

Shell Programming Fundamentals

Using Variables

There are two ways to use variables.

• Precede the variable name with a dollar sign ($) to display command output of variables
having command values.

For example, using the 11,1s -al' variable created earlier to display a long listing of a
directory, $11 /etc displays a long listing of the /etc directory. Named variables are useful
as abbreviated forms of complex command structures, like sort.

• Use the $ character and the echo command to display the value of any variable.

echo copies its arguments to standard output. Example 1 uses varl from a previous
example. echo $varl copies arguments and displays the value of the named variable,
1991. Notice the leading $ is still used . The shell recognizes Svarl as the name of a
variable, substitutes the value, and passes the value to the echo command. echo displays
the value of the variable, unaware that it was executed with a variable argument.

Example 2 illustrates command substitution using variables. The command pwd is
assigned as the value to a named variable, dir. Notice the command is enclosed in a pair
of back quotes (or grave accent marks, "). The shell replaces the command with its
output.

In the third example, echo displays the value of the primary prompt shell variable, PS1 as
$•
Example 4 uses a special (read-only) variable, $$, to display the current process id.

echo also gives special meaning to some characters preceded by a backslash. These
characters must be enclosed in quotes.

\n
	 Move to a new line

Move to the next tab

\c
	 Stay on the same line (suppress the new line)

The last example illustrates one of echo's special characters. The \n\ri moves to a new
line twice; in effect, it skips a line.

5-24 	 AL 3823

Shell Programming Fundamentals

Using Variables

• Two ways to use variables

Precede variable name with a $ sign

Use echo command with $var to display the value

Example 1
$ echo The year is $varl.
The year is 1991.

Example 2
dir=apwd'

$ echo My current directory is 4dir
My current directory is /home/userl

Example 3
$ echo $PS1

•

Example 4
$ echo $$
485

Example 5
$ echo 'Skipping a\n\nline.'
Skipping a

line.

AL 3823 	 5-25

Shell Programming Fundamentals

Exporting Variables

At login, a user is provided a copy of the shell program designated in the I etc I passwd file. The
shell process maintains the operating environment for the user, distinct from other users on the
system. Variable assignments are local (known) only to the current process. This environment is
maintained until the user ends the login session.

When a program is executed, a child process is forked. The parent process does not automatically
pass the value of a variable to a child process. The child process is unaware of the variable
assignments local to the parent process. Further, a child process cannot change the value of a
variable local to the parent process.

The first example assigns a new value, PS.1.--'my_prompt> ', to the primary prompt. A subshell is
created using the sh command described earlier in this module. Notice that the value of the login
shell prompt is not transferred to the subshell. The subshell displays its own value for the PS1
variable, $. When the subshell is terminated, the parent shell displays its value for the variable
once again.

export Command

The export command plays a significant role in the corsect variable substitution in shell
programs. export passes a copy of the value of a variable to a child process. The child process
receives a copy of the variable for its own use. Although the child process can change the value of
the copy, the variable in the parent process remains =altered. The value of the TERM variable
must be exported so that the process executing the vi program knows the capabilities of the
terminal.

The format of the export command is

export variable_name

The export statement can be entered on the same line as the variable assignment, separated by a
semicolon, or it can be entered separately.

In the second example, the new value of PS1, cmd>, is exported. The subshell prompt shows that
the new value is received. However, when the value of PSI is changed and exported in the
subshell, the new value is passed to other child processes, in this case to another subshell (sh), but
it is not passed to the parent process. Notice that each subshell is terminated separately. In the
example, the first exit terminates the second subshell and returns to the previous subshell; the
second exit returns to the parent shell.

Reference

• UNIX System V Release 4 User's Reference Manual, export(1)

5-26
	

AL 3823

Shell Programming Fundamentals

Exporting Variables

• Passes variable value to child processes

• Format

export variable name

Example 1
$PS1='my_prompt> '
myprompt> sh
$ exit
myprompt>

Example 2
$ PS1='cmd>
cmd> export PSI
cmd> sh
cmd> PS1='subprompt>
subprompt> sh
subprompt> exit
subprompt> exit
cmd>

; export PS1

AL 3823
	

5-27

Shell Programming Fundamentals

Displaying Environmental Variables

The commands described below display or modify the user's environment.

• 	set

The set command (without arguments) displays an alphabetical listing of all variables,
local and exported, that exist in the current environment. set can also be used to set shell
options that display commands and arguments as they are printed, as well as to reassign
positional parameters. Refer to the manual entry sh(1).

• env

The env command (without arguments) displays variables in the current environment that
are exported to or by the shell. env can also be used to modify the current environment
during the execution of the named command. Refer to the manual entry env(1).

Reference

• UNIX System V Release 4 User's Reference Manual, set(1) and env(1)

5-28
	

AL 3823

Shell Programming Fundamentals

Displaying Environmental Variables

• set

Displays all (local and exported) variables

• env

Displays exported variables

AL 3823
	

5-29

Shell Programming Fundamentals

Shell Function

A shell function contains a series of commands for execution, similar to a shell program. Because
functions are stored in memory, like variables, they are accessed and executed more quickly than
shell programs. Functions are executed in the current shell process.

A function is defined using one of the following formats.

• Format 1

name (

commandl
command2
command3

The name invokes the function to execute the commands listed. The parentheses instruct
the shell that a function definition follows. The list of commands to be executed is enclosed
in curly braces. Functions are executed as a command by entering the function name.

The first example uses this format to create a function called fl that executes the
commands date, who, pwd, and is -F.

• Format 2

name () commandl ; command2 ; command3;

This format is useful for defining short functions on one line. A space must precede the
first command. A semicolon separates the commands and the last command from the
closing curly brace.

This format is shown in Example 2 using the same function definition as Example 1.

Functions can be removed, like variables, using the unset command designating the function
name to be removed, as in unset function. A function is effective for the current login unless it is
placed in .profile for automatic execution at login.

Reference

• UNIX System V Release 4 Users Reference Manual, sh(1) and set(1)

5-30 	 AL 3823

Shell Programming Fundamentals

Shell Function

• Defines a command series for execution

• Stored in memory

• Two definition formats

Example 1
$ fl ()

{
date
who
pwd
is -F
}

$ fl
(Function output)

Example 2
$ fl () { date ; who ; pwd ; is -F; }
$ fl
(Function output)

AL 3823
	

5-31

Shell Programming Fundamentals

Modifying the Login Environment — .profile

During the login sequence, the system I etc I profile, is executed setting a global system
environment for all users. The 1 etc /profile file also executes several commands, such as news,
mail, stty, and umask. I etc /profile can be modified by the system administrator to customize the
global user environment. In addition, if a .profile file exists in the user's home directory, it is
executed when the user logs in. The contents of .profile overrides any matching entry in
I etc I profile.

.profile is a shell program. The system administrator may assign a standard .profile when the user
account is created. The contents of the system default .profile is displayed below.

$ cat .profile
#This is the default standard profile provided to a user.
#They are expected to edit it to meet their own needs.

MAIL../user/mail/$(LOGNAME:fl

The .profile can be changed to include additional commands, shell programs, variables, or functions
described in this module. A sample .profile is illustrated on the next page.

5-32 	 AL 3823

Shell Programming Fundamentals

Modifying the Login Environment 	.profile

• Executed during login sequence

• Contains

UNIX commands

Shell programs

Variables

Functions

Example
$ cat .profile
PATH=:$HOME/local bin:ribInlusr/bin:/etc
MAIL=/var/mail/logname
TERM=uvt1224
PS1="Yes? "
PS2="more:
export PATH MAIL TERM PS1 PS2
fl O { date ; pwd ; is -al I pg; }
script4
echo HAVE A SUPER DAY !

AL 3823
	

5-33

Shell Programming Fundamentals

Practical Exercise

In this exercise, you will create a .profile to include the following items. If a .profile
already exists, rename it to profile.bk before you proceed.

1. 	Create a .profile in your home directory that will:

a. Change and export your primary prompt.

b. Create and display the myvar variable containing the message, This is my first
variable.

c. Display the date and the current monthly calendar.

d. Display the name of the current program.

e. Execute myprog.

f. Display the message, This is the end of my .profile.

2. 	Log out. Log in and observe the execution of your .profile. Correct any errors and test
your .profile again.

AL 3823 	 5-35

Shell Programming Fundamentals

Shell Program Embellishments

The shell provides several features to embellish basic shell programs making them more useful
and versatile. Salient features descriptions are highlighted below and on the next several pages to
illustrate extended shell programming capabilities. These and other aspects of shell programming
are addressed in the Shell Programming course.

echo

The echo command can also be used in programs to display prompts to the user executing
the program.

For example, echo Inter something:

• read

The read command enables a shell progam to read user input into the named variable(s)
in the program.

For example, read text can store an entire line of user input in the variable named text.

• sleep

This command suspends execution for the specified number of seconds. It is useful to
create pauses during program execution.

For example, sleep 8 pauses the program execution for eight seconds.

• Comments

Descriptive information can be inserted within a progsam. Comments placed at various
locations within the program can provide useful descriptions of what the program is doing
at given points, particularly in complex progsams. The comment text is preceded by the #
symbol. Characters after the # are ignored and do not affect program execution.

For example,

#The statement below tests for condition A
#and executes the commands that follow

• Here document

The here document allows input redirection within a shell program. The « symbols
instruct the shell to direct everything between the designated delimiters to the program as
standard input.

The format for this type of input redirection follows.

command <<!
(input lines)

5-36 	 AL 3823

Shell Programming Fundamentals

Shell Program Embellishments
(1 of 3)

• echo

• read

• sleep

• Comments

• Here document (input redirection)

AL 3823 	 5-37

Shell Programming Fundamentals

Shell Program Embellishments

Additional programming features are described below.

• 	Looping

Looping statements execute a set of commands repeatedly, either a specified number of
times, or until a specified condition is met. The three built-in looping commands are: for,
while, and until. Keywords that must be designated explicitly appear in boldface in the
format structures described below.

The for statement executes the designated commands a specified number of times.

for variable in argument list
do

command list
done

The while statement executes the listed commands as long as the test condition is true;
otherwise the loop terminates.

while test command true
do

command list
done

The until is the reverse of the while statement. It executes the listed commands until the
test condition is true.

until test command true
do

command list
done

The looping statements can be interrupted using a break or continue statement. The
break statement terminates the execution of the loop and transfers control to the
statement after done. The continue statement transfers control to the done statement,
which continues execution of the loop.

5-38 	 AL 3823

Shell Programming Fundamentals

Shell Program Embellishments
(2 of 3)

• Looping

for

while

until

• Interrupting loops

break

continue

AL 3823
	

5-39

Shell Programming Fundamentals

Shell Program Embellishments

Additional progsamraing features are described below.

• Conditionals

Conditional statements allow conditions to be tested affecting the flow of the program
based on the test result. Keywords that must be designated explicitly appear in boldface in
the format structures described below.

The if-then statement tests the designated condition and executes the listed commands if
the statement is true.

if test command (s) true
then command list

fi

The if-then-else statement allows alternative commands to be executed if the test
condition is true. If the condition is false, the command list following then is skipped and
the command list after else is executed.

if test command (s) true
then command list
else command list

fi

The case statement compares a single named value with multiple patterns. When a match
is found, the commands listed after the pattern are executed. The * used as a pattern
executes the commands that follow if no other pattern matches.

case test value in
patternl) 	command list ;;
pattern2) 	command list
*) 	 command list ;;

esac

There are other variants of the primary conditional statements described above. Conditional
statements also can be nested in other conditional statements.

5-40 	 AL 3823

Shell Programming Fundamentals

Shell Program Embellishments
(3 of 3)

• Conditional statements

if - then

If - then - else

case

AL 3823 	 5-41

Shell Programming Fundamentals

Summary

• A shell program is a file containing commands and other progsam features that is executed
as a single command.

• Shell programs are useful to perform complex tasks or repetitive procedures. A shell
program is usually created using an editor.

• The two primary methods to execute a program are

Use the sh command to execute the program file.
Use chmod first to give execute permission to the program; then execute the
program as a command.

•
	

The . (dot) and exec commands execute a progsam without forking a new process.

•
	

The sh command can also locate program errors which are then corrected using an editor.

A variable is a named storage area in memory containing information that can change. It
is used as a shorthand notation to reference longer information or information that
changes. Types of variables include: named variables, shell variables, special variables,
and positional parameters.

•
	

Variables are available to the current process for the current login session unless they are
exported and/or set automatically at login by entering them in .profile.

•
	

The format to create a named variable is name=value, and NAME=value for shell variables.
Special variables cannot be changed.

• Variables are referenced by preceding the variable name with a $. The echo command
displays the value of a variable, as in echo $var.

• The export command passes variables to other processes.

• The env command displays exported variables; set displays all (local and exported)
variables.

• A function is a definition of multiple commands that is stored in memory, not in a file.
One of two formats can be used to define a function:

Format 1

name (

commandl
command2
command3

Format 2

name () commandl ; command2 ; command3;

A function is effective for the current login unless it is placed in .profile for automatic
execution at login.

5-42 	 AL 3823

Shell Programming Fundamentals

Summary

The I etc I profile sets a global environment for all users. The .profile is a shell program in
the user's home directory that can include additional commands, shell programs, or
functions to customize individual user environments.

• The shell provides a variety of features to make programs more useful and versatile.

echo

The echo command can also be used in programsIto display prompts to the user executing
the program.

read

The read command enables a shell program to read user input into the named variable(s)
in the program.

sleep

This command suspends execution for the specified number of seconds. It is useful to
create pauses during program execution.

Comments

Descriptive information can be inserted within a program. Comments placed at various
locations within the program can provide useful descriptions of what the program is doing
at given points in the program,!particularly in complex programs. The comment text is
preceded by the # symbol. Characters after the U are ignored and do not affect program
execution.

Here

The here document allows input redirection within a shell program. The « symbols
instruct the shell to direct everything between the designated delimiters to the program as
standard input.

Looping

Looping statements execute a set of commands repeatedly, either a specified number of
times, or until a specified condition is met. The three built-in looping commands are: for,
while, and until.

AL 3823 	 5-43

Shell Programming Fundamentals

Conditionals

Conditional statements allow conditions to be tested, changing the flow of the program
based on the test result. Conditional statements also can be nested in other conditional
statements. The if-then statement tests the designated conditions and executes the listed
commands if the statement is true. The if-then-else statement allows alternative

• commands to be executed if the test condition is true. If the condition is false, the
command list following then is skipped and the command list after else is executed. The
case statement compares a single named value with multiple patterns. When a match is
found, the commands listed after the pattern are executed.

5-44 	 AL 3823

Shell Programming Fundamentals

Practical Exercise

Modify your .profile to include any of the features described in this module. Execute .profile and
confirm your changes.

AL 3823
	

5-45

Command Summay

Command Summary

Command List

alias 	 Korn shell command displays the list of aliases
(p. 4-16)

Execute command(s) later at the designated time
(p. 3-20)

atq
	

List at job(s) in schedule queue
(p. 3-24)

atria 	 Remove at job(s) from schedule queue
(p. 3-26)

batch 	Execute command(s) later as system load permits
(p. 3-22)

echo 	 Write command arguments on the standard output
(p. 5-24)

env 	 Set environment for command execution
(p. 5-28)

exec

export

history

jobs

kill

nohup

Execute program without forking another shell
(p. 5-8)

Pass value of variables to child processes
(p. 5-26)

Korn shell command listing history of commands executed
(p. 4-10)

Korn shell command listing status of jobs currently running
(p. 4-20)

Terminate designated process(es)
(p. 3-14)

Run command immune to hangups and quits
(p. 3-16)

Display status of running processes
(p. 3-4)

AL 3823 	 A-1

Command Summary

redirection:

Redirect standard input from designated file
(p. 2-8)

Redirect standard output to designated file
(p. 2-10)

>>
	Append output to named file

(p. 2-10)

Connect commands; pipe command standard output as input to next command
(p. 2-12)

tee 	Split output to named file and to standard output, or to next command in
pipeline (p. 2-14)

set
	

Set and display local or global environment
(p. 5-28)

Execute and debug shell programs
(p. 5-6)

unalias 	Korn command removes designated command alias
(p. 4-16)

unset 	Unset local or global environment variables
(p. 5-12)

A-2 	 AL 3823

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112
	Page 113
	Page 114
	Page 115
	Page 116
	Page 117
	Page 118
	Page 119
	Page 120
	Page 121
	Page 122
	Page 123
	Page 124
	Page 125
	Page 126
	Page 127
	Page 128
	Page 129
	Page 130
	Page 131
	Page 132
	Page 133
	Page 134
	Page 135
	Page 136
	Page 137
	Page 138
	Page 139
	Page 140
	Page 141
	Page 142
	Page 143
	Page 144
	Page 145
	Page 146
	Page 147
	Page 148
	Page 149
	Page 150
	Page 151
	Page 152
	Page 153
	Page 154
	Page 155
	Page 156
	Page 157
	Page 158
	Page 159
	Page 160

